binutils220: Update vendor branch to version 2.20.1
[dragonfly.git] / contrib / binutils-2.20 / gold / x86_64.cc
1 // x86_64.cc -- x86_64 target support for gold.
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "x86_64.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "copy-relocs.h"
36 #include "target.h"
37 #include "target-reloc.h"
38 #include "target-select.h"
39 #include "tls.h"
40 #include "freebsd.h"
41 #include "gc.h"
42
43 namespace
44 {
45
46 using namespace gold;
47
48 class Output_data_plt_x86_64;
49
50 // The x86_64 target class.
51 // See the ABI at
52 //   http://www.x86-64.org/documentation/abi.pdf
53 // TLS info comes from
54 //   http://people.redhat.com/drepper/tls.pdf
55 //   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
56
57 class Target_x86_64 : public Target_freebsd<64, false>
58 {
59  public:
60   // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
61   // uses only Elf64_Rela relocation entries with explicit addends."
62   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
63
64   Target_x86_64()
65     : Target_freebsd<64, false>(&x86_64_info),
66       got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
67       copy_relocs_(elfcpp::R_X86_64_COPY), dynbss_(NULL),
68       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
69   { }
70
71   // Hook for a new output section.
72   void
73   do_new_output_section(Output_section*) const;
74
75   // Scan the relocations to look for symbol adjustments.
76   void
77   gc_process_relocs(const General_options& options,
78                     Symbol_table* symtab,
79                     Layout* layout,
80                     Sized_relobj<64, false>* object,
81                     unsigned int data_shndx,
82                     unsigned int sh_type,
83                     const unsigned char* prelocs,
84                     size_t reloc_count,
85                     Output_section* output_section,
86                     bool needs_special_offset_handling,
87                     size_t local_symbol_count,
88                     const unsigned char* plocal_symbols);
89
90   // Scan the relocations to look for symbol adjustments.
91   void
92   scan_relocs(const General_options& options,
93               Symbol_table* symtab,
94               Layout* layout,
95               Sized_relobj<64, false>* object,
96               unsigned int data_shndx,
97               unsigned int sh_type,
98               const unsigned char* prelocs,
99               size_t reloc_count,
100               Output_section* output_section,
101               bool needs_special_offset_handling,
102               size_t local_symbol_count,
103               const unsigned char* plocal_symbols);
104
105   // Finalize the sections.
106   void
107   do_finalize_sections(Layout*);
108
109   // Return the value to use for a dynamic which requires special
110   // treatment.
111   uint64_t
112   do_dynsym_value(const Symbol*) const;
113
114   // Relocate a section.
115   void
116   relocate_section(const Relocate_info<64, false>*,
117                    unsigned int sh_type,
118                    const unsigned char* prelocs,
119                    size_t reloc_count,
120                    Output_section* output_section,
121                    bool needs_special_offset_handling,
122                    unsigned char* view,
123                    elfcpp::Elf_types<64>::Elf_Addr view_address,
124                    section_size_type view_size,
125                    const Reloc_symbol_changes*);
126
127   // Scan the relocs during a relocatable link.
128   void
129   scan_relocatable_relocs(const General_options& options,
130                           Symbol_table* symtab,
131                           Layout* layout,
132                           Sized_relobj<64, false>* object,
133                           unsigned int data_shndx,
134                           unsigned int sh_type,
135                           const unsigned char* prelocs,
136                           size_t reloc_count,
137                           Output_section* output_section,
138                           bool needs_special_offset_handling,
139                           size_t local_symbol_count,
140                           const unsigned char* plocal_symbols,
141                           Relocatable_relocs*);
142
143   // Relocate a section during a relocatable link.
144   void
145   relocate_for_relocatable(const Relocate_info<64, false>*,
146                            unsigned int sh_type,
147                            const unsigned char* prelocs,
148                            size_t reloc_count,
149                            Output_section* output_section,
150                            off_t offset_in_output_section,
151                            const Relocatable_relocs*,
152                            unsigned char* view,
153                            elfcpp::Elf_types<64>::Elf_Addr view_address,
154                            section_size_type view_size,
155                            unsigned char* reloc_view,
156                            section_size_type reloc_view_size);
157
158   // Return a string used to fill a code section with nops.
159   std::string
160   do_code_fill(section_size_type length) const;
161
162   // Return whether SYM is defined by the ABI.
163   bool
164   do_is_defined_by_abi(const Symbol* sym) const
165   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
166
167   // Adjust -fstack-split code which calls non-stack-split code.
168   void
169   do_calls_non_split(Relobj* object, unsigned int shndx,
170                      section_offset_type fnoffset, section_size_type fnsize,
171                      unsigned char* view, section_size_type view_size,
172                      std::string* from, std::string* to) const;
173
174   // Return the size of the GOT section.
175   section_size_type
176   got_size()
177   {
178     gold_assert(this->got_ != NULL);
179     return this->got_->data_size();
180   }
181
182  private:
183   // The class which scans relocations.
184   class Scan
185   {
186   public:
187     Scan()
188       : issued_non_pic_error_(false)
189     { }
190
191     inline void
192     local(const General_options& options, Symbol_table* symtab,
193           Layout* layout, Target_x86_64* target,
194           Sized_relobj<64, false>* object,
195           unsigned int data_shndx,
196           Output_section* output_section,
197           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
198           const elfcpp::Sym<64, false>& lsym);
199
200     inline void
201     global(const General_options& options, Symbol_table* symtab,
202            Layout* layout, Target_x86_64* target,
203            Sized_relobj<64, false>* object,
204            unsigned int data_shndx,
205            Output_section* output_section,
206            const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
207            Symbol* gsym);
208
209   private:
210     static void
211     unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
212
213     static void
214     unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
215                              Symbol*);
216
217     void
218     check_non_pic(Relobj*, unsigned int r_type);
219
220     // Whether we have issued an error about a non-PIC compilation.
221     bool issued_non_pic_error_;
222   };
223
224   // The class which implements relocation.
225   class Relocate
226   {
227    public:
228     Relocate()
229       : skip_call_tls_get_addr_(false), saw_tls_block_reloc_(false)
230     { }
231
232     ~Relocate()
233     {
234       if (this->skip_call_tls_get_addr_)
235         {
236           // FIXME: This needs to specify the location somehow.
237           gold_error(_("missing expected TLS relocation"));
238         }
239     }
240
241     // Do a relocation.  Return false if the caller should not issue
242     // any warnings about this relocation.
243     inline bool
244     relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
245              size_t relnum, const elfcpp::Rela<64, false>&,
246              unsigned int r_type, const Sized_symbol<64>*,
247              const Symbol_value<64>*,
248              unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
249              section_size_type);
250
251    private:
252     // Do a TLS relocation.
253     inline void
254     relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
255                  size_t relnum, const elfcpp::Rela<64, false>&,
256                  unsigned int r_type, const Sized_symbol<64>*,
257                  const Symbol_value<64>*,
258                  unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
259                  section_size_type);
260
261     // Do a TLS General-Dynamic to Initial-Exec transition.
262     inline void
263     tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
264                  Output_segment* tls_segment,
265                  const elfcpp::Rela<64, false>&, unsigned int r_type,
266                  elfcpp::Elf_types<64>::Elf_Addr value,
267                  unsigned char* view,
268                  elfcpp::Elf_types<64>::Elf_Addr,
269                  section_size_type view_size);
270
271     // Do a TLS General-Dynamic to Local-Exec transition.
272     inline void
273     tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
274                  Output_segment* tls_segment,
275                  const elfcpp::Rela<64, false>&, unsigned int r_type,
276                  elfcpp::Elf_types<64>::Elf_Addr value,
277                  unsigned char* view,
278                  section_size_type view_size);
279
280     // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
281     inline void
282     tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
283                       Output_segment* tls_segment,
284                       const elfcpp::Rela<64, false>&, unsigned int r_type,
285                       elfcpp::Elf_types<64>::Elf_Addr value,
286                       unsigned char* view,
287                       elfcpp::Elf_types<64>::Elf_Addr,
288                       section_size_type view_size);
289
290     // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
291     inline void
292     tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
293                       Output_segment* tls_segment,
294                       const elfcpp::Rela<64, false>&, unsigned int r_type,
295                       elfcpp::Elf_types<64>::Elf_Addr value,
296                       unsigned char* view,
297                       section_size_type view_size);
298
299     // Do a TLS Local-Dynamic to Local-Exec transition.
300     inline void
301     tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
302                  Output_segment* tls_segment,
303                  const elfcpp::Rela<64, false>&, unsigned int r_type,
304                  elfcpp::Elf_types<64>::Elf_Addr value,
305                  unsigned char* view,
306                  section_size_type view_size);
307
308     // Do a TLS Initial-Exec to Local-Exec transition.
309     static inline void
310     tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
311                  Output_segment* tls_segment,
312                  const elfcpp::Rela<64, false>&, unsigned int r_type,
313                  elfcpp::Elf_types<64>::Elf_Addr value,
314                  unsigned char* view,
315                  section_size_type view_size);
316
317     // This is set if we should skip the next reloc, which should be a
318     // PLT32 reloc against ___tls_get_addr.
319     bool skip_call_tls_get_addr_;
320
321     // This is set if we see a relocation which could load the address
322     // of the TLS block.  Whether we see such a relocation determines
323     // how we handle the R_X86_64_DTPOFF32 relocation, which is used
324     // in debugging sections.
325     bool saw_tls_block_reloc_;
326   };
327
328   // A class which returns the size required for a relocation type,
329   // used while scanning relocs during a relocatable link.
330   class Relocatable_size_for_reloc
331   {
332    public:
333     unsigned int
334     get_size_for_reloc(unsigned int, Relobj*);
335   };
336
337   // Adjust TLS relocation type based on the options and whether this
338   // is a local symbol.
339   static tls::Tls_optimization
340   optimize_tls_reloc(bool is_final, int r_type);
341
342   // Get the GOT section, creating it if necessary.
343   Output_data_got<64, false>*
344   got_section(Symbol_table*, Layout*);
345
346   // Get the GOT PLT section.
347   Output_data_space*
348   got_plt_section() const
349   {
350     gold_assert(this->got_plt_ != NULL);
351     return this->got_plt_;
352   }
353
354   // Create the PLT section.
355   void
356   make_plt_section(Symbol_table* symtab, Layout* layout);
357
358   // Create a PLT entry for a global symbol.
359   void
360   make_plt_entry(Symbol_table*, Layout*, Symbol*);
361
362   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
363   void
364   define_tls_base_symbol(Symbol_table*, Layout*);
365
366   // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
367   void
368   reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
369
370   // Create a GOT entry for the TLS module index.
371   unsigned int
372   got_mod_index_entry(Symbol_table* symtab, Layout* layout,
373                       Sized_relobj<64, false>* object);
374
375   // Get the PLT section.
376   Output_data_plt_x86_64*
377   plt_section() const
378   {
379     gold_assert(this->plt_ != NULL);
380     return this->plt_;
381   }
382
383   // Get the dynamic reloc section, creating it if necessary.
384   Reloc_section*
385   rela_dyn_section(Layout*);
386
387   // Add a potential copy relocation.
