HAMMER VFS - Add a B-Tree rebalancing feature.
[dragonfly.git] / sys / vfs / hammer / hammer_btree.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *      B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *      L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,        
91                         hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93                         hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key. 
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
114  */
115 int
116 hammer_btree_iterate(hammer_cursor_t cursor)
117 {
118         hammer_node_ondisk_t node;
119         hammer_btree_elm_t elm;
120         int error = 0;
121         int r;
122         int s;
123
124         /*
125          * Skip past the current record
126          */
127         node = cursor->node->ondisk;
128         if (node == NULL)
129                 return(ENOENT);
130         if (cursor->index < node->count && 
131             (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
132                 ++cursor->index;
133         }
134
135         /*
136          * Loop until an element is found or we are done.
137          */
138         for (;;) {
139                 /*
140                  * We iterate up the tree and then index over one element
141                  * while we are at the last element in the current node.
142                  *
143                  * If we are at the root of the filesystem, cursor_up
144                  * returns ENOENT.
145                  *
146                  * XXX this could be optimized by storing the information in
147                  * the parent reference.
148                  *
149                  * XXX we can lose the node lock temporarily, this could mess
150                  * up our scan.
151                  */
152                 ++hammer_stats_btree_iterations;
153                 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
154
155                 if (cursor->index == node->count) {
156                         if (hammer_debug_btree) {
157                                 kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
158                                         cursor->node->node_offset,
159                                         cursor->index,
160                                         (cursor->parent ? cursor->parent->node_offset : -1),
161                                         cursor->parent_index,
162                                         curthread);
163                         }
164                         KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
165                         error = hammer_cursor_up(cursor);
166                         if (error)
167                                 break;
168                         /* reload stale pointer */
169                         node = cursor->node->ondisk;
170                         KKASSERT(cursor->index != node->count);
171
172                         /*
173                          * If we are reblocking we want to return internal
174                          * nodes.  Note that the internal node will be
175                          * returned multiple times, on each upward recursion
176                          * from its children.  The caller selects which
177                          * revisit it cares about (usually first or last only).
178                          */
179                         if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
180                                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
181                                 return(0);
182                         }
183                         ++cursor->index;
184                         continue;
185                 }
186
187                 /*
188                  * Check internal or leaf element.  Determine if the record
189                  * at the cursor has gone beyond the end of our range.
190                  *
191                  * We recurse down through internal nodes.
192                  */
193                 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
194                         elm = &node->elms[cursor->index];
195
196                         r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
197                         s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
198                         if (hammer_debug_btree) {
199                                 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
200                                         cursor->node->node_offset,
201                                         cursor->index,
202                                         elm[0].internal.base.obj_id,
203                                         elm[0].internal.base.rec_type,
204                                         elm[0].internal.base.key,
205                                         elm[0].internal.base.localization,
206                                         r,
207                                         curthread
208                                 );
209                                 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
210                                         cursor->node->node_offset,
211                                         cursor->index + 1,
212                                         elm[1].internal.base.obj_id,
213                                         elm[1].internal.base.rec_type,
214                                         elm[1].internal.base.key,
215                                         elm[1].internal.base.localization,
216                                         s
217                                 );
218                         }
219
220                         if (r < 0) {
221                                 error = ENOENT;
222                                 break;
223                         }
224                         if (r == 0 && (cursor->flags &
225                                        HAMMER_CURSOR_END_INCLUSIVE) == 0) {
226                                 error = ENOENT;
227                                 break;
228                         }
229                         KKASSERT(s <= 0);
230
231                         /*
232                          * Better not be zero
233                          */
234                         KKASSERT(elm->internal.subtree_offset != 0);
235
236                         /*
237                          * If running the mirror filter see if we can skip
238                          * one or more entire sub-trees.  If we can we
239                          * return the internal mode and the caller processes
240                          * the skipped range (see mirror_read)
241                          */
242                         if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
243                                 if (elm->internal.mirror_tid <
244                                     cursor->cmirror->mirror_tid) {
245                                         hammer_cursor_mirror_filter(cursor);
246                                         return(0);
247                                 }
248                         }
249
250                         error = hammer_cursor_down(cursor);
251                         if (error)
252                                 break;
253                         KKASSERT(cursor->index == 0);
254                         /* reload stale pointer */
255                         node = cursor->node->ondisk;
256                         continue;
257                 } else {
258                         elm = &node->elms[cursor->index];
259                         r = hammer_btree_cmp(&cursor->key_end, &elm->base);
260                         if (hammer_debug_btree) {
261                                 kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
262                                         cursor->node->node_offset,
263                                         cursor->index,
264                                         (elm[0].leaf.base.btype ?
265                                          elm[0].leaf.base.btype : '?'),
266                                         elm[0].leaf.base.obj_id,
267                                         elm[0].leaf.base.rec_type,
268                                         elm[0].leaf.base.key,
269                                         elm[0].leaf.base.localization,
270                                         r
271                                 );
272                         }
273                         if (r < 0) {
274                                 error = ENOENT;
275                                 break;
276                         }
277
278                         /*
279                          * We support both end-inclusive and
280                          * end-exclusive searches.
281                          */
282                         if (r == 0 &&
283                            (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
284                                 error = ENOENT;
285                                 break;
286                         }
287
288                         switch(elm->leaf.base.btype) {
289                         case HAMMER_BTREE_TYPE_RECORD:
290                                 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
291                                     hammer_btree_chkts(cursor->asof, &elm->base)) {
292                                         ++cursor->index;
293                                         continue;
294                                 }
295                                 error = 0;
296                                 break;
297                         default:
298                                 error = EINVAL;
299                                 break;
300                         }
301                         if (error)
302                                 break;
303                 }
304                 /*
305                  * node pointer invalid after loop
306                  */
307
308                 /*
309                  * Return entry
310                  */
311                 if (hammer_debug_btree) {
312                         int i = cursor->index;
313                         hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
314                         kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
315                                 cursor->node, i,
316                                 elm->internal.base.obj_id,
317                                 elm->internal.base.rec_type,
318                                 elm->internal.base.key,
319                                 elm->internal.base.localization
320                         );
321                 }
322                 return(0);
323         }
324         return(error);
325 }
326
327 /*
328  * We hit an internal element that we could skip as part of a mirroring
329  * scan.  Calculate the entire range being skipped.
330  *
331  * It is important to include any gaps between the parent's left_bound
332  * and the node's left_bound, and same goes for the right side.
333  */
334 static void
335 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
336 {
337         struct hammer_cmirror *cmirror;
338         hammer_node_ondisk_t ondisk;
339         hammer_btree_elm_t elm;
340
341         ondisk = cursor->node->ondisk;
342         cmirror = cursor->cmirror;
343
344         /*
345          * Calculate the skipped range
346          */
347         elm = &ondisk->elms[cursor->index];
348         if (cursor->index == 0)
349                 cmirror->skip_beg = *cursor->left_bound;
350         else
351                 cmirror->skip_beg = elm->internal.base;
352         while (cursor->index < ondisk->count) {
353                 if (elm->internal.mirror_tid >= cmirror->mirror_tid)
354                         break;
355                 ++cursor->index;
356                 ++elm;
357         }
358         if (cursor->index == ondisk->count)
359                 cmirror->skip_end = *cursor->right_bound;
360         else
361                 cmirror->skip_end = elm->internal.base;
362
363         /*
364          * clip the returned result.
365          */
366         if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
367                 cmirror->skip_beg = cursor->key_beg;
368         if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
369                 cmirror->skip_end = cursor->key_end;
370 }
371
372 /*
373  * Iterate in the reverse direction.  This is used by the pruning code to
374  * avoid overlapping records.
375  */
376 int
377 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
378 {
379         hammer_node_ondisk_t node;
380         hammer_btree_elm_t elm;
381         int error = 0;
382         int r;
383         int s;
384
385         /* mirror filtering not supported for reverse iteration */
386         KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
387
388         /*
389          * Skip past the current record.  For various reasons the cursor
390          * may end up set to -1 or set to point at the end of the current
391          * node.  These cases must be addressed.
392          */
393         node = cursor->node->ondisk;
394         if (node == NULL)
395                 return(ENOENT);
396         if (cursor->index != -1 && 
397             (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
398                 --cursor->index;
399         }
400         if (cursor->index == cursor->node->ondisk->count)
401                 --cursor->index;
402
403         /*
404          * Loop until an element is found or we are done.
405          */
406         for (;;) {
407                 ++hammer_stats_btree_iterations;
408                 hammer_flusher_clean_loose_ios(cursor->trans->hmp);
409
410                 /*
411                  * We iterate up the tree and then index over one element
412                  * while we are at the last element in the current node.
413                  */
414                 if (cursor->index == -1) {
415                         error = hammer_cursor_up(cursor);
416                         if (error) {
417                                 cursor->index = 0; /* sanity */
418                                 break;
419                         }
420                         /* reload stale pointer */
421                         node = cursor->node->ondisk;
422                         KKASSERT(cursor->index != node->count);
423                         --cursor->index;
424                         continue;
425                 }
426
427                 /*
428                  * Check internal or leaf element.  Determine if the record
429                  * at the cursor has gone beyond the end of our range.
430                  *
431                  * We recurse down through internal nodes. 
432                  */
433                 KKASSERT(cursor->index != node->count);
434                 if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
435                         elm = &node->elms[cursor->index];
436                         r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
437                         s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
438                         if (hammer_debug_btree) {
439                                 kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
440                                         cursor->node->node_offset,
441                                         cursor->index,
442                                         elm[0].internal.base.obj_id,
443                                         elm[0].internal.base.rec_type,
444                                         elm[0].internal.base.key,
445                                         elm[0].internal.base.localization,
446                                         r
447                                 );
448                                 kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
449                                         cursor->node->node_offset,
450                                         cursor->index + 1,
451                                         elm[1].internal.base.obj_id,
452                                         elm[1].internal.base.rec_type,
453                                         elm[1].internal.base.key,
454                                         elm[1].internal.base.localization,
455                                         s
456                                 );
457                         }
458
459                         if (s >= 0) {
460                                 error = ENOENT;
461                                 break;
462                         }
463                         KKASSERT(r >= 0);
464
465                         /*
466                          * Better not be zero
467                          */
468                         KKASSERT(elm->internal.subtree_offset != 0);
469
470                         error = hammer_cursor_down(cursor);
471                         if (error)
472                                 break;
473                         KKASSERT(cursor->index == 0);
474                         /* reload stale pointer */
475                         node = cursor->node->ondisk;
476
477                         /* this can assign -1 if the leaf was empty */
478                         cursor->index = node->count - 1;
479                         continue;
480                 } else {
481                         elm = &node->elms[cursor->index];
482                         s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
483                         if (hammer_debug_btree) {
484                                 kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
485                                         cursor->node->node_offset,
486                                         cursor->index,
487                                         (elm[0].leaf.base.btype ?
