drm/i915: Fix core-2 ring buffer init
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
37  * but keeps the logic simple. Indeed, the whole purpose of this macro is just
38  * to give some inclination as to some of the magic values used in the various
39  * workarounds!
40  */
41 #define CACHELINE_BYTES 64
42
43 static inline int __ring_space(int head, int tail, int size)
44 {
45         int space = head - (tail + I915_RING_FREE_SPACE);
46         if (space < 0)
47                 space += size;
48         return space;
49 }
50
51 static inline int ring_space(struct intel_engine_cs *ring)
52 {
53         struct intel_ringbuffer *ringbuf = ring->buffer;
54         return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
55 }
56
57 static bool intel_ring_stopped(struct intel_engine_cs *ring)
58 {
59         struct drm_i915_private *dev_priv = ring->dev->dev_private;
60         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
61 }
62
63 void __intel_ring_advance(struct intel_engine_cs *ring)
64 {
65         struct intel_ringbuffer *ringbuf = ring->buffer;
66         ringbuf->tail &= ringbuf->size - 1;
67         if (intel_ring_stopped(ring))
68                 return;
69         ring->write_tail(ring, ringbuf->tail);
70 }
71
72 static int
73 gen2_render_ring_flush(struct intel_engine_cs *ring,
74                        u32      invalidate_domains,
75                        u32      flush_domains)
76 {
77         u32 cmd;
78         int ret;
79
80         cmd = MI_FLUSH;
81         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
82                 cmd |= MI_NO_WRITE_FLUSH;
83
84         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
85                 cmd |= MI_READ_FLUSH;
86
87         ret = intel_ring_begin(ring, 2);
88         if (ret)
89                 return ret;
90
91         intel_ring_emit(ring, cmd);
92         intel_ring_emit(ring, MI_NOOP);
93         intel_ring_advance(ring);
94
95         return 0;
96 }
97
98 static int
99 gen4_render_ring_flush(struct intel_engine_cs *ring,
100                        u32      invalidate_domains,
101                        u32      flush_domains)
102 {
103         struct drm_device *dev = ring->dev;
104         u32 cmd;
105         int ret;
106
107         /*
108          * read/write caches:
109          *
110          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
111          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
112          * also flushed at 2d versus 3d pipeline switches.
113          *
114          * read-only caches:
115          *
116          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
117          * MI_READ_FLUSH is set, and is always flushed on 965.
118          *
119          * I915_GEM_DOMAIN_COMMAND may not exist?
120          *
121          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
122          * invalidated when MI_EXE_FLUSH is set.
123          *
124          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
125          * invalidated with every MI_FLUSH.
126          *
127          * TLBs:
128          *
129          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
130          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
131          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
132          * are flushed at any MI_FLUSH.
133          */
134
135         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
136         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
137                 cmd &= ~MI_NO_WRITE_FLUSH;
138         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
139                 cmd |= MI_EXE_FLUSH;
140
141         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
142             (IS_G4X(dev) || IS_GEN5(dev)))
143                 cmd |= MI_INVALIDATE_ISP;
144
145         ret = intel_ring_begin(ring, 2);
146         if (ret)
147                 return ret;
148
149         intel_ring_emit(ring, cmd);
150         intel_ring_emit(ring, MI_NOOP);
151         intel_ring_advance(ring);
152
153         return 0;
154 }
155
156 /**
157  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
158  * implementing two workarounds on gen6.  From section 1.4.7.1
159  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
160  *
161  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
162  * produced by non-pipelined state commands), software needs to first
163  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
164  * 0.
165  *
166  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
167  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
168  *
169  * And the workaround for these two requires this workaround first:
170  *
171  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
172  * BEFORE the pipe-control with a post-sync op and no write-cache
173  * flushes.
174  *
175  * And this last workaround is tricky because of the requirements on
176  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
177  * volume 2 part 1:
178  *
179  *     "1 of the following must also be set:
180  *      - Render Target Cache Flush Enable ([12] of DW1)
181  *      - Depth Cache Flush Enable ([0] of DW1)
182  *      - Stall at Pixel Scoreboard ([1] of DW1)
183  *      - Depth Stall ([13] of DW1)
184  *      - Post-Sync Operation ([13] of DW1)
185  *      - Notify Enable ([8] of DW1)"
186  *
187  * The cache flushes require the workaround flush that triggered this
188  * one, so we can't use it.  Depth stall would trigger the same.
189  * Post-sync nonzero is what triggered this second workaround, so we
190  * can't use that one either.  Notify enable is IRQs, which aren't
191  * really our business.  That leaves only stall at scoreboard.
192  */
193 static int
194 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
195 {
196         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
197         int ret;
198
199
200         ret = intel_ring_begin(ring, 6);
201         if (ret)
202                 return ret;
203
204         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
205         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
206                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
207         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
208         intel_ring_emit(ring, 0); /* low dword */
209         intel_ring_emit(ring, 0); /* high dword */
210         intel_ring_emit(ring, MI_NOOP);
211         intel_ring_advance(ring);
212
213         ret = intel_ring_begin(ring, 6);
214         if (ret)
215                 return ret;
216
217         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
218         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
219         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
220         intel_ring_emit(ring, 0);
221         intel_ring_emit(ring, 0);
222         intel_ring_emit(ring, MI_NOOP);
223         intel_ring_advance(ring);
224
225         return 0;
226 }
227
228 static int
229 gen6_render_ring_flush(struct intel_engine_cs *ring,
230                          u32 invalidate_domains, u32 flush_domains)
231 {
232         u32 flags = 0;
233         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
234         int ret;
235
236         /* Force SNB workarounds for PIPE_CONTROL flushes */
237         ret = intel_emit_post_sync_nonzero_flush(ring);
238         if (ret)
239                 return ret;
240
241         /* Just flush everything.  Experiments have shown that reducing the
242          * number of bits based on the write domains has little performance
243          * impact.
244          */
245         if (flush_domains) {
246                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
247                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
248                 /*
249                  * Ensure that any following seqno writes only happen
250                  * when the render cache is indeed flushed.
251                  */
252                 flags |= PIPE_CONTROL_CS_STALL;
253         }
254         if (invalidate_domains) {
255                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
256                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
257                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
258                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
259                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
260                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
261                 /*
262                  * TLB invalidate requires a post-sync write.
263                  */
264                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
265         }
266
267         ret = intel_ring_begin(ring, 4);
268         if (ret)
269                 return ret;
270
271         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
272         intel_ring_emit(ring, flags);
273         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
274         intel_ring_emit(ring, 0);
275         intel_ring_advance(ring);
276
277         return 0;
278 }
279
280 static int
281 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
282 {
283         int ret;
284
285         ret = intel_ring_begin(ring, 4);
286         if (ret)
287                 return ret;
288
289         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
290         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
291                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
292         intel_ring_emit(ring, 0);
293         intel_ring_emit(ring, 0);
294         intel_ring_advance(ring);
295
296         return 0;
297 }
298
299 static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
300 {
301         int ret;
302
303         if (!ring->fbc_dirty)
304                 return 0;
305
306         ret = intel_ring_begin(ring, 6);
307         if (ret)
308                 return ret;
309         /* WaFbcNukeOn3DBlt:ivb/hsw */
310         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
311         intel_ring_emit(ring, MSG_FBC_REND_STATE);
312         intel_ring_emit(ring, value);
313         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
314         intel_ring_emit(ring, MSG_FBC_REND_STATE);
315         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
316         intel_ring_advance(ring);
317
318         ring->fbc_dirty = false;
319         return 0;
320 }
321
322 static int
323 gen7_render_ring_flush(struct intel_engine_cs *ring,
324                        u32 invalidate_domains, u32 flush_domains)
325 {
326         u32 flags = 0;
327         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
328         int ret;
329
330         /*
331          * Ensure that any following seqno writes only happen when the render
332          * cache is indeed flushed.
333          *
334          * Workaround: 4th PIPE_CONTROL command (except the ones with only
335          * read-cache invalidate bits set) must have the CS_STALL bit set. We
336          * don't try to be clever and just set it unconditionally.
337          */
338         flags |= PIPE_CONTROL_CS_STALL;
339
340         /* Just flush everything.  Experiments have shown that reducing the
341          * number of bits based on the write domains has little performance
342          * impact.
343          */
344         if (flush_domains) {
345                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
346                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
347         }
348         if (invalidate_domains) {
349                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
350                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
354                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
355                 /*
356                  * TLB invalidate requires a post-sync write.