388   void
389   copy_reloc(Symbol_table* symtab, Layout* layout,
390              Sized_relobj<64, false>* object,
391              unsigned int shndx, Output_section* output_section,
392              Symbol* sym, const elfcpp::Rela<64, false>& reloc)
393   {
394     this->copy_relocs_.copy_reloc(symtab, layout,
395                                   symtab->get_sized_symbol<64>(sym),
396                                   object, shndx, output_section,
397                                   reloc, this->rela_dyn_section(layout));
398   }
399
400   // Information about this specific target which we pass to the
401   // general Target structure.
402   static const Target::Target_info x86_64_info;
403
404   enum Got_type
405   {
406     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
407     GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
408     GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
409     GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
410   };
411
412   // The GOT section.
413   Output_data_got<64, false>* got_;
414   // The PLT section.
415   Output_data_plt_x86_64* plt_;
416   // The GOT PLT section.
417   Output_data_space* got_plt_;
418   // The dynamic reloc section.
419   Reloc_section* rela_dyn_;
420   // Relocs saved to avoid a COPY reloc.
421   Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
422   // Space for variables copied with a COPY reloc.
423   Output_data_space* dynbss_;
424   // Offset of the GOT entry for the TLS module index.
425   unsigned int got_mod_index_offset_;
426   // True if the _TLS_MODULE_BASE_ symbol has been defined.
427   bool tls_base_symbol_defined_;
428 };
429
430 const Target::Target_info Target_x86_64::x86_64_info =
431 {
432   64,                   // size
433   false,                // is_big_endian
434   elfcpp::EM_X86_64,    // machine_code
435   false,                // has_make_symbol
436   false,                // has_resolve
437   true,                 // has_code_fill
438   true,                 // is_default_stack_executable
439   '\0',                 // wrap_char
440   "/lib/ld64.so.1",     // program interpreter
441   0x400000,             // default_text_segment_address
442   0x1000,               // abi_pagesize (overridable by -z max-page-size)
443   0x1000,               // common_pagesize (overridable by -z common-page-size)
444   elfcpp::SHN_UNDEF,    // small_common_shndx
445   elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
446   0,                    // small_common_section_flags
447   elfcpp::SHF_X86_64_LARGE      // large_common_section_flags
448 };
449
450 // This is called when a new output section is created.  This is where
451 // we handle the SHF_X86_64_LARGE.
452
453 void
454 Target_x86_64::do_new_output_section(Output_section *os) const
455 {
456   if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
457     os->set_is_large_section();
458 }
459
460 // Get the GOT section, creating it if necessary.
461
462 Output_data_got<64, false>*
463 Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
464 {
465   if (this->got_ == NULL)
466     {
467       gold_assert(symtab != NULL && layout != NULL);
468
469       this->got_ = new Output_data_got<64, false>();
470
471       Output_section* os;
472       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
473                                            (elfcpp::SHF_ALLOC
474                                             | elfcpp::SHF_WRITE),
475                                            this->got_, false);
476       os->set_is_relro();
477
478       // The old GNU linker creates a .got.plt section.  We just
479       // create another set of data in the .got section.  Note that we
480       // always create a PLT if we create a GOT, although the PLT
481       // might be empty.
482       this->got_plt_ = new Output_data_space(8, "** GOT PLT");
483       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
484                                            (elfcpp::SHF_ALLOC
485                                             | elfcpp::SHF_WRITE),
486                                            this->got_plt_, false);
487       os->set_is_relro();
488
489       // The first three entries are reserved.
490       this->got_plt_->set_current_data_size(3 * 8);
491
492       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
493       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
494                                     this->got_plt_,
495                                     0, 0, elfcpp::STT_OBJECT,
496                                     elfcpp::STB_LOCAL,
497                                     elfcpp::STV_HIDDEN, 0,
498                                     false, false);
499     }
500
501   return this->got_;
502 }
503
504 // Get the dynamic reloc section, creating it if necessary.
505
506 Target_x86_64::Reloc_section*
507 Target_x86_64::rela_dyn_section(Layout* layout)
508 {
509   if (this->rela_dyn_ == NULL)
510     {
511       gold_assert(layout != NULL);
512       this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
513       layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
514                                       elfcpp::SHF_ALLOC, this->rela_dyn_, true);
515     }
516   return this->rela_dyn_;
517 }
518
519 // A class to handle the PLT data.
520
521 class Output_data_plt_x86_64 : public Output_section_data
522 {
523  public:
524   typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
525
526   Output_data_plt_x86_64(Layout*, Output_data_got<64, false>*,
527                          Output_data_space*);
528
529   // Add an entry to the PLT.
530   void
531   add_entry(Symbol* gsym);
532
533   // Add the reserved TLSDESC_PLT entry to the PLT.
534   void
535   reserve_tlsdesc_entry(unsigned int got_offset)
536   { this->tlsdesc_got_offset_ = got_offset; }
537
538   // Return true if a TLSDESC_PLT entry has been reserved.
539   bool
540   has_tlsdesc_entry() const
541   { return this->tlsdesc_got_offset_ != -1U; }
542
543   // Return the GOT offset for the reserved TLSDESC_PLT entry.
544   unsigned int
545   get_tlsdesc_got_offset() const
546   { return this->tlsdesc_got_offset_; }
547
548   // Return the offset of the reserved TLSDESC_PLT entry.
549   unsigned int
550   get_tlsdesc_plt_offset() const
551   { return (this->count_ + 1) * plt_entry_size; }
552
553   // Return the .rel.plt section data.
554   const Reloc_section*
555   rel_plt() const
556   { return this->rel_; }
557
558  protected:
559   void
560   do_adjust_output_section(Output_section* os);
561
562   // Write to a map file.
563   void
564   do_print_to_mapfile(Mapfile* mapfile) const
565   { mapfile->print_output_data(this, _("** PLT")); }
566
567  private:
568   // The size of an entry in the PLT.
569   static const int plt_entry_size = 16;
570
571   // The first entry in the PLT.
572   // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
573   // procedure linkage table for both programs and shared objects."
574   static unsigned char first_plt_entry[plt_entry_size];
575
576   // Other entries in the PLT for an executable.
577   static unsigned char plt_entry[plt_entry_size];
578
579   // The reserved TLSDESC entry in the PLT for an executable.
580   static unsigned char tlsdesc_plt_entry[plt_entry_size];
581
582   // Set the final size.
583   void
584   set_final_data_size();
585
586   // Write out the PLT data.
587   void
588   do_write(Output_file*);
589
590   // The reloc section.
591   Reloc_section* rel_;
592   // The .got section.
593   Output_data_got<64, false>* got_;
594   // The .got.plt section.
595   Output_data_space* got_plt_;
596   // The number of PLT entries.
597   unsigned int count_;
598   // Offset of the reserved TLSDESC_GOT entry when needed.
599   unsigned int tlsdesc_got_offset_;
600 };
601
602 // Create the PLT section.  The ordinary .got section is an argument,
603 // since we need to refer to the start.  We also create our own .got
604 // section just for PLT entries.
605
606 Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
607                                                Output_data_got<64, false>* got,
608                                                Output_data_space* got_plt)
609   : Output_section_data(8), got_(got), got_plt_(got_plt), count_(0),
610     tlsdesc_got_offset_(-1U)
611 {
612   this->rel_ = new Reloc_section(false);
613   layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
614                                   elfcpp::SHF_ALLOC, this->rel_, true);
615 }
616
617 void
618 Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
619 {
620   os->set_entsize(plt_entry_size);
621 }
622
623 // Add an entry to the PLT.
624
625 void
626 Output_data_plt_x86_64::add_entry(Symbol* gsym)
627 {
628   gold_assert(!gsym->has_plt_offset());
629
630   // Note that when setting the PLT offset we skip the initial
631   // reserved PLT entry.
632   gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
633
634   ++this->count_;
635
636   section_offset_type got_offset = this->got_plt_->current_data_size();
637
638   // Every PLT entry needs a GOT entry which points back to the PLT
639   // entry (this will be changed by the dynamic linker, normally
640   // lazily when the function is called).
641   this->got_plt_->set_current_data_size(got_offset + 8);
642
643   // Every PLT entry needs a reloc.
644   gsym->set_needs_dynsym_entry();
645   this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
646                          got_offset, 0);
647
648   // Note that we don't need to save the symbol.  The contents of the
649   // PLT are independent of which symbols are used.  The symbols only
650   // appear in the relocations.
651 }
652
653 // Set the final size.
654 void
655 Output_data_plt_x86_64::set_final_data_size()
656 {
657   unsigned int count = this->count_;
658   if (this->has_tlsdesc_entry())
659     ++count;
660   this->set_data_size((count + 1) * plt_entry_size);
661 }
662
663 // The first entry in the PLT for an executable.
664
665 unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
666 {
667   // From AMD64 ABI Draft 0.98, page 76
668   0xff, 0x35,   // pushq contents of memory address
669   0, 0, 0, 0,   // replaced with address of .got + 8
670   0xff, 0x25,   // jmp indirect
671   0, 0, 0, 0,   // replaced with address of .got + 16
672   0x90, 0x90, 0x90, 0x90   // noop (x4)
673 };
674
675 // Subsequent entries in the PLT for an executable.
676
677 unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
678 {
679   // From AMD64 ABI Draft 0.98, page 76
680   0xff, 0x25,   // jmpq indirect
681   0, 0, 0, 0,   // replaced with address of symbol in .got
682   0x68,         // pushq immediate
683   0, 0, 0, 0,   // replaced with offset into relocation table
684   0xe9,         // jmpq relative
685   0, 0, 0, 0    // replaced with offset to start of .plt
686 };
687
688 // The reserved TLSDESC entry in the PLT for an executable.
689
690 unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
691 {
692   // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
693   // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
694   0xff, 0x35,   // pushq x(%rip)
695   0, 0, 0, 0,   // replaced with address of linkmap GOT entry (at PLTGOT + 8)
696   0xff, 0x25,   // jmpq *y(%rip)
697   0, 0, 0, 0,   // replaced with offset of reserved TLSDESC_GOT entry
698   0x0f, 0x1f,   // nop
699   0x40, 0
700 };
701
702 // Write out the PLT.  This uses the hand-coded instructions above,
703 // and adjusts them as needed.  This is specified by the AMD64 ABI.
704
705 void
706 Output_data_plt_x86_64::do_write(Output_file* of)
707 {
708   const off_t offset = this->offset();
709   const section_size_type oview_size =
710     convert_to_section_size_type(this->data_size());
711   unsigned char* const oview = of->get_output_view(offset, oview_size);
712
713   const off_t got_file_offset = this->got_plt_->offset();
714   const section_size_type got_size =
715     convert_to_section_size_type(this->got_plt_->data_size());
716   unsigned char* const got_view = of->get_output_view(got_file_offset,
717                                                       got_size);
718
719   unsigned char* pov = oview;
720
721   // The base address of the .plt section.
722   elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
723   // The base address of the .got section.
724   elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
725   // The base address of the PLT portion of the .got section,
726   // which is where the GOT pointer will point, and where the
727   // three reserved GOT entries are located.
728   elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
729
730   memcpy(pov, first_plt_entry, plt_entry_size);
731   // We do a jmp relative to the PC at the end of this instruction.