488                                          elm[0].leaf.base.btype : '?'),
489                                         elm[0].leaf.base.obj_id,
490                                         elm[0].leaf.base.rec_type,
491                                         elm[0].leaf.base.key,
492                                         elm[0].leaf.base.localization,
493                                         s
494                                 );
495                         }
496                         if (s > 0) {
497                                 error = ENOENT;
498                                 break;
499                         }
500
501                         switch(elm->leaf.base.btype) {
502                         case HAMMER_BTREE_TYPE_RECORD:
503                                 if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
504                                     hammer_btree_chkts(cursor->asof, &elm->base)) {
505                                         --cursor->index;
506                                         continue;
507                                 }
508                                 error = 0;
509                                 break;
510                         default:
511                                 error = EINVAL;
512                                 break;
513                         }
514                         if (error)
515                                 break;
516                 }
517                 /*
518                  * node pointer invalid after loop
519                  */
520
521                 /*
522                  * Return entry
523                  */
524                 if (hammer_debug_btree) {
525                         int i = cursor->index;
526                         hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
527                         kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
528                                 cursor->node, i,
529                                 elm->internal.base.obj_id,
530                                 elm->internal.base.rec_type,
531                                 elm->internal.base.key,
532                                 elm->internal.base.localization
533                         );
534                 }
535                 return(0);
536         }
537         return(error);
538 }
539
540 /*
541  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
542  * could not be found, EDEADLK if inserting and a retry is needed, and a
543  * fatal error otherwise.  When retrying, the caller must terminate the
544  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
545  * 
546  * The cursor is suitably positioned for a deletion on success, and suitably
547  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
548  * specified.
549  *
550  * The cursor may begin anywhere, the search will traverse the tree in
551  * either direction to locate the requested element.
552  *
553  * Most of the logic implementing historical searches is handled here.  We
554  * do an initial lookup with create_tid set to the asof TID.  Due to the
555  * way records are laid out, a backwards iteration may be required if
556  * ENOENT is returned to locate the historical record.  Here's the
557  * problem:
558  *
559  * create_tid:    10      15       20
560  *                   LEAF1   LEAF2
561  * records:         (11)        (18)
562  *
563  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
564  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
565  * not visible and thus causes ENOENT to be returned.  We really need
566  * to check record 11 in LEAF1.  If it also fails then the search fails
567  * (e.g. it might represent the range 11-16 and thus still not match our
568  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
569  * further iterations.
570  *
571  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
572  * and the cursor->create_check TID if an iteration might be needed.
573  * In the above example create_check would be set to 14.
574  */
575 int
576 hammer_btree_lookup(hammer_cursor_t cursor)
577 {
578         int error;
579
580         KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
581                   cursor->trans->sync_lock_refs > 0);
582         ++hammer_stats_btree_lookups;
583         if (cursor->flags & HAMMER_CURSOR_ASOF) {
584                 KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
585                 cursor->key_beg.create_tid = cursor->asof;
586                 for (;;) {
587                         cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
588                         error = btree_search(cursor, 0);
589                         if (error != ENOENT ||
590                             (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
591                                 /*
592                                  * Stop if no error.
593                                  * Stop if error other then ENOENT.
594                                  * Stop if ENOENT and not special case.
595                                  */
596                                 break;
597                         }
598                         if (hammer_debug_btree) {
599                                 kprintf("CREATE_CHECK %016llx\n",
600                                         cursor->create_check);
601                         }
602                         cursor->key_beg.create_tid = cursor->create_check;
603                         /* loop */
604                 }
605         } else {
606                 error = btree_search(cursor, 0);
607         }
608         if (error == 0)
609                 error = hammer_btree_extract(cursor, cursor->flags);
610         return(error);
611 }
612
613 /*
614  * Execute the logic required to start an iteration.  The first record
615  * located within the specified range is returned and iteration control
616  * flags are adjusted for successive hammer_btree_iterate() calls.
617  */
618 int
619 hammer_btree_first(hammer_cursor_t cursor)
620 {
621         int error;
622
623         error = hammer_btree_lookup(cursor);
624         if (error == ENOENT) {
625                 cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
626                 error = hammer_btree_iterate(cursor);
627         }
628         cursor->flags |= HAMMER_CURSOR_ATEDISK;
629         return(error);
630 }
631
632 /*
633  * Similarly but for an iteration in the reverse direction.
634  *
635  * Set ATEDISK when iterating backwards to skip the current entry,
636  * which after an ENOENT lookup will be pointing beyond our end point.
637  */
638 int
639 hammer_btree_last(hammer_cursor_t cursor)
640 {
641         struct hammer_base_elm save;
642         int error;
643
644         save = cursor->key_beg;
645         cursor->key_beg = cursor->key_end;
646         error = hammer_btree_lookup(cursor);
647         cursor->key_beg = save;
648         if (error == ENOENT ||
649             (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
650                 cursor->flags |= HAMMER_CURSOR_ATEDISK;
651                 error = hammer_btree_iterate_reverse(cursor);
652         }
653         cursor->flags |= HAMMER_CURSOR_ATEDISK;
654         return(error);
655 }
656
657 /*
658  * Extract the record and/or data associated with the cursor's current
659  * position.  Any prior record or data stored in the cursor is replaced.
660  * The cursor must be positioned at a leaf node.
661  *
662  * NOTE: All extractions occur at the leaf of the B-Tree.
663  */
664 int
665 hammer_btree_extract(hammer_cursor_t cursor, int flags)
666 {
667         hammer_node_ondisk_t node;
668         hammer_btree_elm_t elm;
669         hammer_off_t data_off;
670         hammer_mount_t hmp;
671         int32_t data_len;
672         int error;
673
674         /*
675          * The case where the data reference resolves to the same buffer
676          * as the record reference must be handled.
677          */
678         node = cursor->node->ondisk;
679         elm = &node->elms[cursor->index];
680         cursor->data = NULL;
681         hmp = cursor->node->hmp;
682
683         /*
684          * There is nothing to extract for an internal element.
685          */
686         if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
687                 return(EINVAL);
688
689         /*
690          * Only record types have data.
691          */
692         KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
693         cursor->leaf = &elm->leaf;
694
695         if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
696                 return(0);
697         if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
698                 return(0);
699         data_off = elm->leaf.data_offset;
700         data_len = elm->leaf.data_len;
701         if (data_off == 0)
702                 return(0);
703
704         /*
705          * Load the data
706          */
707         KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
708         cursor->data = hammer_bread_ext(hmp, data_off, data_len,
709                                         &error, &cursor->data_buffer);
710         if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
711                 kprintf("CRC DATA @ %016llx/%d FAILED\n",
712                         elm->leaf.data_offset, elm->leaf.data_len);
713                 Debugger("CRC FAILED: DATA");
714         }
715         return(error);
716 }
717
718
719 /*
720  * Insert a leaf element into the B-Tree at the current cursor position.
721  * The cursor is positioned such that the element at and beyond the cursor
722  * are shifted to make room for the new record.
723  *
724  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
725  * flag set and that call must return ENOENT before this function can be
726  * called.
727  *
728  * The caller may depend on the cursor's exclusive lock after return to
729  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
730  *
731  * ENOSPC is returned if there is no room to insert a new record.
732  */
733 int
734 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
735                     int *doprop)
736 {
737         hammer_node_ondisk_t node;
738         int i;
739         int error;
740
741         *doprop = 0;
742         if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
743                 return(error);
744         ++hammer_stats_btree_inserts;
745
746         /*
747          * Insert the element at the leaf node and update the count in the
748          * parent.  It is possible for parent to be NULL, indicating that
749          * the filesystem's ROOT B-Tree node is a leaf itself, which is
750          * possible.  The root inode can never be deleted so the leaf should
751          * never be empty.
752          *
753          * Remember that the right-hand boundary is not included in the
754          * count.
755          */
756         hammer_modify_node_all(cursor->trans, cursor->node);
757         node = cursor->node->ondisk;
758         i = cursor->index;
759         KKASSERT(elm->base.btype != 0);
760         KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
761         KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
762         if (i != node->count) {
763                 bcopy(&node->elms[i], &node->elms[i+1],
764                       (node->count - i) * sizeof(*elm));
765         }
766         node->elms[i].leaf = *elm;
767         ++node->count;
768         hammer_cursor_inserted_element(cursor->node, i);
769
770         /*
771          * Update the leaf node's aggregate mirror_tid for mirroring
772          * support.
773          */
774         if (node->mirror_tid < elm->base.delete_tid) {
775                 node->mirror_tid = elm->base.delete_tid;
776                 *doprop = 1;
777         }
778         if (node->mirror_tid < elm->base.create_tid) {
779                 node->mirror_tid = elm->base.create_tid;
780                 *doprop = 1;
781         }
782         hammer_modify_node_done(cursor->node);
783
784         /*
785          * Debugging sanity checks.
786          */
787         KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
788         KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
789         if (i) {
790                 KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
791         }
792         if (i != node->count - 1)
793                 KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
794
795         return(0);
796 }
797
798 /*
799  * Delete a record from the B-Tree at the current cursor position.
800  * The cursor is positioned such that the current element is the one
801  * to be deleted.
802  *
803  * On return the cursor will be positioned after the deleted element and
804  * MAY point to an internal node.  It will be suitable for the continuation
805  * of an iteration but not for an insertion or deletion.
806  *
807  * Deletions will attempt to partially rebalance the B-Tree in an upward
808  * direction, but will terminate rather then deadlock.  Empty internal nodes
809  * are never allowed by a deletion which deadlocks may end up giving us an
810  * empty leaf.  The pruner will clean up and rebalance the tree.
811  *
812  * This function can return EDEADLK, requiring the caller to retry the
813  * operation after clearing the deadlock.
814  */
815 int
816 hammer_btree_delete(hammer_cursor_t cursor)
817 {
818         hammer_node_ondisk_t ondisk;
819         hammer_node_t node;
820         hammer_node_t parent;
821         int error;
822         int i;
823
824         KKASSERT (cursor->trans->sync_lock_refs > 0);
825         if ((error = hammer_cursor_upgrade(cursor)) != 0)
826                 return(error);
827         ++hammer_stats_btree_deletes;
828
829         /*
830          * Delete the element from the leaf node. 
831          *
832          * Remember that leaf nodes do not have boundaries.
833          */
834         node = cursor->node;
835         ondisk = node->ondisk;
836         i = cursor->index;
837
838         KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
839         KKASSERT(i >= 0 && i < ondisk->count);
840         hammer_modify_node_all(cursor->trans, node);
841         if (i + 1 != ondisk->count) {
842                 bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
843                       (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
844         }
845         --ondisk->count;
846         hammer_modify_node_done(node);
847         hammer_cursor_deleted_element(node, i);
848
849         /*
850          * Validate local parent
851          */
852         if (ondisk->parent) {
853                 parent = cursor->parent;
854
855                 KKASSERT(parent != NULL);
856                 KKASSERT(parent->node_offset == ondisk->parent);
857         }
858
859         /*
860          * If the leaf becomes empty it must be detached from the parent,
861          * potentially recursing through to the filesystem root.
862          *
863          * This may reposition the cursor at one of the parent's of the
864          * current node.
865          *
866          * Ignore deadlock errors, that simply means that btree_remove
867          * was unable to recurse and had to leave us with an empty leaf. 