357                  */
358                 flags |= PIPE_CONTROL_QW_WRITE;
359                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
360
361                 /* Workaround: we must issue a pipe_control with CS-stall bit
362                  * set before a pipe_control command that has the state cache
363                  * invalidate bit set. */
364                 gen7_render_ring_cs_stall_wa(ring);
365         }
366
367         ret = intel_ring_begin(ring, 4);
368         if (ret)
369                 return ret;
370
371         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
372         intel_ring_emit(ring, flags);
373         intel_ring_emit(ring, scratch_addr);
374         intel_ring_emit(ring, 0);
375         intel_ring_advance(ring);
376
377         if (!invalidate_domains && flush_domains)
378                 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
379
380         return 0;
381 }
382
383 static int
384 gen8_render_ring_flush(struct intel_engine_cs *ring,
385                        u32 invalidate_domains, u32 flush_domains)
386 {
387         u32 flags = 0;
388         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
389         int ret;
390
391         flags |= PIPE_CONTROL_CS_STALL;
392
393         if (flush_domains) {
394                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
395                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
396         }
397         if (invalidate_domains) {
398                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
399                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
400                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
401                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
402                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
403                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
404                 flags |= PIPE_CONTROL_QW_WRITE;
405                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
406         }
407
408         ret = intel_ring_begin(ring, 6);
409         if (ret)
410                 return ret;
411
412         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
413         intel_ring_emit(ring, flags);
414         intel_ring_emit(ring, scratch_addr);
415         intel_ring_emit(ring, 0);
416         intel_ring_emit(ring, 0);
417         intel_ring_emit(ring, 0);
418         intel_ring_advance(ring);
419
420         return 0;
421
422 }
423
424 static void ring_write_tail(struct intel_engine_cs *ring,
425                             u32 value)
426 {
427         struct drm_i915_private *dev_priv = ring->dev->dev_private;
428         I915_WRITE_TAIL(ring, value);
429 }
430
431 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
432 {
433         struct drm_i915_private *dev_priv = ring->dev->dev_private;
434         u64 acthd;
435
436         if (INTEL_INFO(ring->dev)->gen >= 8)
437                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
438                                          RING_ACTHD_UDW(ring->mmio_base));
439         else if (INTEL_INFO(ring->dev)->gen >= 4)
440                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
441         else
442                 acthd = I915_READ(ACTHD);
443
444         return acthd;
445 }
446
447 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
448 {
449         struct drm_i915_private *dev_priv = ring->dev->dev_private;
450         u32 addr;
451
452         addr = dev_priv->status_page_dmah->busaddr;
453         if (INTEL_INFO(ring->dev)->gen >= 4)
454                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
455         I915_WRITE(HWS_PGA, addr);
456 }
457
458 static bool stop_ring(struct intel_engine_cs *ring)
459 {
460         struct drm_i915_private *dev_priv = to_i915(ring->dev);
461
462         if (!IS_GEN2(ring->dev)) {
463                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
464                 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
465                         DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
466                         return false;
467                 }
468         }
469
470         I915_WRITE_CTL(ring, 0);
471         I915_WRITE_HEAD(ring, 0);
472         ring->write_tail(ring, 0);
473
474         if (!IS_GEN2(ring->dev)) {
475                 (void)I915_READ_CTL(ring);
476                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
477         }
478
479         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
480 }
481
482 static int init_ring_common(struct intel_engine_cs *ring)
483 {
484         struct drm_device *dev = ring->dev;
485         struct drm_i915_private *dev_priv = dev->dev_private;
486         struct intel_ringbuffer *ringbuf = ring->buffer;
487         struct drm_i915_gem_object *obj = ringbuf->obj;
488         int ret = 0;
489
490         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
491
492         if (!stop_ring(ring)) {
493                 /* G45 ring initialization often fails to reset head to zero */
494                 DRM_DEBUG_KMS("%s head not reset to zero "
495                               "ctl %08x head %08x tail %08x start %08x\n",
496                               ring->name,
497                               I915_READ_CTL(ring),
498                               I915_READ_HEAD(ring),
499                               I915_READ_TAIL(ring),
500                               I915_READ_START(ring));
501
502                 if (!stop_ring(ring)) {
503                         DRM_ERROR("failed to set %s head to zero "
504                                   "ctl %08x head %08x tail %08x start %08x\n",
505                                   ring->name,
506                                   I915_READ_CTL(ring),
507                                   I915_READ_HEAD(ring),
508                                   I915_READ_TAIL(ring),
509                                   I915_READ_START(ring));
510                         ret = -EIO;
511                         goto out;
512                 }
513         }
514
515         if (I915_NEED_GFX_HWS(dev))
516                 intel_ring_setup_status_page(ring);
517         else
518                 ring_setup_phys_status_page(ring);
519
520         /* Enforce ordering by reading HEAD register back */
521         I915_READ_HEAD(ring);
522
523         /* Initialize the ring. This must happen _after_ we've cleared the ring
524          * registers with the above sequence (the readback of the HEAD registers
525          * also enforces ordering), otherwise the hw might lose the new ring
526          * register values. */
527         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
528         I915_WRITE_CTL(ring,
529                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
530                         | RING_VALID);
531
532         /* If the head is still not zero, the ring is dead */
533         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
534                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
535                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
536                 DRM_ERROR("%s initialization failed "
537                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
538                           ring->name,
539                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
540                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
541                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
542                 ret = -EIO;
543                 goto out;
544         }
545
546         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
547                 i915_kernel_lost_context(ring->dev);
548         else {
549                 ringbuf->head = I915_READ_HEAD(ring);
550                 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
551                 ringbuf->space = ring_space(ring);
552                 ringbuf->last_retired_head = -1;
553         }
554
555         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
556
557 out:
558         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
559
560         return ret;
561 }
562
563 static int
564 init_pipe_control(struct intel_engine_cs *ring)
565 {
566         int ret;
567
568         if (ring->scratch.obj)
569                 return 0;
570
571         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
572         if (ring->scratch.obj == NULL) {
573                 DRM_ERROR("Failed to allocate seqno page\n");
574                 ret = -ENOMEM;
575                 goto err;
576         }
577
578         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
579         if (ret)
580                 goto err_unref;
581
582         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
583         if (ret)
584                 goto err_unref;
585
586         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
587         ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
588         if (ring->scratch.cpu_page == NULL) {
589                 ret = -ENOMEM;
590                 goto err_unpin;
591         }
592
593         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
594                          ring->name, ring->scratch.gtt_offset);
595         return 0;
596
597 err_unpin:
598         i915_gem_object_ggtt_unpin(ring->scratch.obj);
599 err_unref:
600         drm_gem_object_unreference(&ring->scratch.obj->base);
601 err:
602         return ret;
603 }
604
605 static int init_render_ring(struct intel_engine_cs *ring)
606 {
607         struct drm_device *dev = ring->dev;
608         struct drm_i915_private *dev_priv = dev->dev_private;
609         int ret = init_ring_common(ring);
610
611         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
612         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
613                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
614
615         /* We need to disable the AsyncFlip performance optimisations in order
616          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
617          * programmed to '1' on all products.
618          *
619          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
620          */
621         if (INTEL_INFO(dev)->gen >= 6)
622                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
623
624         /* Required for the hardware to program scanline values for waiting */
625         /* WaEnableFlushTlbInvalidationMode:snb */
626         if (INTEL_INFO(dev)->gen == 6)
627                 I915_WRITE(GFX_MODE,
628                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
629
630         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
631         if (IS_GEN7(dev))
632                 I915_WRITE(GFX_MODE_GEN7,
633                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
634                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
635
636         if (INTEL_INFO(dev)->gen >= 5) {
637                 ret = init_pipe_control(ring);
638                 if (ret)
639                         return ret;
640         }
641
642         if (IS_GEN6(dev)) {
643                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
644                  * "If this bit is set, STCunit will have LRA as replacement
645                  *  policy. [...] This bit must be reset.  LRA replacement
646                  *  policy is not supported."
647                  */
648                 I915_WRITE(CACHE_MODE_0,
649                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
650         }
651
652         if (INTEL_INFO(dev)->gen >= 6)
653                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
654
655         if (HAS_L3_DPF(dev))
656                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
657
658         return ret;
659 }
660
661 static void render_ring_cleanup(struct intel_engine_cs *ring)
662 {
663         struct drm_device *dev = ring->dev;
664
665         if (ring->scratch.obj == NULL)
666                 return;
667
668         if (INTEL_INFO(dev)->gen >= 5) {
669                 kunmap(ring->scratch.obj->pages[0]);
670                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
671         }
672
673         drm_gem_object_unreference(&ring->scratch.obj->base);
674         ring->scratch.obj = NULL;
675 }
676
677 static int gen6_signal(struct intel_engine_cs *signaller,
678                        unsigned int num_dwords)
679 {
680         struct drm_device *dev = signaller->dev;
681         struct drm_i915_private *dev_priv = dev->dev_private;
682         struct intel_engine_cs *useless;
683         int i, ret;
684
685         /* NB: In order to be able to do semaphore MBOX updates for varying
686          * number of rings, it's easiest if we round up each individual update
687          * to a multiple of 2 (since ring updates must always be a multiple of
688          * 2) even though the actual update only requires 3 dwords.