732   elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
733                                               (got_address + 8
734                                                - (plt_address + 6)));
735   elfcpp::Swap<32, false>::writeval(pov + 8,
736                                     (got_address + 16
737                                      - (plt_address + 12)));
738   pov += plt_entry_size;
739
740   unsigned char* got_pov = got_view;
741
742   memset(got_pov, 0, 24);
743   got_pov += 24;
744
745   unsigned int plt_offset = plt_entry_size;
746   unsigned int got_offset = 24;
747   const unsigned int count = this->count_;
748   for (unsigned int plt_index = 0;
749        plt_index < count;
750        ++plt_index,
751          pov += plt_entry_size,
752          got_pov += 8,
753          plt_offset += plt_entry_size,
754          got_offset += 8)
755     {
756       // Set and adjust the PLT entry itself.
757       memcpy(pov, plt_entry, plt_entry_size);
758       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
759                                                   (got_address + got_offset
760                                                    - (plt_address + plt_offset
761                                                       + 6)));
762
763       elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
764       elfcpp::Swap<32, false>::writeval(pov + 12,
765                                         - (plt_offset + plt_entry_size));
766
767       // Set the entry in the GOT.
768       elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
769     }
770
771   if (this->has_tlsdesc_entry())
772     {
773       // Set and adjust the reserved TLSDESC PLT entry.
774       unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
775       memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
776       elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
777                                                   (got_address + 8
778                                                    - (plt_address + plt_offset
779                                                       + 6)));
780       elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
781                                                   (got_base
782                                                    + tlsdesc_got_offset
783                                                    - (plt_address + plt_offset
784                                                       + 12)));
785       pov += plt_entry_size;
786     }
787
788   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
789   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
790
791   of->write_output_view(offset, oview_size, oview);
792   of->write_output_view(got_file_offset, got_size, got_view);
793 }
794
795 // Create the PLT section.
796
797 void
798 Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
799 {
800   if (this->plt_ == NULL)
801     {
802       // Create the GOT sections first.
803       this->got_section(symtab, layout);
804
805       this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
806                                               this->got_plt_);
807       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
808                                       (elfcpp::SHF_ALLOC
809                                        | elfcpp::SHF_EXECINSTR),
810                                       this->plt_, false);
811     }
812 }
813
814 // Create a PLT entry for a global symbol.
815
816 void
817 Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
818                               Symbol* gsym)
819 {
820   if (gsym->has_plt_offset())
821     return;
822
823   if (this->plt_ == NULL)
824     this->make_plt_section(symtab, layout);
825
826   this->plt_->add_entry(gsym);
827 }
828
829 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
830
831 void
832 Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
833 {
834   if (this->tls_base_symbol_defined_)
835     return;
836
837   Output_segment* tls_segment = layout->tls_segment();
838   if (tls_segment != NULL)
839     {
840       bool is_exec = parameters->options().output_is_executable();
841       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
842                                        tls_segment, 0, 0,
843                                        elfcpp::STT_TLS,
844                                        elfcpp::STB_LOCAL,
845                                        elfcpp::STV_HIDDEN, 0,
846                                        (is_exec
847                                         ? Symbol::SEGMENT_END
848                                         : Symbol::SEGMENT_START),
849                                        true);
850     }
851   this->tls_base_symbol_defined_ = true;
852 }
853
854 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
855
856 void
857 Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
858                                              Layout* layout)
859 {
860   if (this->plt_ == NULL)
861     this->make_plt_section(symtab, layout);
862
863   if (!this->plt_->has_tlsdesc_entry())
864     {
865       // Allocate the TLSDESC_GOT entry.
866       Output_data_got<64, false>* got = this->got_section(symtab, layout);
867       unsigned int got_offset = got->add_constant(0);
868
869       // Allocate the TLSDESC_PLT entry.
870       this->plt_->reserve_tlsdesc_entry(got_offset);
871     }
872 }
873
874 // Create a GOT entry for the TLS module index.
875
876 unsigned int
877 Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
878                                    Sized_relobj<64, false>* object)
879 {
880   if (this->got_mod_index_offset_ == -1U)
881     {
882       gold_assert(symtab != NULL && layout != NULL && object != NULL);
883       Reloc_section* rela_dyn = this->rela_dyn_section(layout);
884       Output_data_got<64, false>* got = this->got_section(symtab, layout);
885       unsigned int got_offset = got->add_constant(0);
886       rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
887                           got_offset, 0);
888       got->add_constant(0);
889       this->got_mod_index_offset_ = got_offset;
890     }
891   return this->got_mod_index_offset_;
892 }
893
894 // Optimize the TLS relocation type based on what we know about the
895 // symbol.  IS_FINAL is true if the final address of this symbol is
896 // known at link time.
897
898 tls::Tls_optimization
899 Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
900 {
901   // If we are generating a shared library, then we can't do anything
902   // in the linker.
903   if (parameters->options().shared())
904     return tls::TLSOPT_NONE;
905
906   switch (r_type)
907     {
908     case elfcpp::R_X86_64_TLSGD:
909     case elfcpp::R_X86_64_GOTPC32_TLSDESC:
910     case elfcpp::R_X86_64_TLSDESC_CALL:
911       // These are General-Dynamic which permits fully general TLS
912       // access.  Since we know that we are generating an executable,
913       // we can convert this to Initial-Exec.  If we also know that
914       // this is a local symbol, we can further switch to Local-Exec.
915       if (is_final)
916         return tls::TLSOPT_TO_LE;
917       return tls::TLSOPT_TO_IE;
918
919     case elfcpp::R_X86_64_TLSLD:
920       // This is Local-Dynamic, which refers to a local symbol in the
921       // dynamic TLS block.  Since we know that we generating an
922       // executable, we can switch to Local-Exec.
923       return tls::TLSOPT_TO_LE;
924
925     case elfcpp::R_X86_64_DTPOFF32:
926     case elfcpp::R_X86_64_DTPOFF64:
927       // Another Local-Dynamic reloc.
928       return tls::TLSOPT_TO_LE;
929
930     case elfcpp::R_X86_64_GOTTPOFF:
931       // These are Initial-Exec relocs which get the thread offset
932       // from the GOT.  If we know that we are linking against the
933       // local symbol, we can switch to Local-Exec, which links the
934       // thread offset into the instruction.
935       if (is_final)
936         return tls::TLSOPT_TO_LE;
937       return tls::TLSOPT_NONE;
938
939     case elfcpp::R_X86_64_TPOFF32:
940       // When we already have Local-Exec, there is nothing further we
941       // can do.
942       return tls::TLSOPT_NONE;
943
944     default:
945       gold_unreachable();
946     }
947 }
948
949 // Report an unsupported relocation against a local symbol.
950
951 void
952 Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
953                                              unsigned int r_type)
954 {
955   gold_error(_("%s: unsupported reloc %u against local symbol"),
956              object->name().c_str(), r_type);
957 }
958
959 // We are about to emit a dynamic relocation of type R_TYPE.  If the
960 // dynamic linker does not support it, issue an error.  The GNU linker
961 // only issues a non-PIC error for an allocated read-only section.
962 // Here we know the section is allocated, but we don't know that it is
963 // read-only.  But we check for all the relocation types which the
964 // glibc dynamic linker supports, so it seems appropriate to issue an
965 // error even if the section is not read-only.
966
967 void
968 Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type)
969 {
970   switch (r_type)
971     {
972       // These are the relocation types supported by glibc for x86_64.
973     case elfcpp::R_X86_64_RELATIVE:
974     case elfcpp::R_X86_64_GLOB_DAT:
975     case elfcpp::R_X86_64_JUMP_SLOT:
976     case elfcpp::R_X86_64_DTPMOD64:
977     case elfcpp::R_X86_64_DTPOFF64:
978     case elfcpp::R_X86_64_TPOFF64:
979     case elfcpp::R_X86_64_64:
980     case elfcpp::R_X86_64_32:
981     case elfcpp::R_X86_64_PC32:
982     case elfcpp::R_X86_64_COPY:
983       return;
984
985     default:
986       // This prevents us from issuing more than one error per reloc
987       // section.  But we can still wind up issuing more than one
988       // error per object file.
989       if (this->issued_non_pic_error_)
990         return;
991       gold_assert(parameters->options().output_is_position_independent());
992       object->error(_("requires unsupported dynamic reloc; "
993                       "recompile with -fPIC"));
994       this->issued_non_pic_error_ = true;
995       return;
996
997     case elfcpp::R_X86_64_NONE:
998       gold_unreachable();
999     }
1000 }
1001
1002 // Scan a relocation for a local symbol.
1003
1004 inline void
1005 Target_x86_64::Scan::local(const General_options&,
1006                            Symbol_table* symtab,
1007                            Layout* layout,
1008                            Target_x86_64* target,
1009                            Sized_relobj<64, false>* object,
1010                            unsigned int data_shndx,
1011                            Output_section* output_section,
1012                            const elfcpp::Rela<64, false>& reloc,
1013                            unsigned int r_type,
1014                            const elfcpp::Sym<64, false>& lsym)
1015 {
1016   switch (r_type)
1017     {
1018     case elfcpp::R_X86_64_NONE:
1019     case elfcpp::R_386_GNU_VTINHERIT:
1020     case elfcpp::R_386_GNU_VTENTRY:
1021       break;
1022
1023     case elfcpp::R_X86_64_64:
1024       // If building a shared library (or a position-independent
1025       // executable), we need to create a dynamic relocation for this
1026       // location.  The relocation applied at link time will apply the
1027       // link-time value, so we flag the location with an
1028       // R_X86_64_RELATIVE relocation so the dynamic loader can
1029       // relocate it easily.
1030       if (parameters->options().output_is_position_independent())
1031         {
1032           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1033           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1034           rela_dyn->add_local_relative(object, r_sym,
1035                                        elfcpp::R_X86_64_RELATIVE,
1036                                        output_section, data_shndx,
1037                                        reloc.get_r_offset(),
1038                                        reloc.get_r_addend());
1039         }
1040       break;
1041
1042     case elfcpp::R_X86_64_32:
1043     case elfcpp::R_X86_64_32S:
1044     case elfcpp::R_X86_64_16:
1045     case elfcpp::R_X86_64_8:
1046       // If building a shared library (or a position-independent
1047       // executable), we need to create a dynamic relocation for this
1048       // location.  We can't use an R_X86_64_RELATIVE relocation
1049       // because that is always a 64-bit relocation.
1050       if (parameters->options().output_is_position_independent())
1051         {
1052           this->check_non_pic(object, r_type);
1053
1054           Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1055           unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1056           if (lsym.get_st_type() != elfcpp::STT_SECTION)
1057             rela_dyn->add_local(object, r_sym, r_type, output_section,
1058                                 data_shndx, reloc.get_r_offset(),
1059                                 reloc.get_r_addend());
1060           else
1061             {
1062               gold_assert(lsym.get_st_value() == 0);
1063               unsigned int shndx = lsym.get_st_shndx();
1064               bool is_ordinary;
1065               shndx = object->adjust_sym_shndx(r_sym, shndx,
1066                                                &is_ordinary);
1067               if (!is_ordinary)
1068                 object->error(_("section symbol %u has bad shndx %u"),
1069                               r_sym, shndx);
1070               else
1071                 rela_dyn->add_local_section(object, shndx,
1072                                             r_type, output_section,
1073                                             data_shndx, reloc.get_r_offset(),
1074                                             reloc.get_r_addend());
1075             }
1076         }
1077       break;
1078
1079     case elfcpp::R_X86_64_PC64:
1080     case elfcpp::R_X86_64_PC32:
1081     case elfcpp::R_X86_64_PC16:
1082     case elfcpp::R_X86_64_PC8:
1083       break;
1084
1085     case elfcpp::R_X86_64_PLT32:
1086       // Since we know this is a local symbol, we can handle this as a
1087       // PC32 reloc.