868          */
869         KKASSERT(cursor->index <= ondisk->count);
870         if (ondisk->count == 0) {
871                 error = btree_remove(cursor);
872                 if (error == EDEADLK)
873                         error = 0;
874         } else {
875                 error = 0;
876         }
877         KKASSERT(cursor->parent == NULL ||
878                  cursor->parent_index < cursor->parent->ondisk->count);
879         return(error);
880 }
881
882 /*
883  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
884  *
885  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
886  *
887  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
888  * iterates up the tree as necessary to properly position itself prior to
889  * actually doing the sarch.
890  * 
891  * INSERTIONS: The search will split full nodes and leaves on its way down
892  * and guarentee that the leaf it ends up on is not full.  If we run out
893  * of space the search continues to the leaf (to position the cursor for
894  * the spike), but ENOSPC is returned.
895  *
896  * The search is only guarenteed to end up on a leaf if an error code of 0
897  * is returned, or if inserting and an error code of ENOENT is returned.
898  * Otherwise it can stop at an internal node.  On success a search returns
899  * a leaf node.
900  *
901  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
902  * filesystem, and it is not simple code.  Please note the following facts:
903  *
904  * - Internal node recursions have a boundary on the left AND right.  The
905  *   right boundary is non-inclusive.  The create_tid is a generic part
906  *   of the key for internal nodes.
907  *
908  * - Leaf nodes contain terminal elements only now.
909  *
910  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
911  *   historical search.  ASOF and INSERT are mutually exclusive.  When
912  *   doing an as-of lookup btree_search() checks for a right-edge boundary
913  *   case.  If while recursing down the left-edge differs from the key
914  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
915  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
916  *   The iteration backwards because as-of searches can wind up going
917  *   down the wrong branch of the B-Tree.
918  */
919 static 
920 int
921 btree_search(hammer_cursor_t cursor, int flags)
922 {
923         hammer_node_ondisk_t node;
924         hammer_btree_elm_t elm;
925         int error;
926         int enospc = 0;
927         int i;
928         int r;
929         int s;
930
931         flags |= cursor->flags;
932         ++hammer_stats_btree_searches;
933
934         if (hammer_debug_btree) {
935                 kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
936                         cursor->node->node_offset, 
937                         cursor->index,
938                         cursor->key_beg.obj_id,
939                         cursor->key_beg.rec_type,
940                         cursor->key_beg.key,
941                         cursor->key_beg.create_tid, 
942                         cursor->key_beg.localization, 
943                         curthread
944                 );
945                 if (cursor->parent)
946                     kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
947                         cursor->parent->node_offset, cursor->parent_index,
948                         cursor->left_bound->obj_id,
949                         cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
950                         cursor->right_bound->obj_id,
951                         cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
952                         cursor->left_bound,
953                         &cursor->parent->ondisk->elms[cursor->parent_index],
954                         cursor->right_bound,
955                         &cursor->parent->ondisk->elms[cursor->parent_index+1]
956                     );
957         }
958
959         /*
960          * Move our cursor up the tree until we find a node whos range covers
961          * the key we are trying to locate.
962          *
963          * The left bound is inclusive, the right bound is non-inclusive.
964          * It is ok to cursor up too far.
965          */
966         for (;;) {
967                 r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
968                 s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
969                 if (r >= 0 && s < 0)
970                         break;
971                 KKASSERT(cursor->parent);
972                 ++hammer_stats_btree_iterations;
973                 error = hammer_cursor_up(cursor);
974                 if (error)
975                         goto done;
976         }
977
978         /*
979          * The delete-checks below are based on node, not parent.  Set the
980          * initial delete-check based on the parent.
981          */
982         if (r == 1) {
983                 KKASSERT(cursor->left_bound->create_tid != 1);
984                 cursor->create_check = cursor->left_bound->create_tid - 1;
985                 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
986         }
987
988         /*
989          * We better have ended up with a node somewhere.
990          */
991         KKASSERT(cursor->node != NULL);
992
993         /*
994          * If we are inserting we can't start at a full node if the parent
995          * is also full (because there is no way to split the node),
996          * continue running up the tree until the requirement is satisfied
997          * or we hit the root of the filesystem.
998          *
999          * (If inserting we aren't doing an as-of search so we don't have
1000          *  to worry about create_check).
1001          */
1002         while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1003                 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1004                         if (btree_node_is_full(cursor->node->ondisk) == 0)
1005                                 break;
1006                 } else {
1007                         if (btree_node_is_full(cursor->node->ondisk) ==0)
1008                                 break;
1009                 }
1010                 if (cursor->node->ondisk->parent == 0 ||
1011                     cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1012                         break;
1013                 }
1014                 ++hammer_stats_btree_iterations;
1015                 error = hammer_cursor_up(cursor);
1016                 /* node may have become stale */
1017                 if (error)
1018                         goto done;
1019         }
1020
1021         /*
1022          * Push down through internal nodes to locate the requested key.
1023          */
1024         node = cursor->node->ondisk;
1025         while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1026                 /*
1027                  * Scan the node to find the subtree index to push down into.
1028                  * We go one-past, then back-up.
1029                  *
1030                  * We must proactively remove deleted elements which may
1031                  * have been left over from a deadlocked btree_remove().
1032                  *
1033                  * The left and right boundaries are included in the loop
1034                  * in order to detect edge cases.
1035                  *
1036                  * If the separator only differs by create_tid (r == 1)
1037                  * and we are doing an as-of search, we may end up going
1038                  * down a branch to the left of the one containing the
1039                  * desired key.  This requires numerous special cases.
1040                  */
1041                 ++hammer_stats_btree_iterations;
1042                 if (hammer_debug_btree) {
1043                         kprintf("SEARCH-I %016llx count=%d\n",
1044                                 cursor->node->node_offset,
1045                                 node->count);
1046                 }
1047
1048                 /*
1049                  * Try to shortcut the search before dropping into the
1050                  * linear loop.  Locate the first node where r <= 1.
1051                  */
1052                 i = hammer_btree_search_node(&cursor->key_beg, node);
1053                 while (i <= node->count) {
1054                         ++hammer_stats_btree_elements;
1055                         elm = &node->elms[i];
1056                         r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1057                         if (hammer_debug_btree > 2) {
1058                                 kprintf(" IELM %p %d r=%d\n",
1059                                         &node->elms[i], i, r);
1060                         }
1061                         if (r < 0)
1062                                 break;
1063                         if (r == 1) {
1064                                 KKASSERT(elm->base.create_tid != 1);
1065                                 cursor->create_check = elm->base.create_tid - 1;
1066                                 cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1067                         }
1068                         ++i;
1069                 }
1070                 if (hammer_debug_btree) {
1071                         kprintf("SEARCH-I preI=%d/%d r=%d\n",
1072                                 i, node->count, r);
1073                 }
1074
1075                 /*
1076                  * These cases occur when the parent's idea of the boundary
1077                  * is wider then the child's idea of the boundary, and
1078                  * require special handling.  If not inserting we can
1079                  * terminate the search early for these cases but the
1080                  * child's boundaries cannot be unconditionally modified.
1081                  */
1082                 if (i == 0) {
1083                         /*
1084                          * If i == 0 the search terminated to the LEFT of the
1085                          * left_boundary but to the RIGHT of the parent's left
1086                          * boundary.
1087                          */
1088                         u_int8_t save;
1089
1090                         elm = &node->elms[0];
1091
1092                         /*
1093                          * If we aren't inserting we can stop here.
1094                          */
1095                         if ((flags & (HAMMER_CURSOR_INSERT |
1096                                       HAMMER_CURSOR_PRUNING)) == 0) {
1097                                 cursor->index = 0;
1098                                 return(ENOENT);
1099                         }
1100
1101                         /*
1102                          * Correct a left-hand boundary mismatch.
1103                          *
1104                          * We can only do this if we can upgrade the lock,
1105                          * and synchronized as a background cursor (i.e.
1106                          * inserting or pruning).
1107                          *
1108                          * WARNING: We can only do this if inserting, i.e.
1109                          * we are running on the backend.
1110                          */
1111                         if ((error = hammer_cursor_upgrade(cursor)) != 0)
1112                                 return(error);
1113                         KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1114                         hammer_modify_node_field(cursor->trans, cursor->node,
1115                                                  elms[0]);
1116                         save = node->elms[0].base.btype;
1117                         node->elms[0].base = *cursor->left_bound;
1118                         node->elms[0].base.btype = save;
1119                         hammer_modify_node_done(cursor->node);
1120                 } else if (i == node->count + 1) {
1121                         /*
1122                          * If i == node->count + 1 the search terminated to
1123                          * the RIGHT of the right boundary but to the LEFT
1124                          * of the parent's right boundary.  If we aren't
1125                          * inserting we can stop here.
1126                          *
1127                          * Note that the last element in this case is
1128                          * elms[i-2] prior to adjustments to 'i'.
1129                          */
1130                         --i;
1131                         if ((flags & (HAMMER_CURSOR_INSERT |
1132                                       HAMMER_CURSOR_PRUNING)) == 0) {
1133                                 cursor->index = i;
1134                                 return (ENOENT);
1135                         }
1136
1137                         /*
1138                          * Correct a right-hand boundary mismatch.
1139                          * (actual push-down record is i-2 prior to
1140                          * adjustments to i).
1141                          *
1142                          * We can only do this if we can upgrade the lock,
1143                          * and synchronized as a background cursor (i.e.
1144                          * inserting or pruning).
1145                          *
1146                          * WARNING: We can only do this if inserting, i.e.
1147                          * we are running on the backend.
1148                          */
1149                         if ((error = hammer_cursor_upgrade(cursor)) != 0)
1150                                 return(error);
1151                         elm = &node->elms[i];
1152                         KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1153                         hammer_modify_node(cursor->trans, cursor->node,
1154                                            &elm->base, sizeof(elm->base));
1155                         elm->base = *cursor->right_bound;
1156                         hammer_modify_node_done(cursor->node);
1157                         --i;
1158                 } else {
1159                         /*
1160                          * The push-down index is now i - 1.  If we had
1161                          * terminated on the right boundary this will point
1162                          * us at the last element.
1163                          */
1164                         --i;
1165                 }
1166                 cursor->index = i;
1167                 elm = &node->elms[i];
1168
1169                 if (hammer_debug_btree) {
1170                         kprintf("RESULT-I %016llx[%d] %016llx %02x "
1171                                 "key=%016llx cre=%016llx lo=%02x\n",
1172                                 cursor->node->node_offset,
1173                                 i,
1174                                 elm->internal.base.obj_id,
1175                                 elm->internal.base.rec_type,
1176                                 elm->internal.base.key,
1177                                 elm->internal.base.create_tid,
1178                                 elm->internal.base.localization
1179                         );
1180                 }
1181
1182                 /*
1183                  * We better have a valid subtree offset.
1184                  */
1185                 KKASSERT(elm->internal.subtree_offset != 0);
1186
1187                 /*
1188                  * Handle insertion and deletion requirements.
1189                  *
1190                  * If inserting split full nodes.  The split code will
1191                  * adjust cursor->node and cursor->index if the current
1192                  * index winds up in the new node.
1193                  *
1194                  * If inserting and a left or right edge case was detected,
1195                  * we cannot correct the left or right boundary and must
1196                  * prepend and append an empty leaf node in order to make
1197                  * the boundary correction.
