Merge remote-tracking branch 'origin/vendor/LDNS'
[dragonfly.git] / contrib / binutils-2.27 / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49  public:
50   Memory_region(const char* name, size_t namelen, unsigned int attributes,
51                 Expression* start, Expression* length)
52     : name_(name, namelen),
53       attributes_(attributes),
54       start_(start),
55       length_(length),
56       current_offset_(0),
57       vma_sections_(),
58       lma_sections_(),
59       last_section_(NULL)
60   { }
61
62   // Return the name of this region.
63   const std::string&
64   name() const
65   { return this->name_; }
66
67   // Return the start address of this region.
68   Expression*
69   start_address() const
70   { return this->start_; }
71
72   // Return the length of this region.
73   Expression*
74   length() const
75   { return this->length_; }
76
77   // Print the region (when debugging).
78   void
79   print(FILE*) const;
80
81   // Return true if <name,namelen> matches this region.
82   bool
83   name_match(const char* name, size_t namelen)
84   {
85     return (this->name_.length() == namelen
86             && strncmp(this->name_.c_str(), name, namelen) == 0);
87   }
88
89   Expression*
90   get_current_address() const
91   {
92     return
93       script_exp_binary_add(this->start_,
94                             script_exp_integer(this->current_offset_));
95   }
96
97   void
98   set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99   {
100     uint64_t start = this->start_->eval(symtab, layout, false);
101     uint64_t len = this->length_->eval(symtab, layout, false);
102     if (addr < start || addr >= start + len)
103       gold_error(_("address 0x%llx is not within region %s"),
104                  static_cast<unsigned long long>(addr),
105                  this->name_.c_str());
106     else if (addr < start + this->current_offset_)
107       gold_error(_("address 0x%llx moves dot backwards in region %s"),
108                  static_cast<unsigned long long>(addr),
109                  this->name_.c_str());
110     this->current_offset_ = addr - start;
111   }
112
113   void
114   increment_offset(std::string section_name, uint64_t amount,
115                    const Symbol_table* symtab, const Layout* layout)
116   {
117     this->current_offset_ += amount;
118
119     if (this->current_offset_
120         > this->length_->eval(symtab, layout, false))
121       gold_error(_("section %s overflows end of region %s"),
122                  section_name.c_str(), this->name_.c_str());
123   }
124
125   // Returns true iff there is room left in this region
126   // for AMOUNT more bytes of data.
127   bool
128   has_room_for(const Symbol_table* symtab, const Layout* layout,
129                uint64_t amount) const
130   {
131     return (this->current_offset_ + amount
132             < this->length_->eval(symtab, layout, false));
133   }
134
135   // Return true if the provided section flags
136   // are compatible with this region's attributes.
137   bool
138   attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
139
140   void
141   add_section(Output_section_definition* sec, bool vma)
142   {
143     if (vma)
144       this->vma_sections_.push_back(sec);
145     else
146       this->lma_sections_.push_back(sec);
147   }
148
149   typedef std::vector<Output_section_definition*> Section_list;
150
151   // Return the start of the list of sections
152   // whose VMAs are taken from this region.
153   Section_list::const_iterator
154   get_vma_section_list_start() const
155   { return this->vma_sections_.begin(); }
156
157   // Return the start of the list of sections
158   // whose LMAs are taken from this region.
159   Section_list::const_iterator
160   get_lma_section_list_start() const
161   { return this->lma_sections_.begin(); }
162
163   // Return the end of the list of sections
164   // whose VMAs are taken from this region.
165   Section_list::const_iterator
166   get_vma_section_list_end() const
167   { return this->vma_sections_.end(); }
168
169   // Return the end of the list of sections
170   // whose LMAs are taken from this region.
171   Section_list::const_iterator
172   get_lma_section_list_end() const
173   { return this->lma_sections_.end(); }
174
175   Output_section_definition*
176   get_last_section() const
177   { return this->last_section_; }
178
179   void
180   set_last_section(Output_section_definition* sec)
181   { this->last_section_ = sec; }
182
183  private:
184
185   std::string name_;
186   unsigned int attributes_;
187   Expression* start_;
188   Expression* length_;
189   // The offset to the next free byte in the region.
190   // Note - for compatibility with GNU LD we only maintain one offset
191   // regardless of whether the region is being used for VMA values,
192   // LMA values, or both.
193   uint64_t current_offset_;
194   // A list of sections whose VMAs are set inside this region.
195   Section_list vma_sections_;
196   // A list of sections whose LMAs are set inside this region.
197   Section_list lma_sections_;
198   // The latest section to make use of this region.
199   Output_section_definition* last_section_;
200 };
201
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
204
205 bool
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207                                      elfcpp::Elf_Xword type) const
208 {
209   unsigned int attrs = this->attributes_;
210
211   // No attributes means that this region is not compatible with anything.
212   if (attrs == 0)
213     return false;
214
215   bool match = true;
216   do
217     {
218       switch (attrs & - attrs)
219         {
220         case MEM_EXECUTABLE:
221           if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222             match = false;
223           break;
224
225         case MEM_WRITEABLE:
226           if ((flags & elfcpp::SHF_WRITE) == 0)
227             match = false;
228           break;
229
230         case MEM_READABLE:
231           // All sections are presumed readable.
232           break;
233
234         case MEM_ALLOCATABLE:
235           if ((flags & elfcpp::SHF_ALLOC) == 0)
236             match = false;
237           break;
238
239         case MEM_INITIALIZED:
240           if ((type & elfcpp::SHT_NOBITS) != 0)
241             match = false;
242           break;
243         }
244       attrs &= ~ (attrs & - attrs);
245     }
246   while (attrs != 0);
247   
248   return match;
249 }
250   
251 // Print a memory region.
252
253 void
254 Memory_region::print(FILE* f) const
255 {
256   fprintf(f, "  %s", this->name_.c_str());
257
258   unsigned int attrs = this->attributes_;
259   if (attrs != 0)
260     {
261       fprintf(f, " (");
262       do
263         {
264           switch (attrs & - attrs)
265             {
266             case MEM_EXECUTABLE:  fputc('x', f); break;
267             case MEM_WRITEABLE:   fputc('w', f); break;
268             case MEM_READABLE:    fputc('r', f); break;
269             case MEM_ALLOCATABLE: fputc('a', f); break;
270             case MEM_INITIALIZED: fputc('i', f); break;
271             default:
272               gold_unreachable();
273             }
274           attrs &= ~ (attrs & - attrs);
275         }
276       while (attrs != 0);
277       fputc(')', f);
278     }
279
280   fprintf(f, " : origin = ");
281   this->start_->print(f);
282   fprintf(f, ", length = ");
283   this->length_->print(f);
284   fprintf(f, "\n");
285 }
286
287 // Manage orphan sections.  This is intended to be largely compatible
288 // with the GNU linker.  The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement.  We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
292
293 class Orphan_section_placement
294 {
295  private:
296   typedef Script_sections::Elements_iterator Elements_iterator;
297
298  public:
299   Orphan_section_placement();
300
301   // Handle an output section during initialization of this mapping.
302   void
303   output_section_init(const std::string& name, Output_section*,
304                       Elements_iterator location);
305
306   // Initialize the last location.
307   void
308   last_init(Elements_iterator location);
309
310   // Set *PWHERE to the address of an iterator pointing to the
311   // location to use for an orphan section.  Return true if the
312   // iterator has a value, false otherwise.
313   bool
314   find_place(Output_section*, Elements_iterator** pwhere);
315
316   // Return the iterator being used for sections at the very end of
317   // the linker script.
318   Elements_iterator
319   last_place() const;
320
321  private:
322   // The places that we specifically recognize.  This list is copied
323   // from the GNU linker.
324   enum Place_index
325   {
326     PLACE_TEXT,
327     PLACE_RODATA,
328     PLACE_DATA,
329     PLACE_TLS,
330     PLACE_TLS_BSS,
331     PLACE_BSS,
332     PLACE_REL,
333     PLACE_INTERP,
334     PLACE_NONALLOC,
335     PLACE_LAST,
336     PLACE_MAX
337   };
338
339   // The information we keep for a specific place.
340   struct Place
341   {
342     // The name of sections for this place.
343     const char* name;
344     // Whether we have a location for this place.
345     bool have_location;
346     // The iterator for this place.
347     Elements_iterator location;
348   };
349
350   // Initialize one place element.
351   void
352   initialize_place(Place_index, const char*);
353
354   // The places.
355   Place places_[PLACE_MAX];
356   // True if this is the first call to output_section_init.
357   bool first_init_;
358 };
359
360 // Initialize Orphan_section_placement.
361
362 Orphan_section_placement::Orphan_section_placement()
363   : first_init_(true)
364 {
365   this->initialize_place(PLACE_TEXT, ".text");
366   this->initialize_place(PLACE_RODATA, ".rodata");
367   this->initialize_place(PLACE_DATA, ".data");
368   this->initialize_place(PLACE_TLS, NULL);
369   this->initialize_place(PLACE_TLS_BSS, NULL);
370   this->initialize_place(PLACE_BSS, ".bss");
371   this->initialize_place(PLACE_REL, NULL);
372   this->initialize_place(PLACE_INTERP, ".interp");
373   this->initialize_place(PLACE_NONALLOC, NULL);
374   this->initialize_place(PLACE_LAST, NULL);
375 }
376
377 // Initialize one place element.
378
379 void
380 Orphan_section_placement::initialize_place(Place_index index, const char* name)
381 {
382   this->places_[index].name = name;
383   this->places_[index].have_location = false;
384 }
385
386 // While initializing the Orphan_section_placement information, this
387 // is called once for each output section named in the linker script.
388 // If we found an output section during the link, it will be passed in
389 // OS.
390
391 void
392 Orphan_section_placement::output_section_init(const std::string& name,
393                                               Output_section* os,
394                                               Elements_iterator location)
395 {
396   bool first_init = this->first_init_;
397   this->first_init_ = false;
398
399   for (int i = 0; i < PLACE_MAX; ++i)
400     {
401       if (this->places_[i].name != NULL && this->places_[i].name == name)
402         {
403           if (this->places_[i].have_location)
404             {
405               // We have already seen a section with this name.
406               return;
407             }
408
409           this->places_[i].location = location;
410           this->places_[i].have_location = true;
411
412           // If we just found the .bss section, restart the search for
413           // an unallocated section.  This follows the GNU linker's
414           // behaviour.
415           if (i == PLACE_BSS)
416             this->places_[PLACE_NONALLOC].have_location = false;
417
418           return;
419         }
420     }
421
422   // Relocation sections.
423   if (!this->places_[PLACE_REL].have_location
424       && os != NULL
425       && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
426       && (os->flags() & elfcpp::SHF_ALLOC) != 0)
427     {
428       this->places_[PLACE_REL].location = location;
429       this->places_[PLACE_REL].have_location = true;
430     }
431
432   // We find the location for unallocated sections by finding the
433   // first debugging or comment section after the BSS section (if
434   // there is one).
435   if (!this->places_[PLACE_NONALLOC].have_location
436       && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
437     {
438       // We add orphan sections after the location in PLACES_.  We
439       // want to store unallocated sections before LOCATION.  If this
440       // is the very first section, we can't use it.
441       if (!first_init)
442         {
443           --location;
444           this->places_[PLACE_NONALLOC].location = location;
445           this->places_[PLACE_NONALLOC].have_location = true;
446         }
447     }
448 }
449
450 // Initialize the last location.
451
452 void
453 Orphan_section_placement::last_init(Elements_iterator location)
454 {
455   this->places_[PLACE_LAST].location = location;
456   this->places_[PLACE_LAST].have_location = true;
457 }
458
459 // Set *PWHERE to the address of an iterator pointing to the location
460 // to use for an orphan section.  Return true if the iterator has a
461 // value, false otherwise.
462
463 bool
464 Orphan_section_placement::find_place(Output_section* os,
465                                      Elements_iterator** pwhere)
466 {
467   // Figure out where OS should go.  This is based on the GNU linker
468   // code.  FIXME: The GNU linker handles small data sections
469   // specially, but we don't.
470   elfcpp::Elf_Word type = os->type();
471   elfcpp::Elf_Xword flags = os->flags();
472   Place_index index;
473   if ((flags & elfcpp::SHF_ALLOC) == 0
474       && !Layout::is_debug_info_section(os->name()))
475     index = PLACE_NONALLOC;
476   else if ((flags & elfcpp::SHF_ALLOC) == 0)
477     index = PLACE_LAST;
478   else if (type == elfcpp::SHT_NOTE)
479     index = PLACE_INTERP;
480   else if ((flags & elfcpp::SHF_TLS) != 0)
481     {
482       if (type == elfcpp::SHT_NOBITS)
483         index = PLACE_TLS_BSS;
484       else
485         index = PLACE_TLS;
486     }
487   else if (type == elfcpp::SHT_NOBITS)
488     index = PLACE_BSS;
489   else if ((flags & elfcpp::SHF_WRITE) != 0)
490     index = PLACE_DATA;
491   else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
492     index = PLACE_REL;
493   else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
494     index = PLACE_RODATA;
495   else
496     index = PLACE_TEXT;
497
498   // If we don't have a location yet, try to find one based on a
499   // plausible ordering of sections.
