kernel - SWAP CACHE part 3/many - Rearrange VM pagerops
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update vm_load to slow down faulting processes.
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385 int
386 vm_pageout_flush(vm_page_t *mc, int count, int flags)
387 {
388         vm_object_t object;
389         int pageout_status[count];
390         int numpagedout = 0;
391         int i;
392
393         /*
394          * Initiate I/O.  Bump the vm_page_t->busy counter.
395          */
396         for (i = 0; i < count; i++) {
397                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
398                 vm_page_io_start(mc[i]);
399         }
400
401         /*
402          * We must make the pages read-only.  This will also force the
403          * modified bit in the related pmaps to be cleared.  The pager
404          * cannot clear the bit for us since the I/O completion code
405          * typically runs from an interrupt.  The act of making the page
406          * read-only handles the case for us.
407          */
408         for (i = 0; i < count; i++) {
409                 vm_page_protect(mc[i], VM_PROT_READ);
410         }
411
412         object = mc[0]->object;
413         vm_object_pip_add(object, count);
414
415         vm_pager_put_pages(object, mc, count,
416             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
417             pageout_status);
418
419         for (i = 0; i < count; i++) {
420                 vm_page_t mt = mc[i];
421
422                 switch (pageout_status[i]) {
423                 case VM_PAGER_OK:
424                         numpagedout++;
425                         break;
426                 case VM_PAGER_PEND:
427                         numpagedout++;
428                         break;
429                 case VM_PAGER_BAD:
430                         /*
431                          * Page outside of range of object. Right now we
432                          * essentially lose the changes by pretending it
433                          * worked.
434                          */
435                         pmap_clear_modify(mt);
436                         vm_page_undirty(mt);
437                         break;
438                 case VM_PAGER_ERROR:
439                 case VM_PAGER_FAIL:
440                         /*
441                          * A page typically cannot be paged out when we
442                          * have run out of swap.  We leave the page
443                          * marked inactive and will try to page it out
444                          * again later.
445                          *
446                          * Starvation of the active page list is used to
447                          * determine when the system is massively memory
448                          * starved.
449                          */
450                         break;
451                 case VM_PAGER_AGAIN:
452                         break;
453                 }
454
455                 /*
456                  * If the operation is still going, leave the page busy to
457                  * block all other accesses. Also, leave the paging in
458                  * progress indicator set so that we don't attempt an object
459                  * collapse.
460                  *
461                  * For any pages which have completed synchronously, 
462                  * deactivate the page if we are under a severe deficit.
463                  * Do not try to enter them into the cache, though, they
464                  * might still be read-heavy.
465                  */
466                 if (pageout_status[i] != VM_PAGER_PEND) {
467                         vm_object_pip_wakeup(object);
468                         vm_page_io_finish(mt);
469                         if (vm_page_count_severe())
470                                 vm_page_deactivate(mt);
471 #if 0
472                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
473                                 vm_page_protect(mt, VM_PROT_READ);
474 #endif
475                 }
476         }
477         return numpagedout;
478 }
479
480 #if !defined(NO_SWAPPING)
481 /*
482  *      vm_pageout_object_deactivate_pages
483  *
484  *      deactivate enough pages to satisfy the inactive target
485  *      requirements or if vm_page_proc_limit is set, then
486  *      deactivate all of the pages in the object and its
487  *      backing_objects.
488  *
489  *      The object and map must be locked.
490  */
491 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
492
493 static void
494 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
495         vm_pindex_t desired, int map_remove_only)
496 {
497         struct rb_vm_page_scan_info info;
498         int remove_mode;
499
500         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
501                 return;
502
503         while (object) {
504                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
505                         return;
506                 if (object->paging_in_progress)
507                         return;
508
509                 remove_mode = map_remove_only;
510                 if (object->shadow_count > 1)
511                         remove_mode = 1;
512
513                 /*
514                  * scan the objects entire memory queue.  spl protection is
515                  * required to avoid an interrupt unbusy/free race against
516                  * our busy check.
517                  */
518                 crit_enter();
519                 info.limit = remove_mode;
520                 info.map = map;
521                 info.desired = desired;
522                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
523                                 vm_pageout_object_deactivate_pages_callback,
524                                 &info
525                 );
526                 crit_exit();
527                 object = object->backing_object;
528         }
529 }
530                                         
531 static int
532 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
533 {
534         struct rb_vm_page_scan_info *info = data;
535         int actcount;
536
537         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
538                 return(-1);
539         }
540         mycpu->gd_cnt.v_pdpages++;
541         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
542             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
543             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
544                 return(0);
545         }
546
547         actcount = pmap_ts_referenced(p);
548         if (actcount) {
549                 vm_page_flag_set(p, PG_REFERENCED);
550         } else if (p->flags & PG_REFERENCED) {
551                 actcount = 1;
552         }
553
554         if ((p->queue != PQ_ACTIVE) &&
555                 (p->flags & PG_REFERENCED)) {
556                 vm_page_activate(p);
557                 p->act_count += actcount;
558                 vm_page_flag_clear(p, PG_REFERENCED);
559         } else if (p->queue == PQ_ACTIVE) {
560                 if ((p->flags & PG_REFERENCED) == 0) {
561                         p->act_count -= min(p->act_count, ACT_DECLINE);
562                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
563                                 vm_page_busy(p);
564                                 vm_page_protect(p, VM_PROT_NONE);
565                                 vm_page_wakeup(p);
566                                 vm_page_deactivate(p);
567                         } else {
568                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
570                         }
571                 } else {
572                         vm_page_activate(p);
573                         vm_page_flag_clear(p, PG_REFERENCED);
574                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575                                 p->act_count += ACT_ADVANCE;
576                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
578                 }
579         } else if (p->queue == PQ_INACTIVE) {
580                 vm_page_busy(p);
581                 vm_page_protect(p, VM_PROT_NONE);
582                 vm_page_wakeup(p);
583         }
584         return(0);
585 }
586
587 /*
588  * deactivate some number of pages in a map, try to do it fairly, but
589  * that is really hard to do.