1198                  *
1199                  * If we run out of space we set enospc and continue on
1200                  * to a leaf to provide the spike code with a good point
1201                  * of entry.
1202                  */
1203                 if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1204                         if (btree_node_is_full(node)) {
1205                                 error = btree_split_internal(cursor);
1206                                 if (error) {
1207                                         if (error != ENOSPC)
1208                                                 goto done;
1209                                         enospc = 1;
1210                                 }
1211                                 /*
1212                                  * reload stale pointers
1213                                  */
1214                                 i = cursor->index;
1215                                 node = cursor->node->ondisk;
1216                         }
1217                 }
1218
1219                 /*
1220                  * Push down (push into new node, existing node becomes
1221                  * the parent) and continue the search.
1222                  */
1223                 error = hammer_cursor_down(cursor);
1224                 /* node may have become stale */
1225                 if (error)
1226                         goto done;
1227                 node = cursor->node->ondisk;
1228         }
1229
1230         /*
1231          * We are at a leaf, do a linear search of the key array.
1232          *
1233          * On success the index is set to the matching element and 0
1234          * is returned.
1235          *
1236          * On failure the index is set to the insertion point and ENOENT
1237          * is returned.
1238          *
1239          * Boundaries are not stored in leaf nodes, so the index can wind
1240          * up to the left of element 0 (index == 0) or past the end of
1241          * the array (index == node->count).  It is also possible that the
1242          * leaf might be empty.
1243          */
1244         ++hammer_stats_btree_iterations;
1245         KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1246         KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1247         if (hammer_debug_btree) {
1248                 kprintf("SEARCH-L %016llx count=%d\n",
1249                         cursor->node->node_offset,
1250                         node->count);
1251         }
1252
1253         /*
1254          * Try to shortcut the search before dropping into the
1255          * linear loop.  Locate the first node where r <= 1.
1256          */
1257         i = hammer_btree_search_node(&cursor->key_beg, node);
1258         while (i < node->count) {
1259                 ++hammer_stats_btree_elements;
1260                 elm = &node->elms[i];
1261
1262                 r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1263
1264                 if (hammer_debug_btree > 1)
1265                         kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1266
1267                 /*
1268                  * We are at a record element.  Stop if we've flipped past
1269                  * key_beg, not counting the create_tid test.  Allow the
1270                  * r == 1 case (key_beg > element but differs only by its
1271                  * create_tid) to fall through to the AS-OF check.
1272                  */
1273                 KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1274
1275                 if (r < 0)
1276                         goto failed;
1277                 if (r > 1) {
1278                         ++i;
1279                         continue;
1280                 }
1281
1282                 /*
1283                  * Check our as-of timestamp against the element.
1284                  */
1285                 if (flags & HAMMER_CURSOR_ASOF) {
1286                         if (hammer_btree_chkts(cursor->asof,
1287                                                &node->elms[i].base) != 0) {
1288                                 ++i;
1289                                 continue;
1290                         }
1291                         /* success */
1292                 } else {
1293                         if (r > 0) {    /* can only be +1 */
1294                                 ++i;
1295                                 continue;
1296                         }
1297                         /* success */
1298                 }
1299                 cursor->index = i;
1300                 error = 0;
1301                 if (hammer_debug_btree) {
1302                         kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1303                                 cursor->node->node_offset, i);
1304                 }
1305                 goto done;
1306         }
1307
1308         /*
1309          * The search of the leaf node failed.  i is the insertion point.
1310          */
1311 failed:
1312         if (hammer_debug_btree) {
1313                 kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1314                         cursor->node->node_offset, i);
1315         }
1316
1317         /*
1318          * No exact match was found, i is now at the insertion point.
1319          *
1320          * If inserting split a full leaf before returning.  This
1321          * may have the side effect of adjusting cursor->node and
1322          * cursor->index.
1323          */
1324         cursor->index = i;
1325         if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1326              btree_node_is_full(node)) {
1327                 error = btree_split_leaf(cursor);
1328                 if (error) {
1329                         if (error != ENOSPC)
1330                                 goto done;
1331                         enospc = 1;
1332                 }
1333                 /*
1334                  * reload stale pointers
1335                  */
1336                 /* NOT USED
1337                 i = cursor->index;
1338                 node = &cursor->node->internal;
1339                 */
1340         }
1341
1342         /*
1343          * We reached a leaf but did not find the key we were looking for.
1344          * If this is an insert we will be properly positioned for an insert
1345          * (ENOENT) or spike (ENOSPC) operation.
1346          */
1347         error = enospc ? ENOSPC : ENOENT;
1348 done:
1349         return(error);
1350 }
1351
1352 /*
1353  * Heuristical search for the first element whos comparison is <= 1.  May
1354  * return an index whos compare result is > 1 but may only return an index
1355  * whos compare result is <= 1 if it is the first element with that result.
1356  */
1357 int
1358 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1359 {
1360         int b;
1361         int s;
1362         int i;
1363         int r;
1364
1365         /*
1366          * Don't bother if the node does not have very many elements
1367          */
1368         b = 0;
1369         s = node->count;
1370         while (s - b > 4) {
1371                 i = b + (s - b) / 2;
1372                 ++hammer_stats_btree_elements;
1373                 r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1374                 if (r <= 1) {
1375                         s = i;
1376                 } else {
1377                         b = i;
1378                 }
1379         }
1380         return(b);
1381 }
1382
1383
1384 /************************************************************************
1385  *                         SPLITTING AND MERGING                        *
1386  ************************************************************************
1387  *
1388  * These routines do all the dirty work required to split and merge nodes.
1389  */
1390
1391 /*
1392  * Split an internal node into two nodes and move the separator at the split
1393  * point to the parent.
1394  *
1395  * (cursor->node, cursor->index) indicates the element the caller intends
1396  * to push into.  We will adjust node and index if that element winds
1397  * up in the split node.
1398  *
1399  * If we are at the root of the filesystem a new root must be created with
1400  * two elements, one pointing to the original root and one pointing to the
1401  * newly allocated split node.
1402  */
1403 static
1404 int
1405 btree_split_internal(hammer_cursor_t cursor)
1406 {
1407         hammer_node_ondisk_t ondisk;
1408         hammer_node_t node;
1409         hammer_node_t parent;
1410         hammer_node_t new_node;
1411         hammer_btree_elm_t elm;
1412         hammer_btree_elm_t parent_elm;
1413         struct hammer_node_lock lockroot;
1414         hammer_mount_t hmp = cursor->trans->hmp;
1415         int parent_index;
1416         int made_root;
1417         int split;
1418         int error;
1419         int i;
1420         const int esize = sizeof(*elm);
1421
1422         hammer_node_lock_init(&lockroot, cursor->node);
1423         error = hammer_btree_lock_children(cursor, 1, &lockroot);
1424         if (error)
1425                 goto done;
1426         if ((error = hammer_cursor_upgrade(cursor)) != 0)
1427                 goto done;
1428         ++hammer_stats_btree_splits;
1429
1430         /* 
1431          * We are splitting but elms[split] will be promoted to the parent,
1432          * leaving the right hand node with one less element.  If the
1433          * insertion point will be on the left-hand side adjust the split
1434          * point to give the right hand side one additional node.
1435          */
1436         node = cursor->node;
1437         ondisk = node->ondisk;
1438         split = (ondisk->count + 1) / 2;
1439         if (cursor->index <= split)
1440                 --split;
1441
1442         /*
1443          * If we are at the root of the filesystem, create a new root node
1444          * with 1 element and split normally.  Avoid making major
1445          * modifications until we know the whole operation will work.
1446          */
1447         if (ondisk->parent == 0) {
1448                 parent = hammer_alloc_btree(cursor->trans, &error);
1449                 if (parent == NULL)
1450                         goto done;
1451                 hammer_lock_ex(&parent->lock);
1452                 hammer_modify_node_noundo(cursor->trans, parent);
1453                 ondisk = parent->ondisk;
1454                 ondisk->count = 1;
1455                 ondisk->parent = 0;
1456                 ondisk->mirror_tid = node->ondisk->mirror_tid;
1457                 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1458                 ondisk->elms[0].base = hmp->root_btree_beg;
1459                 ondisk->elms[0].base.btype = node->ondisk->type;
1460                 ondisk->elms[0].internal.subtree_offset = node->node_offset;
1461                 ondisk->elms[1].base = hmp->root_btree_end;
1462                 hammer_modify_node_done(parent);
1463                 /* ondisk->elms[1].base.btype - not used */
1464                 made_root = 1;
1465                 parent_index = 0;       /* index of current node in parent */
1466         } else {
1467                 made_root = 0;
1468                 parent = cursor->parent;
1469                 parent_index = cursor->parent_index;
1470         }
1471
1472         /*
1473          * Split node into new_node at the split point.
1474          *
1475          *  B O O O P N N B     <-- P = node->elms[split]
1476          *   0 1 2 3 4 5 6      <-- subtree indices
1477          *
1478          *       x x P x x
1479          *        s S S s  
1480          *         /   \
1481          *  B O O O B    B N N B        <--- inner boundary points are 'P'
1482          *   0 1 2 3      4 5 6  
1483          *
1484          */
1485         new_node = hammer_alloc_btree(cursor->trans, &error);
1486         if (new_node == NULL) {
1487                 if (made_root) {
1488                         hammer_unlock(&parent->lock);
1489                         hammer_delete_node(cursor->trans, parent);
1490                         hammer_rel_node(parent);
1491                 }
1492                 goto done;
1493         }
1494         hammer_lock_ex(&new_node->lock);
1495
1496         /*
1497          * Create the new node.  P becomes the left-hand boundary in the
1498          * new node.  Copy the right-hand boundary as well.
1499          *
1500          * elm is the new separator.
1501          */
1502         hammer_modify_node_noundo(cursor->trans, new_node);
1503         hammer_modify_node_all(cursor->trans, node);
1504         ondisk = node->ondisk;
1505         elm = &ondisk->elms[split];
1506         bcopy(elm, &new_node->ondisk->elms[0],
1507               (ondisk->count - split + 1) * esize);
1508         new_node->ondisk->count = ondisk->count - split;
1509         new_node->ondisk->parent = parent->node_offset;
1510         new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1511         new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1512         KKASSERT(ondisk->type == new_node->ondisk->type);
1513         hammer_cursor_split_node(node, new_node, split);
1514
1515         /*
1516          * Cleanup the original node.  Elm (P) becomes the new boundary,
1517          * its subtree_offset was moved to the new node.  If we had created
1518          * a new root its parent pointer may have changed.
1519          */
1520         elm->internal.subtree_offset = 0;
1521         ondisk->count = split;
1522
1523         /*
1524          * Insert the separator into the parent, fixup the parent's
1525          * reference to the original node, and reference the new node.
1526          * The separator is P.
1527          *
1528          * Remember that base.count does not include the right-hand boundary.