689          */
690 #define MBOX_UPDATE_DWORDS 4
691         if (i915_semaphore_is_enabled(dev))
692                 num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
693         else
694                 return intel_ring_begin(signaller, num_dwords);
695
696         ret = intel_ring_begin(signaller, num_dwords);
697         if (ret)
698                 return ret;
699 #undef MBOX_UPDATE_DWORDS
700
701         for_each_ring(useless, dev_priv, i) {
702                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
703                 if (mbox_reg != GEN6_NOSYNC) {
704                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
705                         intel_ring_emit(signaller, mbox_reg);
706                         intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
707                         intel_ring_emit(signaller, MI_NOOP);
708                 } else {
709                         intel_ring_emit(signaller, MI_NOOP);
710                         intel_ring_emit(signaller, MI_NOOP);
711                         intel_ring_emit(signaller, MI_NOOP);
712                         intel_ring_emit(signaller, MI_NOOP);
713                 }
714         }
715
716         return 0;
717 }
718
719 /**
720  * gen6_add_request - Update the semaphore mailbox registers
721  * 
722  * @ring - ring that is adding a request
723  * @seqno - return seqno stuck into the ring
724  *
725  * Update the mailbox registers in the *other* rings with the current seqno.
726  * This acts like a signal in the canonical semaphore.
727  */
728 static int
729 gen6_add_request(struct intel_engine_cs *ring)
730 {
731         int ret;
732
733         ret = ring->semaphore.signal(ring, 4);
734         if (ret)
735                 return ret;
736
737         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
738         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
739         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
740         intel_ring_emit(ring, MI_USER_INTERRUPT);
741         __intel_ring_advance(ring);
742
743         return 0;
744 }
745
746 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
747                                               u32 seqno)
748 {
749         struct drm_i915_private *dev_priv = dev->dev_private;
750         return dev_priv->last_seqno < seqno;
751 }
752
753 /**
754  * intel_ring_sync - sync the waiter to the signaller on seqno
755  *
756  * @waiter - ring that is waiting
757  * @signaller - ring which has, or will signal
758  * @seqno - seqno which the waiter will block on
759  */
760 static int
761 gen6_ring_sync(struct intel_engine_cs *waiter,
762                struct intel_engine_cs *signaller,
763                u32 seqno)
764 {
765         u32 dw1 = MI_SEMAPHORE_MBOX |
766                   MI_SEMAPHORE_COMPARE |
767                   MI_SEMAPHORE_REGISTER;
768         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
769         int ret;
770
771         /* Throughout all of the GEM code, seqno passed implies our current
772          * seqno is >= the last seqno executed. However for hardware the
773          * comparison is strictly greater than.
774          */
775         seqno -= 1;
776
777         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
778
779         ret = intel_ring_begin(waiter, 4);
780         if (ret)
781                 return ret;
782
783         /* If seqno wrap happened, omit the wait with no-ops */
784         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
785                 intel_ring_emit(waiter, dw1 | wait_mbox);
786                 intel_ring_emit(waiter, seqno);
787                 intel_ring_emit(waiter, 0);
788                 intel_ring_emit(waiter, MI_NOOP);
789         } else {
790                 intel_ring_emit(waiter, MI_NOOP);
791                 intel_ring_emit(waiter, MI_NOOP);
792                 intel_ring_emit(waiter, MI_NOOP);
793                 intel_ring_emit(waiter, MI_NOOP);
794         }
795         intel_ring_advance(waiter);
796
797         return 0;
798 }
799
800 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
801 do {                                                                    \
802         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
803                  PIPE_CONTROL_DEPTH_STALL);                             \
804         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
805         intel_ring_emit(ring__, 0);                                                     \
806         intel_ring_emit(ring__, 0);                                                     \
807 } while (0)
808
809 static int
810 pc_render_add_request(struct intel_engine_cs *ring)
811 {
812         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
813         int ret;
814
815         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
816          * incoherent with writes to memory, i.e. completely fubar,
817          * so we need to use PIPE_NOTIFY instead.
818          *
819          * However, we also need to workaround the qword write
820          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
821          * memory before requesting an interrupt.
822          */
823         ret = intel_ring_begin(ring, 32);
824         if (ret)
825                 return ret;
826
827         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
828                         PIPE_CONTROL_WRITE_FLUSH |
829                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
830         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
831         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
832         intel_ring_emit(ring, 0);
833         PIPE_CONTROL_FLUSH(ring, scratch_addr);
834         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
835         PIPE_CONTROL_FLUSH(ring, scratch_addr);
836         scratch_addr += 2 * CACHELINE_BYTES;
837         PIPE_CONTROL_FLUSH(ring, scratch_addr);
838         scratch_addr += 2 * CACHELINE_BYTES;
839         PIPE_CONTROL_FLUSH(ring, scratch_addr);
840         scratch_addr += 2 * CACHELINE_BYTES;
841         PIPE_CONTROL_FLUSH(ring, scratch_addr);
842         scratch_addr += 2 * CACHELINE_BYTES;
843         PIPE_CONTROL_FLUSH(ring, scratch_addr);
844
845         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
846                         PIPE_CONTROL_WRITE_FLUSH |
847                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
848                         PIPE_CONTROL_NOTIFY);
849         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
850         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
851         intel_ring_emit(ring, 0);
852         __intel_ring_advance(ring);
853
854         return 0;
855 }
856
857 static u32
858 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
859 {
860         /* Workaround to force correct ordering between irq and seqno writes on
861          * ivb (and maybe also on snb) by reading from a CS register (like
862          * ACTHD) before reading the status page. */
863         if (!lazy_coherency) {
864                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
865                 POSTING_READ(RING_ACTHD(ring->mmio_base));
866         }
867
868         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
869 }
870
871 static u32
872 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
873 {
874         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
875 }
876
877 static void
878 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
879 {
880         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
881 }
882
883 static u32
884 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
885 {
886         return ring->scratch.cpu_page[0];
887 }
888
889 static void
890 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
891 {
892         ring->scratch.cpu_page[0] = seqno;
893 }
894
895 static bool
896 gen5_ring_get_irq(struct intel_engine_cs *ring)
897 {
898         struct drm_device *dev = ring->dev;
899         struct drm_i915_private *dev_priv = dev->dev_private;
900
901         if (!dev->irq_enabled)
902                 return false;
903
904         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
905         if (ring->irq_refcount++ == 0)
906                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
907         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
908
909         return true;
910 }
911
912 static void
913 gen5_ring_put_irq(struct intel_engine_cs *ring)
914 {
915         struct drm_device *dev = ring->dev;
916         struct drm_i915_private *dev_priv = dev->dev_private;
917
918         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
919         if (--ring->irq_refcount == 0)
920                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
921         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
922 }
923
924 static bool
925 i9xx_ring_get_irq(struct intel_engine_cs *ring)
926 {
927         struct drm_device *dev = ring->dev;
928         struct drm_i915_private *dev_priv = dev->dev_private;
929
930         if (!dev->irq_enabled)
931                 return false;
932
933         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
934         if (ring->irq_refcount++ == 0) {
935                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
936                 I915_WRITE(IMR, dev_priv->irq_mask);
937                 POSTING_READ(IMR);
938         }
939         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
940
941         return true;
942 }
943
944 static void
945 i9xx_ring_put_irq(struct intel_engine_cs *ring)
946 {
947         struct drm_device *dev = ring->dev;
948         struct drm_i915_private *dev_priv = dev->dev_private;
949
950         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
951         if (--ring->irq_refcount == 0) {
952                 dev_priv->irq_mask |= ring->irq_enable_mask;
953                 I915_WRITE(IMR, dev_priv->irq_mask);
954                 POSTING_READ(IMR);
955         }
956         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
957 }
958
959 static bool
960 i8xx_ring_get_irq(struct intel_engine_cs *ring)
961 {
962         struct drm_device *dev = ring->dev;
963         struct drm_i915_private *dev_priv = dev->dev_private;
964
965         if (!dev->irq_enabled)
966                 return false;
967
968         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
969         if (ring->irq_refcount++ == 0) {
970                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
971                 I915_WRITE16(IMR, dev_priv->irq_mask);
972                 POSTING_READ16(IMR);
973         }
974         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
975
976         return true;
977 }
978
979 static void
980 i8xx_ring_put_irq(struct intel_engine_cs *ring)
981 {
982         struct drm_device *dev = ring->dev;
983         struct drm_i915_private *dev_priv = dev->dev_private;
984
985         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
986         if (--ring->irq_refcount == 0) {
987                 dev_priv->irq_mask |= ring->irq_enable_mask;
988                 I915_WRITE16(IMR, dev_priv->irq_mask);
989                 POSTING_READ16(IMR);
990         }
991         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
992 }
993
994 void intel_ring_setup_status_page(struct intel_engine_cs *ring)
995 {
996         struct drm_device *dev = ring->dev;
997         struct drm_i915_private *dev_priv = ring->dev->dev_private;
998         u32 mmio = 0;
999
1000         /* The ring status page addresses are no longer next to the rest of
1001          * the ring registers as of gen7.