500   if (!this->places_[index].have_location)
501     {
502       Place_index follow;
503       switch (index)
504         {
505         default:
506           follow = PLACE_MAX;
507           break;
508         case PLACE_RODATA:
509           follow = PLACE_TEXT;
510           break;
511         case PLACE_BSS:
512           follow = PLACE_DATA;
513           break;
514         case PLACE_REL:
515           follow = PLACE_TEXT;
516           break;
517         case PLACE_INTERP:
518           follow = PLACE_TEXT;
519           break;
520         case PLACE_TLS:
521           follow = PLACE_DATA;
522           break;
523         case PLACE_TLS_BSS:
524           follow = PLACE_TLS;
525           if (!this->places_[PLACE_TLS].have_location)
526             follow = PLACE_DATA;
527           break;
528         }
529       if (follow != PLACE_MAX && this->places_[follow].have_location)
530         {
531           // Set the location of INDEX to the location of FOLLOW.  The
532           // location of INDEX will then be incremented by the caller,
533           // so anything in INDEX will continue to be after anything
534           // in FOLLOW.
535           this->places_[index].location = this->places_[follow].location;
536           this->places_[index].have_location = true;
537         }
538     }
539
540   *pwhere = &this->places_[index].location;
541   bool ret = this->places_[index].have_location;
542
543   // The caller will set the location.
544   this->places_[index].have_location = true;
545
546   return ret;
547 }
548
549 // Return the iterator being used for sections at the very end of the
550 // linker script.
551
552 Orphan_section_placement::Elements_iterator
553 Orphan_section_placement::last_place() const
554 {
555   gold_assert(this->places_[PLACE_LAST].have_location);
556   return this->places_[PLACE_LAST].location;
557 }
558
559 // An element in a SECTIONS clause.
560
561 class Sections_element
562 {
563  public:
564   Sections_element()
565   { }
566
567   virtual ~Sections_element()
568   { }
569
570   // Return whether an output section is relro.
571   virtual bool
572   is_relro() const
573   { return false; }
574
575   // Record that an output section is relro.
576   virtual void
577   set_is_relro()
578   { }
579
580   // Create any required output sections.  The only real
581   // implementation is in Output_section_definition.
582   virtual void
583   create_sections(Layout*)
584   { }
585
586   // Add any symbol being defined to the symbol table.
587   virtual void
588   add_symbols_to_table(Symbol_table*)
589   { }
590
591   // Finalize symbols and check assertions.
592   virtual void
593   finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
594   { }
595
596   // Return the output section name to use for an input file name and
597   // section name.  This only real implementation is in
598   // Output_section_definition.
599   virtual const char*
600   output_section_name(const char*, const char*, Output_section***,
601                       Script_sections::Section_type*, bool*)
602   { return NULL; }
603
604   // Initialize OSP with an output section.
605   virtual void
606   orphan_section_init(Orphan_section_placement*,
607                       Script_sections::Elements_iterator)
608   { }
609
610   // Set section addresses.  This includes applying assignments if the
611   // expression is an absolute value.
612   virtual void
613   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
614                         uint64_t*)
615   { }
616
617   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
618   // this section is constrained, and the input sections do not match,
619   // return the constraint, and set *POSD.
620   virtual Section_constraint
621   check_constraint(Output_section_definition**)
622   { return CONSTRAINT_NONE; }
623
624   // See if this is the alternate output section for a constrained
625   // output section.  If it is, transfer the Output_section and return
626   // true.  Otherwise return false.
627   virtual bool
628   alternate_constraint(Output_section_definition*, Section_constraint)
629   { return false; }
630
631   // Get the list of segments to use for an allocated section when
632   // using a PHDRS clause.  If this is an allocated section, return
633   // the Output_section, and set *PHDRS_LIST (the first parameter) to
634   // the list of PHDRS to which it should be attached.  If the PHDRS
635   // were not specified, don't change *PHDRS_LIST.  When not returning
636   // NULL, set *ORPHAN (the second parameter) according to whether
637   // this is an orphan section--one that is not mentioned in the
638   // linker script.
639   virtual Output_section*
640   allocate_to_segment(String_list**, bool*)
641   { return NULL; }
642
643   // Look for an output section by name and return the address, the
644   // load address, the alignment, and the size.  This is used when an
645   // expression refers to an output section which was not actually
646   // created.  This returns true if the section was found, false
647   // otherwise.  The only real definition is for
648   // Output_section_definition.
649   virtual bool
650   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
651                           uint64_t*) const
652   { return false; }
653
654   // Return the associated Output_section if there is one.
655   virtual Output_section*
656   get_output_section() const
657   { return NULL; }
658
659   // Set the section's memory regions.
660   virtual void
661   set_memory_region(Memory_region*, bool)
662   { gold_error(_("Attempt to set a memory region for a non-output section")); }
663
664   // Print the element for debugging purposes.
665   virtual void
666   print(FILE* f) const = 0;
667 };
668
669 // An assignment in a SECTIONS clause outside of an output section.
670
671 class Sections_element_assignment : public Sections_element
672 {
673  public:
674   Sections_element_assignment(const char* name, size_t namelen,
675                               Expression* val, bool provide, bool hidden)
676     : assignment_(name, namelen, false, val, provide, hidden)
677   { }
678
679   // Add the symbol to the symbol table.
680   void
681   add_symbols_to_table(Symbol_table* symtab)
682   { this->assignment_.add_to_table(symtab); }
683
684   // Finalize the symbol.
685   void
686   finalize_symbols(Symbol_table* symtab, const Layout* layout,
687                    uint64_t* dot_value)
688   {
689     this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
690   }
691
692   // Set the section address.  There is no section here, but if the
693   // value is absolute, we set the symbol.  This permits us to use
694   // absolute symbols when setting dot.
695   void
696   set_section_addresses(Symbol_table* symtab, Layout* layout,
697                         uint64_t* dot_value, uint64_t*, uint64_t*)
698   {
699     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
700   }
701
702   // Print for debugging.
703   void
704   print(FILE* f) const
705   {
706     fprintf(f, "  ");
707     this->assignment_.print(f);
708   }
709
710  private:
711   Symbol_assignment assignment_;
712 };
713
714 // An assignment to the dot symbol in a SECTIONS clause outside of an
715 // output section.
716
717 class Sections_element_dot_assignment : public Sections_element
718 {
719  public:
720   Sections_element_dot_assignment(Expression* val)
721     : val_(val)
722   { }
723
724   // Finalize the symbol.
725   void
726   finalize_symbols(Symbol_table* symtab, const Layout* layout,
727                    uint64_t* dot_value)
728   {
729     // We ignore the section of the result because outside of an
730     // output section definition the dot symbol is always considered
731     // to be absolute.
732     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
733                                            NULL, NULL, NULL, false);
734   }
735
736   // Update the dot symbol while setting section addresses.
737   void
738   set_section_addresses(Symbol_table* symtab, Layout* layout,
739                         uint64_t* dot_value, uint64_t* dot_alignment,
740                         uint64_t* load_address)
741   {
742     *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
743                                            NULL, NULL, dot_alignment, false);
744     *load_address = *dot_value;
745   }
746
747   // Print for debugging.
748   void
749   print(FILE* f) const
750   {
751     fprintf(f, "  . = ");
752     this->val_->print(f);
753     fprintf(f, "\n");
754   }
755
756  private:
757   Expression* val_;
758 };
759
760 // An assertion in a SECTIONS clause outside of an output section.
761
762 class Sections_element_assertion : public Sections_element
763 {
764  public:
765   Sections_element_assertion(Expression* check, const char* message,
766                              size_t messagelen)
767     : assertion_(check, message, messagelen)
768   { }
769
770   // Check the assertion.
771   void
772   finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
773   { this->assertion_.check(symtab, layout); }
774
775   // Print for debugging.
776   void
777   print(FILE* f) const
778   {
779     fprintf(f, "  ");
780     this->assertion_.print(f);
781   }
782
783  private:
784   Script_assertion assertion_;
785 };
786
787 // An element in an output section in a SECTIONS clause.
788
789 class Output_section_element
790 {
791  public:
792   // A list of input sections.
793   typedef std::list<Output_section::Input_section> Input_section_list;
794
795   Output_section_element()
796   { }
797
798   virtual ~Output_section_element()
799   { }
800
801   // Return whether this element requires an output section to exist.
802   virtual bool
803   needs_output_section() const
804   { return false; }
805
806   // Add any symbol being defined to the symbol table.
807   virtual void
808   add_symbols_to_table(Symbol_table*)
809   { }
810
811   // Finalize symbols and check assertions.
812   virtual void
813   finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
814   { }
815
816   // Return whether this element matches FILE_NAME and SECTION_NAME.
817   // The only real implementation is in Output_section_element_input.
818   virtual bool
819   match_name(const char*, const char*, bool *) const
820   { return false; }
821
822   // Set section addresses.  This includes applying assignments if the
823   // expression is an absolute value.
824   virtual void
825   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
826                         uint64_t*, uint64_t*, Output_section**, std::string*,
827                         Input_section_list*)
828   { }
829
830   // Print the element for debugging purposes.
831   virtual void
832   print(FILE* f) const = 0;
833
834  protected:
835   // Return a fill string that is LENGTH bytes long, filling it with
836   // FILL.
837   std::string
838   get_fill_string(const std::string* fill, section_size_type length) const;
839 };
840
841 std::string
842 Output_section_element::get_fill_string(const std::string* fill,
843                                         section_size_type length) const
844 {
845   std::string this_fill;
846   this_fill.reserve(length);
847   while (this_fill.length() + fill->length() <= length)
848     this_fill += *fill;
849   if (this_fill.length() < length)
850     this_fill.append(*fill, 0, length - this_fill.length());
851   return this_fill;
852 }
853
854 // A symbol assignment in an output section.
855
856 class Output_section_element_assignment : public Output_section_element
857 {
858  public:
859   Output_section_element_assignment(const char* name, size_t namelen,
860                                     Expression* val, bool provide,
861                                     bool hidden)
862     : assignment_(name, namelen, false, val, provide, hidden)
863   { }
864
865   // Add the symbol to the symbol table.
866   void
867   add_symbols_to_table(Symbol_table* symtab)
868   { this->assignment_.add_to_table(symtab); }
869
870   // Finalize the symbol.
871   void
872   finalize_symbols(Symbol_table* symtab, const Layout* layout,
873                    uint64_t* dot_value, Output_section** dot_section)
874   {
875     this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
876                                         *dot_section);
877   }
878
879   // Set the section address.  There is no section here, but if the
880   // value is absolute, we set the symbol.  This permits us to use
881   // absolute symbols when setting dot.
882   void
883   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
884                         uint64_t, uint64_t* dot_value, uint64_t*,
885                         Output_section** dot_section, std::string*,
886                         Input_section_list*)
887   {
888     this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
889                                       *dot_section);
890   }
891
892   // Print for debugging.
893   void
894   print(FILE* f) const
895   {
896     fprintf(f, "    ");
897     this->assignment_.print(f);
898   }
899
900  private:
901   Symbol_assignment assignment_;
902 };
903
904 // An assignment to the dot symbol in an output section.
905
906 class Output_section_element_dot_assignment : public Output_section_element
907 {
908  public:
909   Output_section_element_dot_assignment(Expression* val)
910     : val_(val)
911   { }
912
913   // An assignment to dot within an output section is enough to force
914   // the output section to exist.
915   bool
916   needs_output_section() const
917   { return true; }
918
919   // Finalize the symbol.
920   void
921   finalize_symbols(Symbol_table* symtab, const Layout* layout,
922                    uint64_t* dot_value, Output_section** dot_section)
923   {
924     *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
925                                            *dot_section, dot_section, NULL,
926                                            true);
927   }
928
929   // Update the dot symbol while setting section addresses.
930   void
931   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932                         uint64_t, uint64_t* dot_value, uint64_t*,
933                         Output_section** dot_section, std::string*,
934                         Input_section_list*);
935
936   // Print for debugging.
937   void
938   print(FILE* f) const
939   {
940     fprintf(f, "    . = ");
941     this->val_->print(f);
942     fprintf(f, "\n");
943   }
944
945  private:
946   Expression* val_;
947 };
948
949 // Update the dot symbol while setting section addresses.
950
951 void
952 Output_section_element_dot_assignment::set_section_addresses(
953     Symbol_table* symtab,
954     Layout* layout,
955     Output_section* output_section,
956     uint64_t,
957     uint64_t* dot_value,
958     uint64_t* dot_alignment,
959     Output_section** dot_section,
960     std::string* fill,
961     Input_section_list*)
962 {
963   uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
964                                                 *dot_value, *dot_section,
965                                                 dot_section, dot_alignment,
966                                                 true);
967   if (next_dot < *dot_value)
968     gold_error(_("dot may not move backward"));
969   if (next_dot > *dot_value && output_section != NULL)
970     {
971       section_size_type length = convert_to_section_size_type(next_dot
972                                                               - *dot_value);
973       Output_section_data* posd;
974       if (fill->empty())
975         posd = new Output_data_zero_fill(length, 0);
976       else
977         {
978           std::string this_fill = this->get_fill_string(fill, length);
979           posd = new Output_data_const(this_fill, 0);
980         }
981       output_section->add_output_section_data(posd);
982       layout->new_output_section_data_from_script(posd);
983     }
984   *dot_value = next_dot;
985 }
986
987 // An assertion in an output section.