590  */
591 static void
592 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
593 {
594         vm_map_entry_t tmpe;
595         vm_object_t obj, bigobj;
596         int nothingwired;
597
598         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
599                 return;
600         }
601
602         bigobj = NULL;
603         nothingwired = TRUE;
604
605         /*
606          * first, search out the biggest object, and try to free pages from
607          * that.
608          */
609         tmpe = map->header.next;
610         while (tmpe != &map->header) {
611                 switch(tmpe->maptype) {
612                 case VM_MAPTYPE_NORMAL:
613                 case VM_MAPTYPE_VPAGETABLE:
614                         obj = tmpe->object.vm_object;
615                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
616                                 ((bigobj == NULL) ||
617                                  (bigobj->resident_page_count < obj->resident_page_count))) {
618                                 bigobj = obj;
619                         }
620                         break;
621                 default:
622                         break;
623                 }
624                 if (tmpe->wired_count > 0)
625                         nothingwired = FALSE;
626                 tmpe = tmpe->next;
627         }
628
629         if (bigobj)
630                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
631
632         /*
633          * Next, hunt around for other pages to deactivate.  We actually
634          * do this search sort of wrong -- .text first is not the best idea.
635          */
636         tmpe = map->header.next;
637         while (tmpe != &map->header) {
638                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
639                         break;
640                 switch(tmpe->maptype) {
641                 case VM_MAPTYPE_NORMAL:
642                 case VM_MAPTYPE_VPAGETABLE:
643                         obj = tmpe->object.vm_object;
644                         if (obj)
645                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
646                         break;
647                 default:
648                         break;
649                 }
650                 tmpe = tmpe->next;
651         };
652
653         /*
654          * Remove all mappings if a process is swapped out, this will free page
655          * table pages.
656          */
657         if (desired == 0 && nothingwired)
658                 pmap_remove(vm_map_pmap(map),
659                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
660         vm_map_unlock(map);
661 }
662 #endif
663
664 /*
665  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
666  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
667  * be trivially freed.
668  */
669 void
670 vm_pageout_page_free(vm_page_t m) 
671 {
672         vm_object_t object = m->object;
673         int type = object->type;
674
675         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
676                 vm_object_reference(object);
677         vm_page_busy(m);
678         vm_page_protect(m, VM_PROT_NONE);
679         vm_page_free(m);
680         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
681                 vm_object_deallocate(object);
682 }
683
684 /*
685  * vm_pageout_scan does the dirty work for the pageout daemon.
686  */
687 struct vm_pageout_scan_info {
688         struct proc *bigproc;
689         vm_offset_t bigsize;
690 };
691
692 static int vm_pageout_scan_callback(struct proc *p, void *data);
693
694 static int
695 vm_pageout_scan(int pass)
696 {
697         struct vm_pageout_scan_info info;
698         vm_page_t m, next;
699         struct vm_page marker;
700         int maxscan, pcount;
701         int recycle_count;
702         int inactive_shortage, active_shortage;
703         int inactive_original_shortage;
704         vm_object_t object;
705         int actcount;
706         int vnodes_skipped = 0;
707         int maxlaunder;
708
709         /*
710          * Do whatever cleanup that the pmap code can.
711          */
712         pmap_collect();
713
714         /*
715          * Calculate our target for the number of free+cache pages we
716          * want to get to.  This is higher then the number that causes
717          * allocations to stall (severe) in order to provide hysteresis,
718          * and if we don't make it all the way but get to the minimum
719          * we're happy.
720          */
721         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
722         inactive_original_shortage = inactive_shortage;
723         vm_pageout_deficit = 0;
724
725         /*
726          * Initialize our marker
727          */
728         bzero(&marker, sizeof(marker));
729         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
730         marker.queue = PQ_INACTIVE;
731         marker.wire_count = 1;
732
733         /*
734          * Start scanning the inactive queue for pages we can move to the
735          * cache or free.  The scan will stop when the target is reached or
736          * we have scanned the entire inactive queue.  Note that m->act_count
737          * is not used to form decisions for the inactive queue, only for the
738          * active queue.
739          *
740          * maxlaunder limits the number of dirty pages we flush per scan.