1088       break;
1089
1090     case elfcpp::R_X86_64_GOTPC32:
1091     case elfcpp::R_X86_64_GOTOFF64:
1092     case elfcpp::R_X86_64_GOTPC64:
1093     case elfcpp::R_X86_64_PLTOFF64:
1094       // We need a GOT section.
1095       target->got_section(symtab, layout);
1096       // For PLTOFF64, we'd normally want a PLT section, but since we
1097       // know this is a local symbol, no PLT is needed.
1098       break;
1099
1100     case elfcpp::R_X86_64_GOT64:
1101     case elfcpp::R_X86_64_GOT32:
1102     case elfcpp::R_X86_64_GOTPCREL64:
1103     case elfcpp::R_X86_64_GOTPCREL:
1104     case elfcpp::R_X86_64_GOTPLT64:
1105       {
1106         // The symbol requires a GOT entry.
1107         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1108         unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1109         if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
1110           {
1111             // If we are generating a shared object, we need to add a
1112             // dynamic relocation for this symbol's GOT entry.
1113             if (parameters->options().output_is_position_independent())
1114               {
1115                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1116                 // R_X86_64_RELATIVE assumes a 64-bit relocation.
1117                 if (r_type != elfcpp::R_X86_64_GOT32)
1118                   rela_dyn->add_local_relative(
1119                       object, r_sym, elfcpp::R_X86_64_RELATIVE, got,
1120                       object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1121                 else
1122                   {
1123                     this->check_non_pic(object, r_type);
1124
1125                     gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1126                     rela_dyn->add_local(
1127                         object, r_sym, r_type, got,
1128                         object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
1129                   }
1130               }
1131           }
1132         // For GOTPLT64, we'd normally want a PLT section, but since
1133         // we know this is a local symbol, no PLT is needed.
1134       }
1135       break;
1136
1137     case elfcpp::R_X86_64_COPY:
1138     case elfcpp::R_X86_64_GLOB_DAT:
1139     case elfcpp::R_X86_64_JUMP_SLOT:
1140     case elfcpp::R_X86_64_RELATIVE:
1141       // These are outstanding tls relocs, which are unexpected when linking
1142     case elfcpp::R_X86_64_TPOFF64:
1143     case elfcpp::R_X86_64_DTPMOD64:
1144     case elfcpp::R_X86_64_TLSDESC:
1145       gold_error(_("%s: unexpected reloc %u in object file"),
1146                  object->name().c_str(), r_type);
1147       break;
1148
1149       // These are initial tls relocs, which are expected when linking
1150     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1151     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1152     case elfcpp::R_X86_64_TLSDESC_CALL:
1153     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1154     case elfcpp::R_X86_64_DTPOFF32:
1155     case elfcpp::R_X86_64_DTPOFF64:
1156     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1157     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1158       {
1159         bool output_is_shared = parameters->options().shared();
1160         const tls::Tls_optimization optimized_type
1161             = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
1162         switch (r_type)
1163           {
1164           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1165             if (optimized_type == tls::TLSOPT_NONE)
1166               {
1167                 // Create a pair of GOT entries for the module index and
1168                 // dtv-relative offset.
1169                 Output_data_got<64, false>* got
1170                     = target->got_section(symtab, layout);
1171                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1172                 unsigned int shndx = lsym.get_st_shndx();
1173                 bool is_ordinary;
1174                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1175                 if (!is_ordinary)
1176                   object->error(_("local symbol %u has bad shndx %u"),
1177                               r_sym, shndx);
1178                 else
1179                   got->add_local_pair_with_rela(object, r_sym,
1180                                                 shndx,
1181                                                 GOT_TYPE_TLS_PAIR,
1182                                                 target->rela_dyn_section(layout),
1183                                                 elfcpp::R_X86_64_DTPMOD64, 0);
1184               }
1185             else if (optimized_type != tls::TLSOPT_TO_LE)
1186               unsupported_reloc_local(object, r_type);
1187             break;
1188
1189           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1190             target->define_tls_base_symbol(symtab, layout);
1191             if (optimized_type == tls::TLSOPT_NONE)
1192               {
1193                 // Create reserved PLT and GOT entries for the resolver.
1194                 target->reserve_tlsdesc_entries(symtab, layout);
1195
1196                 // Generate a double GOT entry with an R_X86_64_TLSDESC reloc.
1197                 Output_data_got<64, false>* got
1198                     = target->got_section(symtab, layout);
1199                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1200                 unsigned int shndx = lsym.get_st_shndx();
1201                 bool is_ordinary;
1202                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1203                 if (!is_ordinary)
1204                   object->error(_("local symbol %u has bad shndx %u"),
1205                               r_sym, shndx);
1206                 else
1207                   got->add_local_pair_with_rela(object, r_sym,
1208                                                 shndx,
1209                                                 GOT_TYPE_TLS_DESC,
1210                                                 target->rela_dyn_section(layout),
1211                                                 elfcpp::R_X86_64_TLSDESC, 0);
1212               }
1213             else if (optimized_type != tls::TLSOPT_TO_LE)
1214               unsupported_reloc_local(object, r_type);
1215             break;
1216
1217           case elfcpp::R_X86_64_TLSDESC_CALL:
1218             break;
1219
1220           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1221             if (optimized_type == tls::TLSOPT_NONE)
1222               {
1223                 // Create a GOT entry for the module index.
1224                 target->got_mod_index_entry(symtab, layout, object);
1225               }
1226             else if (optimized_type != tls::TLSOPT_TO_LE)
1227               unsupported_reloc_local(object, r_type);
1228             break;
1229
1230           case elfcpp::R_X86_64_DTPOFF32:
1231           case elfcpp::R_X86_64_DTPOFF64:
1232             break;
1233
1234           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1235             layout->set_has_static_tls();
1236             if (optimized_type == tls::TLSOPT_NONE)
1237               {
1238                 // Create a GOT entry for the tp-relative offset.
1239                 Output_data_got<64, false>* got
1240                     = target->got_section(symtab, layout);
1241                 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
1242                 got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
1243                                          target->rela_dyn_section(layout),
1244                                          elfcpp::R_X86_64_TPOFF64);
1245               }
1246             else if (optimized_type != tls::TLSOPT_TO_LE)
1247               unsupported_reloc_local(object, r_type);
1248             break;
1249
1250           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1251             layout->set_has_static_tls();
1252             if (output_is_shared)
1253               unsupported_reloc_local(object, r_type);
1254             break;
1255
1256           default:
1257             gold_unreachable();
1258           }
1259       }
1260       break;
1261
1262     case elfcpp::R_X86_64_SIZE32:
1263     case elfcpp::R_X86_64_SIZE64:
1264     default:
1265       gold_error(_("%s: unsupported reloc %u against local symbol"),
1266                  object->name().c_str(), r_type);
1267       break;
1268     }
1269 }
1270
1271
1272 // Report an unsupported relocation against a global symbol.
1273
1274 void
1275 Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
1276                                               unsigned int r_type,
1277                                               Symbol* gsym)
1278 {
1279   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1280              object->name().c_str(), r_type, gsym->demangled_name().c_str());
1281 }
1282
1283 // Scan a relocation for a global symbol.
1284
1285 inline void
1286 Target_x86_64::Scan::global(const General_options&,
1287                             Symbol_table* symtab,
1288                             Layout* layout,
1289                             Target_x86_64* target,
1290                             Sized_relobj<64, false>* object,
1291                             unsigned int data_shndx,
1292                             Output_section* output_section,
1293                             const elfcpp::Rela<64, false>& reloc,
1294                             unsigned int r_type,
1295                             Symbol* gsym)
1296 {
1297   switch (r_type)
1298     {
1299     case elfcpp::R_X86_64_NONE:
1300     case elfcpp::R_386_GNU_VTINHERIT:
1301     case elfcpp::R_386_GNU_VTENTRY:
1302       break;
1303
1304     case elfcpp::R_X86_64_64:
1305     case elfcpp::R_X86_64_32:
1306     case elfcpp::R_X86_64_32S:
1307     case elfcpp::R_X86_64_16:
1308     case elfcpp::R_X86_64_8:
1309       {
1310         // Make a PLT entry if necessary.
1311         if (gsym->needs_plt_entry())
1312           {
1313             target->make_plt_entry(symtab, layout, gsym);
1314             // Since this is not a PC-relative relocation, we may be
1315             // taking the address of a function. In that case we need to
1316             // set the entry in the dynamic symbol table to the address of
1317             // the PLT entry.
1318             if (gsym->is_from_dynobj() && !parameters->options().shared())
1319               gsym->set_needs_dynsym_value();
1320           }
1321         // Make a dynamic relocation if necessary.
1322         if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1323           {
1324             if (gsym->may_need_copy_reloc())
1325               {
1326                 target->copy_reloc(symtab, layout, object,
1327                                    data_shndx, output_section, gsym, reloc);
1328               }
1329             else if (r_type == elfcpp::R_X86_64_64
1330                      && gsym->can_use_relative_reloc(false))
1331               {
1332                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1333                 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1334                                               output_section, object,
1335                                               data_shndx, reloc.get_r_offset(),
1336                                               reloc.get_r_addend());
1337               }
1338             else
1339               {
1340                 this->check_non_pic(object, r_type);
1341                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1342                 rela_dyn->add_global(gsym, r_type, output_section, object,
1343                                      data_shndx, reloc.get_r_offset(),
1344                                      reloc.get_r_addend());
1345               }
1346           }
1347       }
1348       break;
1349
1350     case elfcpp::R_X86_64_PC64:
1351     case elfcpp::R_X86_64_PC32:
1352     case elfcpp::R_X86_64_PC16:
1353     case elfcpp::R_X86_64_PC8:
1354       {
1355         // Make a PLT entry if necessary.
1356         if (gsym->needs_plt_entry())
1357           target->make_plt_entry(symtab, layout, gsym);
1358         // Make a dynamic relocation if necessary.
1359         int flags = Symbol::NON_PIC_REF;
1360         if (gsym->type() == elfcpp::STT_FUNC)
1361           flags |= Symbol::FUNCTION_CALL;
1362         if (gsym->needs_dynamic_reloc(flags))
1363           {
1364             if (gsym->may_need_copy_reloc())
1365               {
1366                 target->copy_reloc(symtab, layout, object,
1367                                    data_shndx, output_section, gsym, reloc);
1368               }
1369             else
1370               {
1371                 this->check_non_pic(object, r_type);
1372                 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1373                 rela_dyn->add_global(gsym, r_type, output_section, object,
1374                                      data_shndx, reloc.get_r_offset(),
1375                                      reloc.get_r_addend());
1376               }
1377           }
1378       }
1379       break;
1380
1381     case elfcpp::R_X86_64_GOT64:
1382     case elfcpp::R_X86_64_GOT32:
1383     case elfcpp::R_X86_64_GOTPCREL64:
1384     case elfcpp::R_X86_64_GOTPCREL:
1385     case elfcpp::R_X86_64_GOTPLT64:
1386       {
1387         // The symbol requires a GOT entry.