988
989 class Output_section_element_assertion : public Output_section_element
990 {
991  public:
992   Output_section_element_assertion(Expression* check, const char* message,
993                                    size_t messagelen)
994     : assertion_(check, message, messagelen)
995   { }
996
997   void
998   print(FILE* f) const
999   {
1000     fprintf(f, "    ");
1001     this->assertion_.print(f);
1002   }
1003
1004  private:
1005   Script_assertion assertion_;
1006 };
1007
1008 // We use a special instance of Output_section_data to handle BYTE,
1009 // SHORT, etc.  This permits forward references to symbols in the
1010 // expressions.
1011
1012 class Output_data_expression : public Output_section_data
1013 {
1014  public:
1015   Output_data_expression(int size, bool is_signed, Expression* val,
1016                          const Symbol_table* symtab, const Layout* layout,
1017                          uint64_t dot_value, Output_section* dot_section)
1018     : Output_section_data(size, 0, true),
1019       is_signed_(is_signed), val_(val), symtab_(symtab),
1020       layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1021   { }
1022
1023  protected:
1024   // Write the data to the output file.
1025   void
1026   do_write(Output_file*);
1027
1028   // Write the data to a buffer.
1029   void
1030   do_write_to_buffer(unsigned char*);
1031
1032   // Write to a map file.
1033   void
1034   do_print_to_mapfile(Mapfile* mapfile) const
1035   { mapfile->print_output_data(this, _("** expression")); }
1036
1037  private:
1038   template<bool big_endian>
1039   void
1040   endian_write_to_buffer(uint64_t, unsigned char*);
1041
1042   bool is_signed_;
1043   Expression* val_;
1044   const Symbol_table* symtab_;
1045   const Layout* layout_;
1046   uint64_t dot_value_;
1047   Output_section* dot_section_;
1048 };
1049
1050 // Write the data element to the output file.
1051
1052 void
1053 Output_data_expression::do_write(Output_file* of)
1054 {
1055   unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1056   this->write_to_buffer(view);
1057   of->write_output_view(this->offset(), this->data_size(), view);
1058 }
1059
1060 // Write the data element to a buffer.
1061
1062 void
1063 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1064 {
1065   uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1066                                            true, this->dot_value_,
1067                                            this->dot_section_, NULL, NULL,
1068                                            false);
1069
1070   if (parameters->target().is_big_endian())
1071     this->endian_write_to_buffer<true>(val, buf);
1072   else
1073     this->endian_write_to_buffer<false>(val, buf);
1074 }
1075
1076 template<bool big_endian>
1077 void
1078 Output_data_expression::endian_write_to_buffer(uint64_t val,
1079                                                unsigned char* buf)
1080 {
1081   switch (this->data_size())
1082     {
1083     case 1:
1084       elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1085       break;
1086     case 2:
1087       elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1088       break;
1089     case 4:
1090       elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1091       break;
1092     case 8:
1093       if (parameters->target().get_size() == 32)
1094         {
1095           val &= 0xffffffff;
1096           if (this->is_signed_ && (val & 0x80000000) != 0)
1097             val |= 0xffffffff00000000LL;
1098         }
1099       elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1100       break;
1101     default:
1102       gold_unreachable();
1103     }
1104 }
1105
1106 // A data item in an output section.
1107
1108 class Output_section_element_data : public Output_section_element
1109 {
1110  public:
1111   Output_section_element_data(int size, bool is_signed, Expression* val)
1112     : size_(size), is_signed_(is_signed), val_(val)
1113   { }
1114
1115   // If there is a data item, then we must create an output section.
1116   bool
1117   needs_output_section() const
1118   { return true; }
1119
1120   // Finalize symbols--we just need to update dot.
1121   void
1122   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1123                    Output_section**)
1124   { *dot_value += this->size_; }
1125
1126   // Store the value in the section.
1127   void
1128   set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1129                         uint64_t* dot_value, uint64_t*, Output_section**,
1130                         std::string*, Input_section_list*);
1131
1132   // Print for debugging.
1133   void
1134   print(FILE*) const;
1135
1136  private:
1137   // The size in bytes.
1138   int size_;
1139   // Whether the value is signed.
1140   bool is_signed_;
1141   // The value.
1142   Expression* val_;
1143 };
1144
1145 // Store the value in the section.
1146
1147 void
1148 Output_section_element_data::set_section_addresses(
1149     Symbol_table* symtab,
1150     Layout* layout,
1151     Output_section* os,
1152     uint64_t,
1153     uint64_t* dot_value,
1154     uint64_t*,
1155     Output_section** dot_section,
1156     std::string*,
1157     Input_section_list*)
1158 {
1159   gold_assert(os != NULL);
1160   Output_data_expression* expression =
1161     new Output_data_expression(this->size_, this->is_signed_, this->val_,
1162                                symtab, layout, *dot_value, *dot_section);
1163   os->add_output_section_data(expression);
1164   layout->new_output_section_data_from_script(expression);
1165   *dot_value += this->size_;
1166 }
1167
1168 // Print for debugging.
1169
1170 void
1171 Output_section_element_data::print(FILE* f) const
1172 {
1173   const char* s;
1174   switch (this->size_)
1175     {
1176     case 1:
1177       s = "BYTE";
1178       break;
1179     case 2:
1180       s = "SHORT";
1181       break;
1182     case 4:
1183       s = "LONG";
1184       break;
1185     case 8:
1186       if (this->is_signed_)
1187         s = "SQUAD";
1188       else
1189         s = "QUAD";
1190       break;
1191     default:
1192       gold_unreachable();
1193     }
1194   fprintf(f, "    %s(", s);
1195   this->val_->print(f);
1196   fprintf(f, ")\n");
1197 }
1198
1199 // A fill value setting in an output section.
1200
1201 class Output_section_element_fill : public Output_section_element
1202 {
1203  public:
1204   Output_section_element_fill(Expression* val)
1205     : val_(val)
1206   { }
1207
1208   // Update the fill value while setting section addresses.
1209   void
1210   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1211                         uint64_t, uint64_t* dot_value, uint64_t*,
1212                         Output_section** dot_section,
1213                         std::string* fill, Input_section_list*)
1214   {
1215     Output_section* fill_section;
1216     uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1217                                                   *dot_value, *dot_section,
1218                                                   &fill_section, NULL, false);
1219     if (fill_section != NULL)
1220       gold_warning(_("fill value is not absolute"));
1221     // FIXME: The GNU linker supports fill values of arbitrary length.
1222     unsigned char fill_buff[4];
1223     elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1224     fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1225   }
1226
1227   // Print for debugging.
1228   void
1229   print(FILE* f) const
1230   {
1231     fprintf(f, "    FILL(");
1232     this->val_->print(f);
1233     fprintf(f, ")\n");
1234   }
1235
1236  private:
1237   // The new fill value.
1238   Expression* val_;
1239 };
1240
1241 // An input section specification in an output section
1242
1243 class Output_section_element_input : public Output_section_element
1244 {
1245  public:
1246   Output_section_element_input(const Input_section_spec* spec, bool keep);
1247
1248   // Finalize symbols--just update the value of the dot symbol.
1249   void
1250   finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1251                    Output_section** dot_section)
1252   {
1253     *dot_value = this->final_dot_value_;
1254     *dot_section = this->final_dot_section_;
1255   }
1256
1257   // See whether we match FILE_NAME and SECTION_NAME as an input section.
1258   // If we do then also indicate whether the section should be KEPT.
1259   bool
1260   match_name(const char* file_name, const char* section_name, bool* keep) const;
1261
1262   // Set the section address.
1263   void
1264   set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1265                         uint64_t subalign, uint64_t* dot_value, uint64_t*,
1266                         Output_section**, std::string* fill,
1267                         Input_section_list*);
1268
1269   // Print for debugging.
1270   void
1271   print(FILE* f) const;
1272
1273  private:
1274   // An input section pattern.
1275   struct Input_section_pattern
1276   {
1277     std::string pattern;
1278     bool pattern_is_wildcard;
1279     Sort_wildcard sort;
1280
1281     Input_section_pattern(const char* patterna, size_t patternlena,
1282                           Sort_wildcard sorta)
1283       : pattern(patterna, patternlena),
1284         pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1285         sort(sorta)
1286     { }
1287   };
1288
1289   typedef std::vector<Input_section_pattern> Input_section_patterns;
1290
1291   // Filename_exclusions is a pair of filename pattern and a bool
1292   // indicating whether the filename is a wildcard.
1293   typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1294
1295   // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1296   // indicates whether this is a wildcard pattern.
1297   static inline bool
1298   match(const char* string, const char* pattern, bool is_wildcard_pattern)
1299   {
1300     return (is_wildcard_pattern
1301             ? fnmatch(pattern, string, 0) == 0
1302             : strcmp(string, pattern) == 0);
1303   }
1304
1305   // See if we match a file name.
1306   bool
1307   match_file_name(const char* file_name) const;
1308
1309   // The file name pattern.  If this is the empty string, we match all
1310   // files.
1311   std::string filename_pattern_;
1312   // Whether the file name pattern is a wildcard.
1313   bool filename_is_wildcard_;
1314   // How the file names should be sorted.  This may only be
1315   // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1316   Sort_wildcard filename_sort_;
1317   // The list of file names to exclude.
1318   Filename_exclusions filename_exclusions_;
1319   // The list of input section patterns.
1320   Input_section_patterns input_section_patterns_;
1321   // Whether to keep this section when garbage collecting.
1322   bool keep_;
1323   // The value of dot after including all matching sections.
1324   uint64_t final_dot_value_;
1325   // The section where dot is defined after including all matching
1326   // sections.
1327   Output_section* final_dot_section_;
1328 };
1329
1330 // Construct Output_section_element_input.  The parser records strings
1331 // as pointers into a copy of the script file, which will go away when
1332 // parsing is complete.  We make sure they are in std::string objects.
1333
1334 Output_section_element_input::Output_section_element_input(
1335     const Input_section_spec* spec,
1336     bool keep)
1337   : filename_pattern_(),
1338     filename_is_wildcard_(false),
1339     filename_sort_(spec->file.sort),
1340     filename_exclusions_(),
1341     input_section_patterns_(),
1342     keep_(keep),
1343     final_dot_value_(0),
1344     final_dot_section_(NULL)
1345 {
1346   // The filename pattern "*" is common, and matches all files.  Turn
1347   // it into the empty string.
1348   if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1349     this->filename_pattern_.assign(spec->file.name.value,
1350                                    spec->file.name.length);
1351   this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1352
1353   if (spec->input_sections.exclude != NULL)
1354     {
1355       for (String_list::const_iterator p =
1356              spec->input_sections.exclude->begin();
1357            p != spec->input_sections.exclude->end();
1358            ++p)
1359         {
1360           bool is_wildcard = is_wildcard_string((*p).c_str());
1361           this->filename_exclusions_.push_back(std::make_pair(*p,
1362                                                               is_wildcard));
1363         }
1364     }
1365
1366   if (spec->input_sections.sections != NULL)
1367     {
1368       Input_section_patterns& isp(this->input_section_patterns_);
1369       for (String_sort_list::const_iterator p =
1370              spec->input_sections.sections->begin();
1371            p != spec->input_sections.sections->end();
1372            ++p)
1373         isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1374                                             p->sort));
1375     }
1376 }
1377
1378 // See whether we match FILE_NAME.
1379
1380 bool
1381 Output_section_element_input::match_file_name(const char* file_name) const
1382 {
1383   if (!this->filename_pattern_.empty())
1384     {
1385       // If we were called with no filename, we refuse to match a
1386       // pattern which requires a file name.
1387       if (file_name == NULL)
1388         return false;
1389
1390       if (!match(file_name, this->filename_pattern_.c_str(),
1391                  this->filename_is_wildcard_))
1392         return false;
1393     }
1394
1395   if (file_name != NULL)
1396     {
1397       // Now we have to see whether FILE_NAME matches one of the
1398       // exclusion patterns, if any.
1399       for (Filename_exclusions::const_iterator p =
1400              this->filename_exclusions_.begin();
1401            p != this->filename_exclusions_.end();
1402            ++p)
1403         {
1404           if (match(file_name, p->first.c_str(), p->second))
1405             return false;
1406         }
1407     }
1408
1409   return true;
1410 }
1411
1412 // See whether we match FILE_NAME and SECTION_NAME.  If we do then
1413 // KEEP indicates whether the section should survive garbage collection.
1414
1415 bool
1416 Output_section_element_input::match_name(const char* file_name,
1417                                          const char* section_name,
1418                                          bool *keep) const
1419 {
1420   if (!this->match_file_name(file_name))
1421     return false;
1422
1423   *keep = this->keep_;
1424
1425   // If there are no section name patterns, then we match.