741          * For most systems a smaller value (16 or 32) is more robust under
742          * extreme memory and disk pressure because any unnecessary writes
743          * to disk can result in extreme performance degredation.  However,
744          * systems with excessive dirty pages (especially when MAP_NOSYNC is
745          * used) will die horribly with limited laundering.  If the pageout
746          * daemon cannot clean enough pages in the first pass, we let it go
747          * all out in succeeding passes.
748          */
749         if ((maxlaunder = vm_max_launder) <= 1)
750                 maxlaunder = 1;
751         if (pass)
752                 maxlaunder = 10000;
753
754         /*
755          * We will generally be in a critical section throughout the 
756          * scan, but we can release it temporarily when we are sitting on a
757          * non-busy page without fear.  this is required to prevent an
758          * interrupt from unbusying or freeing a page prior to our busy
759          * check, leaving us on the wrong queue or checking the wrong
760          * page.
761          */
762         crit_enter();
763 rescan0:
764         maxscan = vmstats.v_inactive_count;
765         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
766              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
767              m = next
768          ) {
769                 mycpu->gd_cnt.v_pdpages++;
770
771                 /*
772                  * Give interrupts a chance
773                  */
774                 crit_exit();
775                 crit_enter();
776
777                 /*
778                  * It's easier for some of the conditions below to just loop
779                  * and catch queue changes here rather then check everywhere
780                  * else.
781                  */
782                 if (m->queue != PQ_INACTIVE)
783                         goto rescan0;
784                 next = TAILQ_NEXT(m, pageq);
785
786                 /*
787                  * skip marker pages
788                  */
789                 if (m->flags & PG_MARKER)
790                         continue;
791
792                 /*
793                  * A held page may be undergoing I/O, so skip it.
794                  */
795                 if (m->hold_count) {
796                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
797                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
798                         continue;
799                 }
800
801                 /*
802                  * Dont mess with busy pages, keep in the front of the
803                  * queue, most likely are being paged out.
804                  */
805                 if (m->busy || (m->flags & PG_BUSY)) {
806                         continue;
807                 }
808
809                 if (m->object->ref_count == 0) {
810                         /*
811                          * If the object is not being used, we ignore previous 
812                          * references.
813                          */
814                         vm_page_flag_clear(m, PG_REFERENCED);
815                         pmap_clear_reference(m);
816
817                 } else if (((m->flags & PG_REFERENCED) == 0) &&
818                             (actcount = pmap_ts_referenced(m))) {
819                         /*
820                          * Otherwise, if the page has been referenced while 
821                          * in the inactive queue, we bump the "activation
822                          * count" upwards, making it less likely that the
823                          * page will be added back to the inactive queue
824                          * prematurely again.  Here we check the page tables
825                          * (or emulated bits, if any), given the upper level
826                          * VM system not knowing anything about existing 
827                          * references.
828                          */
829                         vm_page_activate(m);
830                         m->act_count += (actcount + ACT_ADVANCE);
831                         continue;
832                 }
833
834                 /*
835                  * If the upper level VM system knows about any page 
836                  * references, we activate the page.  We also set the 
837                  * "activation count" higher than normal so that we will less 
838                  * likely place pages back onto the inactive queue again.
839                  */
840                 if ((m->flags & PG_REFERENCED) != 0) {
841                         vm_page_flag_clear(m, PG_REFERENCED);
842                         actcount = pmap_ts_referenced(m);
843                         vm_page_activate(m);
844                         m->act_count += (actcount + ACT_ADVANCE + 1);
845                         continue;
846                 }
847
848                 /*
849                  * If the upper level VM system doesn't know anything about 
850                  * the page being dirty, we have to check for it again.  As 
851                  * far as the VM code knows, any partially dirty pages are 
852                  * fully dirty.
853                  *
854                  * Pages marked PG_WRITEABLE may be mapped into the user
855                  * address space of a process running on another cpu.  A
856                  * user process (without holding the MP lock) running on
857                  * another cpu may be able to touch the page while we are
858                  * trying to remove it.  vm_page_cache() will handle this
859                  * case for us.
860                  */
861                 if (m->dirty == 0) {
862                         vm_page_test_dirty(m);
863                 } else {
864                         vm_page_dirty(m);
865                 }
866
867                 if (m->valid == 0) {
868                         /*
869                          * Invalid pages can be easily freed
870                          */
871                         vm_pageout_page_free(m);
872                         mycpu->gd_cnt.v_dfree++;
873                         --inactive_shortage;
874                 } else if (m->dirty == 0) {
875                         /*
876                          * Clean pages can be placed onto the cache queue.
877                          * This effectively frees them.
878                          */
879                         vm_page_cache(m);
880                         --inactive_shortage;
881                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
882                         /*
883                          * Dirty pages need to be paged out, but flushing
884                          * a page is extremely expensive verses freeing
885                          * a clean page.  Rather then artificially limiting
886                          * the number of pages we can flush, we instead give
887                          * dirty pages extra priority on the inactive queue
888                          * by forcing them to be cycled through the queue
889                          * twice before being flushed, after which the 
890                          * (now clean) page will cycle through once more
891                          * before being freed.  This significantly extends
892                          * the thrash point for a heavily loaded machine.