1002          */
1003         if (IS_GEN7(dev)) {
1004                 switch (ring->id) {
1005                 case RCS:
1006                         mmio = RENDER_HWS_PGA_GEN7;
1007                         break;
1008                 case BCS:
1009                         mmio = BLT_HWS_PGA_GEN7;
1010                         break;
1011                 /*
1012                  * VCS2 actually doesn't exist on Gen7. Only shut up
1013                  * gcc switch check warning
1014                  */
1015                 case VCS2:
1016                 case VCS:
1017                         mmio = BSD_HWS_PGA_GEN7;
1018                         break;
1019                 case VECS:
1020                         mmio = VEBOX_HWS_PGA_GEN7;
1021                         break;
1022                 }
1023         } else if (IS_GEN6(ring->dev)) {
1024                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1025         } else {
1026                 /* XXX: gen8 returns to sanity */
1027                 mmio = RING_HWS_PGA(ring->mmio_base);
1028         }
1029
1030         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1031         POSTING_READ(mmio);
1032
1033         /*
1034          * Flush the TLB for this page
1035          *
1036          * FIXME: These two bits have disappeared on gen8, so a question
1037          * arises: do we still need this and if so how should we go about
1038          * invalidating the TLB?
1039          */
1040         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1041                 u32 reg = RING_INSTPM(ring->mmio_base);
1042
1043                 /* ring should be idle before issuing a sync flush*/
1044                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1045
1046                 I915_WRITE(reg,
1047                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1048                                               INSTPM_SYNC_FLUSH));
1049                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1050                              1000))
1051                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1052                                   ring->name);
1053         }
1054 }
1055
1056 static int
1057 bsd_ring_flush(struct intel_engine_cs *ring,
1058                u32     invalidate_domains,
1059                u32     flush_domains)
1060 {
1061         int ret;
1062
1063         ret = intel_ring_begin(ring, 2);
1064         if (ret)
1065                 return ret;
1066
1067         intel_ring_emit(ring, MI_FLUSH);
1068         intel_ring_emit(ring, MI_NOOP);
1069         intel_ring_advance(ring);
1070         return 0;
1071 }
1072
1073 static int
1074 i9xx_add_request(struct intel_engine_cs *ring)
1075 {
1076         int ret;
1077
1078         ret = intel_ring_begin(ring, 4);
1079         if (ret)
1080                 return ret;
1081
1082         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1083         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1084         intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1085         intel_ring_emit(ring, MI_USER_INTERRUPT);
1086         __intel_ring_advance(ring);
1087
1088         return 0;
1089 }
1090
1091 static bool
1092 gen6_ring_get_irq(struct intel_engine_cs *ring)
1093 {
1094         struct drm_device *dev = ring->dev;
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096
1097         if (!dev->irq_enabled)
1098                return false;
1099
1100         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1101         if (ring->irq_refcount++ == 0) {
1102                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1103                         I915_WRITE_IMR(ring,
1104                                        ~(ring->irq_enable_mask |
1105                                          GT_PARITY_ERROR(dev)));
1106                 else
1107                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1108                 ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1109         }
1110         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1111
1112         return true;
1113 }
1114
1115 static void
1116 gen6_ring_put_irq(struct intel_engine_cs *ring)
1117 {
1118         struct drm_device *dev = ring->dev;
1119         struct drm_i915_private *dev_priv = dev->dev_private;
1120
1121         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1122         if (--ring->irq_refcount == 0) {
1123                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1124                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1125                 else
1126                         I915_WRITE_IMR(ring, ~0);
1127                 ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1128         }
1129         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1130 }
1131
1132 static bool
1133 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1134 {
1135         struct drm_device *dev = ring->dev;
1136         struct drm_i915_private *dev_priv = dev->dev_private;
1137
1138         if (!dev->irq_enabled)
1139                 return false;
1140
1141         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1142         if (ring->irq_refcount++ == 0) {
1143                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1144                 snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1145         }
1146         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1147
1148         return true;
1149 }
1150
1151 static void
1152 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1153 {
1154         struct drm_device *dev = ring->dev;
1155         struct drm_i915_private *dev_priv = dev->dev_private;
1156
1157         if (!dev->irq_enabled)
1158                 return;
1159
1160         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1161         if (--ring->irq_refcount == 0) {
1162                 I915_WRITE_IMR(ring, ~0);
1163                 snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1164         }
1165         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1166 }
1167
1168 static bool
1169 gen8_ring_get_irq(struct intel_engine_cs *ring)
1170 {
1171         struct drm_device *dev = ring->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173
1174         if (!dev->irq_enabled)
1175                 return false;
1176
1177         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1178         if (ring->irq_refcount++ == 0) {
1179                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1180                         I915_WRITE_IMR(ring,
1181                                        ~(ring->irq_enable_mask |
1182                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1183                 } else {
1184                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1185                 }
1186                 POSTING_READ(RING_IMR(ring->mmio_base));
1187         }
1188         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1189
1190         return true;
1191 }
1192
1193 static void
1194 gen8_ring_put_irq(struct intel_engine_cs *ring)
1195 {
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198
1199         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1200         if (--ring->irq_refcount == 0) {
1201                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1202                         I915_WRITE_IMR(ring,
1203                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1204                 } else {
1205                         I915_WRITE_IMR(ring, ~0);
1206                 }
1207                 POSTING_READ(RING_IMR(ring->mmio_base));
1208         }
1209         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1210 }
1211
1212 static int
1213 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1214                          u64 offset, u32 length,
1215                          unsigned flags)
1216 {
1217         int ret;
1218
1219         ret = intel_ring_begin(ring, 2);
1220         if (ret)
1221                 return ret;
1222
1223         intel_ring_emit(ring,
1224                         MI_BATCH_BUFFER_START |
1225                         MI_BATCH_GTT |
1226                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1227         intel_ring_emit(ring, offset);
1228         intel_ring_advance(ring);
1229
1230         return 0;
1231 }
1232
1233 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1234 #define I830_BATCH_LIMIT (256*1024)
1235 static int
1236 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1237                                 u64 offset, u32 len,
1238                                 unsigned flags)
1239 {
1240         int ret;
1241
1242         if (flags & I915_DISPATCH_PINNED) {
1243                 ret = intel_ring_begin(ring, 4);
1244                 if (ret)
1245                         return ret;
1246
1247                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1248                 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1249                 intel_ring_emit(ring, offset + len - 8);
1250                 intel_ring_emit(ring, MI_NOOP);
1251                 intel_ring_advance(ring);
1252         } else {
1253                 u32 cs_offset = ring->scratch.gtt_offset;
1254
1255                 if (len > I830_BATCH_LIMIT)
1256                         return -ENOSPC;
1257
1258                 ret = intel_ring_begin(ring, 9+3);
1259                 if (ret)
1260                         return ret;
1261                 /* Blit the batch (which has now all relocs applied) to the stable batch
1262                  * scratch bo area (so that the CS never stumbles over its tlb
1263                  * invalidation bug) ... */
1264                 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1265                                 XY_SRC_COPY_BLT_WRITE_ALPHA |
1266                                 XY_SRC_COPY_BLT_WRITE_RGB);
1267                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1268                 intel_ring_emit(ring, 0);
1269                 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1270                 intel_ring_emit(ring, cs_offset);
1271                 intel_ring_emit(ring, 0);
1272                 intel_ring_emit(ring, 4096);
1273                 intel_ring_emit(ring, offset);
1274                 intel_ring_emit(ring, MI_FLUSH);
1275
1276                 /* ... and execute it. */
1277                 intel_ring_emit(ring, MI_BATCH_BUFFER);
1278                 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1279                 intel_ring_emit(ring, cs_offset + len - 8);
1280                 intel_ring_advance(ring);
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int
1287 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1288                          u64 offset, u32 len,
1289                          unsigned flags)