1388         Output_data_got<64, false>* got = target->got_section(symtab, layout);
1389         if (gsym->final_value_is_known())
1390           got->add_global(gsym, GOT_TYPE_STANDARD);
1391         else
1392           {
1393             // If this symbol is not fully resolved, we need to add a
1394             // dynamic relocation for it.
1395             Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1396             if (gsym->is_from_dynobj()
1397                 || gsym->is_undefined()
1398                 || gsym->is_preemptible())
1399               got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
1400                                         elfcpp::R_X86_64_GLOB_DAT);
1401             else
1402               {
1403                 if (got->add_global(gsym, GOT_TYPE_STANDARD))
1404                   rela_dyn->add_global_relative(
1405                       gsym, elfcpp::R_X86_64_RELATIVE, got,
1406                       gsym->got_offset(GOT_TYPE_STANDARD), 0);
1407               }
1408           }
1409         // For GOTPLT64, we also need a PLT entry (but only if the
1410         // symbol is not fully resolved).
1411         if (r_type == elfcpp::R_X86_64_GOTPLT64
1412             && !gsym->final_value_is_known())
1413           target->make_plt_entry(symtab, layout, gsym);
1414       }
1415       break;
1416
1417     case elfcpp::R_X86_64_PLT32:
1418       // If the symbol is fully resolved, this is just a PC32 reloc.
1419       // Otherwise we need a PLT entry.
1420       if (gsym->final_value_is_known())
1421         break;
1422       // If building a shared library, we can also skip the PLT entry
1423       // if the symbol is defined in the output file and is protected
1424       // or hidden.
1425       if (gsym->is_defined()
1426           && !gsym->is_from_dynobj()
1427           && !gsym->is_preemptible())
1428         break;
1429       target->make_plt_entry(symtab, layout, gsym);
1430       break;
1431
1432     case elfcpp::R_X86_64_GOTPC32:
1433     case elfcpp::R_X86_64_GOTOFF64:
1434     case elfcpp::R_X86_64_GOTPC64:
1435     case elfcpp::R_X86_64_PLTOFF64:
1436       // We need a GOT section.
1437       target->got_section(symtab, layout);
1438       // For PLTOFF64, we also need a PLT entry (but only if the
1439       // symbol is not fully resolved).
1440       if (r_type == elfcpp::R_X86_64_PLTOFF64
1441           && !gsym->final_value_is_known())
1442         target->make_plt_entry(symtab, layout, gsym);
1443       break;
1444
1445     case elfcpp::R_X86_64_COPY:
1446     case elfcpp::R_X86_64_GLOB_DAT:
1447     case elfcpp::R_X86_64_JUMP_SLOT:
1448     case elfcpp::R_X86_64_RELATIVE:
1449       // These are outstanding tls relocs, which are unexpected when linking
1450     case elfcpp::R_X86_64_TPOFF64:
1451     case elfcpp::R_X86_64_DTPMOD64:
1452     case elfcpp::R_X86_64_TLSDESC:
1453       gold_error(_("%s: unexpected reloc %u in object file"),
1454                  object->name().c_str(), r_type);
1455       break;
1456
1457       // These are initial tls relocs, which are expected for global()
1458     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1459     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1460     case elfcpp::R_X86_64_TLSDESC_CALL:
1461     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1462     case elfcpp::R_X86_64_DTPOFF32:
1463     case elfcpp::R_X86_64_DTPOFF64:
1464     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1465     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1466       {
1467         const bool is_final = gsym->final_value_is_known();
1468         const tls::Tls_optimization optimized_type
1469             = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1470         switch (r_type)
1471           {
1472           case elfcpp::R_X86_64_TLSGD:       // General-dynamic
1473             if (optimized_type == tls::TLSOPT_NONE)
1474               {
1475                 // Create a pair of GOT entries for the module index and
1476                 // dtv-relative offset.
1477                 Output_data_got<64, false>* got
1478                     = target->got_section(symtab, layout);
1479                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
1480                                                target->rela_dyn_section(layout),
1481                                                elfcpp::R_X86_64_DTPMOD64,
1482                                                elfcpp::R_X86_64_DTPOFF64);
1483               }
1484             else if (optimized_type == tls::TLSOPT_TO_IE)
1485               {
1486                 // Create a GOT entry for the tp-relative offset.
1487                 Output_data_got<64, false>* got
1488                     = target->got_section(symtab, layout);
1489                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1490                                           target->rela_dyn_section(layout),
1491                                           elfcpp::R_X86_64_TPOFF64);
1492               }
1493             else if (optimized_type != tls::TLSOPT_TO_LE)
1494               unsupported_reloc_global(object, r_type, gsym);
1495             break;
1496
1497           case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1498             target->define_tls_base_symbol(symtab, layout);
1499             if (optimized_type == tls::TLSOPT_NONE)
1500               {
1501                 // Create reserved PLT and GOT entries for the resolver.
1502                 target->reserve_tlsdesc_entries(symtab, layout);
1503
1504                 // Create a double GOT entry with an R_X86_64_TLSDESC reloc.
1505                 Output_data_got<64, false>* got
1506                     = target->got_section(symtab, layout);
1507                 got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC,
1508                                                target->rela_dyn_section(layout),
1509                                                elfcpp::R_X86_64_TLSDESC, 0);
1510               }
1511             else if (optimized_type == tls::TLSOPT_TO_IE)
1512               {
1513                 // Create a GOT entry for the tp-relative offset.
1514                 Output_data_got<64, false>* got
1515                     = target->got_section(symtab, layout);
1516                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1517                                           target->rela_dyn_section(layout),
1518                                           elfcpp::R_X86_64_TPOFF64);
1519               }
1520             else if (optimized_type != tls::TLSOPT_TO_LE)
1521               unsupported_reloc_global(object, r_type, gsym);
1522             break;
1523
1524           case elfcpp::R_X86_64_TLSDESC_CALL:
1525             break;
1526
1527           case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
1528             if (optimized_type == tls::TLSOPT_NONE)
1529               {
1530                 // Create a GOT entry for the module index.
1531                 target->got_mod_index_entry(symtab, layout, object);
1532               }
1533             else if (optimized_type != tls::TLSOPT_TO_LE)
1534               unsupported_reloc_global(object, r_type, gsym);
1535             break;
1536
1537           case elfcpp::R_X86_64_DTPOFF32:
1538           case elfcpp::R_X86_64_DTPOFF64:
1539             break;
1540
1541           case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
1542             layout->set_has_static_tls();
1543             if (optimized_type == tls::TLSOPT_NONE)
1544               {
1545                 // Create a GOT entry for the tp-relative offset.
1546                 Output_data_got<64, false>* got
1547                     = target->got_section(symtab, layout);
1548                 got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
1549                                           target->rela_dyn_section(layout),
1550                                           elfcpp::R_X86_64_TPOFF64);
1551               }
1552             else if (optimized_type != tls::TLSOPT_TO_LE)
1553               unsupported_reloc_global(object, r_type, gsym);
1554             break;
1555
1556           case elfcpp::R_X86_64_TPOFF32:     // Local-exec
1557             layout->set_has_static_tls();
1558             if (parameters->options().shared())
1559               unsupported_reloc_local(object, r_type);
1560             break;
1561
1562           default:
1563             gold_unreachable();
1564           }
1565       }
1566       break;
1567
1568     case elfcpp::R_X86_64_SIZE32:
1569     case elfcpp::R_X86_64_SIZE64:
1570     default:
1571       gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1572                  object->name().c_str(), r_type,
1573                  gsym->demangled_name().c_str());
1574       break;
1575     }
1576 }
1577
1578 void
1579 Target_x86_64::gc_process_relocs(const General_options& options,
1580                                  Symbol_table* symtab,
1581                                  Layout* layout,
1582                                  Sized_relobj<64, false>* object,
1583                                  unsigned int data_shndx,
1584                                  unsigned int sh_type,
1585                                  const unsigned char* prelocs,
1586                                  size_t reloc_count,
1587                                  Output_section* output_section,
1588                                  bool needs_special_offset_handling,
1589                                  size_t local_symbol_count,
1590                                  const unsigned char* plocal_symbols)
1591 {
1592
1593   if (sh_type == elfcpp::SHT_REL)
1594     {
1595       return;
1596     }
1597
1598    gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1599                            Target_x86_64::Scan>(
1600     options,
1601     symtab,
1602     layout,
1603     this,
1604     object,
1605     data_shndx,
1606     prelocs,
1607     reloc_count,
1608     output_section,
1609     needs_special_offset_handling,
1610     local_symbol_count,
1611     plocal_symbols);
1612  
1613 }
1614 // Scan relocations for a section.
1615
1616 void
1617 Target_x86_64::scan_relocs(const General_options& options,
1618                            Symbol_table* symtab,
1619                            Layout* layout,
1620                            Sized_relobj<64, false>* object,
1621                            unsigned int data_shndx,
1622                            unsigned int sh_type,
1623                            const unsigned char* prelocs,
1624                            size_t reloc_count,
1625                            Output_section* output_section,
1626                            bool needs_special_offset_handling,
1627                            size_t local_symbol_count,
1628                            const unsigned char* plocal_symbols)
1629 {
1630   if (sh_type == elfcpp::SHT_REL)
1631     {
1632       gold_error(_("%s: unsupported REL reloc section"),
1633                  object->name().c_str());
1634       return;
1635     }
1636
1637   gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1638       Target_x86_64::Scan>(
1639     options,
1640     symtab,
1641     layout,
1642     this,
1643     object,
1644     data_shndx,
1645     prelocs,
1646     reloc_count,
1647     output_section,
1648     needs_special_offset_handling,
1649     local_symbol_count,
1650     plocal_symbols);
1651 }
1652
1653 // Finalize the sections.
1654
1655 void
1656 Target_x86_64::do_finalize_sections(Layout* layout)
1657 {
1658   // Fill in some more dynamic tags.
1659   Output_data_dynamic* const odyn = layout->dynamic_data();
1660   if (odyn != NULL)
1661     {
1662       if (this->got_plt_ != NULL
1663           && this->got_plt_->output_section() != NULL)
1664         odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1665
1666       if (this->plt_ != NULL
1667           && this->plt_->output_section() != NULL)
1668         {
1669           const Output_data* od = this->plt_->rel_plt();
1670           odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1671           odyn->add_section_address(elfcpp::DT_JMPREL, od);
1672           odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1673           if (this->plt_->has_tlsdesc_entry())
1674             {
1675               unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
1676               unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
1677               this->got_->finalize_data_size();
1678               odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
1679                                             this->plt_, plt_offset);
1680               odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
1681                                             this->got_, got_offset);
1682             }
1683         }
1684
1685       if (this->rela_dyn_ != NULL
1686           && this->rela_dyn_->output_section() != NULL)
1687         {
1688           const Output_data* od = this->rela_dyn_;
1689           odyn->add_section_address(elfcpp::DT_RELA, od);
1690           odyn->add_section_size(elfcpp::DT_RELASZ, od);
1691           odyn->add_constant(elfcpp::DT_RELAENT,
1692                              elfcpp::Elf_sizes<64>::rela_size);
1693         }
1694
1695       if (!parameters->options().shared())
1696         {
1697           // The value of the DT_DEBUG tag is filled in by the dynamic
1698           // linker at run time, and used by the debugger.