893                          */
894                         vm_page_flag_set(m, PG_WINATCFLS);
895                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
896                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
897                 } else if (maxlaunder > 0) {
898                         /*
899                          * We always want to try to flush some dirty pages if
900                          * we encounter them, to keep the system stable.
901                          * Normally this number is small, but under extreme
902                          * pressure where there are insufficient clean pages
903                          * on the inactive queue, we may have to go all out.
904                          */
905                         int swap_pageouts_ok;
906                         struct vnode *vp = NULL;
907
908                         object = m->object;
909
910                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
911                                 swap_pageouts_ok = 1;
912                         } else {
913                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
914                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
915                                 vm_page_count_min(0));
916                                                                                 
917                         }
918
919                         /*
920                          * We don't bother paging objects that are "dead".  
921                          * Those objects are in a "rundown" state.
922                          */
923                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
924                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
925                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
926                                 continue;
927                         }
928
929                         /*
930                          * The object is already known NOT to be dead.   It
931                          * is possible for the vget() to block the whole
932                          * pageout daemon, but the new low-memory handling
933                          * code should prevent it.
934                          *
935                          * The previous code skipped locked vnodes and, worse,
936                          * reordered pages in the queue.  This results in
937                          * completely non-deterministic operation because,
938                          * quite often, a vm_fault has initiated an I/O and
939                          * is holding a locked vnode at just the point where
940                          * the pageout daemon is woken up.
941                          *
942                          * We can't wait forever for the vnode lock, we might
943                          * deadlock due to a vn_read() getting stuck in
944                          * vm_wait while holding this vnode.  We skip the 
945                          * vnode if we can't get it in a reasonable amount
946                          * of time.
947                          */
948
949                         if (object->type == OBJT_VNODE) {
950                                 vp = object->handle;
951
952                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
953                                         ++pageout_lock_miss;
954                                         if (object->flags & OBJ_MIGHTBEDIRTY)
955                                                     vnodes_skipped++;
956                                         continue;
957                                 }
958
959                                 /*
960                                  * The page might have been moved to another
961                                  * queue during potential blocking in vget()
962                                  * above.  The page might have been freed and
963                                  * reused for another vnode.  The object might
964                                  * have been reused for another vnode.
965                                  */
966                                 if (m->queue != PQ_INACTIVE ||
967                                     m->object != object ||
968                                     object->handle != vp) {
969                                         if (object->flags & OBJ_MIGHTBEDIRTY)
970                                                 vnodes_skipped++;
971                                         vput(vp);
972                                         continue;
973                                 }
974         
975                                 /*
976                                  * The page may have been busied during the
977                                  * blocking in vput();  We don't move the
978                                  * page back onto the end of the queue so that
979                                  * statistics are more correct if we don't.
980                                  */
981                                 if (m->busy || (m->flags & PG_BUSY)) {
982                                         vput(vp);
983                                         continue;
984                                 }
985
986                                 /*
987                                  * If the page has become held it might
988                                  * be undergoing I/O, so skip it
989                                  */
990                                 if (m->hold_count) {
991                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
992                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
993                                         if (object->flags & OBJ_MIGHTBEDIRTY)
994                                                 vnodes_skipped++;
995                                         vput(vp);
996                                         continue;
997                                 }
998                         }
999
1000                         /*
1001                          * If a page is dirty, then it is either being washed
1002                          * (but not yet cleaned) or it is still in the
1003                          * laundry.  If it is still in the laundry, then we
1004                          * start the cleaning operation. 
1005                          *
1006                          * This operation may cluster, invalidating the 'next'
1007                          * pointer.  To prevent an inordinate number of
1008                          * restarts we use our marker to remember our place.
1009                          *
1010                          * decrement inactive_shortage on success to account
1011                          * for the (future) cleaned page.  Otherwise we
1012                          * could wind up laundering or cleaning too many
1013                          * pages.
1014                          */
1015                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1016                         if (vm_pageout_clean(m) != 0) {
1017                                 --inactive_shortage;
1018                                 --maxlaunder;
1019                         }
1020                         next = TAILQ_NEXT(&marker, pageq);
1021                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1022                         if (vp != NULL)
1023                                 vput(vp);
1024                 }
1025         }
1026
1027         /*
1028          * We want to move pages from the active queue to the inactive
1029          * queue to get the inactive queue to the inactive target.  If
1030          * we still have a page shortage from above we try to directly free
1031          * clean pages instead of moving them.
1032          *
1033          * If we do still have a shortage we keep track of the number of
1034          * pages we free or cache (recycle_count) as a measure of thrashing
1035          * between the active and inactive queues.
1036          *
1037          * If we were able to completely satisfy the free+cache targets
1038          * from the inactive pool we limit the number of pages we move
1039          * from the active pool to the inactive pool to 2x the pages we
1040          * had removed from the inactive pool.  If we were not able to
1041          * completel satisfy the free+cache targets we go for the whole
1042          * target aggressively.
1043          *
1044          * NOTE: Both variables can end up negative.
1045          * NOTE: We are still in a critical section.