1290 {
1291         int ret;
1292
1293         ret = intel_ring_begin(ring, 2);
1294         if (ret)
1295                 return ret;
1296
1297         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1298         intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1299         intel_ring_advance(ring);
1300
1301         return 0;
1302 }
1303
1304 static void cleanup_status_page(struct intel_engine_cs *ring)
1305 {
1306         struct drm_i915_gem_object *obj;
1307
1308         obj = ring->status_page.obj;
1309         if (obj == NULL)
1310                 return;
1311
1312         kunmap(obj->pages[0]);
1313         i915_gem_object_ggtt_unpin(obj);
1314         drm_gem_object_unreference(&obj->base);
1315         ring->status_page.obj = NULL;
1316 }
1317
1318 static int init_status_page(struct intel_engine_cs *ring)
1319 {
1320         struct drm_i915_gem_object *obj;
1321
1322         if ((obj = ring->status_page.obj) == NULL) {
1323                 int ret;
1324
1325                 obj = i915_gem_alloc_object(ring->dev, 4096);
1326                 if (obj == NULL) {
1327                         DRM_ERROR("Failed to allocate status page\n");
1328                         return -ENOMEM;
1329                 }
1330
1331                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1332                 if (ret)
1333                         goto err_unref;
1334
1335                 ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1336                 if (ret) {
1337 err_unref:
1338                         drm_gem_object_unreference(&obj->base);
1339                         return ret;
1340                 }
1341
1342                 ring->status_page.obj = obj;
1343         }
1344
1345         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1346         ring->status_page.page_addr = kmap(obj->pages[0]);
1347         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1348
1349         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1350                         ring->name, ring->status_page.gfx_addr);
1351
1352         return 0;
1353 }
1354
1355 static int init_phys_status_page(struct intel_engine_cs *ring)
1356 {
1357         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1358
1359         if (!dev_priv->status_page_dmah) {
1360                 dev_priv->status_page_dmah =
1361                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1362                 if (!dev_priv->status_page_dmah)
1363                         return -ENOMEM;
1364         }
1365
1366         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1367         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1368
1369         return 0;
1370 }
1371
1372 static int allocate_ring_buffer(struct intel_engine_cs *ring)
1373 {
1374         struct drm_device *dev = ring->dev;
1375         struct intel_ringbuffer *ringbuf = ring->buffer;
1376         struct drm_i915_gem_object *obj;
1377         int ret;
1378
1379         if (intel_ring_initialized(ring))
1380                 return 0;
1381
1382         obj = NULL;
1383         if (!HAS_LLC(dev))
1384                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1385         if (obj == NULL)
1386                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1387         if (obj == NULL)
1388                 return -ENOMEM;
1389
1390         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1391         if (ret)
1392                 goto err_unref;
1393
1394         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1395         if (ret)
1396                 goto err_unpin;
1397
1398         ringbuf->virtual_start =
1399                 ioremap_wc(dev->agp->base + i915_gem_obj_ggtt_offset(obj),
1400                                 ringbuf->size);
1401         if (ringbuf->virtual_start == NULL) {
1402                 ret = -EINVAL;
1403                 goto err_unpin;
1404         }
1405
1406         ringbuf->obj = obj;
1407         return 0;
1408
1409 err_unpin:
1410         i915_gem_object_ggtt_unpin(obj);
1411 err_unref:
1412         drm_gem_object_unreference(&obj->base);
1413         return ret;
1414 }
1415
1416 static int intel_init_ring_buffer(struct drm_device *dev,
1417                                   struct intel_engine_cs *ring)
1418 {
1419         struct intel_ringbuffer *ringbuf = ring->buffer;
1420         int ret;
1421
1422         if (ringbuf == NULL) {
1423                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1424                 if (!ringbuf)
1425                         return -ENOMEM;
1426                 ring->buffer = ringbuf;
1427         }
1428
1429         ring->dev = dev;
1430         INIT_LIST_HEAD(&ring->active_list);
1431         INIT_LIST_HEAD(&ring->request_list);
1432         ringbuf->size = 32 * PAGE_SIZE;
1433         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1434
1435         init_waitqueue_head(&ring->irq_queue);
1436
1437         if (I915_NEED_GFX_HWS(dev)) {
1438                 ret = init_status_page(ring);
1439                 if (ret)
1440                         goto error;
1441         } else {
1442                 BUG_ON(ring->id != RCS);
1443                 ret = init_phys_status_page(ring);
1444                 if (ret)
1445                         goto error;
1446         }
1447
1448         ret = allocate_ring_buffer(ring);
1449         if (ret) {
1450                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1451                 goto error;
1452         }
1453
1454         /* Workaround an erratum on the i830 which causes a hang if
1455          * the TAIL pointer points to within the last 2 cachelines
1456          * of the buffer.
1457          */
1458         ringbuf->effective_size = ringbuf->size;
1459         if (IS_I830(dev) || IS_845G(dev))
1460                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1461
1462         ret = i915_cmd_parser_init_ring(ring);
1463         if (ret)
1464                 goto error;
1465
1466         ret = ring->init(ring);
1467         if (ret)
1468                 goto error;
1469
1470         return 0;
1471
1472 error:
1473         kfree(ringbuf);
1474         ring->buffer = NULL;
1475         return ret;
1476 }
1477
1478 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1479 {
1480         struct drm_i915_private *dev_priv = to_i915(ring->dev);
1481         struct intel_ringbuffer *ringbuf = ring->buffer;
1482
1483         if (!intel_ring_initialized(ring))
1484                 return;
1485
1486         intel_stop_ring_buffer(ring);
1487         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1488
1489         pmap_unmapdev((vm_offset_t)ringbuf->virtual_start, ringbuf->size);
1490
1491         i915_gem_object_ggtt_unpin(ringbuf->obj);
1492         drm_gem_object_unreference(&ringbuf->obj->base);
1493         ringbuf->obj = NULL;
1494         ring->preallocated_lazy_request = NULL;
1495         ring->outstanding_lazy_seqno = 0;
1496
1497         if (ring->cleanup)
1498                 ring->cleanup(ring);
1499
1500         cleanup_status_page(ring);
1501
1502         i915_cmd_parser_fini_ring(ring);
1503
1504         kfree(ringbuf);
1505         ring->buffer = NULL;
1506 }
1507
1508 static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1509 {
1510         struct intel_ringbuffer *ringbuf = ring->buffer;
1511         struct drm_i915_gem_request *request;
1512         u32 seqno = 0;
1513         int ret;
1514
1515         if (ringbuf->last_retired_head != -1) {
1516                 ringbuf->head = ringbuf->last_retired_head;
1517                 ringbuf->last_retired_head = -1;
1518
1519                 ringbuf->space = ring_space(ring);
1520                 if (ringbuf->space >= n)
1521                         return 0;
1522         }
1523
1524         list_for_each_entry(request, &ring->request_list, list) {
1525                 if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
1526                         seqno = request->seqno;
1527                         break;
1528                 }
1529         }
1530
1531         if (seqno == 0)
1532                 return -ENOSPC;
1533
1534         ret = i915_wait_seqno(ring, seqno);
1535         if (ret)
1536                 return ret;
1537
1538         i915_gem_retire_requests_ring(ring);
1539         ringbuf->head = ringbuf->last_retired_head;
1540         ringbuf->last_retired_head = -1;
1541
1542         ringbuf->space = ring_space(ring);
1543         return 0;
1544 }
1545
1546 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1547 {
1548         struct drm_device *dev = ring->dev;
1549         struct drm_i915_private *dev_priv = dev->dev_private;
1550         struct intel_ringbuffer *ringbuf = ring->buffer;
1551         unsigned long end;
1552         int ret;
1553
1554         ret = intel_ring_wait_request(ring, n);
1555         if (ret != -ENOSPC)
1556                 return ret;
1557
1558         /* force the tail write in case we have been skipping them */
1559         __intel_ring_advance(ring);
1560
1561         /* With GEM the hangcheck timer should kick us out of the loop,
1562          * leaving it early runs the risk of corrupting GEM state (due
1563          * to running on almost untested codepaths). But on resume
1564          * timers don't work yet, so prevent a complete hang in that
1565          * case by choosing an insanely large timeout. */
1566         end = jiffies + 60 * HZ;
1567
1568         trace_i915_ring_wait_begin(ring);
1569         do {
1570                 ringbuf->head = I915_READ_HEAD(ring);
1571                 ringbuf->space = ring_space(ring);
1572                 if (ringbuf->space >= n) {
1573                         ret = 0;
1574                         break;
1575                 }
1576
1577 #if 0
1578                 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1579                     dev->primary->master) {
1580                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1581                         if (master_priv->sarea_priv)
1582                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1583                 }
1584 #else
1585                 if (dev_priv->sarea_priv)
1586                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1587 #endif
1588
1589
1590                 msleep(1);
1591
1592 #if 0
1593                 if (dev_priv->mm.interruptible && signal_pending(current)) {
1594                         ret = -ERESTARTSYS;
1595                         break;
1596                 }
1597 #endif
1598
1599                 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1600                                            dev_priv->mm.interruptible);
1601                 if (ret)
1602                         break;
1603
1604                 if (time_after(jiffies, end)) {
1605                         ret = -EBUSY;
1606                         break;