1529          */
1530         hammer_modify_node_all(cursor->trans, parent);
1531         ondisk = parent->ondisk;
1532         KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1533         parent_elm = &ondisk->elms[parent_index+1];
1534         bcopy(parent_elm, parent_elm + 1,
1535               (ondisk->count - parent_index) * esize);
1536         parent_elm->internal.base = elm->base;  /* separator P */
1537         parent_elm->internal.base.btype = new_node->ondisk->type;
1538         parent_elm->internal.subtree_offset = new_node->node_offset;
1539         parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1540         ++ondisk->count;
1541         hammer_modify_node_done(parent);
1542         hammer_cursor_inserted_element(parent, parent_index + 1);
1543
1544         /*
1545          * The children of new_node need their parent pointer set to new_node.
1546          * The children have already been locked by
1547          * hammer_btree_lock_children().
1548          */
1549         for (i = 0; i < new_node->ondisk->count; ++i) {
1550                 elm = &new_node->ondisk->elms[i];
1551                 error = btree_set_parent(cursor->trans, new_node, elm);
1552                 if (error) {
1553                         panic("btree_split_internal: btree-fixup problem");
1554                 }
1555         }
1556         hammer_modify_node_done(new_node);
1557
1558         /*
1559          * The filesystem's root B-Tree pointer may have to be updated.
1560          */
1561         if (made_root) {
1562                 hammer_volume_t volume;
1563
1564                 volume = hammer_get_root_volume(hmp, &error);
1565                 KKASSERT(error == 0);
1566
1567                 hammer_modify_volume_field(cursor->trans, volume,
1568                                            vol0_btree_root);
1569                 volume->ondisk->vol0_btree_root = parent->node_offset;
1570                 hammer_modify_volume_done(volume);
1571                 node->ondisk->parent = parent->node_offset;
1572                 if (cursor->parent) {
1573                         hammer_unlock(&cursor->parent->lock);
1574                         hammer_rel_node(cursor->parent);
1575                 }
1576                 cursor->parent = parent;        /* lock'd and ref'd */
1577                 hammer_rel_volume(volume, 0);
1578         }
1579         hammer_modify_node_done(node);
1580
1581         /*
1582          * Ok, now adjust the cursor depending on which element the original
1583          * index was pointing at.  If we are >= the split point the push node
1584          * is now in the new node.
1585          *
1586          * NOTE: If we are at the split point itself we cannot stay with the
1587          * original node because the push index will point at the right-hand
1588          * boundary, which is illegal.
1589          *
1590          * NOTE: The cursor's parent or parent_index must be adjusted for
1591          * the case where a new parent (new root) was created, and the case
1592          * where the cursor is now pointing at the split node.
1593          */
1594         if (cursor->index >= split) {
1595                 cursor->parent_index = parent_index + 1;
1596                 cursor->index -= split;
1597                 hammer_unlock(&cursor->node->lock);
1598                 hammer_rel_node(cursor->node);
1599                 cursor->node = new_node;        /* locked and ref'd */
1600         } else {
1601                 cursor->parent_index = parent_index;
1602                 hammer_unlock(&new_node->lock);
1603                 hammer_rel_node(new_node);
1604         }
1605
1606         /*
1607          * Fixup left and right bounds
1608          */
1609         parent_elm = &parent->ondisk->elms[cursor->parent_index];
1610         cursor->left_bound = &parent_elm[0].internal.base;
1611         cursor->right_bound = &parent_elm[1].internal.base;
1612         KKASSERT(hammer_btree_cmp(cursor->left_bound,
1613                  &cursor->node->ondisk->elms[0].internal.base) <= 0);
1614         KKASSERT(hammer_btree_cmp(cursor->right_bound,
1615                  &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1616
1617 done:
1618         hammer_btree_unlock_children(cursor, &lockroot);
1619         hammer_cursor_downgrade(cursor);
1620         return (error);
1621 }
1622
1623 /*
1624  * Same as the above, but splits a full leaf node.
1625  *
1626  * This function
1627  */
1628 static
1629 int
1630 btree_split_leaf(hammer_cursor_t cursor)
1631 {
1632         hammer_node_ondisk_t ondisk;
1633         hammer_node_t parent;
1634         hammer_node_t leaf;
1635         hammer_mount_t hmp;
1636         hammer_node_t new_leaf;
1637         hammer_btree_elm_t elm;
1638         hammer_btree_elm_t parent_elm;
1639         hammer_base_elm_t mid_boundary;
1640         int parent_index;
1641         int made_root;
1642         int split;
1643         int error;
1644         const size_t esize = sizeof(*elm);
1645
1646         if ((error = hammer_cursor_upgrade(cursor)) != 0)
1647                 return(error);
1648         ++hammer_stats_btree_splits;
1649
1650         KKASSERT(hammer_btree_cmp(cursor->left_bound,
1651                  &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1652         KKASSERT(hammer_btree_cmp(cursor->right_bound,
1653                  &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1654
1655         /* 
1656          * Calculate the split point.  If the insertion point will be on
1657          * the left-hand side adjust the split point to give the right
1658          * hand side one additional node.
1659          *
1660          * Spikes are made up of two leaf elements which cannot be
1661          * safely split.
1662          */
1663         leaf = cursor->node;
1664         ondisk = leaf->ondisk;
1665         split = (ondisk->count + 1) / 2;
1666         if (cursor->index <= split)
1667                 --split;
1668         error = 0;
1669         hmp = leaf->hmp;
1670
1671         elm = &ondisk->elms[split];
1672
1673         KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1674         KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1675         KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1676         KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1677
1678         /*
1679          * If we are at the root of the tree, create a new root node with
1680          * 1 element and split normally.  Avoid making major modifications
1681          * until we know the whole operation will work.
1682          */
1683         if (ondisk->parent == 0) {
1684                 parent = hammer_alloc_btree(cursor->trans, &error);
1685                 if (parent == NULL)
1686                         goto done;
1687                 hammer_lock_ex(&parent->lock);
1688                 hammer_modify_node_noundo(cursor->trans, parent);
1689                 ondisk = parent->ondisk;
1690                 ondisk->count = 1;
1691                 ondisk->parent = 0;
1692                 ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1693                 ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1694                 ondisk->elms[0].base = hmp->root_btree_beg;
1695                 ondisk->elms[0].base.btype = leaf->ondisk->type;
1696                 ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1697                 ondisk->elms[1].base = hmp->root_btree_end;
1698                 /* ondisk->elms[1].base.btype = not used */
1699                 hammer_modify_node_done(parent);
1700                 made_root = 1;
1701                 parent_index = 0;       /* insertion point in parent */
1702         } else {
1703                 made_root = 0;
1704                 parent = cursor->parent;
1705                 parent_index = cursor->parent_index;
1706         }
1707
1708         /*
1709          * Split leaf into new_leaf at the split point.  Select a separator
1710          * value in-between the two leafs but with a bent towards the right
1711          * leaf since comparisons use an 'elm >= separator' inequality.
1712          *
1713          *  L L L L L L L L
1714          *
1715          *       x x P x x
1716          *        s S S s  
1717          *         /   \
1718          *  L L L L     L L L L
1719          */
1720         new_leaf = hammer_alloc_btree(cursor->trans, &error);
1721         if (new_leaf == NULL) {
1722                 if (made_root) {
1723                         hammer_unlock(&parent->lock);
1724                         hammer_delete_node(cursor->trans, parent);
1725                         hammer_rel_node(parent);
1726                 }
1727                 goto done;
1728         }
1729         hammer_lock_ex(&new_leaf->lock);
1730
1731         /*
1732          * Create the new node and copy the leaf elements from the split 
1733          * point on to the new node.
1734          */
1735         hammer_modify_node_all(cursor->trans, leaf);
1736         hammer_modify_node_noundo(cursor->trans, new_leaf);
1737         ondisk = leaf->ondisk;
1738         elm = &ondisk->elms[split];
1739         bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1740         new_leaf->ondisk->count = ondisk->count - split;
1741         new_leaf->ondisk->parent = parent->node_offset;
1742         new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1743         new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1744         KKASSERT(ondisk->type == new_leaf->ondisk->type);
1745         hammer_modify_node_done(new_leaf);
1746         hammer_cursor_split_node(leaf, new_leaf, split);
1747
1748         /*
1749          * Cleanup the original node.  Because this is a leaf node and
1750          * leaf nodes do not have a right-hand boundary, there
1751          * aren't any special edge cases to clean up.  We just fixup the
1752          * count.
1753          */
1754         ondisk->count = split;
1755
1756         /*
1757          * Insert the separator into the parent, fixup the parent's
1758          * reference to the original node, and reference the new node.
1759          * The separator is P.
1760          *
1761          * Remember that base.count does not include the right-hand boundary.
1762          * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1763          */
1764         hammer_modify_node_all(cursor->trans, parent);
1765         ondisk = parent->ondisk;
1766         KKASSERT(split != 0);
1767         KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1768         parent_elm = &ondisk->elms[parent_index+1];
1769         bcopy(parent_elm, parent_elm + 1,
1770               (ondisk->count - parent_index) * esize);
1771
1772         hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1773         parent_elm->internal.base.btype = new_leaf->ondisk->type;
1774         parent_elm->internal.subtree_offset = new_leaf->node_offset;
1775         parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1776         mid_boundary = &parent_elm->base;
1777         ++ondisk->count;
1778         hammer_modify_node_done(parent);
1779         hammer_cursor_inserted_element(parent, parent_index + 1);
1780
1781         /*
1782          * The filesystem's root B-Tree pointer may have to be updated.
1783          */
1784         if (made_root) {
1785                 hammer_volume_t volume;
1786
1787                 volume = hammer_get_root_volume(hmp, &error);
1788                 KKASSERT(error == 0);
1789
1790                 hammer_modify_volume_field(cursor->trans, volume,
1791                                            vol0_btree_root);
1792                 volume->ondisk->vol0_btree_root = parent->node_offset;
1793                 hammer_modify_volume_done(volume);
1794                 leaf->ondisk->parent = parent->node_offset;
1795                 if (cursor->parent) {
1796                         hammer_unlock(&cursor->parent->lock);
1797                         hammer_rel_node(cursor->parent);
1798                 }
1799                 cursor->parent = parent;        /* lock'd and ref'd */
1800                 hammer_rel_volume(volume, 0);
1801         }
1802         hammer_modify_node_done(leaf);
1803
1804         /*
1805          * Ok, now adjust the cursor depending on which element the original
1806          * index was pointing at.  If we are >= the split point the push node
1807          * is now in the new node.
1808          *
1809          * NOTE: If we are at the split point itself we need to select the
1810          * old or new node based on where key_beg's insertion point will be.
1811          * If we pick the wrong side the inserted element will wind up in
1812          * the wrong leaf node and outside that node's bounds.
1813          */
1814         if (cursor->index > split ||
1815             (cursor->index == split &&
1816              hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1817                 cursor->parent_index = parent_index + 1;
1818                 cursor->index -= split;
1819                 hammer_unlock(&cursor->node->lock);
1820                 hammer_rel_node(cursor->node);
1821                 cursor->node = new_leaf;
1822         } else {
1823                 cursor->parent_index = parent_index;
1824                 hammer_unlock(&new_leaf->lock);
1825                 hammer_rel_node(new_leaf);
1826         }
1827
1828         /*
1829          * Fixup left and right bounds
1830          */
1831         parent_elm = &parent->ondisk->elms[cursor->parent_index];
1832         cursor->left_bound = &parent_elm[0].internal.base;
1833         cursor->right_bound = &parent_elm[1].internal.base;
1834
1835         /*
1836          * Assert that the bounds are correct.