1699           odyn->add_constant(elfcpp::DT_DEBUG, 0);
1700         }
1701     }
1702
1703   // Emit any relocs we saved in an attempt to avoid generating COPY
1704   // relocs.
1705   if (this->copy_relocs_.any_saved_relocs())
1706     this->copy_relocs_.emit(this->rela_dyn_section(layout));
1707 }
1708
1709 // Perform a relocation.
1710
1711 inline bool
1712 Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1713                                   Target_x86_64* target,
1714                                   Output_section*,
1715                                   size_t relnum,
1716                                   const elfcpp::Rela<64, false>& rela,
1717                                   unsigned int r_type,
1718                                   const Sized_symbol<64>* gsym,
1719                                   const Symbol_value<64>* psymval,
1720                                   unsigned char* view,
1721                                   elfcpp::Elf_types<64>::Elf_Addr address,
1722                                   section_size_type view_size)
1723 {
1724   if (this->skip_call_tls_get_addr_)
1725     {
1726       if ((r_type != elfcpp::R_X86_64_PLT32
1727            && r_type != elfcpp::R_X86_64_PC32)
1728           || gsym == NULL
1729           || strcmp(gsym->name(), "__tls_get_addr") != 0)
1730         {
1731           gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1732                                  _("missing expected TLS relocation"));
1733         }
1734       else
1735         {
1736           this->skip_call_tls_get_addr_ = false;
1737           return false;
1738         }
1739     }
1740
1741   // Pick the value to use for symbols defined in shared objects.
1742   Symbol_value<64> symval;
1743   if (gsym != NULL
1744       && gsym->use_plt_offset(r_type == elfcpp::R_X86_64_PC64
1745                               || r_type == elfcpp::R_X86_64_PC32
1746                               || r_type == elfcpp::R_X86_64_PC16
1747                               || r_type == elfcpp::R_X86_64_PC8))
1748     {
1749       symval.set_output_value(target->plt_section()->address()
1750                               + gsym->plt_offset());
1751       psymval = &symval;
1752     }
1753
1754   const Sized_relobj<64, false>* object = relinfo->object;
1755   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1756
1757   // Get the GOT offset if needed.
1758   // The GOT pointer points to the end of the GOT section.
1759   // We need to subtract the size of the GOT section to get
1760   // the actual offset to use in the relocation.
1761   bool have_got_offset = false;
1762   unsigned int got_offset = 0;
1763   switch (r_type)
1764     {
1765     case elfcpp::R_X86_64_GOT32:
1766     case elfcpp::R_X86_64_GOT64:
1767     case elfcpp::R_X86_64_GOTPLT64:
1768     case elfcpp::R_X86_64_GOTPCREL:
1769     case elfcpp::R_X86_64_GOTPCREL64:
1770       if (gsym != NULL)
1771         {
1772           gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
1773           got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
1774         }
1775       else
1776         {
1777           unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1778           gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
1779           got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
1780                         - target->got_size());
1781         }
1782       have_got_offset = true;
1783       break;
1784
1785     default:
1786       break;
1787     }
1788
1789   switch (r_type)
1790     {
1791     case elfcpp::R_X86_64_NONE:
1792     case elfcpp::R_386_GNU_VTINHERIT:
1793     case elfcpp::R_386_GNU_VTENTRY:
1794       break;
1795
1796     case elfcpp::R_X86_64_64:
1797       Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1798       break;
1799
1800     case elfcpp::R_X86_64_PC64:
1801       Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1802                                               address);
1803       break;
1804
1805     case elfcpp::R_X86_64_32:
1806       // FIXME: we need to verify that value + addend fits into 32 bits:
1807       //    uint64_t x = value + addend;
1808       //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1809       // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
1810       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1811       break;
1812
1813     case elfcpp::R_X86_64_32S:
1814       // FIXME: we need to verify that value + addend fits into 32 bits:
1815       //    int64_t x = value + addend;   // note this quantity is signed!
1816       //    x == static_cast<int64_t>(static_cast<int32_t>(x))
1817       Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1818       break;
1819
1820     case elfcpp::R_X86_64_PC32:
1821       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1822                                               address);
1823       break;
1824
1825     case elfcpp::R_X86_64_16:
1826       Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1827       break;
1828
1829     case elfcpp::R_X86_64_PC16:
1830       Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1831                                               address);
1832       break;
1833
1834     case elfcpp::R_X86_64_8:
1835       Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1836       break;
1837
1838     case elfcpp::R_X86_64_PC8:
1839       Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1840                                              address);
1841       break;
1842
1843     case elfcpp::R_X86_64_PLT32:
1844       gold_assert(gsym == NULL
1845                   || gsym->has_plt_offset()
1846                   || gsym->final_value_is_known()
1847                   || (gsym->is_defined()
1848                       && !gsym->is_from_dynobj()
1849                       && !gsym->is_preemptible()));
1850       // Note: while this code looks the same as for R_X86_64_PC32, it
1851       // behaves differently because psymval was set to point to
1852       // the PLT entry, rather than the symbol, in Scan::global().
1853       Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1854                                               address);
1855       break;
1856
1857     case elfcpp::R_X86_64_PLTOFF64:
1858       {
1859         gold_assert(gsym);
1860         gold_assert(gsym->has_plt_offset()
1861                     || gsym->final_value_is_known());
1862         elfcpp::Elf_types<64>::Elf_Addr got_address;
1863         got_address = target->got_section(NULL, NULL)->address();
1864         Relocate_functions<64, false>::rela64(view, object, psymval,
1865                                               addend - got_address);
1866       }
1867
1868     case elfcpp::R_X86_64_GOT32:
1869       gold_assert(have_got_offset);
1870       Relocate_functions<64, false>::rela32(view, got_offset, addend);
1871       break;
1872
1873     case elfcpp::R_X86_64_GOTPC32:
1874       {
1875         gold_assert(gsym);
1876         elfcpp::Elf_types<64>::Elf_Addr value;
1877         value = target->got_plt_section()->address();
1878         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1879       }
1880       break;
1881
1882     case elfcpp::R_X86_64_GOT64:
1883       // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1884       // Since we always add a PLT entry, this is equivalent.
1885     case elfcpp::R_X86_64_GOTPLT64:
1886       gold_assert(have_got_offset);
1887       Relocate_functions<64, false>::rela64(view, got_offset, addend);
1888       break;
1889
1890     case elfcpp::R_X86_64_GOTPC64:
1891       {
1892         gold_assert(gsym);
1893         elfcpp::Elf_types<64>::Elf_Addr value;
1894         value = target->got_plt_section()->address();
1895         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1896       }
1897       break;
1898
1899     case elfcpp::R_X86_64_GOTOFF64:
1900       {
1901         elfcpp::Elf_types<64>::Elf_Addr value;
1902         value = (psymval->value(object, 0)
1903                  - target->got_plt_section()->address());
1904         Relocate_functions<64, false>::rela64(view, value, addend);
1905       }
1906       break;
1907
1908     case elfcpp::R_X86_64_GOTPCREL:
1909       {
1910         gold_assert(have_got_offset);
1911         elfcpp::Elf_types<64>::Elf_Addr value;
1912         value = target->got_plt_section()->address() + got_offset;
1913         Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1914       }
1915       break;
1916
1917     case elfcpp::R_X86_64_GOTPCREL64:
1918       {
1919         gold_assert(have_got_offset);
1920         elfcpp::Elf_types<64>::Elf_Addr value;
1921         value = target->got_plt_section()->address() + got_offset;
1922         Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1923       }
1924       break;
1925
1926     case elfcpp::R_X86_64_COPY:
1927     case elfcpp::R_X86_64_GLOB_DAT:
1928     case elfcpp::R_X86_64_JUMP_SLOT:
1929     case elfcpp::R_X86_64_RELATIVE:
1930       // These are outstanding tls relocs, which are unexpected when linking
1931     case elfcpp::R_X86_64_TPOFF64:
1932     case elfcpp::R_X86_64_DTPMOD64:
1933     case elfcpp::R_X86_64_TLSDESC:
1934       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1935                              _("unexpected reloc %u in object file"),
1936                              r_type);
1937       break;
1938
1939       // These are initial tls relocs, which are expected when linking
1940     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1941     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
1942     case elfcpp::R_X86_64_TLSDESC_CALL:
1943     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
1944     case elfcpp::R_X86_64_DTPOFF32:
1945     case elfcpp::R_X86_64_DTPOFF64:
1946     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
1947     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
1948       this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1949                          view, address, view_size);
1950       break;
1951
1952     case elfcpp::R_X86_64_SIZE32:
1953     case elfcpp::R_X86_64_SIZE64:
1954     default:
1955       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1956                              _("unsupported reloc %u"),
1957                              r_type);
1958       break;
1959     }
1960
1961   return true;
1962 }
1963
1964 // Perform a TLS relocation.
1965
1966 inline void
1967 Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1968                                       Target_x86_64* target,
1969                                       size_t relnum,
1970                                       const elfcpp::Rela<64, false>& rela,
1971                                       unsigned int r_type,
1972                                       const Sized_symbol<64>* gsym,
1973                                       const Symbol_value<64>* psymval,
1974                                       unsigned char* view,
1975                                       elfcpp::Elf_types<64>::Elf_Addr address,
1976                                       section_size_type view_size)
1977 {
1978   Output_segment* tls_segment = relinfo->layout->tls_segment();
1979
1980   const Sized_relobj<64, false>* object = relinfo->object;
1981   const elfcpp::Elf_Xword addend = rela.get_r_addend();
1982
1983   elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1984
1985   const bool is_final = (gsym == NULL
1986                          ? !parameters->options().output_is_position_independent()
1987                          : gsym->final_value_is_known());
1988   const tls::Tls_optimization optimized_type
1989       = Target_x86_64::optimize_tls_reloc(is_final, r_type);
1990   switch (r_type)
1991     {
1992     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
1993       this->saw_tls_block_reloc_ = true;
1994       if (optimized_type == tls::TLSOPT_TO_LE)
1995         {
1996           gold_assert(tls_segment != NULL);
1997           this->tls_gd_to_le(relinfo, relnum, tls_segment,
1998                              rela, r_type, value, view,
1999                              view_size);
2000           break;
2001         }
2002       else
2003         {
2004           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2005                                    ? GOT_TYPE_TLS_OFFSET
2006                                    : GOT_TYPE_TLS_PAIR);
2007           unsigned int got_offset;
2008           if (gsym != NULL)
2009             {
2010               gold_assert(gsym->has_got_offset(got_type));
2011               got_offset = gsym->got_offset(got_type) - target->got_size();
2012             }
2013           else
2014             {
2015               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2016               gold_assert(object->local_has_got_offset(r_sym, got_type));
2017               got_offset = (object->local_got_offset(r_sym, got_type)
2018                             - target->got_size());
2019             }
2020           if (optimized_type == tls::TLSOPT_TO_IE)
2021             {
2022               gold_assert(tls_segment != NULL);
2023               value = target->got_plt_section()->address() + got_offset;
2024               this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
2025                                  value, view, address, view_size);
2026               break;
2027             }
2028           else if (optimized_type == tls::TLSOPT_NONE)
2029             {
2030               // Relocate the field with the offset of the pair of GOT
2031               // entries.