1046          */
1047         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1048         if (inactive_shortage <= 0 &&
1049             active_shortage > inactive_original_shortage * 2) {
1050                 active_shortage = inactive_original_shortage * 2;
1051         }
1052
1053         pcount = vmstats.v_active_count;
1054         recycle_count = 0;
1055         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1056
1057         while ((m != NULL) && (pcount-- > 0) &&
1058                (inactive_shortage > 0 || active_shortage > 0)
1059         ) {
1060                 /*
1061                  * Give interrupts a chance.
1062                  */
1063                 crit_exit();
1064                 crit_enter();
1065
1066                 /*
1067                  * If the page was ripped out from under us, just stop.
1068                  */
1069                 if (m->queue != PQ_ACTIVE)
1070                         break;
1071                 next = TAILQ_NEXT(m, pageq);
1072
1073                 /*
1074                  * Don't deactivate pages that are busy.
1075                  */
1076                 if ((m->busy != 0) ||
1077                     (m->flags & PG_BUSY) ||
1078                     (m->hold_count != 0)) {
1079                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1080                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1081                         m = next;
1082                         continue;
1083                 }
1084
1085                 /*
1086                  * The count for pagedaemon pages is done after checking the
1087                  * page for eligibility...
1088                  */
1089                 mycpu->gd_cnt.v_pdpages++;
1090
1091                 /*
1092                  * Check to see "how much" the page has been used and clear
1093                  * the tracking access bits.  If the object has no references
1094                  * don't bother paying the expense.
1095                  */
1096                 actcount = 0;
1097                 if (m->object->ref_count != 0) {
1098                         if (m->flags & PG_REFERENCED)
1099                                 ++actcount;
1100                         actcount += pmap_ts_referenced(m);
1101                         if (actcount) {
1102                                 m->act_count += ACT_ADVANCE + actcount;
1103                                 if (m->act_count > ACT_MAX)
1104                                         m->act_count = ACT_MAX;
1105                         }
1106                 }
1107                 vm_page_flag_clear(m, PG_REFERENCED);
1108
1109                 /*
1110                  * actcount is only valid if the object ref_count is non-zero.
1111                  */
1112                 if (actcount && m->object->ref_count != 0) {
1113                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1114                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1115                 } else {
1116                         m->act_count -= min(m->act_count, ACT_DECLINE);
1117                         if (vm_pageout_algorithm ||
1118                             m->object->ref_count == 0 ||
1119                             m->act_count < pass + 1
1120                         ) {
1121                                 /*
1122                                  * Deactivate the page.  If we had a
1123                                  * shortage from our inactive scan try to
1124                                  * free (cache) the page instead.
1125                                  */
1126                                 --active_shortage;
1127                                 if (inactive_shortage > 0 ||
1128                                     m->object->ref_count == 0) {
1129                                         if (inactive_shortage > 0)
1130                                                 ++recycle_count;
1131                                         vm_page_busy(m);
1132                                         vm_page_protect(m, VM_PROT_NONE);
1133                                         vm_page_wakeup(m);
1134                                         if (m->dirty == 0) {
1135                                                 --inactive_shortage;
1136                                                 vm_page_cache(m);
1137                                         } else {
1138                                                 vm_page_deactivate(m);
1139                                         }
1140                                 } else {
1141                                         vm_page_deactivate(m);
1142                                 }
1143                         } else {
1144                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1145                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1146                         }
1147                 }
1148                 m = next;
1149         }
1150
1151         /*
1152          * We try to maintain some *really* free pages, this allows interrupt
1153          * code to be guaranteed space.  Since both cache and free queues 
1154          * are considered basically 'free', moving pages from cache to free
1155          * does not effect other calculations.
1156          *
1157          * NOTE: we are still in a critical section.
1158          *
1159          * Pages moved from PQ_CACHE to totally free are not counted in the
1160          * pages_freed counter.
1161          */
1162         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1163                 static int cache_rover = 0;
1164                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1165                 if (m == NULL)
1166                         break;
1167                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1168                     m->busy || 
1169                     m->hold_count || 
1170                     m->wire_count) {
1171 #ifdef INVARIANTS
1172                         kprintf("Warning: busy page %p found in cache\n", m);
1173 #endif
1174                         vm_page_deactivate(m);
1175                         continue;
1176                 }
1177                 KKASSERT((m->flags & PG_MAPPED) == 0);
1178                 KKASSERT(m->dirty == 0);
1179                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1180                 vm_pageout_page_free(m);
1181                 mycpu->gd_cnt.v_dfree++;
1182         }
1183
1184         crit_exit();
1185
1186 #if !defined(NO_SWAPPING)
1187         /*
1188          * Idle process swapout -- run once per second.
1189          */
1190         if (vm_swap_idle_enabled) {
1191                 static long lsec;
1192                 if (time_second != lsec) {
1193                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1194                         vm_req_vmdaemon();
1195                         lsec = time_second;
1196                 }
1197         }
1198 #endif
1199                 
1200         /*
1201          * If we didn't get enough free pages, and we have skipped a vnode
1202          * in a writeable object, wakeup the sync daemon.  And kick swapout
1203          * if we did not get enough free pages.