1426   if (this->input_section_patterns_.empty())
1427     return true;
1428
1429   // See whether we match the section name patterns.
1430   for (Input_section_patterns::const_iterator p =
1431          this->input_section_patterns_.begin();
1432        p != this->input_section_patterns_.end();
1433        ++p)
1434     {
1435       if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1436         return true;
1437     }
1438
1439   // We didn't match any section names, so we didn't match.
1440   return false;
1441 }
1442
1443 // Information we use to sort the input sections.
1444
1445 class Input_section_info
1446 {
1447  public:
1448   Input_section_info(const Output_section::Input_section& input_section)
1449     : input_section_(input_section), section_name_(),
1450       size_(0), addralign_(1)
1451   { }
1452
1453   // Return the simple input section.
1454   const Output_section::Input_section&
1455   input_section() const
1456   { return this->input_section_; }
1457
1458   // Return the object.
1459   Relobj*
1460   relobj() const
1461   { return this->input_section_.relobj(); }
1462
1463   // Return the section index.
1464   unsigned int
1465   shndx()
1466   { return this->input_section_.shndx(); }
1467
1468   // Return the section name.
1469   const std::string&
1470   section_name() const
1471   { return this->section_name_; }
1472
1473   // Set the section name.
1474   void
1475   set_section_name(const std::string name)
1476   {
1477     if (is_compressed_debug_section(name.c_str()))
1478       this->section_name_ = corresponding_uncompressed_section_name(name);
1479     else
1480       this->section_name_ = name;
1481   }
1482
1483   // Return the section size.
1484   uint64_t
1485   size() const
1486   { return this->size_; }
1487
1488   // Set the section size.
1489   void
1490   set_size(uint64_t size)
1491   { this->size_ = size; }
1492
1493   // Return the address alignment.
1494   uint64_t
1495   addralign() const
1496   { return this->addralign_; }
1497
1498   // Set the address alignment.
1499   void
1500   set_addralign(uint64_t addralign)
1501   { this->addralign_ = addralign; }
1502
1503  private:
1504   // Input section, can be a relaxed section.
1505   Output_section::Input_section input_section_;
1506   // Name of the section. 
1507   std::string section_name_;
1508   // Section size.
1509   uint64_t size_;
1510   // Address alignment.
1511   uint64_t addralign_;
1512 };
1513
1514 // A class to sort the input sections.
1515
1516 class Input_section_sorter
1517 {
1518  public:
1519   Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1520     : filename_sort_(filename_sort), section_sort_(section_sort)
1521   { }
1522
1523   bool
1524   operator()(const Input_section_info&, const Input_section_info&) const;
1525
1526  private:
1527   static unsigned long
1528   get_init_priority(const char*);
1529
1530   Sort_wildcard filename_sort_;
1531   Sort_wildcard section_sort_;
1532 };
1533
1534 // Return a relative priority of the section with the specified NAME
1535 // (a lower value meand a higher priority), or 0 if it should be compared
1536 // with others as strings.
1537 // The implementation of this function is copied from ld/ldlang.c.
1538
1539 unsigned long
1540 Input_section_sorter::get_init_priority(const char* name)
1541 {
1542   char* end;
1543   unsigned long init_priority;
1544
1545   // GCC uses the following section names for the init_priority
1546   // attribute with numerical values 101 and 65535 inclusive. A
1547   // lower value means a higher priority.
1548   // 
1549   // 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
1550   //    decimal numerical value of the init_priority attribute.
1551   //    The order of execution in .init_array is forward and
1552   //    .fini_array is backward.
1553   // 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
1554   //    decimal numerical value of the init_priority attribute.
1555   //    The order of execution in .ctors is backward and .dtors
1556   //    is forward.
1557
1558   if (strncmp(name, ".init_array.", 12) == 0
1559       || strncmp(name, ".fini_array.", 12) == 0)
1560     {
1561       init_priority = strtoul(name + 12, &end, 10);
1562       return *end ? 0 : init_priority;
1563     }
1564   else if (strncmp(name, ".ctors.", 7) == 0
1565            || strncmp(name, ".dtors.", 7) == 0)
1566     {
1567       init_priority = strtoul(name + 7, &end, 10);
1568       return *end ? 0 : 65535 - init_priority;
1569     }
1570
1571   return 0;
1572 }
1573
1574 bool
1575 Input_section_sorter::operator()(const Input_section_info& isi1,
1576                                  const Input_section_info& isi2) const
1577 {
1578   if (this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1579     {
1580       unsigned long ip1 = get_init_priority(isi1.section_name().c_str());
1581       unsigned long ip2 = get_init_priority(isi2.section_name().c_str());
1582       if (ip1 != 0 && ip2 != 0 && ip1 != ip2)
1583         return ip1 < ip2;
1584     }
1585   if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1586       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1587       || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1588           && isi1.addralign() == isi2.addralign())
1589       || this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1590     {
1591       if (isi1.section_name() != isi2.section_name())
1592         return isi1.section_name() < isi2.section_name();
1593     }
1594   if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1595       || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1596       || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1597     {
1598       if (isi1.addralign() != isi2.addralign())
1599         return isi1.addralign() < isi2.addralign();
1600     }
1601   if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1602     {
1603       if (isi1.relobj()->name() != isi2.relobj()->name())
1604         return (isi1.relobj()->name() < isi2.relobj()->name());
1605     }
1606
1607   // Otherwise we leave them in the same order.
1608   return false;
1609 }
1610
1611 // Set the section address.  Look in INPUT_SECTIONS for sections which
1612 // match this spec, sort them as specified, and add them to the output
1613 // section.
1614
1615 void
1616 Output_section_element_input::set_section_addresses(
1617     Symbol_table*,
1618     Layout* layout,
1619     Output_section* output_section,
1620     uint64_t subalign,
1621     uint64_t* dot_value,
1622     uint64_t*,
1623     Output_section** dot_section,
1624     std::string* fill,
1625     Input_section_list* input_sections)
1626 {
1627   // We build a list of sections which match each
1628   // Input_section_pattern.
1629
1630   // If none of the patterns specify a sort option, we throw all
1631   // matching input sections into a single bin, in the order we
1632   // find them.  Otherwise, we put matching input sections into
1633   // a separate bin for each pattern, and sort each one as
1634   // specified.  Thus, an input section spec like this:
1635   //   *(.foo .bar)
1636   // will group all .foo and .bar sections in the order seen,
1637   // whereas this:
1638   //   *(.foo) *(.bar)
1639   // will group all .foo sections followed by all .bar sections.
1640   // This matches Gnu ld behavior.
1641
1642   // Things get really weird, though, when you add a sort spec
1643   // on some, but not all, of the patterns, like this:
1644   //   *(SORT_BY_NAME(.foo) .bar)
1645   // We do not attempt to match Gnu ld behavior in this case.
1646
1647   typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1648   size_t input_pattern_count = this->input_section_patterns_.size();
1649   size_t bin_count = 1;
1650   bool any_patterns_with_sort = false;
1651   for (size_t i = 0; i < input_pattern_count; ++i)
1652     {
1653       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1654       if (isp.sort != SORT_WILDCARD_NONE)
1655         any_patterns_with_sort = true;
1656     }
1657   if (any_patterns_with_sort)
1658     bin_count = input_pattern_count;
1659   Matching_sections matching_sections(bin_count);
1660
1661   // Look through the list of sections for this output section.  Add
1662   // each one which matches to one of the elements of
1663   // MATCHING_SECTIONS.
1664
1665   Input_section_list::iterator p = input_sections->begin();
1666   while (p != input_sections->end())
1667     {
1668       Relobj* relobj = p->relobj();
1669       unsigned int shndx = p->shndx();      
1670       Input_section_info isi(*p);
1671
1672       // Calling section_name and section_addralign is not very
1673       // efficient.
1674
1675       // Lock the object so that we can get information about the
1676       // section.  This is OK since we know we are single-threaded
1677       // here.
1678       {
1679         const Task* task = reinterpret_cast<const Task*>(-1);
1680         Task_lock_obj<Object> tl(task, relobj);
1681
1682         isi.set_section_name(relobj->section_name(shndx));
1683         if (p->is_relaxed_input_section())
1684           {
1685             // We use current data size because relaxed section sizes may not
1686             // have finalized yet.
1687             isi.set_size(p->relaxed_input_section()->current_data_size());
1688             isi.set_addralign(p->relaxed_input_section()->addralign());
1689           }
1690         else
1691           {
1692             isi.set_size(relobj->section_size(shndx));
1693             isi.set_addralign(relobj->section_addralign(shndx));
1694           }
1695       }
1696
1697       if (!this->match_file_name(relobj->name().c_str()))
1698         ++p;
1699       else if (this->input_section_patterns_.empty())
1700         {
1701           matching_sections[0].push_back(isi);
1702           p = input_sections->erase(p);
1703         }
1704       else
1705         {
1706           size_t i;
1707           for (i = 0; i < input_pattern_count; ++i)
1708             {
1709               const Input_section_pattern&
1710                 isp(this->input_section_patterns_[i]);
1711               if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1712                         isp.pattern_is_wildcard))
1713                 break;
1714             }
1715
1716           if (i >= input_pattern_count)
1717             ++p;
1718           else
1719             {
1720               if (i >= bin_count)
1721                 i = 0;
1722               matching_sections[i].push_back(isi);
1723               p = input_sections->erase(p);
1724             }
1725         }
1726     }
1727
1728   // Look through MATCHING_SECTIONS.  Sort each one as specified,
1729   // using a stable sort so that we get the default order when
1730   // sections are otherwise equal.  Add each input section to the
1731   // output section.
1732
1733   uint64_t dot = *dot_value;
1734   for (size_t i = 0; i < bin_count; ++i)
1735     {
1736       if (matching_sections[i].empty())
1737         continue;
1738
1739       gold_assert(output_section != NULL);
1740
1741       const Input_section_pattern& isp(this->input_section_patterns_[i]);
1742       if (isp.sort != SORT_WILDCARD_NONE
1743           || this->filename_sort_ != SORT_WILDCARD_NONE)
1744         std::stable_sort(matching_sections[i].begin(),
1745                          matching_sections[i].end(),
1746                          Input_section_sorter(this->filename_sort_,
1747                                               isp.sort));
1748
1749       for (std::vector<Input_section_info>::const_iterator p =
1750              matching_sections[i].begin();
1751            p != matching_sections[i].end();
1752            ++p)
1753         {
1754           // Override the original address alignment if SUBALIGN is specified
1755           // and is greater than the original alignment.  We need to make a
1756           // copy of the input section to modify the alignment.
1757           Output_section::Input_section sis(p->input_section());
1758
1759           uint64_t this_subalign = sis.addralign();
1760           if (!sis.is_input_section())
1761             sis.output_section_data()->finalize_data_size();    
1762           uint64_t data_size = sis.data_size();
1763           if (this_subalign < subalign)
1764             {
1765               this_subalign = subalign;
1766               sis.set_addralign(subalign);
1767             }
1768
1769           uint64_t address = align_address(dot, this_subalign);
1770
1771           if (address > dot && !fill->empty())
1772             {
1773               section_size_type length =
1774                 convert_to_section_size_type(address - dot);
1775               std::string this_fill = this->get_fill_string(fill, length);
1776               Output_section_data* posd = new Output_data_const(this_fill, 0);
1777               output_section->add_output_section_data(posd);
1778               layout->new_output_section_data_from_script(posd);
1779             }
1780
1781           output_section->add_script_input_section(sis);
1782           dot = address + data_size;
1783         }
1784     }
1785
1786   // An SHF_TLS/SHT_NOBITS section does not take up any
1787   // address space.
1788   if (output_section == NULL
1789       || (output_section->flags() & elfcpp::SHF_TLS) == 0
1790       || output_section->type() != elfcpp::SHT_NOBITS)
1791     *dot_value = dot;
1792
1793   this->final_dot_value_ = *dot_value;
1794   this->final_dot_section_ = *dot_section;
1795 }
1796
1797 // Print for debugging.