2032               value = target->got_plt_section()->address() + got_offset;
2033               Relocate_functions<64, false>::pcrela32(view, value, addend,
2034                                                       address);
2035               break;
2036             }
2037         }
2038       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2039                              _("unsupported reloc %u"), r_type);
2040       break;
2041
2042     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2043     case elfcpp::R_X86_64_TLSDESC_CALL:
2044       this->saw_tls_block_reloc_ = true;
2045       if (optimized_type == tls::TLSOPT_TO_LE)
2046         {
2047           gold_assert(tls_segment != NULL);
2048           this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
2049                                   rela, r_type, value, view,
2050                                   view_size);
2051           break;
2052         }
2053       else
2054         {
2055           unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
2056                                    ? GOT_TYPE_TLS_OFFSET
2057                                    : GOT_TYPE_TLS_DESC);
2058           unsigned int got_offset;
2059           if (gsym != NULL)
2060             {
2061               gold_assert(gsym->has_got_offset(got_type));
2062               got_offset = gsym->got_offset(got_type) - target->got_size();
2063             }
2064           else
2065             {
2066               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2067               gold_assert(object->local_has_got_offset(r_sym, got_type));
2068               got_offset = (object->local_got_offset(r_sym, got_type)
2069                             - target->got_size());
2070             }
2071           if (optimized_type == tls::TLSOPT_TO_IE)
2072             {
2073               gold_assert(tls_segment != NULL);
2074               value = target->got_plt_section()->address() + got_offset;
2075               this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
2076                                       rela, r_type, value, view, address,
2077                                       view_size);
2078               break;
2079             }
2080           else if (optimized_type == tls::TLSOPT_NONE)
2081             {
2082               if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2083                 {
2084                   // Relocate the field with the offset of the pair of GOT
2085                   // entries.
2086                   value = target->got_plt_section()->address() + got_offset;
2087                   Relocate_functions<64, false>::pcrela32(view, value, addend,
2088                                                           address);
2089                 }
2090               break;
2091             }
2092         }
2093       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2094                              _("unsupported reloc %u"), r_type);
2095       break;
2096
2097     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2098       this->saw_tls_block_reloc_ = true;
2099       if (optimized_type == tls::TLSOPT_TO_LE)
2100         {
2101           gold_assert(tls_segment != NULL);
2102           this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
2103                              value, view, view_size);
2104           break;
2105         }
2106       else if (optimized_type == tls::TLSOPT_NONE)
2107         {
2108           // Relocate the field with the offset of the GOT entry for
2109           // the module index.
2110           unsigned int got_offset;
2111           got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
2112                         - target->got_size());
2113           value = target->got_plt_section()->address() + got_offset;
2114           Relocate_functions<64, false>::pcrela32(view, value, addend,
2115                                                   address);
2116           break;
2117         }
2118       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2119                              _("unsupported reloc %u"), r_type);
2120       break;
2121
2122     case elfcpp::R_X86_64_DTPOFF32:
2123       if (optimized_type == tls::TLSOPT_TO_LE)
2124         {
2125           // This relocation type is used in debugging information.
2126           // In that case we need to not optimize the value.  If we
2127           // haven't seen a TLSLD reloc, then we assume we should not
2128           // optimize this reloc.
2129           if (this->saw_tls_block_reloc_)
2130             {
2131               gold_assert(tls_segment != NULL);
2132               value -= tls_segment->memsz();
2133             }
2134         }
2135       Relocate_functions<64, false>::rela32(view, value, addend);
2136       break;
2137
2138     case elfcpp::R_X86_64_DTPOFF64:
2139       if (optimized_type == tls::TLSOPT_TO_LE)
2140         {
2141           // See R_X86_64_DTPOFF32, just above, for why we test this.
2142           if (this->saw_tls_block_reloc_)
2143             {
2144               gold_assert(tls_segment != NULL);
2145               value -= tls_segment->memsz();
2146             }
2147         }
2148       Relocate_functions<64, false>::rela64(view, value, addend);
2149       break;
2150
2151     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2152       if (optimized_type == tls::TLSOPT_TO_LE)
2153         {
2154           gold_assert(tls_segment != NULL);
2155           Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
2156                                                 rela, r_type, value, view,
2157                                                 view_size);
2158           break;
2159         }
2160       else if (optimized_type == tls::TLSOPT_NONE)
2161         {
2162           // Relocate the field with the offset of the GOT entry for
2163           // the tp-relative offset of the symbol.
2164           unsigned int got_offset;
2165           if (gsym != NULL)
2166             {
2167               gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
2168               got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
2169                             - target->got_size());
2170             }
2171           else
2172             {
2173               unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
2174               gold_assert(object->local_has_got_offset(r_sym,
2175                                                        GOT_TYPE_TLS_OFFSET));
2176               got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
2177                             - target->got_size());
2178             }
2179           value = target->got_plt_section()->address() + got_offset;
2180           Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2181           break;
2182         }
2183       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
2184                              _("unsupported reloc type %u"),
2185                              r_type);
2186       break;
2187
2188     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2189       value -= tls_segment->memsz();
2190       Relocate_functions<64, false>::rela32(view, value, addend);
2191       break;
2192     }
2193 }
2194
2195 // Do a relocation in which we convert a TLS General-Dynamic to an
2196 // Initial-Exec.
2197
2198 inline void
2199 Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
2200                                       size_t relnum,
2201                                       Output_segment*,
2202                                       const elfcpp::Rela<64, false>& rela,
2203                                       unsigned int,
2204                                       elfcpp::Elf_types<64>::Elf_Addr value,
2205                                       unsigned char* view,
2206                                       elfcpp::Elf_types<64>::Elf_Addr address,
2207                                       section_size_type view_size)
2208 {
2209   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2210   // .word 0x6666; rex64; call __tls_get_addr
2211   // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
2212
2213   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2214   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2215
2216   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2217                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2218   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2219                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2220
2221   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
2222
2223   const elfcpp::Elf_Xword addend = rela.get_r_addend();
2224   Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
2225
2226   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2227   // We can skip it.
2228   this->skip_call_tls_get_addr_ = true;
2229 }
2230
2231 // Do a relocation in which we convert a TLS General-Dynamic to a
2232 // Local-Exec.
2233
2234 inline void
2235 Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
2236                                       size_t relnum,
2237                                       Output_segment* tls_segment,
2238                                       const elfcpp::Rela<64, false>& rela,
2239                                       unsigned int,
2240                                       elfcpp::Elf_types<64>::Elf_Addr value,
2241                                       unsigned char* view,
2242                                       section_size_type view_size)
2243 {
2244   // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
2245   // .word 0x6666; rex64; call __tls_get_addr
2246   // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2247
2248   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
2249   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2250
2251   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2252                  (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
2253   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2254                  (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2255
2256   memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2257
2258   value -= tls_segment->memsz();
2259   Relocate_functions<64, false>::rela32(view + 8, value, 0);
2260
2261   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2262   // We can skip it.
2263   this->skip_call_tls_get_addr_ = true;
2264 }
2265
2266 // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
2267
2268 inline void
2269 Target_x86_64::Relocate::tls_desc_gd_to_ie(
2270     const Relocate_info<64, false>* relinfo,
2271     size_t relnum,
2272     Output_segment*,
2273     const elfcpp::Rela<64, false>& rela,
2274     unsigned int r_type,
2275     elfcpp::Elf_types<64>::Elf_Addr value,
2276     unsigned char* view,
2277     elfcpp::Elf_types<64>::Elf_Addr address,
2278     section_size_type view_size)
2279 {
2280   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2281     {
2282       // leaq foo@tlsdesc(%rip), %rax
2283       // ==> movq foo@gottpoff(%rip), %rax
2284       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2285       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2286       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2287                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2288       view[-2] = 0x8b;
2289       const elfcpp::Elf_Xword addend = rela.get_r_addend();
2290       Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2291     }
2292   else
2293     {
2294       // call *foo@tlscall(%rax)
2295       // ==> nop; nop
2296       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2297       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2298       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2299                      view[0] == 0xff && view[1] == 0x10);
2300       view[0] = 0x66;
2301       view[1] = 0x90;
2302     }
2303 }
2304
2305 // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
2306
2307 inline void
2308 Target_x86_64::Relocate::tls_desc_gd_to_le(
2309     const Relocate_info<64, false>* relinfo,
2310     size_t relnum,
2311     Output_segment* tls_segment,
2312     const elfcpp::Rela<64, false>& rela,
2313     unsigned int r_type,
2314     elfcpp::Elf_types<64>::Elf_Addr value,
2315     unsigned char* view,
2316     section_size_type view_size)
2317 {
2318   if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
2319     {
2320       // leaq foo@tlsdesc(%rip), %rax
2321       // ==> movq foo@tpoff, %rax
2322       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2323       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2324       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2325                      view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
2326       view[-2] = 0xc7;
2327       view[-1] = 0xc0;
2328       value -= tls_segment->memsz();
2329       Relocate_functions<64, false>::rela32(view, value, 0);
2330     }
2331   else
2332     {
2333       // call *foo@tlscall(%rax)
2334       // ==> nop; nop
2335       gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
2336       tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
2337       tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2338                      view[0] == 0xff && view[1] == 0x10);
2339       view[0] = 0x66;
2340       view[1] = 0x90;
2341     }
2342 }
2343
2344 inline void
2345 Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
2346                                       size_t relnum,
2347                                       Output_segment*,
2348                                       const elfcpp::Rela<64, false>& rela,
2349                                       unsigned int,
2350                                       elfcpp::Elf_types<64>::Elf_Addr,
2351                                       unsigned char* view,
2352                                       section_size_type view_size)
2353 {
2354   // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
2355   // ... leq foo@dtpoff(%rax),%reg
2356   // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2357
2358   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2359   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2360
2361   tls::check_tls(relinfo, relnum, rela.get_r_offset(),
2362                  view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
2363
2364   tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
2365
2366   memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
2367
2368   // The next reloc should be a PLT32 reloc against __tls_get_addr.
2369   // We can skip it.
2370   this->skip_call_tls_get_addr_ = true;
2371 }
2372
2373 // Do a relocation in which we convert a TLS Initial-Exec to a
2374 // Local-Exec.
2375
2376 inline void
2377 Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
2378                                       size_t relnum,
2379                                       Output_segment* tls_segment,
2380                                       const elfcpp::Rela<64, false>& rela,
2381                                       unsigned int,
2382                                       elfcpp::Elf_types<64>::Elf_Addr value,
2383                                       unsigned char* view,
2384                                       section_size_type view_size)
2385 {
2386   // We need to examine the opcodes to figure out which instruction we
2387   // are looking at.
2388
2389   // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
2390   // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
2391
2392   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
2393   tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
2394
2395   unsigned char op1 = view[-3];
2396   unsigned char op2 = view[-2];
2397   unsigned char op3 = view[-1];
2398   unsigned char reg = op3 >> 3;
2399
2400   if (op2 == 0x8b)
2401     {
2402       // movq
2403       if (op1 == 0x4c)
2404         view[-3] = 0x49;
2405       view[-2] = 0xc7;
2406       view[-1] = 0xc0 | reg;
2407     }
2408   else if (reg == 4)
2409     {
2410       // Special handling for %rsp.