1607                 }
1608         } while (1);
1609         trace_i915_ring_wait_end(ring);
1610         return ret;
1611 }
1612
1613 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1614 {
1615         uint32_t __iomem *virt;
1616         struct intel_ringbuffer *ringbuf = ring->buffer;
1617         int rem = ringbuf->size - ringbuf->tail;
1618
1619         if (ringbuf->space < rem) {
1620                 int ret = ring_wait_for_space(ring, rem);
1621                 if (ret)
1622                         return ret;
1623         }
1624
1625         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
1626         rem /= 4;
1627         while (rem--)
1628                 iowrite32(MI_NOOP, virt++);
1629
1630         ringbuf->tail = 0;
1631         ringbuf->space = ring_space(ring);
1632
1633         return 0;
1634 }
1635
1636 int intel_ring_idle(struct intel_engine_cs *ring)
1637 {
1638         u32 seqno;
1639         int ret;
1640
1641         /* We need to add any requests required to flush the objects and ring */
1642         if (ring->outstanding_lazy_seqno) {
1643                 ret = i915_add_request(ring, NULL);
1644                 if (ret)
1645                         return ret;
1646         }
1647
1648         /* Wait upon the last request to be completed */
1649         if (list_empty(&ring->request_list))
1650                 return 0;
1651
1652         seqno = list_entry(ring->request_list.prev,
1653                            struct drm_i915_gem_request,
1654                            list)->seqno;
1655
1656         return i915_wait_seqno(ring, seqno);
1657 }
1658
1659 static int
1660 intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1661 {
1662         if (ring->outstanding_lazy_seqno)
1663                 return 0;
1664
1665         if (ring->preallocated_lazy_request == NULL) {
1666                 struct drm_i915_gem_request *request;
1667
1668                 request = kmalloc(sizeof(*request), M_DRM, M_WAITOK);
1669                 if (request == NULL)
1670                         return -ENOMEM;
1671
1672                 ring->preallocated_lazy_request = request;
1673         }
1674
1675         return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1676 }
1677
1678 static int __intel_ring_prepare(struct intel_engine_cs *ring,
1679                                 int bytes)
1680 {
1681         struct intel_ringbuffer *ringbuf = ring->buffer;
1682         int ret;
1683
1684         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1685                 ret = intel_wrap_ring_buffer(ring);
1686                 if (unlikely(ret))
1687                         return ret;
1688         }
1689
1690         if (unlikely(ringbuf->space < bytes)) {
1691                 ret = ring_wait_for_space(ring, bytes);
1692                 if (unlikely(ret))
1693                         return ret;
1694         }
1695
1696         return 0;
1697 }
1698
1699 int intel_ring_begin(struct intel_engine_cs *ring,
1700                      int num_dwords)
1701 {
1702         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1703         int ret;
1704
1705         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1706                                    dev_priv->mm.interruptible);
1707         if (ret)
1708                 return ret;
1709
1710         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1711         if (ret)
1712                 return ret;
1713
1714         /* Preallocate the olr before touching the ring */
1715         ret = intel_ring_alloc_seqno(ring);
1716         if (ret)
1717                 return ret;
1718
1719         ring->buffer->space -= num_dwords * sizeof(uint32_t);
1720         return 0;
1721 }
1722
1723 /* Align the ring tail to a cacheline boundary */
1724 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
1725 {
1726         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
1727         int ret;
1728
1729         if (num_dwords == 0)
1730                 return 0;
1731
1732         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
1733         ret = intel_ring_begin(ring, num_dwords);
1734         if (ret)
1735                 return ret;
1736
1737         while (num_dwords--)
1738                 intel_ring_emit(ring, MI_NOOP);
1739
1740         intel_ring_advance(ring);
1741
1742         return 0;
1743 }
1744
1745 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
1746 {
1747         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1748
1749         BUG_ON(ring->outstanding_lazy_seqno);
1750
1751         if (INTEL_INFO(ring->dev)->gen >= 6) {
1752                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1753                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1754                 if (HAS_VEBOX(ring->dev))
1755                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1756         }
1757
1758         ring->set_seqno(ring, seqno);
1759         ring->hangcheck.seqno = seqno;
1760 }
1761
1762 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
1763                                      u32 value)
1764 {
1765         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1766
1767        /* Every tail move must follow the sequence below */
1768
1769         /* Disable notification that the ring is IDLE. The GT
1770          * will then assume that it is busy and bring it out of rc6.
1771          */
1772         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1773                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1774
1775         /* Clear the context id. Here be magic! */
1776         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1777
1778         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1779         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1780                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1781                      50))
1782                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1783
1784         /* Now that the ring is fully powered up, update the tail */
1785         I915_WRITE_TAIL(ring, value);
1786         POSTING_READ(RING_TAIL(ring->mmio_base));
1787
1788         /* Let the ring send IDLE messages to the GT again,
1789          * and so let it sleep to conserve power when idle.
1790          */
1791         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1792                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1793 }
1794
1795 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
1796                                u32 invalidate, u32 flush)
1797 {
1798         uint32_t cmd;
1799         int ret;
1800
1801         ret = intel_ring_begin(ring, 4);
1802         if (ret)
1803                 return ret;
1804
1805         cmd = MI_FLUSH_DW;
1806         if (INTEL_INFO(ring->dev)->gen >= 8)
1807                 cmd += 1;
1808         /*
1809          * Bspec vol 1c.5 - video engine command streamer:
1810          * "If ENABLED, all TLBs will be invalidated once the flush
1811          * operation is complete. This bit is only valid when the
1812          * Post-Sync Operation field is a value of 1h or 3h."
1813          */
1814         if (invalidate & I915_GEM_GPU_DOMAINS)
1815                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1816                         MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1817         intel_ring_emit(ring, cmd);
1818         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1819         if (INTEL_INFO(ring->dev)->gen >= 8) {
1820                 intel_ring_emit(ring, 0); /* upper addr */
1821                 intel_ring_emit(ring, 0); /* value */
1822         } else  {
1823                 intel_ring_emit(ring, 0);
1824                 intel_ring_emit(ring, MI_NOOP);
1825         }
1826         intel_ring_advance(ring);
1827         return 0;
1828 }
1829
1830 static int
1831 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1832                               u64 offset, u32 len,
1833                               unsigned flags)
1834 {
1835         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1836         bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1837                 !(flags & I915_DISPATCH_SECURE);
1838         int ret;
1839
1840         ret = intel_ring_begin(ring, 4);
1841         if (ret)
1842                 return ret;
1843
1844         /* FIXME(BDW): Address space and security selectors. */
1845         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1846         intel_ring_emit(ring, lower_32_bits(offset));
1847         intel_ring_emit(ring, upper_32_bits(offset));
1848         intel_ring_emit(ring, MI_NOOP);
1849         intel_ring_advance(ring);
1850
1851         return 0;
1852 }
1853
1854 static int
1855 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1856                               u64 offset, u32 len,
1857                               unsigned flags)
1858 {
1859         int ret;
1860
1861         ret = intel_ring_begin(ring, 2);
1862         if (ret)
1863                 return ret;
1864
1865         intel_ring_emit(ring,
1866                         MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1867                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1868         /* bit0-7 is the length on GEN6+ */
1869         intel_ring_emit(ring, offset);
1870         intel_ring_advance(ring);
1871
1872         return 0;
1873 }
1874
1875 static int
1876 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
1877                               u64 offset, u32 len,
1878                               unsigned flags)
1879 {
1880         int ret;
1881
1882         ret = intel_ring_begin(ring, 2);
1883         if (ret)
1884                 return ret;
1885
1886         intel_ring_emit(ring,
1887                         MI_BATCH_BUFFER_START |
1888                         (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1889         /* bit0-7 is the length on GEN6+ */
1890         intel_ring_emit(ring, offset);
1891         intel_ring_advance(ring);
1892
1893         return 0;
1894 }
1895
1896 /* Blitter support (SandyBridge+) */
1897
1898 static int gen6_ring_flush(struct intel_engine_cs *ring,
1899                            u32 invalidate, u32 flush)
1900 {
1901         struct drm_device *dev = ring->dev;
1902         uint32_t cmd;
1903         int ret;
1904
1905         ret = intel_ring_begin(ring, 4);
1906         if (ret)
1907                 return ret;
1908
1909         cmd = MI_FLUSH_DW;
1910         if (INTEL_INFO(ring->dev)->gen >= 8)
1911                 cmd += 1;
1912         /*
1913          * Bspec vol 1c.3 - blitter engine command streamer:
1914          * "If ENABLED, all TLBs will be invalidated once the flush
1915          * operation is complete. This bit is only valid when the
1916          * Post-Sync Operation field is a value of 1h or 3h."