1798
1799 void
1800 Output_section_element_input::print(FILE* f) const
1801 {
1802   fprintf(f, "    ");
1803
1804   if (this->keep_)
1805     fprintf(f, "KEEP(");
1806
1807   if (!this->filename_pattern_.empty())
1808     {
1809       bool need_close_paren = false;
1810       switch (this->filename_sort_)
1811         {
1812         case SORT_WILDCARD_NONE:
1813           break;
1814         case SORT_WILDCARD_BY_NAME:
1815           fprintf(f, "SORT_BY_NAME(");
1816           need_close_paren = true;
1817           break;
1818         default:
1819           gold_unreachable();
1820         }
1821
1822       fprintf(f, "%s", this->filename_pattern_.c_str());
1823
1824       if (need_close_paren)
1825         fprintf(f, ")");
1826     }
1827
1828   if (!this->input_section_patterns_.empty()
1829       || !this->filename_exclusions_.empty())
1830     {
1831       fprintf(f, "(");
1832
1833       bool need_space = false;
1834       if (!this->filename_exclusions_.empty())
1835         {
1836           fprintf(f, "EXCLUDE_FILE(");
1837           bool need_comma = false;
1838           for (Filename_exclusions::const_iterator p =
1839                  this->filename_exclusions_.begin();
1840                p != this->filename_exclusions_.end();
1841                ++p)
1842             {
1843               if (need_comma)
1844                 fprintf(f, ", ");
1845               fprintf(f, "%s", p->first.c_str());
1846               need_comma = true;
1847             }
1848           fprintf(f, ")");
1849           need_space = true;
1850         }
1851
1852       for (Input_section_patterns::const_iterator p =
1853              this->input_section_patterns_.begin();
1854            p != this->input_section_patterns_.end();
1855            ++p)
1856         {
1857           if (need_space)
1858             fprintf(f, " ");
1859
1860           int close_parens = 0;
1861           switch (p->sort)
1862             {
1863             case SORT_WILDCARD_NONE:
1864               break;
1865             case SORT_WILDCARD_BY_NAME:
1866               fprintf(f, "SORT_BY_NAME(");
1867               close_parens = 1;
1868               break;
1869             case SORT_WILDCARD_BY_ALIGNMENT:
1870               fprintf(f, "SORT_BY_ALIGNMENT(");
1871               close_parens = 1;
1872               break;
1873             case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1874               fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1875               close_parens = 2;
1876               break;
1877             case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1878               fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1879               close_parens = 2;
1880               break;
1881             case SORT_WILDCARD_BY_INIT_PRIORITY:
1882               fprintf(f, "SORT_BY_INIT_PRIORITY(");
1883               close_parens = 1;
1884               break;
1885             default:
1886               gold_unreachable();
1887             }
1888
1889           fprintf(f, "%s", p->pattern.c_str());
1890
1891           for (int i = 0; i < close_parens; ++i)
1892             fprintf(f, ")");
1893
1894           need_space = true;
1895         }
1896
1897       fprintf(f, ")");
1898     }
1899
1900   if (this->keep_)
1901     fprintf(f, ")");
1902
1903   fprintf(f, "\n");
1904 }
1905
1906 // An output section.
1907
1908 class Output_section_definition : public Sections_element
1909 {
1910  public:
1911   typedef Output_section_element::Input_section_list Input_section_list;
1912
1913   Output_section_definition(const char* name, size_t namelen,
1914                             const Parser_output_section_header* header);
1915
1916   // Finish the output section with the information in the trailer.
1917   void
1918   finish(const Parser_output_section_trailer* trailer);
1919
1920   // Add a symbol to be defined.
1921   void
1922   add_symbol_assignment(const char* name, size_t length, Expression* value,
1923                         bool provide, bool hidden);
1924
1925   // Add an assignment to the special dot symbol.
1926   void
1927   add_dot_assignment(Expression* value);
1928
1929   // Add an assertion.
1930   void
1931   add_assertion(Expression* check, const char* message, size_t messagelen);
1932
1933   // Add a data item to the current output section.
1934   void
1935   add_data(int size, bool is_signed, Expression* val);
1936
1937   // Add a setting for the fill value.
1938   void
1939   add_fill(Expression* val);
1940
1941   // Add an input section specification.
1942   void
1943   add_input_section(const Input_section_spec* spec, bool keep);
1944
1945   // Return whether the output section is relro.
1946   bool
1947   is_relro() const
1948   { return this->is_relro_; }
1949
1950   // Record that the output section is relro.
1951   void
1952   set_is_relro()
1953   { this->is_relro_ = true; }
1954
1955   // Create any required output sections.
1956   void
1957   create_sections(Layout*);
1958
1959   // Add any symbols being defined to the symbol table.
1960   void
1961   add_symbols_to_table(Symbol_table* symtab);
1962
1963   // Finalize symbols and check assertions.
1964   void
1965   finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1966
1967   // Return the output section name to use for an input file name and
1968   // section name.
1969   const char*
1970   output_section_name(const char* file_name, const char* section_name,
1971                       Output_section***, Script_sections::Section_type*,
1972                       bool*);
1973
1974   // Initialize OSP with an output section.
1975   void
1976   orphan_section_init(Orphan_section_placement* osp,
1977                       Script_sections::Elements_iterator p)
1978   { osp->output_section_init(this->name_, this->output_section_, p); }
1979
1980   // Set the section address.
1981   void
1982   set_section_addresses(Symbol_table* symtab, Layout* layout,
1983                         uint64_t* dot_value, uint64_t*,
1984                         uint64_t* load_address);
1985
1986   // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
1987   // this section is constrained, and the input sections do not match,
1988   // return the constraint, and set *POSD.
1989   Section_constraint
1990   check_constraint(Output_section_definition** posd);
1991
1992   // See if this is the alternate output section for a constrained
1993   // output section.  If it is, transfer the Output_section and return
1994   // true.  Otherwise return false.
1995   bool
1996   alternate_constraint(Output_section_definition*, Section_constraint);
1997
1998   // Get the list of segments to use for an allocated section when
1999   // using a PHDRS clause.
2000   Output_section*
2001   allocate_to_segment(String_list** phdrs_list, bool* orphan);
2002
2003   // Look for an output section by name and return the address, the
2004   // load address, the alignment, and the size.  This is used when an
2005   // expression refers to an output section which was not actually
2006   // created.  This returns true if the section was found, false
2007   // otherwise.
2008   bool
2009   get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
2010                           uint64_t*) const;
2011
2012   // Return the associated Output_section if there is one.
2013   Output_section*
2014   get_output_section() const
2015   { return this->output_section_; }
2016
2017   // Print the contents to the FILE.  This is for debugging.
2018   void
2019   print(FILE*) const;
2020
2021   // Return the output section type if specified or Script_sections::ST_NONE.
2022   Script_sections::Section_type
2023   section_type() const;
2024
2025   // Store the memory region to use.
2026   void
2027   set_memory_region(Memory_region*, bool set_vma);
2028
2029   void
2030   set_section_vma(Expression* address)
2031   { this->address_ = address; }
2032   
2033   void
2034   set_section_lma(Expression* address)
2035   { this->load_address_ = address; }
2036
2037   const std::string&
2038   get_section_name() const
2039   { return this->name_; }
2040   
2041  private:
2042   static const char*
2043   script_section_type_name(Script_section_type);
2044
2045   typedef std::vector<Output_section_element*> Output_section_elements;
2046
2047   // The output section name.
2048   std::string name_;
2049   // The address.  This may be NULL.
2050   Expression* address_;
2051   // The load address.  This may be NULL.
2052   Expression* load_address_;
2053   // The alignment.  This may be NULL.
2054   Expression* align_;
2055   // The input section alignment.  This may be NULL.
2056   Expression* subalign_;
2057   // The constraint, if any.
2058   Section_constraint constraint_;
2059   // The fill value.  This may be NULL.
2060   Expression* fill_;
2061   // The list of segments this section should go into.  This may be
2062   // NULL.
2063   String_list* phdrs_;
2064   // The list of elements defining the section.
2065   Output_section_elements elements_;
2066   // The Output_section created for this definition.  This will be
2067   // NULL if none was created.
2068   Output_section* output_section_;
2069   // The address after it has been evaluated.
2070   uint64_t evaluated_address_;
2071   // The load address after it has been evaluated.
2072   uint64_t evaluated_load_address_;
2073   // The alignment after it has been evaluated.
2074   uint64_t evaluated_addralign_;
2075   // The output section is relro.
2076   bool is_relro_;
2077   // The output section type if specified.
2078   enum Script_section_type script_section_type_;
2079 };
2080
2081 // Constructor.
2082
2083 Output_section_definition::Output_section_definition(
2084     const char* name,
2085     size_t namelen,
2086     const Parser_output_section_header* header)
2087   : name_(name, namelen),
2088     address_(header->address),
2089     load_address_(header->load_address),
2090     align_(header->align),
2091     subalign_(header->subalign),
2092     constraint_(header->constraint),
2093     fill_(NULL),
2094     phdrs_(NULL),
2095     elements_(),
2096     output_section_(NULL),
2097     evaluated_address_(0),
2098     evaluated_load_address_(0),
2099     evaluated_addralign_(0),
2100     is_relro_(false),
2101     script_section_type_(header->section_type)
2102 {
2103 }
2104
2105 // Finish an output section.
2106
2107 void
2108 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2109 {
2110   this->fill_ = trailer->fill;
2111   this->phdrs_ = trailer->phdrs;
2112 }
2113
2114 // Add a symbol to be defined.
2115
2116 void
2117 Output_section_definition::add_symbol_assignment(const char* name,
2118                                                  size_t length,
2119                                                  Expression* value,
2120                                                  bool provide,
2121                                                  bool hidden)
2122 {
2123   Output_section_element* p = new Output_section_element_assignment(name,
2124                                                                     length,
2125                                                                     value,
2126                                                                     provide,
2127                                                                     hidden);
2128   this->elements_.push_back(p);
2129 }
2130
2131 // Add an assignment to the special dot symbol.
2132
2133 void
2134 Output_section_definition::add_dot_assignment(Expression* value)
2135 {
2136   Output_section_element* p = new Output_section_element_dot_assignment(value);
2137   this->elements_.push_back(p);
2138 }
2139
2140 // Add an assertion.
2141
2142 void
2143 Output_section_definition::add_assertion(Expression* check,
2144                                          const char* message,
2145                                          size_t messagelen)
2146 {
2147   Output_section_element* p = new Output_section_element_assertion(check,
2148                                                                    message,
2149                                                                    messagelen);
2150   this->elements_.push_back(p);
2151 }
2152
2153 // Add a data item to the current output section.
2154
2155 void
2156 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2157 {
2158   Output_section_element* p = new Output_section_element_data(size, is_signed,
2159                                                               val);
2160   this->elements_.push_back(p);
2161 }
2162
2163 // Add a setting for the fill value.
2164
2165 void
2166 Output_section_definition::add_fill(Expression* val)
2167 {
2168   Output_section_element* p = new Output_section_element_fill(val);
2169   this->elements_.push_back(p);
2170 }
2171
2172 // Add an input section specification.
2173
2174 void
2175 Output_section_definition::add_input_section(const Input_section_spec* spec,
2176                                              bool keep)
2177 {
2178   Output_section_element* p = new Output_section_element_input(spec, keep);
2179   this->elements_.push_back(p);
2180 }
2181
2182 // Create any required output sections.  We need an output section if
2183 // there is a data statement here.
2184
2185 void
2186 Output_section_definition::create_sections(Layout* layout)
2187 {
2188   if (this->output_section_ != NULL)
2189     return;
2190   for (Output_section_elements::const_iterator p = this->elements_.begin();
2191        p != this->elements_.end();
2192        ++p)
2193     {
2194       if ((*p)->needs_output_section())
2195         {
2196           const char* name = this->name_.c_str();
2197           this->output_section_ =
2198             layout->make_output_section_for_script(name, this->section_type());
2199           return;
2200         }
2201     }
2202 }
2203
2204 // Add any symbols being defined to the symbol table.
2205
2206 void
2207 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2208 {
2209   for (Output_section_elements::iterator p = this->elements_.begin();
2210        p != this->elements_.end();
2211        ++p)
2212     (*p)->add_symbols_to_table(symtab);
2213 }
2214
2215 // Finalize symbols and check assertions.
2216
2217 void
2218 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2219                                             const Layout* layout,
2220                                             uint64_t* dot_value)
2221 {
2222   if (this->output_section_ != NULL)
2223     *dot_value = this->output_section_->address();
2224   else
2225     {
2226       uint64_t address = *dot_value;
2227       if (this->address_ != NULL)
2228         {
2229           address = this->address_->eval_with_dot(symtab, layout, true,
2230                                                   *dot_value, NULL,
2231                                                   NULL, NULL, false);
2232         }
2233       if (this->align_ != NULL)
2234         {
2235           uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2236                                                        *dot_value, NULL,
2237                                                        NULL, NULL, false);
2238           address = align_address(address, align);
2239         }
2240       *dot_value = address;
2241     }
2242
2243   Output_section* dot_section = this->output_section_;
2244   for (Output_section_elements::iterator p = this->elements_.begin();
2245        p != this->elements_.end();
2246        ++p)
2247     (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2248 }
2249
2250 // Return the output section name to use for an input section name.
2251
2252 const char*
2253 Output_section_definition::output_section_name(
2254     const char* file_name,
2255     const char* section_name,
2256     Output_section*** slot,
2257     Script_sections::Section_type* psection_type,
2258     bool* keep)
2259 {
2260   // Ask each element whether it matches NAME.
2261   for (Output_section_elements::const_iterator p = this->elements_.begin();
2262        p != this->elements_.end();
2263        ++p)
2264     {
2265       if ((*p)->match_name(file_name, section_name, keep))
2266         {
2267           // We found a match for NAME, which means that it should go
2268           // into this output section.
2269           *slot = &this->output_section_;
2270           *psection_type = this->section_type();
2271           return this->name_.c_str();
2272         }
2273     }
2274
2275   // We don't know about this section name.