1837          */
1838         KKASSERT(hammer_btree_cmp(cursor->left_bound,
1839                  &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1840         KKASSERT(hammer_btree_cmp(cursor->right_bound,
1841                  &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1842         KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1843         KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1844
1845 done:
1846         hammer_cursor_downgrade(cursor);
1847         return (error);
1848 }
1849
1850 #if 0
1851
1852 /*
1853  * Recursively correct the right-hand boundary's create_tid to (tid) as
1854  * long as the rest of the key matches.  We have to recurse upward in
1855  * the tree as well as down the left side of each parent's right node.
1856  *
1857  * Return EDEADLK if we were only partially successful, forcing the caller
1858  * to try again.  The original cursor is not modified.  This routine can
1859  * also fail with EDEADLK if it is forced to throw away a portion of its
1860  * record history.
1861  *
1862  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1863  */
1864 struct hammer_rhb {
1865         TAILQ_ENTRY(hammer_rhb) entry;
1866         hammer_node_t   node;
1867         int             index;
1868 };
1869
1870 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1871
1872 int
1873 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1874 {
1875         struct hammer_mount *hmp;
1876         struct hammer_rhb_list rhb_list;
1877         hammer_base_elm_t elm;
1878         hammer_node_t orig_node;
1879         struct hammer_rhb *rhb;
1880         int orig_index;
1881         int error;
1882
1883         TAILQ_INIT(&rhb_list);
1884         hmp = cursor->trans->hmp;
1885
1886         /*
1887          * Save our position so we can restore it on return.  This also
1888          * gives us a stable 'elm'.
1889          */
1890         orig_node = cursor->node;
1891         hammer_ref_node(orig_node);
1892         hammer_lock_sh(&orig_node->lock);
1893         orig_index = cursor->index;
1894         elm = &orig_node->ondisk->elms[orig_index].base;
1895
1896         /*
1897          * Now build a list of parents going up, allocating a rhb
1898          * structure for each one.
1899          */
1900         while (cursor->parent) {
1901                 /*
1902                  * Stop if we no longer have any right-bounds to fix up
1903                  */
1904                 if (elm->obj_id != cursor->right_bound->obj_id ||
1905                     elm->rec_type != cursor->right_bound->rec_type ||
1906                     elm->key != cursor->right_bound->key) {
1907                         break;
1908                 }
1909
1910                 /*
1911                  * Stop if the right-hand bound's create_tid does not
1912                  * need to be corrected.
1913                  */
1914                 if (cursor->right_bound->create_tid >= tid)
1915                         break;
1916
1917                 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
1918                 rhb->node = cursor->parent;
1919                 rhb->index = cursor->parent_index;
1920                 hammer_ref_node(rhb->node);
1921                 hammer_lock_sh(&rhb->node->lock);
1922                 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1923
1924                 hammer_cursor_up(cursor);
1925         }
1926
1927         /*
1928          * now safely adjust the right hand bound for each rhb.  This may
1929          * also require taking the right side of the tree and iterating down
1930          * ITS left side.
1931          */
1932         error = 0;
1933         while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1934                 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1935                 if (error)
1936                         break;
1937                 TAILQ_REMOVE(&rhb_list, rhb, entry);
1938                 hammer_unlock(&rhb->node->lock);
1939                 hammer_rel_node(rhb->node);
1940                 kfree(rhb, hmp->m_misc);
1941
1942                 switch (cursor->node->ondisk->type) {
1943                 case HAMMER_BTREE_TYPE_INTERNAL:
1944                         /*
1945                          * Right-boundary for parent at internal node
1946                          * is one element to the right of the element whos
1947                          * right boundary needs adjusting.  We must then
1948                          * traverse down the left side correcting any left
1949                          * bounds (which may now be too far to the left).
1950                          */
1951                         ++cursor->index;
1952                         error = hammer_btree_correct_lhb(cursor, tid);
1953                         break;
1954                 default:
1955                         panic("hammer_btree_correct_rhb(): Bad node type");
1956                         error = EINVAL;
1957                         break;
1958                 }
1959         }
1960
1961         /*
1962          * Cleanup
1963          */
1964         while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1965                 TAILQ_REMOVE(&rhb_list, rhb, entry);
1966                 hammer_unlock(&rhb->node->lock);
1967                 hammer_rel_node(rhb->node);
1968                 kfree(rhb, hmp->m_misc);
1969         }
1970         error = hammer_cursor_seek(cursor, orig_node, orig_index);
1971         hammer_unlock(&orig_node->lock);
1972         hammer_rel_node(orig_node);
1973         return (error);
1974 }
1975
1976 /*
1977  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
1978  * bound going downward starting at the current cursor position.
1979  *
1980  * This function does not restore the cursor after use.
1981  */
1982 int
1983 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
1984 {
1985         struct hammer_rhb_list rhb_list;
1986         hammer_base_elm_t elm;
1987         hammer_base_elm_t cmp;
1988         struct hammer_rhb *rhb;
1989         struct hammer_mount *hmp;
1990         int error;
1991
1992         TAILQ_INIT(&rhb_list);
1993         hmp = cursor->trans->hmp;
1994
1995         cmp = &cursor->node->ondisk->elms[cursor->index].base;
1996
1997         /*
1998          * Record the node and traverse down the left-hand side for all
1999          * matching records needing a boundary correction.
2000          */
2001         error = 0;
2002         for (;;) {
2003                 rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2004                 rhb->node = cursor->node;
2005                 rhb->index = cursor->index;
2006                 hammer_ref_node(rhb->node);
2007                 hammer_lock_sh(&rhb->node->lock);
2008                 TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2009
2010                 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2011                         /*
2012                          * Nothing to traverse down if we are at the right
2013                          * boundary of an internal node.
2014                          */
2015                         if (cursor->index == cursor->node->ondisk->count)
2016                                 break;
2017                 } else {
2018                         elm = &cursor->node->ondisk->elms[cursor->index].base;
2019                         if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2020                                 break;
2021                         panic("Illegal leaf record type %02x", elm->btype);
2022                 }
2023                 error = hammer_cursor_down(cursor);
2024                 if (error)
2025                         break;
2026
2027                 elm = &cursor->node->ondisk->elms[cursor->index].base;
2028                 if (elm->obj_id != cmp->obj_id ||
2029                     elm->rec_type != cmp->rec_type ||
2030                     elm->key != cmp->key) {
2031                         break;
2032                 }
2033                 if (elm->create_tid >= tid)
2034                         break;
2035
2036         }
2037
2038         /*
2039          * Now we can safely adjust the left-hand boundary from the bottom-up.
2040          * The last element we remove from the list is the caller's right hand
2041          * boundary, which must also be adjusted.
2042          */
2043         while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2044                 error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2045                 if (error)
2046                         break;
2047                 TAILQ_REMOVE(&rhb_list, rhb, entry);
2048                 hammer_unlock(&rhb->node->lock);
2049                 hammer_rel_node(rhb->node);
2050                 kfree(rhb, hmp->m_misc);
2051
2052                 elm = &cursor->node->ondisk->elms[cursor->index].base;
2053                 if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2054                         hammer_modify_node(cursor->trans, cursor->node,
2055                                            &elm->create_tid,
2056                                            sizeof(elm->create_tid));
2057                         elm->create_tid = tid;
2058                         hammer_modify_node_done(cursor->node);
2059                 } else {
2060                         panic("hammer_btree_correct_lhb(): Bad element type");
2061                 }
2062         }
2063
2064         /*
2065          * Cleanup
2066          */
2067         while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2068                 TAILQ_REMOVE(&rhb_list, rhb, entry);
2069                 hammer_unlock(&rhb->node->lock);
2070                 hammer_rel_node(rhb->node);
2071                 kfree(rhb, hmp->m_misc);
2072         }
2073         return (error);
2074 }
2075
2076 #endif
2077
2078 /*
2079  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2080  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2081  * the operation due to a deadlock, or some other error.
2082  *
2083  * This routine is initially called with an empty leaf and may be
2084  * recursively called with single-element internal nodes.
2085  *
2086  * It should also be noted that when removing empty leaves we must be sure
2087  * to test and update mirror_tid because another thread may have deadlocked
2088  * against us (or someone) trying to propagate it up and cannot retry once
2089  * the node has been deleted.
2090  *
2091  * On return the cursor may end up pointing to an internal node, suitable
2092  * for further iteration but not for an immediate insertion or deletion.
2093  */
2094 static int
2095 btree_remove(hammer_cursor_t cursor)
2096 {
2097         hammer_node_ondisk_t ondisk;
2098         hammer_btree_elm_t elm;
2099         hammer_node_t node;
2100         hammer_node_t parent;
2101         const int esize = sizeof(*elm);
2102         int error;
2103
2104         node = cursor->node;
2105
2106         /*
2107          * When deleting the root of the filesystem convert it to
2108          * an empty leaf node.  Internal nodes cannot be empty.
2109          */
2110         ondisk = node->ondisk;
2111         if (ondisk->parent == 0) {
2112                 KKASSERT(cursor->parent == NULL);
2113                 hammer_modify_node_all(cursor->trans, node);
2114                 KKASSERT(ondisk == node->ondisk);
2115                 ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2116                 ondisk->count = 0;
2117                 hammer_modify_node_done(node);
2118                 cursor->index = 0;
2119                 return(0);
2120         }
2121
2122         parent = cursor->parent;
2123         hammer_cursor_removed_node(node, parent, cursor->parent_index);
2124
2125         /*
2126          * Attempt to remove the parent's reference to the child.  If the
2127          * parent would become empty we have to recurse.  If we fail we 
2128          * leave the parent pointing to an empty leaf node.
2129          *
2130          * We have to recurse successfully before we can delete the internal
2131          * node as it is illegal to have empty internal nodes.  Even though
2132          * the operation may be aborted we must still fixup any unlocked
2133          * cursors as if we had deleted the element prior to recursing
2134          * (by calling hammer_cursor_deleted_element()) so those cursors
2135          * are properly forced up the chain by the recursion.
2136          */
2137         if (parent->ondisk->count == 1) {
2138                 /*
2139                  * This special cursor_up_locked() call leaves the original
2140                  * node exclusively locked and referenced, leaves the
2141                  * original parent locked (as the new node), and locks the
2142                  * new parent.  It can return EDEADLK.