1204          */
1205         if (vm_paging_target() > 0) {
1206                 if (vnodes_skipped && vm_page_count_min(0))
1207                         speedup_syncer();
1208 #if !defined(NO_SWAPPING)
1209                 if (vm_swap_enabled && vm_page_count_target()) {
1210                         vm_req_vmdaemon();
1211                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1212                 }
1213 #endif
1214         }
1215
1216         /*
1217          * Handle catastrophic conditions.  Under good conditions we should
1218          * be at the target, well beyond our minimum.  If we could not even
1219          * reach our minimum the system is under heavy stress.
1220          *
1221          * Determine whether we have run out of memory.  This occurs when
1222          * swap_pager_full is TRUE and the only pages left in the page
1223          * queues are dirty.  We will still likely have page shortages.
1224          *
1225          * - swap_pager_full is set if insufficient swap was
1226          *   available to satisfy a requested pageout.
1227          *
1228          * - the inactive queue is bloated (4 x size of active queue),
1229          *   meaning it is unable to get rid of dirty pages and.
1230          *
1231          * - vm_page_count_min() without counting pages recycled from the
1232          *   active queue (recycle_count) means we could not recover
1233          *   enough pages to meet bare minimum needs.  This test only
1234          *   works if the inactive queue is bloated.
1235          *
1236          * - due to a positive inactive_shortage we shifted the remaining
1237          *   dirty pages from the active queue to the inactive queue
1238          *   trying to find clean ones to free.
1239          */
1240         if (swap_pager_full && vm_page_count_min(recycle_count))
1241                 kprintf("Warning: system low on memory+swap!\n");
1242         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1243             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1244             inactive_shortage > 0) {
1245                 /*
1246                  * Kill something.
1247                  */
1248                 info.bigproc = NULL;
1249                 info.bigsize = 0;
1250                 allproc_scan(vm_pageout_scan_callback, &info);
1251                 if (info.bigproc != NULL) {
1252                         killproc(info.bigproc, "out of swap space");
1253                         info.bigproc->p_nice = PRIO_MIN;
1254                         info.bigproc->p_usched->resetpriority(
1255                                 FIRST_LWP_IN_PROC(info.bigproc));
1256                         wakeup(&vmstats.v_free_count);
1257                         PRELE(info.bigproc);
1258                 }
1259         }
1260         return(inactive_shortage);
1261 }
1262
1263 static int
1264 vm_pageout_scan_callback(struct proc *p, void *data)
1265 {
1266         struct vm_pageout_scan_info *info = data;
1267         vm_offset_t size;
1268
1269         /*
1270          * Never kill system processes or init.  If we have configured swap
1271          * then try to avoid killing low-numbered pids.
1272          */
1273         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1274             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1275                 return (0);
1276         }
1277
1278         /*
1279          * if the process is in a non-running type state,
1280          * don't touch it.
1281          */
1282         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1283                 return (0);
1284
1285         /*
1286          * Get the approximate process size.  Note that anonymous pages
1287          * with backing swap will be counted twice, but there should not
1288          * be too many such pages due to the stress the VM system is
1289          * under at this point.
1290          */
1291         size = vmspace_anonymous_count(p->p_vmspace) +
1292                 vmspace_swap_count(p->p_vmspace);
1293
1294         /*
1295          * If the this process is bigger than the biggest one
1296          * remember it.
1297          */
1298         if (info->bigsize < size) {
1299                 if (info->bigproc)
1300                         PRELE(info->bigproc);
1301                 PHOLD(p);
1302                 info->bigproc = p;
1303                 info->bigsize = size;
1304         }
1305         return(0);
1306 }
1307
1308 /*
1309  * This routine tries to maintain the pseudo LRU active queue,
1310  * so that during long periods of time where there is no paging,
1311  * that some statistic accumulation still occurs.  This code
1312  * helps the situation where paging just starts to occur.
1313  */
1314 static void
1315 vm_pageout_page_stats(void)
1316 {
1317         vm_page_t m,next;
1318         int pcount,tpcount;             /* Number of pages to check */
1319         static int fullintervalcount = 0;
1320         int page_shortage;
1321
1322         page_shortage = 
1323             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1324             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1325
1326         if (page_shortage <= 0)
1327                 return;
1328
1329         crit_enter();
1330
1331         pcount = vmstats.v_active_count;
1332         fullintervalcount += vm_pageout_stats_interval;
1333         if (fullintervalcount < vm_pageout_full_stats_interval) {
1334                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1335                 if (pcount > tpcount)
1336                         pcount = tpcount;
1337         } else {
1338                 fullintervalcount = 0;
1339         }
1340
1341         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1342         while ((m != NULL) && (pcount-- > 0)) {
1343                 int actcount;
1344
1345                 if (m->queue != PQ_ACTIVE) {
1346                         break;
1347                 }
1348
1349                 next = TAILQ_NEXT(m, pageq);
1350                 /*
1351                  * Don't deactivate pages that are busy.