2276   return NULL;
2277 }
2278
2279 // Return true if memory from START to START + LENGTH is contained
2280 // within a memory region.
2281
2282 bool
2283 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2284                                  uint64_t start, uint64_t length) const
2285 {
2286   if (this->memory_regions_ == NULL)
2287     return false;
2288
2289   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2290        mr != this->memory_regions_->end();
2291        ++mr)
2292     {
2293       uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2294       uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2295
2296       if (s <= start
2297           && (s + l) >= (start + length))
2298         return true;
2299     }
2300
2301   return false;
2302 }
2303
2304 // Find a memory region that should be used by a given output SECTION.
2305 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2306 // that used the return memory region.
2307
2308 Memory_region*
2309 Script_sections::find_memory_region(
2310     Output_section_definition* section,
2311     bool find_vma_region,
2312     bool explicit_only,
2313     Output_section_definition** previous_section_return)
2314 {
2315   if (previous_section_return != NULL)
2316     * previous_section_return = NULL;
2317
2318   // Walk the memory regions specified in this script, if any.
2319   if (this->memory_regions_ == NULL)
2320     return NULL;
2321
2322   // The /DISCARD/ section never gets assigned to any region.
2323   if (section->get_section_name() == "/DISCARD/")
2324     return NULL;
2325
2326   Memory_region* first_match = NULL;
2327
2328   // First check to see if a region has been assigned to this section.
2329   for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2330        mr != this->memory_regions_->end();
2331        ++mr)
2332     {
2333       if (find_vma_region)
2334         {
2335           for (Memory_region::Section_list::const_iterator s =
2336                  (*mr)->get_vma_section_list_start();
2337                s != (*mr)->get_vma_section_list_end();
2338                ++s)
2339             if ((*s) == section)
2340               {
2341                 (*mr)->set_last_section(section);
2342                 return *mr;
2343               }
2344         }
2345       else
2346         {
2347           for (Memory_region::Section_list::const_iterator s =
2348                  (*mr)->get_lma_section_list_start();
2349                s != (*mr)->get_lma_section_list_end();
2350                ++s)
2351             if ((*s) == section)
2352               {
2353                 (*mr)->set_last_section(section);
2354                 return *mr;
2355               }
2356         }
2357
2358       if (!explicit_only)
2359         {
2360           // Make a note of the first memory region whose attributes
2361           // are compatible with the section.  If we do not find an
2362           // explicit region assignment, then we will return this region.
2363           Output_section* out_sec = section->get_output_section();
2364           if (first_match == NULL
2365               && out_sec != NULL
2366               && (*mr)->attributes_compatible(out_sec->flags(),
2367                                               out_sec->type()))
2368             first_match = *mr;
2369         }
2370     }
2371
2372   // With LMA computations, if an explicit region has not been specified then
2373   // we will want to set the difference between the VMA and the LMA of the
2374   // section were searching for to be the same as the difference between the
2375   // VMA and LMA of the last section to be added to first matched region.
2376   // Hence, if it was asked for, we return a pointer to the last section
2377   // known to be used by the first matched region.
2378   if (first_match != NULL
2379       && previous_section_return != NULL)
2380     *previous_section_return = first_match->get_last_section();
2381
2382   return first_match;
2383 }
2384
2385 // Set the section address.  Note that the OUTPUT_SECTION_ field will
2386 // be NULL if no input sections were mapped to this output section.
2387 // We still have to adjust dot and process symbol assignments.
2388
2389 void
2390 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2391                                                  Layout* layout,
2392                                                  uint64_t* dot_value,
2393                                                  uint64_t* dot_alignment,
2394                                                  uint64_t* load_address)
2395 {
2396   Memory_region* vma_region = NULL;
2397   Memory_region* lma_region = NULL;
2398   Script_sections* script_sections =
2399     layout->script_options()->script_sections();
2400   uint64_t address;
2401   uint64_t old_dot_value = *dot_value;
2402   uint64_t old_load_address = *load_address;
2403
2404   // If input section sorting is requested via --section-ordering-file or
2405   // linker plugins, then do it here.  This is important because we want 
2406   // any sorting specified in the linker scripts, which will be done after
2407   // this, to take precedence.  The final order of input sections is then 
2408   // guaranteed to be according to the linker script specification.
2409   if (this->output_section_ != NULL
2410       && this->output_section_->input_section_order_specified())
2411     this->output_section_->sort_attached_input_sections();
2412
2413   // Decide the start address for the section.  The algorithm is:
2414   // 1) If an address has been specified in a linker script, use that.
2415   // 2) Otherwise if a memory region has been specified for the section,
2416   //    use the next free address in the region.
2417   // 3) Otherwise if memory regions have been specified find the first
2418   //    region whose attributes are compatible with this section and
2419   //    install it into that region.
2420   // 4) Otherwise use the current location counter.
2421
2422   if (this->output_section_ != NULL
2423       // Check for --section-start.
2424       && parameters->options().section_start(this->output_section_->name(),
2425                                              &address))
2426     ;
2427   else if (this->address_ == NULL)
2428     {
2429       vma_region = script_sections->find_memory_region(this, true, false, NULL);
2430       if (vma_region != NULL)
2431         address = vma_region->get_current_address()->eval(symtab, layout,
2432                                                           false);
2433       else
2434         address = *dot_value;
2435     }
2436   else
2437     {
2438       vma_region = script_sections->find_memory_region(this, true, true, NULL);
2439       address = this->address_->eval_with_dot(symtab, layout, true,
2440                                               *dot_value, NULL, NULL,
2441                                               dot_alignment, false);
2442       if (vma_region != NULL)
2443         vma_region->set_address(address, symtab, layout);
2444     }
2445
2446   uint64_t align;
2447   if (this->align_ == NULL)
2448     {
2449       if (this->output_section_ == NULL)
2450         align = 0;
2451       else
2452         align = this->output_section_->addralign();
2453     }
2454   else
2455     {
2456       Output_section* align_section;
2457       align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2458                                           NULL, &align_section, NULL, false);
2459       if (align_section != NULL)
2460         gold_warning(_("alignment of section %s is not absolute"),
2461                      this->name_.c_str());
2462       if (this->output_section_ != NULL)
2463         this->output_section_->set_addralign(align);
2464     }
2465
2466   address = align_address(address, align);
2467
2468   uint64_t start_address = address;
2469
2470   *dot_value = address;
2471
2472   // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2473   // forced to zero, regardless of what the linker script wants.
2474   if (this->output_section_ != NULL
2475       && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2476           || this->output_section_->is_noload()))
2477     this->output_section_->set_address(address);
2478
2479   this->evaluated_address_ = address;
2480   this->evaluated_addralign_ = align;
2481
2482   uint64_t laddr;
2483
2484   if (this->load_address_ == NULL)
2485     {
2486       Output_section_definition* previous_section;
2487
2488       // Determine if an LMA region has been set for this section.
2489       lma_region = script_sections->find_memory_region(this, false, false,
2490                                                        &previous_section);
2491
2492       if (lma_region != NULL)
2493         {
2494           if (previous_section == NULL)
2495             // The LMA address was explicitly set to the given region.
2496             laddr = lma_region->get_current_address()->eval(symtab, layout,
2497                                                             false);
2498           else 
2499             {
2500               // We are not going to use the discovered lma_region, so
2501               // make sure that we do not update it in the code below.
2502               lma_region = NULL;
2503
2504               if (this->address_ != NULL || previous_section == this)
2505                 {
2506                   // Either an explicit VMA address has been set, or an
2507                   // explicit VMA region has been set, so set the LMA equal to
2508                   // the VMA.
2509                   laddr = address;
2510                 }
2511               else
2512                 {
2513                   // The LMA address was not explicitly or implicitly set.
2514                   //
2515                   // We have been given the first memory region that is
2516                   // compatible with the current section and a pointer to the
2517                   // last section to use this region.  Set the LMA of this
2518                   // section so that the difference between its' VMA and LMA
2519                   // is the same as the difference between the VMA and LMA of
2520                   // the last section in the given region.
2521                   laddr = address + (previous_section->evaluated_load_address_
2522                                      - previous_section->evaluated_address_);
2523                 }
2524             }
2525
2526           if (this->output_section_ != NULL)
2527             this->output_section_->set_load_address(laddr);
2528         }
2529       else
2530         {
2531           // Do not set the load address of the output section, if one exists.
2532           // This allows future sections to determine what the load address
2533           // should be.  If none is ever set, it will default to being the
2534           // same as the vma address.
2535           laddr = address;
2536         }
2537     }
2538   else
2539     {
2540       laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2541                                                  *dot_value,
2542                                                  this->output_section_,
2543                                                  NULL, NULL, false);
2544       if (this->output_section_ != NULL)
2545         this->output_section_->set_load_address(laddr);
2546     }
2547
2548   this->evaluated_load_address_ = laddr;
2549
2550   uint64_t subalign;
2551   if (this->subalign_ == NULL)
2552     subalign = 0;
2553   else
2554     {
2555       Output_section* subalign_section;
2556       subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2557                                                 *dot_value, NULL,
2558                                                 &subalign_section, NULL,
2559                                                 false);
2560       if (subalign_section != NULL)
2561         gold_warning(_("subalign of section %s is not absolute"),
2562                      this->name_.c_str());
2563     }
2564
2565   std::string fill;
2566   if (this->fill_ != NULL)
2567     {
2568       // FIXME: The GNU linker supports fill values of arbitrary
2569       // length.
2570       Output_section* fill_section;
2571       uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2572                                                      *dot_value,
2573                                                      NULL, &fill_section,
2574                                                      NULL, false);
2575       if (fill_section != NULL)
2576         gold_warning(_("fill of section %s is not absolute"),
2577                      this->name_.c_str());
2578       unsigned char fill_buff[4];
2579       elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2580       fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2581     }
2582
2583   Input_section_list input_sections;
2584   if (this->output_section_ != NULL)
2585     {
2586       // Get the list of input sections attached to this output
2587       // section.  This will leave the output section with only
2588       // Output_section_data entries.
2589       address += this->output_section_->get_input_sections(address,
2590                                                            fill,
2591                                                            &input_sections);
2592       *dot_value = address;
2593     }
2594
2595   Output_section* dot_section = this->output_section_;
2596   for (Output_section_elements::iterator p = this->elements_.begin();
2597        p != this->elements_.end();
2598        ++p)
2599     (*p)->set_section_addresses(symtab, layout, this->output_section_,
2600                                 subalign, dot_value, dot_alignment,
2601                                 &dot_section, &fill, &input_sections);
2602
2603   gold_assert(input_sections.empty());
2604
2605   if (vma_region != NULL)
2606     {
2607       // Update the VMA region being used by the section now that we know how
2608       // big it is.  Use the current address in the region, rather than
2609       // start_address because that might have been aligned upwards and we
2610       // need to allow for the padding.
2611       Expression* addr = vma_region->get_current_address();
2612       uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2613
2614       vma_region->increment_offset(this->get_section_name(), size,
2615                                    symtab, layout);
2616     }
2617
2618   // If the LMA region is different from the VMA region, then increment the
2619   // offset there as well.  Note that we use the same "dot_value -
2620   // start_address" formula that is used in the load_address assignment below.
2621   if (lma_region != NULL && lma_region != vma_region)
2622     lma_region->increment_offset(this->get_section_name(),
2623                                  *dot_value - start_address,
2624                                  symtab, layout);
2625
2626   // Compute the load address for the following section.
2627   if (this->output_section_ == NULL)
2628     *load_address = *dot_value;
2629   else if (this->load_address_ == NULL)
2630     {
2631       if (lma_region == NULL)
2632         *load_address = *dot_value;
2633       else
2634         *load_address =
2635           lma_region->get_current_address()->eval(symtab, layout, false);
2636     }
2637   else
2638     *load_address = (this->output_section_->load_address()
2639                      + (*dot_value - start_address));
2640
2641   if (this->output_section_ != NULL)
2642     {
2643       if (this->is_relro_)
2644         this->output_section_->set_is_relro();
2645       else
2646         this->output_section_->clear_is_relro();
2647
2648       // If this is a NOLOAD section, keep dot and load address unchanged.
2649       if (this->output_section_->is_noload())
2650         {
2651           *dot_value = old_dot_value;
2652           *load_address = old_load_address;
2653         }
2654     }
2655 }
2656
2657 // Check a constraint (ONLY_IF_RO, etc.) on an output section.  If
2658 // this section is constrained, and the input sections do not match,
2659 // return the constraint, and set *POSD.
2660
2661 Section_constraint
2662 Output_section_definition::check_constraint(Output_section_definition** posd)
2663 {
2664   switch (this->constraint_)
2665     {
2666     case CONSTRAINT_NONE:
2667       return CONSTRAINT_NONE;
2668
2669     case CONSTRAINT_ONLY_IF_RO:
2670       if (this->output_section_ != NULL
2671           && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2672         {
2673           *posd = this;
2674           return CONSTRAINT_ONLY_IF_RO;
2675         }
2676       return CONSTRAINT_NONE;
2677
2678     case CONSTRAINT_ONLY_IF_RW:
2679       if (this->output_section_ != NULL
2680           && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2681         {
2682           *posd = this;
2683           return CONSTRAINT_ONLY_IF_RW;
2684         }
2685       return CONSTRAINT_NONE;
2686
2687     case CONSTRAINT_SPECIAL:
2688       if (this->output_section_ != NULL)
2689         gold_error(_("SPECIAL constraints are not implemented"));
2690       return CONSTRAINT_NONE;
2691
2692     default:
2693       gold_unreachable();
2694     }
2695 }
2696
2697 // See if this is the alternate output section for a constrained
2698 // output section.  If it is, transfer the Output_section and return
2699 // true.  Otherwise return false.