1917          */
1918         if (invalidate & I915_GEM_DOMAIN_RENDER)
1919                 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1920                         MI_FLUSH_DW_OP_STOREDW;
1921         intel_ring_emit(ring, cmd);
1922         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1923         if (INTEL_INFO(ring->dev)->gen >= 8) {
1924                 intel_ring_emit(ring, 0); /* upper addr */
1925                 intel_ring_emit(ring, 0); /* value */
1926         } else  {
1927                 intel_ring_emit(ring, 0);
1928                 intel_ring_emit(ring, MI_NOOP);
1929         }
1930         intel_ring_advance(ring);
1931
1932         if (IS_GEN7(dev) && !invalidate && flush)
1933                 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1934
1935         return 0;
1936 }
1937
1938 int intel_init_render_ring_buffer(struct drm_device *dev)
1939 {
1940         struct drm_i915_private *dev_priv = dev->dev_private;
1941         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1942
1943         ring->name = "render ring";
1944         ring->id = RCS;
1945         ring->mmio_base = RENDER_RING_BASE;
1946
1947         if (INTEL_INFO(dev)->gen >= 6) {
1948                 ring->add_request = gen6_add_request;
1949                 ring->flush = gen7_render_ring_flush;
1950                 if (INTEL_INFO(dev)->gen == 6)
1951                         ring->flush = gen6_render_ring_flush;
1952                 if (INTEL_INFO(dev)->gen >= 8) {
1953                         ring->flush = gen8_render_ring_flush;
1954                         ring->irq_get = gen8_ring_get_irq;
1955                         ring->irq_put = gen8_ring_put_irq;
1956                 } else {
1957                         ring->irq_get = gen6_ring_get_irq;
1958                         ring->irq_put = gen6_ring_put_irq;
1959                 }
1960                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1961                 ring->get_seqno = gen6_ring_get_seqno;
1962                 ring->set_seqno = ring_set_seqno;
1963                 ring->semaphore.sync_to = gen6_ring_sync;
1964                 ring->semaphore.signal = gen6_signal;
1965                 /*
1966                  * The current semaphore is only applied on pre-gen8 platform.
1967                  * And there is no VCS2 ring on the pre-gen8 platform. So the
1968                  * semaphore between RCS and VCS2 is initialized as INVALID.
1969                  * Gen8 will initialize the sema between VCS2 and RCS later.
1970                  */
1971                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1972                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
1973                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
1974                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
1975                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
1976                 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
1977                 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
1978                 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
1979                 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
1980                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
1981         } else if (IS_GEN5(dev)) {
1982                 ring->add_request = pc_render_add_request;
1983                 ring->flush = gen4_render_ring_flush;
1984                 ring->get_seqno = pc_render_get_seqno;
1985                 ring->set_seqno = pc_render_set_seqno;
1986                 ring->irq_get = gen5_ring_get_irq;
1987                 ring->irq_put = gen5_ring_put_irq;
1988                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1989                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1990         } else {
1991                 ring->add_request = i9xx_add_request;
1992                 if (INTEL_INFO(dev)->gen < 4)
1993                         ring->flush = gen2_render_ring_flush;
1994                 else
1995                         ring->flush = gen4_render_ring_flush;
1996                 ring->get_seqno = ring_get_seqno;
1997                 ring->set_seqno = ring_set_seqno;
1998                 if (IS_GEN2(dev)) {
1999                         ring->irq_get = i8xx_ring_get_irq;
2000                         ring->irq_put = i8xx_ring_put_irq;
2001                 } else {
2002                         ring->irq_get = i9xx_ring_get_irq;
2003                         ring->irq_put = i9xx_ring_put_irq;
2004                 }
2005                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2006         }
2007         ring->write_tail = ring_write_tail;
2008         if (IS_HASWELL(dev))
2009                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2010         else if (IS_GEN8(dev))
2011                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2012         else if (INTEL_INFO(dev)->gen >= 6)
2013                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2014         else if (INTEL_INFO(dev)->gen >= 4)
2015                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2016         else if (IS_I830(dev) || IS_845G(dev))
2017                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2018         else
2019                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2020         ring->init = init_render_ring;
2021         ring->cleanup = render_ring_cleanup;
2022
2023         /* Workaround batchbuffer to combat CS tlb bug. */
2024         if (HAS_BROKEN_CS_TLB(dev)) {
2025                 struct drm_i915_gem_object *obj;
2026                 int ret;
2027
2028                 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
2029                 if (obj == NULL) {
2030                         DRM_ERROR("Failed to allocate batch bo\n");
2031                         return -ENOMEM;
2032                 }
2033
2034                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2035                 if (ret != 0) {
2036                         drm_gem_object_unreference(&obj->base);
2037                         DRM_ERROR("Failed to ping batch bo\n");
2038                         return ret;
2039                 }
2040
2041                 ring->scratch.obj = obj;
2042                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2043         }
2044
2045         return intel_init_ring_buffer(dev, ring);
2046 }
2047
2048 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2049 {
2050         struct drm_i915_private *dev_priv = dev->dev_private;
2051         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2052         struct intel_ringbuffer *ringbuf = ring->buffer;
2053         int ret;
2054
2055         if (ringbuf == NULL) {
2056                 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2057                 if (!ringbuf)
2058                         return -ENOMEM;
2059                 ring->buffer = ringbuf;
2060         }
2061
2062         ring->name = "render ring";
2063         ring->id = RCS;
2064         ring->mmio_base = RENDER_RING_BASE;
2065
2066         if (INTEL_INFO(dev)->gen >= 6) {
2067                 /* non-kms not supported on gen6+ */
2068                 ret = -ENODEV;
2069                 goto err_ringbuf;
2070         }
2071
2072         /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2073          * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2074          * the special gen5 functions. */
2075         ring->add_request = i9xx_add_request;
2076         if (INTEL_INFO(dev)->gen < 4)
2077                 ring->flush = gen2_render_ring_flush;
2078         else
2079                 ring->flush = gen4_render_ring_flush;
2080         ring->get_seqno = ring_get_seqno;
2081         ring->set_seqno = ring_set_seqno;
2082         if (IS_GEN2(dev)) {
2083                 ring->irq_get = i8xx_ring_get_irq;
2084                 ring->irq_put = i8xx_ring_put_irq;
2085         } else {
2086                 ring->irq_get = i9xx_ring_get_irq;
2087                 ring->irq_put = i9xx_ring_put_irq;
2088         }
2089         ring->irq_enable_mask = I915_USER_INTERRUPT;
2090         ring->write_tail = ring_write_tail;
2091         if (INTEL_INFO(dev)->gen >= 4)
2092                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2093         else if (IS_I830(dev) || IS_845G(dev))
2094                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2095         else
2096                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2097         ring->init = init_render_ring;
2098         ring->cleanup = render_ring_cleanup;
2099
2100         ring->dev = dev;
2101         INIT_LIST_HEAD(&ring->active_list);
2102         INIT_LIST_HEAD(&ring->request_list);
2103
2104         ringbuf->size = size;
2105         ringbuf->effective_size = ringbuf->size;
2106         if (IS_I830(ring->dev) || IS_845G(ring->dev))
2107                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2108
2109         ringbuf->virtual_start = ioremap_wc(start, size);
2110         if (ringbuf->virtual_start == NULL) {
2111                 DRM_ERROR("can not ioremap virtual address for"
2112                           " ring buffer\n");
2113                 ret = -ENOMEM;
2114                 goto err_ringbuf;
2115         }
2116
2117         if (!I915_NEED_GFX_HWS(dev)) {
2118                 ret = init_phys_status_page(ring);
2119                 if (ret)
2120                         goto err_vstart;
2121         }
2122
2123         return 0;
2124
2125 err_vstart:
2126         pmap_unmapdev((vm_offset_t)ring->buffer->virtual_start, size);
2127 err_ringbuf:
2128         kfree(ringbuf);
2129         ring->buffer = NULL;
2130         return ret;
2131 }
2132
2133 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2134 {
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2137
2138         ring->name = "bsd ring";
2139         ring->id = VCS;
2140
2141         ring->write_tail = ring_write_tail;
2142         if (INTEL_INFO(dev)->gen >= 6) {
2143                 ring->mmio_base = GEN6_BSD_RING_BASE;
2144                 /* gen6 bsd needs a special wa for tail updates */
2145                 if (IS_GEN6(dev))
2146                         ring->write_tail = gen6_bsd_ring_write_tail;
2147                 ring->flush = gen6_bsd_ring_flush;
2148                 ring->add_request = gen6_add_request;
2149                 ring->get_seqno = gen6_ring_get_seqno;
2150                 ring->set_seqno = ring_set_seqno;
2151                 if (INTEL_INFO(dev)->gen >= 8) {
2152                         ring->irq_enable_mask =
2153                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2154                         ring->irq_get = gen8_ring_get_irq;
2155                         ring->irq_put = gen8_ring_put_irq;
2156                         ring->dispatch_execbuffer =
2157                                 gen8_ring_dispatch_execbuffer;
2158                 } else {
2159                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2160                         ring->irq_get = gen6_ring_get_irq;
2161                         ring->irq_put = gen6_ring_put_irq;
2162                         ring->dispatch_execbuffer =
2163                                 gen6_ring_dispatch_execbuffer;
2164                 }
2165                 ring->semaphore.sync_to = gen6_ring_sync;
2166                 ring->semaphore.signal = gen6_signal;
2167                 /*
2168                  * The current semaphore is only applied on pre-gen8 platform.