1352                  */
1353                 if ((m->busy != 0) ||
1354                     (m->flags & PG_BUSY) ||
1355                     (m->hold_count != 0)) {
1356                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1357                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1358                         m = next;
1359                         continue;
1360                 }
1361
1362                 actcount = 0;
1363                 if (m->flags & PG_REFERENCED) {
1364                         vm_page_flag_clear(m, PG_REFERENCED);
1365                         actcount += 1;
1366                 }
1367
1368                 actcount += pmap_ts_referenced(m);
1369                 if (actcount) {
1370                         m->act_count += ACT_ADVANCE + actcount;
1371                         if (m->act_count > ACT_MAX)
1372                                 m->act_count = ACT_MAX;
1373                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1374                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1375                 } else {
1376                         if (m->act_count == 0) {
1377                                 /*
1378                                  * We turn off page access, so that we have
1379                                  * more accurate RSS stats.  We don't do this
1380                                  * in the normal page deactivation when the
1381                                  * system is loaded VM wise, because the
1382                                  * cost of the large number of page protect
1383                                  * operations would be higher than the value
1384                                  * of doing the operation.
1385                                  */
1386                                 vm_page_busy(m);
1387                                 vm_page_protect(m, VM_PROT_NONE);
1388                                 vm_page_wakeup(m);
1389                                 vm_page_deactivate(m);
1390                         } else {
1391                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1392                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1393                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1394                         }
1395                 }
1396
1397                 m = next;
1398         }
1399         crit_exit();
1400 }
1401
1402 static int
1403 vm_pageout_free_page_calc(vm_size_t count)
1404 {
1405         if (count < vmstats.v_page_count)
1406                  return 0;
1407         /*
1408          * free_reserved needs to include enough for the largest swap pager
1409          * structures plus enough for any pv_entry structs when paging.
1410          */
1411         if (vmstats.v_page_count > 1024)
1412                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1413         else
1414                 vmstats.v_free_min = 4;
1415         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1416                 vmstats.v_interrupt_free_min;
1417         vmstats.v_free_reserved = vm_pageout_page_count +
1418                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1419         vmstats.v_free_severe = vmstats.v_free_min / 2;
1420         vmstats.v_free_min += vmstats.v_free_reserved;
1421         vmstats.v_free_severe += vmstats.v_free_reserved;
1422         return 1;
1423 }
1424
1425
1426 /*
1427  * vm_pageout is the high level pageout daemon.
1428  */
1429 static void
1430 vm_pageout(void)
1431 {
1432         int pass;
1433         int inactive_shortage;
1434
1435         /*
1436          * Initialize some paging parameters.
1437          */
1438         curthread->td_flags |= TDF_SYSTHREAD;
1439
1440         vmstats.v_interrupt_free_min = 2;
1441         if (vmstats.v_page_count < 2000)
1442                 vm_pageout_page_count = 8;
1443
1444         vm_pageout_free_page_calc(vmstats.v_page_count);
1445
1446         /*
1447          * v_free_target and v_cache_min control pageout hysteresis.  Note
1448          * that these are more a measure of the VM cache queue hysteresis
1449          * then the VM free queue.  Specifically, v_free_target is the
1450          * high water mark (free+cache pages).
1451          *
1452          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1453          * low water mark, while v_free_min is the stop.  v_cache_min must
1454          * be big enough to handle memory needs while the pageout daemon
1455          * is signalled and run to free more pages.
1456          */
1457         if (vmstats.v_free_count > 6144)
1458                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1459         else
1460                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1461
1462         /*
1463          * NOTE: With the new buffer cache b_act_count we want the default
1464          *       inactive target to be a percentage of available memory.
1465          *
1466          *       The inactive target essentially determines the minimum
1467          *       number of 'temporary' pages capable of caching one-time-use
1468          *       files when the VM system is otherwise full of pages
1469          *       belonging to multi-time-use files or active program data.
1470          *
1471          * NOTE: The inactive target is aggressively persued only if the
1472          *       inactive queue becomes too small.  If the inactive queue
1473          *       is large enough to satisfy page movement to free+cache
1474          *       then it is repopulated more slowly from the active queue.
1475          *       This allows a generate inactive_target default to be set.
1476          *
1477          *       There is an issue here for processes which sit mostly idle
1478          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1479          *       the active queue will eventually cause such pages to
1480          *       recycle eventually causing a lot of paging in the morning.
1481          *       To reduce the incidence of this pages cycled out of the
1482          *       buffer cache are moved directly to the inactive queue if
1483          *       they were only used once or twice.  The vfs.vm_cycle_point
1484          *       sysctl can be used to adjust this.
1485          */
1486         if (vmstats.v_free_count > 2048) {
1487                 vmstats.v_cache_min = vmstats.v_free_target;
1488                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1489         } else {
1490                 vmstats.v_cache_min = 0;
1491                 vmstats.v_cache_max = 0;
1492         }
1493         vmstats.v_inactive_target = vmstats.v_free_count / 2;
1494
1495         /* XXX does not really belong here */
1496         if (vm_page_max_wired == 0)
1497                 vm_page_max_wired = vmstats.v_free_count / 3;
1498
1499         if (vm_pageout_stats_max == 0)
1500                 vm_pageout_stats_max = vmstats.v_free_target;
1501
1502         /*
1503          * Set interval in seconds for stats scan.
1504          */
1505         if (vm_pageout_stats_interval == 0)
1506                 vm_pageout_stats_interval = 5;
1507         if (vm_pageout_full_stats_interval == 0)
1508                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1509         
1510
1511         /*
1512          * Set maximum free per pass
1513          */
1514         if (vm_pageout_stats_free_max == 0)
1515                 vm_pageout_stats_free_max = 5;
1516
1517         swap_pager_swap_init();
1518         pass = 0;
1519
1520         /*
1521          * The pageout daemon is never done, so loop forever.