2143                  */
2144                 error = hammer_cursor_up_locked(cursor);
2145                 if (error == 0) {
2146                         hammer_cursor_deleted_element(cursor->node, 0);
2147                         error = btree_remove(cursor);
2148                         if (error == 0) {
2149                                 hammer_modify_node_all(cursor->trans, node);
2150                                 ondisk = node->ondisk;
2151                                 ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2152                                 ondisk->count = 0;
2153                                 hammer_modify_node_done(node);
2154                                 hammer_flush_node(node);
2155                                 hammer_delete_node(cursor->trans, node);
2156                         } else {
2157                                 kprintf("Warning: BTREE_REMOVE: Defering "
2158                                         "parent removal1 @ %016llx, skipping\n",
2159                                         node->node_offset);
2160                         }
2161                         hammer_unlock(&node->lock);
2162                         hammer_rel_node(node);
2163                 } else {
2164                         kprintf("Warning: BTREE_REMOVE: Defering parent "
2165                                 "removal2 @ %016llx, skipping\n",
2166                                 node->node_offset);
2167                 }
2168         } else {
2169                 KKASSERT(parent->ondisk->count > 1);
2170
2171                 hammer_modify_node_all(cursor->trans, parent);
2172                 ondisk = parent->ondisk;
2173                 KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2174
2175                 elm = &ondisk->elms[cursor->parent_index];
2176                 KKASSERT(elm->internal.subtree_offset == node->node_offset);
2177                 KKASSERT(ondisk->count > 0);
2178
2179                 /*
2180                  * We must retain the highest mirror_tid.  The deleted
2181                  * range is now encompassed by the element to the left.
2182                  * If we are already at the left edge the new left edge
2183                  * inherits mirror_tid.
2184                  *
2185                  * Note that bounds of the parent to our parent may create
2186                  * a gap to the left of our left-most node or to the right
2187                  * of our right-most node.  The gap is silently included
2188                  * in the mirror_tid's area of effect from the point of view
2189                  * of the scan.
2190                  */
2191                 if (cursor->parent_index) {
2192                         if (elm[-1].internal.mirror_tid <
2193                             elm[0].internal.mirror_tid) {
2194                                 elm[-1].internal.mirror_tid =
2195                                     elm[0].internal.mirror_tid;
2196                         }
2197                 } else {
2198                         if (elm[1].internal.mirror_tid <
2199                             elm[0].internal.mirror_tid) {
2200                                 elm[1].internal.mirror_tid =
2201                                     elm[0].internal.mirror_tid;
2202                         }
2203                 }
2204
2205                 /*
2206                  * Delete the subtree reference in the parent
2207                  */
2208                 bcopy(&elm[1], &elm[0],
2209                       (ondisk->count - cursor->parent_index) * esize);
2210                 --ondisk->count;
2211                 hammer_modify_node_done(parent);
2212                 hammer_cursor_deleted_element(parent, cursor->parent_index);
2213                 hammer_flush_node(node);
2214                 hammer_delete_node(cursor->trans, node);
2215
2216                 /*
2217                  * cursor->node is invalid, cursor up to make the cursor
2218                  * valid again.
2219                  */
2220                 error = hammer_cursor_up(cursor);
2221         }
2222         return (error);
2223 }
2224
2225 /*
2226  * Propagate cursor->trans->tid up the B-Tree starting at the current
2227  * cursor position using pseudofs info gleaned from the passed inode.
2228  *
2229  * The passed inode has no relationship to the cursor position other
2230  * then being in the same pseudofs as the insertion or deletion we
2231  * are propagating the mirror_tid for.
2232  */
2233 void
2234 hammer_btree_do_propagation(hammer_cursor_t cursor,
2235                             hammer_pseudofs_inmem_t pfsm,
2236                             hammer_btree_leaf_elm_t leaf)
2237 {
2238         hammer_cursor_t ncursor;
2239         hammer_tid_t mirror_tid;
2240         int error;
2241
2242         /*
2243          * We do not propagate a mirror_tid if the filesystem was mounted
2244          * in no-mirror mode.
2245          */
2246         if (cursor->trans->hmp->master_id < 0)
2247                 return;
2248
2249         /*
2250          * This is a bit of a hack because we cannot deadlock or return
2251          * EDEADLK here.  The related operation has already completed and
2252          * we must propagate the mirror_tid now regardless.
2253          *
2254          * Generate a new cursor which inherits the original's locks and
2255          * unlock the original.  Use the new cursor to propagate the
2256          * mirror_tid.  Then clean up the new cursor and reacquire locks
2257          * on the original.
2258          *
2259          * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2260          * original's locks and the original is tracked and must be
2261          * re-locked.
2262          */
2263         mirror_tid = cursor->node->ondisk->mirror_tid;
2264         KKASSERT(mirror_tid != 0);
2265         ncursor = hammer_push_cursor(cursor);
2266         error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2267         KKASSERT(error == 0);
2268         hammer_pop_cursor(cursor, ncursor);
2269 }
2270
2271
2272 /*
2273  * Propagate a mirror TID update upwards through the B-Tree to the root.
2274  *
2275  * A locked internal node must be passed in.  The node will remain locked
2276  * on return.
2277  *
2278  * This function syncs mirror_tid at the specified internal node's element,
2279  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2280  */
2281 static int
2282 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2283 {
2284         hammer_btree_internal_elm_t elm;
2285         hammer_node_t node;
2286         int error;
2287
2288         for (;;) {
2289                 error = hammer_cursor_up(cursor);
2290                 if (error == 0)
2291                         error = hammer_cursor_upgrade(cursor);
2292                 while (error == EDEADLK) {
2293                         hammer_recover_cursor(cursor);
2294                         error = hammer_cursor_upgrade(cursor);
2295                 }
2296                 if (error)
2297                         break;
2298                 node = cursor->node;
2299                 KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2300
2301                 /*
2302                  * Adjust the node's element
2303                  */
2304                 elm = &node->ondisk->elms[cursor->index].internal;
2305                 if (elm->mirror_tid >= mirror_tid)
2306                         break;
2307                 hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2308                                    sizeof(elm->mirror_tid));
2309                 elm->mirror_tid = mirror_tid;
2310                 hammer_modify_node_done(node);
2311                 if (hammer_debug_general & 0x0002) {
2312                         kprintf("mirror_propagate: propagate "
2313                                 "%016llx @%016llx:%d\n",
2314                                 mirror_tid, node->node_offset, cursor->index);
2315                 }
2316
2317
2318                 /*
2319                  * Adjust the node's mirror_tid aggregator
2320                  */
2321                 if (node->ondisk->mirror_tid >= mirror_tid)
2322                         return(0);
2323                 hammer_modify_node_field(cursor->trans, node, mirror_tid);
2324                 node->ondisk->mirror_tid = mirror_tid;
2325                 hammer_modify_node_done(node);
2326                 if (hammer_debug_general & 0x0002) {
2327                         kprintf("mirror_propagate: propagate "
2328                                 "%016llx @%016llx\n",
2329                                 mirror_tid, node->node_offset);
2330                 }
2331         }
2332         if (error == ENOENT)
2333                 error = 0;
2334         return(error);
2335 }
2336
2337 hammer_node_t
2338 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2339                         int *parent_indexp, int *errorp, int try_exclusive)
2340 {
2341         hammer_node_t parent;
2342         hammer_btree_elm_t elm;
2343         int i;
2344
2345         /*
2346          * Get the node
2347          */
2348         parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2349         if (*errorp) {
2350                 KKASSERT(parent == NULL);
2351                 return(NULL);
2352         }
2353         KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2354
2355         /*
2356          * Lock the node
2357          */
2358         if (try_exclusive) {
2359                 if (hammer_lock_ex_try(&parent->lock)) {
2360                         hammer_rel_node(parent);
2361                         *errorp = EDEADLK;
2362                         return(NULL);
2363                 }
2364         } else {
2365                 hammer_lock_sh(&parent->lock);
2366         }
2367
2368         /*
2369          * Figure out which element in the parent is pointing to the
2370          * child.
2371          */
2372         if (node->ondisk->count) {
2373                 i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2374                                              parent->ondisk);
2375         } else {
2376                 i = 0;
2377         }
2378         while (i < parent->ondisk->count) {
2379                 elm = &parent->ondisk->elms[i];
2380                 if (elm->internal.subtree_offset == node->node_offset)
2381                         break;
2382                 ++i;
2383         }
2384         if (i == parent->ondisk->count) {
2385                 hammer_unlock(&parent->lock);
2386                 panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2387         }
2388         *parent_indexp = i;
2389         KKASSERT(*errorp == 0);
2390         return(parent);
2391 }
2392
2393 /*
2394  * The element (elm) has been moved to a new internal node (node).
2395  *
2396  * If the element represents a pointer to an internal node that node's
2397  * parent must be adjusted to the element's new location.
2398  *
2399  * XXX deadlock potential here with our exclusive locks
2400  */
2401 int
2402 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2403                  hammer_btree_elm_t elm)
2404 {
2405         hammer_node_t child;
2406         int error;
2407
2408         error = 0;
2409
2410         switch(elm->base.btype) {
2411         case HAMMER_BTREE_TYPE_INTERNAL:
2412         case HAMMER_BTREE_TYPE_LEAF:
2413                 child = hammer_get_node(trans, elm->internal.subtree_offset,
2414                                         0, &error);
2415                 if (error == 0) {
2416                         hammer_modify_node_field(trans, child, parent);
2417                         child->ondisk->parent = node->node_offset;
2418                         hammer_modify_node_done(child);
2419                         hammer_rel_node(child);
2420                 }
2421                 break;
2422         default:
2423                 break;
2424         }
2425         return(error);
2426 }
2427
2428 /*
2429  * Initialize the root of a recursive B-Tree node lock list structure.
2430  */
2431 void
2432 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2433 {
2434         TAILQ_INIT(&parent->list);
2435         parent->parent = NULL;
2436         parent->node = node;
2437         parent->index = -1;
2438         parent->count = node->ondisk->count;
2439         parent->copy = NULL;
2440         parent->flags = 0;
2441 }
2442
2443 /*
2444  * Exclusively lock all the children of node.  This is used by the split
2445  * code to prevent anyone from accessing the children of a cursor node
2446  * while we fix-up its parent offset.
2447  *
2448  * If we don't lock the children we can really mess up cursors which block
2449  * trying to cursor-up into our node.
2450  *
2451  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2452  * error is returned the cursor is adjusted to block on termination.
2453  *
2454  * The caller is responsible for managing parent->node, the root's node
2455  * is usually aliased from a cursor.
2456  */
2457 int
2458 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2459                            hammer_node_lock_t parent)
2460 {
2461         hammer_node_t node;
2462         hammer_node_lock_t item;
2463         hammer_node_ondisk_t ondisk;
2464         hammer_btree_elm_t elm;
2465         hammer_node_t child;
2466         struct hammer_mount *hmp;
2467         int error;
2468         int i;
2469
2470         node = parent->node;
2471         ondisk = node->ondisk;
2472         error = 0;
2473         hmp = cursor->trans->hmp;
2474
2475         /*
2476          * We really do not want to block on I/O with exclusive locks held,
2477          * pre-get the children before trying to lock the mess.  This is
2478          * only done one-level deep for now.