2169                  * And there is no VCS2 ring on the pre-gen8 platform. So the
2170                  * semaphore between VCS and VCS2 is initialized as INVALID.
2171                  * Gen8 will initialize the sema between VCS2 and VCS later.
2172                  */
2173                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2174                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2175                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2176                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2177                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2178                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2179                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2180                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2181                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2182                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2183         } else {
2184                 ring->mmio_base = BSD_RING_BASE;
2185                 ring->flush = bsd_ring_flush;
2186                 ring->add_request = i9xx_add_request;
2187                 ring->get_seqno = ring_get_seqno;
2188                 ring->set_seqno = ring_set_seqno;
2189                 if (IS_GEN5(dev)) {
2190                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2191                         ring->irq_get = gen5_ring_get_irq;
2192                         ring->irq_put = gen5_ring_put_irq;
2193                 } else {
2194                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2195                         ring->irq_get = i9xx_ring_get_irq;
2196                         ring->irq_put = i9xx_ring_put_irq;
2197                 }
2198                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2199         }
2200         ring->init = init_ring_common;
2201
2202         return intel_init_ring_buffer(dev, ring);
2203 }
2204
2205 /**
2206  * Initialize the second BSD ring for Broadwell GT3.
2207  * It is noted that this only exists on Broadwell GT3.
2208  */
2209 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2210 {
2211         struct drm_i915_private *dev_priv = dev->dev_private;
2212         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2213
2214         if ((INTEL_INFO(dev)->gen != 8)) {
2215                 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2216                 return -EINVAL;
2217         }
2218
2219         ring->name = "bds2_ring";
2220         ring->id = VCS2;
2221
2222         ring->write_tail = ring_write_tail;
2223         ring->mmio_base = GEN8_BSD2_RING_BASE;
2224         ring->flush = gen6_bsd_ring_flush;
2225         ring->add_request = gen6_add_request;
2226         ring->get_seqno = gen6_ring_get_seqno;
2227         ring->set_seqno = ring_set_seqno;
2228         ring->irq_enable_mask =
2229                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2230         ring->irq_get = gen8_ring_get_irq;
2231         ring->irq_put = gen8_ring_put_irq;
2232         ring->dispatch_execbuffer =
2233                         gen8_ring_dispatch_execbuffer;
2234         ring->semaphore.sync_to = gen6_ring_sync;
2235         ring->semaphore.signal = gen6_signal;
2236         /*
2237          * The current semaphore is only applied on the pre-gen8. And there
2238          * is no bsd2 ring on the pre-gen8. So now the semaphore_register
2239          * between VCS2 and other ring is initialized as invalid.
2240          * Gen8 will initialize the sema between VCS2 and other ring later.
2241          */
2242         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2243         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2244         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2245         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2246         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2247         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2248         ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2249         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2250         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2251         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2252
2253         ring->init = init_ring_common;
2254
2255         return intel_init_ring_buffer(dev, ring);
2256 }
2257
2258 int intel_init_blt_ring_buffer(struct drm_device *dev)
2259 {
2260         struct drm_i915_private *dev_priv = dev->dev_private;
2261         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2262
2263         ring->name = "blitter ring";
2264         ring->id = BCS;
2265
2266         ring->mmio_base = BLT_RING_BASE;
2267         ring->write_tail = ring_write_tail;
2268         ring->flush = gen6_ring_flush;
2269         ring->add_request = gen6_add_request;
2270         ring->get_seqno = gen6_ring_get_seqno;
2271         ring->set_seqno = ring_set_seqno;
2272         if (INTEL_INFO(dev)->gen >= 8) {
2273                 ring->irq_enable_mask =
2274                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2275                 ring->irq_get = gen8_ring_get_irq;
2276                 ring->irq_put = gen8_ring_put_irq;
2277                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2278         } else {
2279                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2280                 ring->irq_get = gen6_ring_get_irq;
2281                 ring->irq_put = gen6_ring_put_irq;
2282                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2283         }
2284         ring->semaphore.sync_to = gen6_ring_sync;
2285         ring->semaphore.signal = gen6_signal;
2286         /*
2287          * The current semaphore is only applied on pre-gen8 platform. And
2288          * there is no VCS2 ring on the pre-gen8 platform. So the semaphore
2289          * between BCS and VCS2 is initialized as INVALID.
2290          * Gen8 will initialize the sema between BCS and VCS2 later.
2291          */
2292         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2293         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2294         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2295         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2296         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2297         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2298         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2299         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2300         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2301         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2302         ring->init = init_ring_common;
2303
2304         return intel_init_ring_buffer(dev, ring);
2305 }
2306
2307 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2308 {
2309         struct drm_i915_private *dev_priv = dev->dev_private;
2310         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2311
2312         ring->name = "video enhancement ring";
2313         ring->id = VECS;
2314
2315         ring->mmio_base = VEBOX_RING_BASE;
2316         ring->write_tail = ring_write_tail;
2317         ring->flush = gen6_ring_flush;
2318         ring->add_request = gen6_add_request;
2319         ring->get_seqno = gen6_ring_get_seqno;
2320         ring->set_seqno = ring_set_seqno;
2321
2322         if (INTEL_INFO(dev)->gen >= 8) {
2323                 ring->irq_enable_mask =
2324                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2325                 ring->irq_get = gen8_ring_get_irq;
2326                 ring->irq_put = gen8_ring_put_irq;
2327                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2328         } else {
2329                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2330                 ring->irq_get = hsw_vebox_get_irq;
2331                 ring->irq_put = hsw_vebox_put_irq;
2332                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2333         }
2334         ring->semaphore.sync_to = gen6_ring_sync;
2335         ring->semaphore.signal = gen6_signal;
2336         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2337         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2338         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2339         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2340         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2341         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2342         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2343         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2344         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2345         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2346         ring->init = init_ring_common;
2347
2348         return intel_init_ring_buffer(dev, ring);
2349 }
2350
2351 int
2352 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2353 {
2354         int ret;
2355
2356         if (!ring->gpu_caches_dirty)
2357                 return 0;
2358
2359         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2360         if (ret)
2361                 return ret;
2362
2363         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2364
2365         ring->gpu_caches_dirty = false;
2366         return 0;
2367 }
2368
2369 int
2370 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2371 {
2372         uint32_t flush_domains;
2373         int ret;
2374
2375         flush_domains = 0;
2376         if (ring->gpu_caches_dirty)
2377                 flush_domains = I915_GEM_GPU_DOMAINS;
2378
2379         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2380         if (ret)
2381                 return ret;
2382
2383         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2384
2385         ring->gpu_caches_dirty = false;
2386         return 0;
2387 }
2388
2389 void
2390 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2391 {
2392         int ret;
2393
2394         if (!intel_ring_initialized(ring))
2395                 return;
2396
2397         ret = intel_ring_idle(ring);
2398         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2399                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2400                           ring->name, ret);
2401
2402         stop_ring(ring);
2403 }