1522          */
1523         while (TRUE) {
1524                 int error;
1525
1526                 if (vm_pages_needed == 0) {
1527                         /*
1528                          * Wait for an action request
1529                          */
1530                         error = tsleep(&vm_pages_needed,
1531                                        0, "psleep",
1532                                        vm_pageout_stats_interval * hz);
1533                         if (error && vm_pages_needed == 0) {
1534                                 vm_pageout_page_stats();
1535                                 continue;
1536                         }
1537                         vm_pages_needed = 1;
1538                 }
1539
1540                 /*
1541                  * If we have enough free memory, wakeup waiters.
1542                  */
1543                 crit_enter();
1544                 if (!vm_page_count_min(0))
1545                         wakeup(&vmstats.v_free_count);
1546                 mycpu->gd_cnt.v_pdwakeups++;
1547                 crit_exit();
1548                 inactive_shortage = vm_pageout_scan(pass);
1549
1550                 /*
1551                  * Try to avoid thrashing the system with activity.
1552                  */
1553                 if (inactive_shortage > 0) {
1554                         ++pass;
1555                         if (swap_pager_full) {
1556                                 /*
1557                                  * Running out of memory, catastrophic back-off
1558                                  * to one-second intervals.
1559                                  */
1560                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1561                         } else if (pass < 10 && vm_pages_needed > 1) {
1562                                 /*
1563                                  * Normal operation, additional processes
1564                                  * have already kicked us.  Retry immediately.
1565                                  */
1566                         } else if (pass < 10) {
1567                                 /*
1568                                  * Normal operation, fewer processes.  Delay
1569                                  * a bit but allow wakeups.
1570                                  */
1571                                 vm_pages_needed = 0;
1572                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1573                                 vm_pages_needed = 1;
1574                         } else {
1575                                 /*
1576                                  * We've taken too many passes, forced delay.
1577                                  */
1578                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1579                         }
1580                 } else {
1581                         pass = 0;
1582                         vm_pages_needed = 0;
1583                 }
1584         }
1585 }
1586
1587 /*
1588  * Called after allocating a page out of the cache or free queue
1589  * to possibly wake the pagedaemon up to replentish our supply.
1590  *
1591  * We try to generate some hysteresis by waking the pagedaemon up
1592  * when our free+cache pages go below the severe level.  The pagedaemon
1593  * tries to get the count back up to at least the minimum, and through
1594  * to the target level if possible.
1595  *
1596  * If the pagedaemon is already active bump vm_pages_needed as a hint
1597  * that there are even more requests pending.
1598  */
1599 void
1600 pagedaemon_wakeup(void)
1601 {
1602         if (vm_page_count_severe() && curthread != pagethread) {
1603                 if (vm_pages_needed == 0) {
1604                         vm_pages_needed = 1;
1605                         wakeup(&vm_pages_needed);
1606                 } else if (vm_page_count_min(0)) {
1607                         ++vm_pages_needed;
1608                 }
1609         }
1610 }
1611
1612 #if !defined(NO_SWAPPING)
1613 static void
1614 vm_req_vmdaemon(void)
1615 {
1616         static int lastrun = 0;
1617
1618         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1619                 wakeup(&vm_daemon_needed);
1620                 lastrun = ticks;
1621         }
1622 }
1623
1624 static int vm_daemon_callback(struct proc *p, void *data __unused);
1625
1626 static void
1627 vm_daemon(void)
1628 {
1629         while (TRUE) {
1630                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1631                 if (vm_pageout_req_swapout) {
1632                         swapout_procs(vm_pageout_req_swapout);
1633                         vm_pageout_req_swapout = 0;
1634                 }
1635                 /*
1636                  * scan the processes for exceeding their rlimits or if
1637                  * process is swapped out -- deactivate pages
1638                  */
1639                 allproc_scan(vm_daemon_callback, NULL);
1640         }
1641 }
1642
1643 static int
1644 vm_daemon_callback(struct proc *p, void *data __unused)
1645 {
1646         vm_pindex_t limit, size;
1647
1648         /*
1649          * if this is a system process or if we have already
1650          * looked at this process, skip it.
1651          */
1652         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1653                 return (0);
1654
1655         /*
1656          * if the process is in a non-running type state,
1657          * don't touch it.
1658          */
1659         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1660                 return (0);
1661
1662         /*
1663          * get a limit
1664          */
1665         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1666                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1667
1668         /*
1669          * let processes that are swapped out really be
1670          * swapped out.  Set the limit to nothing to get as
1671          * many pages out to swap as possible.
1672          */
1673         if (p->p_flag & P_SWAPPEDOUT)
1674                 limit = 0;
1675
1676         size = vmspace_resident_count(p->p_vmspace);
1677         if (limit >= 0 && size >= limit) {
1678                 vm_pageout_map_deactivate_pages(
1679                     &p->p_vmspace->vm_map, limit);
1680         }
1681         return (0);
1682 }
1683
1684 #endif