2700
2701 bool
2702 Output_section_definition::alternate_constraint(
2703     Output_section_definition* posd,
2704     Section_constraint constraint)
2705 {
2706   if (this->name_ != posd->name_)
2707     return false;
2708
2709   switch (constraint)
2710     {
2711     case CONSTRAINT_ONLY_IF_RO:
2712       if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2713         return false;
2714       break;
2715
2716     case CONSTRAINT_ONLY_IF_RW:
2717       if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2718         return false;
2719       break;
2720
2721     default:
2722       gold_unreachable();
2723     }
2724
2725   // We have found the alternate constraint.  We just need to move
2726   // over the Output_section.  When constraints are used properly,
2727   // THIS should not have an output_section pointer, as all the input
2728   // sections should have matched the other definition.
2729
2730   if (this->output_section_ != NULL)
2731     gold_error(_("mismatched definition for constrained sections"));
2732
2733   this->output_section_ = posd->output_section_;
2734   posd->output_section_ = NULL;
2735
2736   if (this->is_relro_)
2737     this->output_section_->set_is_relro();
2738   else
2739     this->output_section_->clear_is_relro();
2740
2741   return true;
2742 }
2743
2744 // Get the list of segments to use for an allocated section when using
2745 // a PHDRS clause.
2746
2747 Output_section*
2748 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2749                                                bool* orphan)
2750 {
2751   // Update phdrs_list even if we don't have an output section. It
2752   // might be used by the following sections.
2753   if (this->phdrs_ != NULL)
2754     *phdrs_list = this->phdrs_;
2755
2756   if (this->output_section_ == NULL)
2757     return NULL;
2758   if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2759     return NULL;
2760   *orphan = false;
2761   return this->output_section_;
2762 }
2763
2764 // Look for an output section by name and return the address, the load
2765 // address, the alignment, and the size.  This is used when an
2766 // expression refers to an output section which was not actually
2767 // created.  This returns true if the section was found, false
2768 // otherwise.
2769
2770 bool
2771 Output_section_definition::get_output_section_info(const char* name,
2772                                                    uint64_t* address,
2773                                                    uint64_t* load_address,
2774                                                    uint64_t* addralign,
2775                                                    uint64_t* size) const
2776 {
2777   if (this->name_ != name)
2778     return false;
2779
2780   if (this->output_section_ != NULL)
2781     {
2782       *address = this->output_section_->address();
2783       if (this->output_section_->has_load_address())
2784         *load_address = this->output_section_->load_address();
2785       else
2786         *load_address = *address;
2787       *addralign = this->output_section_->addralign();
2788       *size = this->output_section_->current_data_size();
2789     }
2790   else
2791     {
2792       *address = this->evaluated_address_;
2793       *load_address = this->evaluated_load_address_;
2794       *addralign = this->evaluated_addralign_;
2795       *size = 0;
2796     }
2797
2798   return true;
2799 }
2800
2801 // Print for debugging.
2802
2803 void
2804 Output_section_definition::print(FILE* f) const
2805 {
2806   fprintf(f, "  %s ", this->name_.c_str());
2807
2808   if (this->address_ != NULL)
2809     {
2810       this->address_->print(f);
2811       fprintf(f, " ");
2812     }
2813
2814   if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2815       fprintf(f, "(%s) ",
2816               this->script_section_type_name(this->script_section_type_));
2817
2818   fprintf(f, ": ");
2819
2820   if (this->load_address_ != NULL)
2821     {
2822       fprintf(f, "AT(");
2823       this->load_address_->print(f);
2824       fprintf(f, ") ");
2825     }
2826
2827   if (this->align_ != NULL)
2828     {
2829       fprintf(f, "ALIGN(");
2830       this->align_->print(f);
2831       fprintf(f, ") ");
2832     }
2833
2834   if (this->subalign_ != NULL)
2835     {
2836       fprintf(f, "SUBALIGN(");
2837       this->subalign_->print(f);
2838       fprintf(f, ") ");
2839     }
2840
2841   fprintf(f, "{\n");
2842
2843   for (Output_section_elements::const_iterator p = this->elements_.begin();
2844        p != this->elements_.end();
2845        ++p)
2846     (*p)->print(f);
2847
2848   fprintf(f, "  }");
2849
2850   if (this->fill_ != NULL)
2851     {
2852       fprintf(f, " = ");
2853       this->fill_->print(f);
2854     }
2855
2856   if (this->phdrs_ != NULL)
2857     {
2858       for (String_list::const_iterator p = this->phdrs_->begin();
2859            p != this->phdrs_->end();
2860            ++p)
2861         fprintf(f, " :%s", p->c_str());
2862     }
2863
2864   fprintf(f, "\n");
2865 }
2866
2867 Script_sections::Section_type
2868 Output_section_definition::section_type() const
2869 {
2870   switch (this->script_section_type_)
2871     {
2872     case SCRIPT_SECTION_TYPE_NONE:
2873       return Script_sections::ST_NONE;
2874     case SCRIPT_SECTION_TYPE_NOLOAD:
2875       return Script_sections::ST_NOLOAD;
2876     case SCRIPT_SECTION_TYPE_COPY:
2877     case SCRIPT_SECTION_TYPE_DSECT:
2878     case SCRIPT_SECTION_TYPE_INFO:
2879     case SCRIPT_SECTION_TYPE_OVERLAY:
2880       // There are not really support so we treat them as ST_NONE.  The
2881       // parse should have issued errors for them already.
2882       return Script_sections::ST_NONE;
2883     default:
2884       gold_unreachable();
2885     }
2886 }
2887
2888 // Return the name of a script section type.
2889
2890 const char*
2891 Output_section_definition::script_section_type_name(
2892     Script_section_type script_section_type)
2893 {
2894   switch (script_section_type)
2895     {
2896     case SCRIPT_SECTION_TYPE_NONE:
2897       return "NONE";
2898     case SCRIPT_SECTION_TYPE_NOLOAD:
2899       return "NOLOAD";
2900     case SCRIPT_SECTION_TYPE_DSECT:
2901       return "DSECT";
2902     case SCRIPT_SECTION_TYPE_COPY:
2903       return "COPY";
2904     case SCRIPT_SECTION_TYPE_INFO:
2905       return "INFO";
2906     case SCRIPT_SECTION_TYPE_OVERLAY:
2907       return "OVERLAY";
2908     default:
2909       gold_unreachable();
2910     }
2911 }
2912
2913 void
2914 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2915 {
2916   gold_assert(mr != NULL);
2917   // Add the current section to the specified region's list.
2918   mr->add_section(this, set_vma);
2919 }
2920
2921 // An output section created to hold orphaned input sections.  These
2922 // do not actually appear in linker scripts.  However, for convenience
2923 // when setting the output section addresses, we put a marker to these
2924 // sections in the appropriate place in the list of SECTIONS elements.
2925
2926 class Orphan_output_section : public Sections_element
2927 {
2928  public:
2929   Orphan_output_section(Output_section* os)
2930     : os_(os)
2931   { }
2932
2933   // Return whether the orphan output section is relro.  We can just
2934   // check the output section because we always set the flag, if
2935   // needed, just after we create the Orphan_output_section.
2936   bool
2937   is_relro() const
2938   { return this->os_->is_relro(); }
2939
2940   // Initialize OSP with an output section.  This should have been
2941   // done already.
2942   void
2943   orphan_section_init(Orphan_section_placement*,
2944                       Script_sections::Elements_iterator)
2945   { gold_unreachable(); }
2946
2947   // Set section addresses.
2948   void
2949   set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2950                         uint64_t*);
2951
2952   // Get the list of segments to use for an allocated section when
2953   // using a PHDRS clause.
2954   Output_section*
2955   allocate_to_segment(String_list**, bool*);
2956
2957   // Return the associated Output_section.
2958   Output_section*
2959   get_output_section() const
2960   { return this->os_; }
2961
2962   // Print for debugging.
2963   void
2964   print(FILE* f) const
2965   {
2966     fprintf(f, "  marker for orphaned output section %s\n",
2967             this->os_->name());
2968   }
2969
2970  private:
2971   Output_section* os_;
2972 };
2973
2974 // Set section addresses.
2975
2976 void
2977 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2978                                              uint64_t* dot_value,
2979                                              uint64_t*,
2980                                              uint64_t* load_address)
2981 {
2982   typedef std::list<Output_section::Input_section> Input_section_list;
2983
2984   bool have_load_address = *load_address != *dot_value;
2985
2986   uint64_t address = *dot_value;
2987   address = align_address(address, this->os_->addralign());
2988
2989   // If input section sorting is requested via --section-ordering-file or
2990   // linker plugins, then do it here.  This is important because we want 
2991   // any sorting specified in the linker scripts, which will be done after
2992   // this, to take precedence.  The final order of input sections is then 
2993   // guaranteed to be according to the linker script specification.
2994   if (this->os_ != NULL
2995       && this->os_->input_section_order_specified())
2996     this->os_->sort_attached_input_sections();
2997
2998   // For a relocatable link, all orphan sections are put at
2999   // address 0.  In general we expect all sections to be at
3000   // address 0 for a relocatable link, but we permit the linker
3001   // script to override that for specific output sections.
3002   if (parameters->options().relocatable())
3003     {
3004       address = 0;
3005       *load_address = 0;
3006       have_load_address = false;
3007     }
3008
3009   if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
3010     {
3011       this->os_->set_address(address);
3012       if (have_load_address)
3013         this->os_->set_load_address(align_address(*load_address,
3014                                                   this->os_->addralign()));
3015     }
3016
3017   Input_section_list input_sections;
3018   address += this->os_->get_input_sections(address, "", &input_sections);
3019
3020   for (Input_section_list::iterator p = input_sections.begin();
3021        p != input_sections.end();
3022        ++p)
3023     {
3024       uint64_t addralign = p->addralign();
3025       if (!p->is_input_section())
3026         p->output_section_data()->finalize_data_size(); 
3027       uint64_t size = p->data_size();
3028       address = align_address(address, addralign);
3029       this->os_->add_script_input_section(*p);
3030       address += size;
3031     }
3032
3033   if (parameters->options().relocatable())
3034     {
3035       // For a relocatable link, reset DOT_VALUE to 0.
3036       *dot_value = 0;
3037       *load_address = 0;
3038     }
3039   else if (this->os_ == NULL
3040            || (this->os_->flags() & elfcpp::SHF_TLS) == 0
3041            || this->os_->type() != elfcpp::SHT_NOBITS)
3042     {
3043       // An SHF_TLS/SHT_NOBITS section does not take up any address space.
3044       if (!have_load_address)
3045         *load_address = address;
3046       else
3047         *load_address += address - *dot_value;
3048
3049       *dot_value = address;
3050     }
3051 }
3052
3053 // Get the list of segments to use for an allocated section when using
3054 // a PHDRS clause.  If this is an allocated section, return the
3055 // Output_section.  We don't change the list of segments.
3056
3057 Output_section*
3058 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3059 {
3060   if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3061     return NULL;
3062   *orphan = true;
3063   return this->os_;
3064 }
3065
3066 // Class Phdrs_element.  A program header from a PHDRS clause.
3067
3068 class Phdrs_element
3069 {
3070  public:
3071   Phdrs_element(const char* name, size_t namelen, unsigned int type,
3072                 bool includes_filehdr, bool includes_phdrs,
3073                 bool is_flags_valid, unsigned int flags,
3074                 Expression* load_address)
3075     : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3076       includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3077       flags_(flags), load_address_(load_address), load_address_value_(0),
3078       segment_(NULL)
3079   { }
3080
3081   // Return the name of this segment.
3082   const std::string&
3083   name() const
3084   { return this->name_; }
3085
3086   // Return the type of the segment.
3087   unsigned int
3088   type() const
3089   { return this->type_; }
3090
3091   // Whether to include the file header.
3092   bool
3093   includes_filehdr() const
3094   { return this->includes_filehdr_; }
3095
3096   // Whether to include the program headers.
3097   bool
3098   includes_phdrs() const
3099   { return this->includes_phdrs_; }
3100
3101   // Return whether there is a load address.
3102   bool
3103   has_load_address() const
3104   { return this->load_address_ != NULL; }
3105
3106   // Evaluate the load address expression if there is one.
3107   void
3108   eval_load_address(Symbol_table* symtab, Layout* layout)
3109   {
3110     if (this->load_address_ != NULL)
3111       this->load_address_value_ = this->load_address_->eval(symtab, layout,
3112                                                             true);
3113   }
3114
3115   // Return the load address.