2479          */
2480         for (i = 0; i < ondisk->count; ++i) {
2481                 ++hammer_stats_btree_elements;
2482                 elm = &ondisk->elms[i];
2483                 if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2484                     elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2485                         continue;
2486                 }
2487                 child = hammer_get_node(cursor->trans,
2488                                         elm->internal.subtree_offset,
2489                                         0, &error);
2490                 if (child)
2491                         hammer_rel_node(child);
2492         }
2493
2494         /*
2495          * Do it for real
2496          */
2497         for (i = 0; error == 0 && i < ondisk->count; ++i) {
2498                 ++hammer_stats_btree_elements;
2499                 elm = &ondisk->elms[i];
2500
2501                 switch(elm->base.btype) {
2502                 case HAMMER_BTREE_TYPE_INTERNAL:
2503                 case HAMMER_BTREE_TYPE_LEAF:
2504                         KKASSERT(elm->internal.subtree_offset != 0);
2505                         child = hammer_get_node(cursor->trans,
2506                                                 elm->internal.subtree_offset,
2507                                                 0, &error);
2508                         break;
2509                 default:
2510                         child = NULL;
2511                         break;
2512                 }
2513                 if (child) {
2514                         if (hammer_lock_ex_try(&child->lock) != 0) {
2515                                 if (cursor->deadlk_node == NULL) {
2516                                         cursor->deadlk_node = child;
2517                                         hammer_ref_node(cursor->deadlk_node);
2518                                 }
2519                                 error = EDEADLK;
2520                                 hammer_rel_node(child);
2521                         } else {
2522                                 item = kmalloc(sizeof(*item), hmp->m_misc,
2523                                                M_WAITOK|M_ZERO);
2524                                 TAILQ_INSERT_TAIL(&parent->list, item, entry);
2525                                 TAILQ_INIT(&item->list);
2526                                 item->parent = parent;
2527                                 item->node = child;
2528                                 item->index = i;
2529                                 item->count = child->ondisk->count;
2530
2531                                 /*
2532                                  * Recurse (used by the rebalancing code)
2533                                  */
2534                                 if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2535                                         error = hammer_btree_lock_children(
2536                                                         cursor,
2537                                                         depth - 1,
2538                                                         item);
2539                                 }
2540                         }
2541                 }
2542         }
2543         if (error)
2544                 hammer_btree_unlock_children(cursor, parent);
2545         return(error);
2546 }
2547
2548 /*
2549  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2550  * including the parent.
2551  */
2552 void
2553 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2554 {
2555         hammer_mount_t hmp = cursor->trans->hmp;
2556         hammer_node_lock_t item;
2557
2558         if (parent->copy == NULL) {
2559                 parent->copy = kmalloc(sizeof(*parent->copy), hmp->m_misc,
2560                                        M_WAITOK);
2561                 *parent->copy = *parent->node->ondisk;
2562         }
2563         TAILQ_FOREACH(item, &parent->list, entry) {
2564                 hammer_btree_lock_copy(cursor, item);
2565         }
2566 }
2567
2568 /*
2569  * Recursively sync modified copies to the media.
2570  */
2571 void
2572 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2573 {
2574         hammer_node_lock_t item;
2575
2576         if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2577                 hammer_modify_node_all(cursor->trans, parent->node);
2578                 *parent->node->ondisk = *parent->copy;
2579                 hammer_modify_node_done(parent->node);
2580                 if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2581                         hammer_flush_node(parent->node);
2582                         hammer_delete_node(cursor->trans, parent->node);
2583                 }
2584         }
2585         TAILQ_FOREACH(item, &parent->list, entry) {
2586                 hammer_btree_sync_copy(cursor, item);
2587         }
2588 }
2589
2590 /*
2591  * Release previously obtained node locks.  The caller is responsible for
2592  * cleaning up parent->node itself (its usually just aliased from a cursor),
2593  * but this function will take care of the copies.
2594  */
2595 void
2596 hammer_btree_unlock_children(hammer_cursor_t cursor, hammer_node_lock_t parent)
2597 {
2598         hammer_node_lock_t item;
2599
2600         if (parent->copy) {
2601                 kfree(parent->copy, cursor->trans->hmp->m_misc);
2602                 parent->copy = NULL;    /* safety */
2603         }
2604         while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2605                 TAILQ_REMOVE(&parent->list, item, entry);
2606                 hammer_btree_unlock_children(cursor, item);
2607                 hammer_unlock(&item->node->lock);
2608                 hammer_rel_node(item->node);
2609                 kfree(item, cursor->trans->hmp->m_misc);
2610         }
2611 }
2612
2613 /************************************************************************
2614  *                         MISCELLANIOUS SUPPORT                        *
2615  ************************************************************************/
2616
2617 /*
2618  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2619  *
2620  * Note that for this particular function a return value of -1, 0, or +1
2621  * can denote a match if create_tid is otherwise discounted.  A create_tid
2622  * of zero is considered to be 'infinity' in comparisons.
2623  *
2624  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2625  */
2626 int
2627 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2628 {
2629         if (key1->localization < key2->localization)
2630                 return(-5);
2631         if (key1->localization > key2->localization)
2632                 return(5);
2633
2634         if (key1->obj_id < key2->obj_id)
2635                 return(-4);
2636         if (key1->obj_id > key2->obj_id)
2637                 return(4);
2638
2639         if (key1->rec_type < key2->rec_type)
2640                 return(-3);
2641         if (key1->rec_type > key2->rec_type)
2642                 return(3);
2643
2644         if (key1->key < key2->key)
2645                 return(-2);
2646         if (key1->key > key2->key)
2647                 return(2);
2648
2649         /*
2650          * A create_tid of zero indicates a record which is undeletable
2651          * and must be considered to have a value of positive infinity.
2652          */
2653         if (key1->create_tid == 0) {
2654                 if (key2->create_tid == 0)
2655                         return(0);
2656                 return(1);
2657         }
2658         if (key2->create_tid == 0)
2659                 return(-1);
2660         if (key1->create_tid < key2->create_tid)
2661                 return(-1);
2662         if (key1->create_tid > key2->create_tid)
2663                 return(1);
2664         return(0);
2665 }
2666
2667 /*
2668  * Test a timestamp against an element to determine whether the
2669  * element is visible.  A timestamp of 0 means 'infinity'.
2670  */
2671 int
2672 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2673 {
2674         if (asof == 0) {
2675                 if (base->delete_tid)
2676                         return(1);
2677                 return(0);
2678         }
2679         if (asof < base->create_tid)
2680                 return(-1);
2681         if (base->delete_tid && asof >= base->delete_tid)
2682                 return(1);
2683         return(0);
2684 }
2685
2686 /*
2687  * Create a separator half way inbetween key1 and key2.  For fields just
2688  * one unit apart, the separator will match key2.  key1 is on the left-hand
2689  * side and key2 is on the right-hand side.
2690  *
2691  * key2 must be >= the separator.  It is ok for the separator to match key2.
2692  *
2693  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2694  * key2.
2695  *
2696  * NOTE: It might be beneficial to just scrap this whole mess and just
2697  * set the separator to key2.
2698  */
2699 #define MAKE_SEPARATOR(key1, key2, dest, field) \
2700         dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2701
2702 static void
2703 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2704                       hammer_base_elm_t dest)
2705 {
2706         bzero(dest, sizeof(*dest));
2707
2708         dest->rec_type = key2->rec_type;
2709         dest->key = key2->key;
2710         dest->obj_id = key2->obj_id;
2711         dest->create_tid = key2->create_tid;
2712
2713         MAKE_SEPARATOR(key1, key2, dest, localization);
2714         if (key1->localization == key2->localization) {
2715                 MAKE_SEPARATOR(key1, key2, dest, obj_id);
2716                 if (key1->obj_id == key2->obj_id) {
2717                         MAKE_SEPARATOR(key1, key2, dest, rec_type);
2718                         if (key1->rec_type == key2->rec_type) {
2719                                 MAKE_SEPARATOR(key1, key2, dest, key);
2720                                 /*
2721                                  * Don't bother creating a separator for
2722                                  * create_tid, which also conveniently avoids
2723                                  * having to handle the create_tid == 0
2724                                  * (infinity) case.  Just leave create_tid
2725                                  * set to key2.
2726                                  *
2727                                  * Worst case, dest matches key2 exactly,
2728                                  * which is acceptable.
2729                                  */
2730                         }
2731                 }
2732         }
2733 }
2734
2735 #undef MAKE_SEPARATOR
2736
2737 /*
2738  * Return whether a generic internal or leaf node is full
2739  */
2740 static int
2741 btree_node_is_full(hammer_node_ondisk_t node)
2742 {
2743         switch(node->type) {
2744         case HAMMER_BTREE_TYPE_INTERNAL:
2745                 if (node->count == HAMMER_BTREE_INT_ELMS)
2746                         return(1);
2747                 break;
2748         case HAMMER_BTREE_TYPE_LEAF:
2749                 if (node->count == HAMMER_BTREE_LEAF_ELMS)
2750                         return(1);
2751                 break;
2752         default:
2753                 panic("illegal btree subtype");
2754         }
2755         return(0);
2756 }
2757
2758 #if 0
2759 static int
2760 btree_max_elements(u_int8_t type)
2761 {
2762         if (type == HAMMER_BTREE_TYPE_LEAF)
2763                 return(HAMMER_BTREE_LEAF_ELMS);
2764         if (type == HAMMER_BTREE_TYPE_INTERNAL)
2765                 return(HAMMER_BTREE_INT_ELMS);
2766         panic("btree_max_elements: bad type %d\n", type);
2767 }
2768 #endif
2769
2770 void
2771 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2772 {
2773         hammer_btree_elm_t elm;
2774         int i;
2775
2776         kprintf("node %p count=%d parent=%016llx type=%c\n",
2777                 ondisk, ondisk->count, ondisk->parent, ondisk->type);
2778
2779         /*
2780          * Dump both boundary elements if an internal node
2781          */
2782         if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2783                 for (i = 0; i <= ondisk->count; ++i) {
2784                         elm = &ondisk->elms[i];
2785                         hammer_print_btree_elm(elm, ondisk->type, i);
2786                 }
2787         } else {
2788                 for (i = 0; i < ondisk->count; ++i) {
2789                         elm = &ondisk->elms[i];
2790                         hammer_print_btree_elm(elm, ondisk->type, i);
2791                 }
2792         }
2793 }
2794
2795 void
2796 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2797 {
2798         kprintf("  %2d", i);
2799         kprintf("\tobj_id       = %016llx\n", elm->base.obj_id);
2800         kprintf("\tkey          = %016llx\n", elm->base.key);
2801         kprintf("\tcreate_tid   = %016llx\n", elm->base.create_tid);
2802         kprintf("\tdelete_tid   = %016llx\n", elm->base.delete_tid);
2803         kprintf("\trec_type     = %04x\n", elm->base.rec_type);
2804         kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
2805         kprintf("\tbtype        = %02x (%c)\n",
2806                 elm->base.btype,
2807                 (elm->base.btype ? elm->base.btype : '?'));
2808         kprintf("\tlocalization = %02x\n", elm->base.localization);
2809
2810         switch(type) {
2811         case HAMMER_BTREE_TYPE_INTERNAL:
2812                 kprintf("\tsubtree_off  = %016llx\n",
2813                         elm->internal.subtree_offset);
2814                 break;
2815         case HAMMER_BTREE_TYPE_RECORD:
2816                 kprintf("\tdata_offset  = %016llx\n", elm->leaf.data_offset);
2817                 kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
2818                 kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
2819                 break;
2820         }
2821 }