2411       if (op1 == 0x4c)
2412         view[-3] = 0x49;
2413       view[-2] = 0x81;
2414       view[-1] = 0xc0 | reg;
2415     }
2416   else
2417     {
2418       // addq
2419       if (op1 == 0x4c)
2420         view[-3] = 0x4d;
2421       view[-2] = 0x8d;
2422       view[-1] = 0x80 | reg | (reg << 3);
2423     }
2424
2425   value -= tls_segment->memsz();
2426   Relocate_functions<64, false>::rela32(view, value, 0);
2427 }
2428
2429 // Relocate section data.
2430
2431 void
2432 Target_x86_64::relocate_section(
2433     const Relocate_info<64, false>* relinfo,
2434     unsigned int sh_type,
2435     const unsigned char* prelocs,
2436     size_t reloc_count,
2437     Output_section* output_section,
2438     bool needs_special_offset_handling,
2439     unsigned char* view,
2440     elfcpp::Elf_types<64>::Elf_Addr address,
2441     section_size_type view_size,
2442     const Reloc_symbol_changes* reloc_symbol_changes)
2443 {
2444   gold_assert(sh_type == elfcpp::SHT_RELA);
2445
2446   gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
2447                          Target_x86_64::Relocate>(
2448     relinfo,
2449     this,
2450     prelocs,
2451     reloc_count,
2452     output_section,
2453     needs_special_offset_handling,
2454     view,
2455     address,
2456     view_size,
2457     reloc_symbol_changes);
2458 }
2459
2460 // Return the size of a relocation while scanning during a relocatable
2461 // link.
2462
2463 unsigned int
2464 Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
2465     unsigned int r_type,
2466     Relobj* object)
2467 {
2468   switch (r_type)
2469     {
2470     case elfcpp::R_X86_64_NONE:
2471     case elfcpp::R_386_GNU_VTINHERIT:
2472     case elfcpp::R_386_GNU_VTENTRY:
2473     case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
2474     case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
2475     case elfcpp::R_X86_64_TLSDESC_CALL:
2476     case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
2477     case elfcpp::R_X86_64_DTPOFF32:
2478     case elfcpp::R_X86_64_DTPOFF64:
2479     case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
2480     case elfcpp::R_X86_64_TPOFF32:          // Local-exec
2481       return 0;
2482
2483     case elfcpp::R_X86_64_64:
2484     case elfcpp::R_X86_64_PC64:
2485     case elfcpp::R_X86_64_GOTOFF64:
2486     case elfcpp::R_X86_64_GOTPC64:
2487     case elfcpp::R_X86_64_PLTOFF64:
2488     case elfcpp::R_X86_64_GOT64:
2489     case elfcpp::R_X86_64_GOTPCREL64:
2490     case elfcpp::R_X86_64_GOTPCREL:
2491     case elfcpp::R_X86_64_GOTPLT64:
2492       return 8;
2493
2494     case elfcpp::R_X86_64_32:
2495     case elfcpp::R_X86_64_32S:
2496     case elfcpp::R_X86_64_PC32:
2497     case elfcpp::R_X86_64_PLT32:
2498     case elfcpp::R_X86_64_GOTPC32:
2499     case elfcpp::R_X86_64_GOT32:
2500       return 4;
2501
2502     case elfcpp::R_X86_64_16:
2503     case elfcpp::R_X86_64_PC16:
2504       return 2;
2505
2506     case elfcpp::R_X86_64_8:
2507     case elfcpp::R_X86_64_PC8:
2508       return 1;
2509
2510     case elfcpp::R_X86_64_COPY:
2511     case elfcpp::R_X86_64_GLOB_DAT:
2512     case elfcpp::R_X86_64_JUMP_SLOT:
2513     case elfcpp::R_X86_64_RELATIVE:
2514       // These are outstanding tls relocs, which are unexpected when linking
2515     case elfcpp::R_X86_64_TPOFF64:
2516     case elfcpp::R_X86_64_DTPMOD64:
2517     case elfcpp::R_X86_64_TLSDESC:
2518       object->error(_("unexpected reloc %u in object file"), r_type);
2519       return 0;
2520
2521     case elfcpp::R_X86_64_SIZE32:
2522     case elfcpp::R_X86_64_SIZE64:
2523     default:
2524       object->error(_("unsupported reloc %u against local symbol"), r_type);
2525       return 0;
2526     }
2527 }
2528
2529 // Scan the relocs during a relocatable link.
2530
2531 void
2532 Target_x86_64::scan_relocatable_relocs(const General_options& options,
2533                                        Symbol_table* symtab,
2534                                        Layout* layout,
2535                                        Sized_relobj<64, false>* object,
2536                                        unsigned int data_shndx,
2537                                        unsigned int sh_type,
2538                                        const unsigned char* prelocs,
2539                                        size_t reloc_count,
2540                                        Output_section* output_section,
2541                                        bool needs_special_offset_handling,
2542                                        size_t local_symbol_count,
2543                                        const unsigned char* plocal_symbols,
2544                                        Relocatable_relocs* rr)
2545 {
2546   gold_assert(sh_type == elfcpp::SHT_RELA);
2547
2548   typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
2549     Relocatable_size_for_reloc> Scan_relocatable_relocs;
2550
2551   gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
2552       Scan_relocatable_relocs>(
2553     options,
2554     symtab,
2555     layout,
2556     object,
2557     data_shndx,
2558     prelocs,
2559     reloc_count,
2560     output_section,
2561     needs_special_offset_handling,
2562     local_symbol_count,
2563     plocal_symbols,
2564     rr);
2565 }
2566
2567 // Relocate a section during a relocatable link.
2568
2569 void
2570 Target_x86_64::relocate_for_relocatable(
2571     const Relocate_info<64, false>* relinfo,
2572     unsigned int sh_type,
2573     const unsigned char* prelocs,
2574     size_t reloc_count,
2575     Output_section* output_section,
2576     off_t offset_in_output_section,
2577     const Relocatable_relocs* rr,
2578     unsigned char* view,
2579     elfcpp::Elf_types<64>::Elf_Addr view_address,
2580     section_size_type view_size,
2581     unsigned char* reloc_view,
2582     section_size_type reloc_view_size)
2583 {
2584   gold_assert(sh_type == elfcpp::SHT_RELA);
2585
2586   gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
2587     relinfo,
2588     prelocs,
2589     reloc_count,
2590     output_section,
2591     offset_in_output_section,
2592     rr,
2593     view,
2594     view_address,
2595     view_size,
2596     reloc_view,
2597     reloc_view_size);
2598 }
2599
2600 // Return the value to use for a dynamic which requires special
2601 // treatment.  This is how we support equality comparisons of function
2602 // pointers across shared library boundaries, as described in the
2603 // processor specific ABI supplement.
2604
2605 uint64_t
2606 Target_x86_64::do_dynsym_value(const Symbol* gsym) const
2607 {
2608   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2609   return this->plt_section()->address() + gsym->plt_offset();
2610 }
2611
2612 // Return a string used to fill a code section with nops to take up
2613 // the specified length.
2614
2615 std::string
2616 Target_x86_64::do_code_fill(section_size_type length) const
2617 {
2618   if (length >= 16)
2619     {
2620       // Build a jmpq instruction to skip over the bytes.
2621       unsigned char jmp[5];
2622       jmp[0] = 0xe9;
2623       elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2624       return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2625               + std::string(length - 5, '\0'));
2626     }
2627
2628   // Nop sequences of various lengths.
2629   const char nop1[1] = { 0x90 };                   // nop
2630   const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
2631   const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
2632   const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
2633   const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
2634                          0x00 };
2635   const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
2636                          0x00, 0x00 };
2637   const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
2638                          0x00, 0x00, 0x00 };
2639   const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
2640                          0x00, 0x00, 0x00, 0x00 };
2641   const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
2642                          0x00, 0x00, 0x00, 0x00,
2643                          0x00 };
2644   const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
2645                            0x84, 0x00, 0x00, 0x00,
2646                            0x00, 0x00 };
2647   const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
2648                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2649                            0x00, 0x00, 0x00 };
2650   const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
2651                            0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
2652                            0x00, 0x00, 0x00, 0x00 };
2653   const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2654                            0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
2655                            0x00, 0x00, 0x00, 0x00,
2656                            0x00 };
2657   const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2658                            0x66, 0x2e, 0x0f, 0x1f, // data16
2659                            0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2660                            0x00, 0x00 };
2661   const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
2662                            0x66, 0x66, 0x2e, 0x0f, // data16; data16
2663                            0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
2664                            0x00, 0x00, 0x00 };
2665
2666   const char* nops[16] = {
2667     NULL,
2668     nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2669     nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2670   };
2671
2672   return std::string(nops[length], length);
2673 }
2674
2675 // FNOFFSET in section SHNDX in OBJECT is the start of a function
2676 // compiled with -fstack-split.  The function calls non-stack-split
2677 // code.  We have to change the function so that it always ensures
2678 // that it has enough stack space to run some random function.
2679
2680 void
2681 Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
2682                                   section_offset_type fnoffset,
2683                                   section_size_type fnsize,
2684                                   unsigned char* view,
2685                                   section_size_type view_size,
2686                                   std::string* from,
2687                                   std::string* to) const
2688 {
2689   // The function starts with a comparison of the stack pointer and a
2690   // field in the TCB.  This is followed by a jump.
2691
2692   // cmp %fs:NN,%rsp
2693   if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
2694       && fnsize > 9)
2695     {
2696       // We will call __morestack if the carry flag is set after this
2697       // comparison.  We turn the comparison into an stc instruction
2698       // and some nops.
2699       view[fnoffset] = '\xf9';
2700       this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
2701     }
2702   // lea NN(%rsp),%r10
2703   else if (this->match_view(view, view_size, fnoffset, "\x4c\x8d\x94\x24", 4)
2704            && fnsize > 8)
2705     {
2706       // This is loading an offset from the stack pointer for a
2707       // comparison.  The offset is negative, so we decrease the
2708       // offset by the amount of space we need for the stack.  This
2709       // means we will avoid calling __morestack if there happens to
2710       // be plenty of space on the stack already.
2711       unsigned char* pval = view + fnoffset + 4;
2712       uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
2713       val -= parameters->options().split_stack_adjust_size();
2714       elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
2715     }
2716   else
2717     {
2718       if (!object->has_no_split_stack())
2719         object->error(_("failed to match split-stack sequence at "
2720                         "section %u offset %0zx"),
2721                       shndx, fnoffset);
2722       return;
2723     }
2724
2725   // We have to change the function so that it calls
2726   // __morestack_non_split instead of __morestack.  The former will
2727   // allocate additional stack space.
2728   *from = "__morestack";
2729   *to = "__morestack_non_split";
2730 }
2731
2732 // The selector for x86_64 object files.
2733
2734 class Target_selector_x86_64 : public Target_selector_freebsd
2735 {
2736 public:
2737   Target_selector_x86_64()
2738     : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
2739                               "elf64-x86-64-freebsd")
2740   { }
2741
2742   Target*
2743   do_instantiate_target()
2744   { return new Target_x86_64(); }
2745
2746 };
2747
2748 Target_selector_x86_64 target_selector_x86_64;
2749
2750 } // End anonymous namespace.