3116   uint64_t
3117   load_address() const
3118   {
3119     gold_assert(this->load_address_ != NULL);
3120     return this->load_address_value_;
3121   }
3122
3123   // Create the segment.
3124   Output_segment*
3125   create_segment(Layout* layout)
3126   {
3127     this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3128     return this->segment_;
3129   }
3130
3131   // Return the segment.
3132   Output_segment*
3133   segment()
3134   { return this->segment_; }
3135
3136   // Release the segment.
3137   void
3138   release_segment()
3139   { this->segment_ = NULL; }
3140
3141   // Set the segment flags if appropriate.
3142   void
3143   set_flags_if_valid()
3144   {
3145     if (this->is_flags_valid_)
3146       this->segment_->set_flags(this->flags_);
3147   }
3148
3149   // Print for debugging.
3150   void
3151   print(FILE*) const;
3152
3153  private:
3154   // The name used in the script.
3155   std::string name_;
3156   // The type of the segment (PT_LOAD, etc.).
3157   unsigned int type_;
3158   // Whether this segment includes the file header.
3159   bool includes_filehdr_;
3160   // Whether this segment includes the section headers.
3161   bool includes_phdrs_;
3162   // Whether the flags were explicitly specified.
3163   bool is_flags_valid_;
3164   // The flags for this segment (PF_R, etc.) if specified.
3165   unsigned int flags_;
3166   // The expression for the load address for this segment.  This may
3167   // be NULL.
3168   Expression* load_address_;
3169   // The actual load address from evaluating the expression.
3170   uint64_t load_address_value_;
3171   // The segment itself.
3172   Output_segment* segment_;
3173 };
3174
3175 // Print for debugging.
3176
3177 void
3178 Phdrs_element::print(FILE* f) const
3179 {
3180   fprintf(f, "  %s 0x%x", this->name_.c_str(), this->type_);
3181   if (this->includes_filehdr_)
3182     fprintf(f, " FILEHDR");
3183   if (this->includes_phdrs_)
3184     fprintf(f, " PHDRS");
3185   if (this->is_flags_valid_)
3186     fprintf(f, " FLAGS(%u)", this->flags_);
3187   if (this->load_address_ != NULL)
3188     {
3189       fprintf(f, " AT(");
3190       this->load_address_->print(f);
3191       fprintf(f, ")");
3192     }
3193   fprintf(f, ";\n");
3194 }
3195
3196 // Add a memory region.
3197
3198 void
3199 Script_sections::add_memory_region(const char* name, size_t namelen,
3200                                    unsigned int attributes,
3201                                    Expression* start, Expression* length)
3202 {
3203   if (this->memory_regions_ == NULL)
3204     this->memory_regions_ = new Memory_regions();
3205   else if (this->find_memory_region(name, namelen))
3206     {
3207       gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3208                   name);
3209       // FIXME: Add a GOLD extension to allow multiple regions with the same
3210       // name.  This would amount to a single region covering disjoint blocks
3211       // of memory, which is useful for embedded devices.
3212     }
3213
3214   // FIXME: Check the length and start values.  Currently we allow
3215   // non-constant expressions for these values, whereas LD does not.
3216
3217   // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS.  This would
3218   // describe a region that packs from the end address going down, rather
3219   // than the start address going up.  This would be useful for embedded
3220   // devices.
3221
3222   this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3223                                                      start, length));
3224 }
3225
3226 // Find a memory region.
3227
3228 Memory_region*
3229 Script_sections::find_memory_region(const char* name, size_t namelen)
3230 {
3231   if (this->memory_regions_ == NULL)
3232     return NULL;
3233
3234   for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3235        m != this->memory_regions_->end();
3236        ++m)
3237     if ((*m)->name_match(name, namelen))
3238       return *m;
3239
3240   return NULL;
3241 }
3242
3243 // Find a memory region's origin.
3244
3245 Expression*
3246 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3247 {
3248   Memory_region* mr = find_memory_region(name, namelen);
3249   if (mr == NULL)
3250     return NULL;
3251
3252   return mr->start_address();
3253 }
3254
3255 // Find a memory region's length.
3256
3257 Expression*
3258 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3259 {
3260   Memory_region* mr = find_memory_region(name, namelen);
3261   if (mr == NULL)
3262     return NULL;
3263
3264   return mr->length();
3265 }
3266
3267 // Set the memory region to use for the current section.
3268
3269 void
3270 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3271 {
3272   gold_assert(!this->sections_elements_->empty());
3273   this->sections_elements_->back()->set_memory_region(mr, set_vma);
3274 }
3275
3276 // Class Script_sections.
3277
3278 Script_sections::Script_sections()
3279   : saw_sections_clause_(false),
3280     in_sections_clause_(false),
3281     sections_elements_(NULL),
3282     output_section_(NULL),
3283     memory_regions_(NULL),
3284     phdrs_elements_(NULL),
3285     orphan_section_placement_(NULL),
3286     data_segment_align_start_(),
3287     saw_data_segment_align_(false),
3288     saw_relro_end_(false),
3289     saw_segment_start_expression_(false),
3290     segments_created_(false)
3291 {
3292 }
3293
3294 // Start a SECTIONS clause.
3295
3296 void
3297 Script_sections::start_sections()
3298 {
3299   gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3300   this->saw_sections_clause_ = true;
3301   this->in_sections_clause_ = true;
3302   if (this->sections_elements_ == NULL)
3303     this->sections_elements_ = new Sections_elements;
3304 }
3305
3306 // Finish a SECTIONS clause.
3307
3308 void
3309 Script_sections::finish_sections()
3310 {
3311   gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3312   this->in_sections_clause_ = false;
3313 }
3314
3315 // Add a symbol to be defined.
3316
3317 void
3318 Script_sections::add_symbol_assignment(const char* name, size_t length,
3319                                        Expression* val, bool provide,
3320                                        bool hidden)
3321 {
3322   if (this->output_section_ != NULL)
3323     this->output_section_->add_symbol_assignment(name, length, val,
3324                                                  provide, hidden);
3325   else
3326     {
3327       Sections_element* p = new Sections_element_assignment(name, length,
3328                                                             val, provide,
3329                                                             hidden);
3330       this->sections_elements_->push_back(p);
3331     }
3332 }
3333
3334 // Add an assignment to the special dot symbol.
3335
3336 void
3337 Script_sections::add_dot_assignment(Expression* val)
3338 {
3339   if (this->output_section_ != NULL)
3340     this->output_section_->add_dot_assignment(val);
3341   else
3342     {
3343       // The GNU linker permits assignments to . to appears outside of
3344       // a SECTIONS clause, and treats it as appearing inside, so
3345       // sections_elements_ may be NULL here.
3346       if (this->sections_elements_ == NULL)
3347         {
3348           this->sections_elements_ = new Sections_elements;
3349           this->saw_sections_clause_ = true;
3350         }
3351
3352       Sections_element* p = new Sections_element_dot_assignment(val);
3353       this->sections_elements_->push_back(p);
3354     }
3355 }
3356
3357 // Add an assertion.
3358
3359 void
3360 Script_sections::add_assertion(Expression* check, const char* message,
3361                                size_t messagelen)
3362 {
3363   if (this->output_section_ != NULL)
3364     this->output_section_->add_assertion(check, message, messagelen);
3365   else
3366     {
3367       Sections_element* p = new Sections_element_assertion(check, message,
3368                                                            messagelen);
3369       this->sections_elements_->push_back(p);
3370     }
3371 }
3372
3373 // Start processing entries for an output section.
3374
3375 void
3376 Script_sections::start_output_section(
3377     const char* name,
3378     size_t namelen,
3379     const Parser_output_section_header* header)
3380 {
3381   Output_section_definition* posd = new Output_section_definition(name,
3382                                                                   namelen,
3383                                                                   header);
3384   this->sections_elements_->push_back(posd);
3385   gold_assert(this->output_section_ == NULL);
3386   this->output_section_ = posd;
3387 }
3388
3389 // Stop processing entries for an output section.
3390
3391 void
3392 Script_sections::finish_output_section(
3393     const Parser_output_section_trailer* trailer)
3394 {
3395   gold_assert(this->output_section_ != NULL);
3396   this->output_section_->finish(trailer);
3397   this->output_section_ = NULL;
3398 }
3399
3400 // Add a data item to the current output section.
3401
3402 void
3403 Script_sections::add_data(int size, bool is_signed, Expression* val)
3404 {
3405   gold_assert(this->output_section_ != NULL);
3406   this->output_section_->add_data(size, is_signed, val);
3407 }
3408
3409 // Add a fill value setting to the current output section.
3410
3411 void
3412 Script_sections::add_fill(Expression* val)
3413 {
3414   gold_assert(this->output_section_ != NULL);
3415   this->output_section_->add_fill(val);
3416 }
3417
3418 // Add an input section specification to the current output section.
3419
3420 void
3421 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3422 {
3423   gold_assert(this->output_section_ != NULL);
3424   this->output_section_->add_input_section(spec, keep);
3425 }
3426
3427 // This is called when we see DATA_SEGMENT_ALIGN.  It means that any
3428 // subsequent output sections may be relro.
3429
3430 void
3431 Script_sections::data_segment_align()
3432 {
3433   if (this->saw_data_segment_align_)
3434     gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3435   gold_assert(!this->sections_elements_->empty());
3436   Sections_elements::iterator p = this->sections_elements_->end();
3437   --p;
3438   this->data_segment_align_start_ = p;
3439   this->saw_data_segment_align_ = true;
3440 }
3441
3442 // This is called when we see DATA_SEGMENT_RELRO_END.  It means that
3443 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3444
3445 void
3446 Script_sections::data_segment_relro_end()
3447 {
3448   if (this->saw_relro_end_)
3449     gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3450                  "in a linker script"));
3451   this->saw_relro_end_ = true;
3452
3453   if (!this->saw_data_segment_align_)
3454     gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3455   else
3456     {
3457       Sections_elements::iterator p = this->data_segment_align_start_;
3458       for (++p; p != this->sections_elements_->end(); ++p)
3459         (*p)->set_is_relro();
3460     }
3461 }
3462
3463 // Create any required sections.
3464
3465 void
3466 Script_sections::create_sections(Layout* layout)
3467 {
3468   if (!this->saw_sections_clause_)
3469     return;
3470   for (Sections_elements::iterator p = this->sections_elements_->begin();
3471        p != this->sections_elements_->end();
3472        ++p)
3473     (*p)->create_sections(layout);
3474 }
3475
3476 // Add any symbols we are defining to the symbol table.
3477
3478 void
3479 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3480 {
3481   if (!this->saw_sections_clause_)
3482     return;
3483   for (Sections_elements::iterator p = this->sections_elements_->begin();
3484        p != this->sections_elements_->end();
3485        ++p)
3486     (*p)->add_symbols_to_table(symtab);
3487 }
3488
3489 // Finalize symbols and check assertions.
3490
3491 void
3492 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3493 {
3494   if (!this->saw_sections_clause_)
3495     return;
3496   uint64_t dot_value = 0;
3497   for (Sections_elements::iterator p = this->sections_elements_->begin();
3498        p != this->sections_elements_->end();
3499        ++p)
3500     (*p)->finalize_symbols(symtab, layout, &dot_value);
3501 }
3502
3503 // Return the name of the output section to use for an input file name
3504 // and section name.
3505
3506 const char*
3507 Script_sections::output_section_name(
3508     const char* file_name,
3509     const char* section_name,
3510     Output_section*** output_section_slot,
3511     Script_sections::Section_type* psection_type,
3512     bool* keep)
3513 {
3514   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3515        p != this->sections_elements_->end();
3516        ++p)
3517     {
3518       const char* ret = (*p)->output_section_name(file_name, section_name,
3519                                                   output_section_slot,
3520                                                   psection_type, keep);
3521
3522       if (ret != NULL)
3523         {
3524           // The special name /DISCARD/ means that the input section
3525           // should be discarded.
3526           if (strcmp(ret, "/DISCARD/") == 0)
3527             {
3528               *output_section_slot = NULL;
3529               *psection_type = Script_sections::ST_NONE;
3530               return NULL;
3531             }
3532           return ret;
3533         }
3534     }
3535
3536   // If we couldn't find a mapping for the name, the output section
3537   // gets the name of the input section.
3538
3539   *output_section_slot = NULL;
3540   *psection_type = Script_sections::ST_NONE;
3541
3542   return section_name;
3543 }
3544
3545 // Place a marker for an orphan output section into the SECTIONS
3546 // clause.
3547
3548 void
3549 Script_sections::place_orphan(Output_section* os)
3550 {
3551   Orphan_section_placement* osp = this->orphan_section_placement_;
3552   if (osp == NULL)
3553     {
3554       // Initialize the Orphan_section_placement structure.
3555       osp = new Orphan_section_placement();
3556       for (Sections_elements::iterator p = this->sections_elements_->begin();
3557            p != this->sections_elements_->end();
3558            ++p)
3559         (*p)->orphan_section_init(osp, p);
3560       gold_assert(!this->sections_elements_->empty());
3561       Sections_elements::iterator last = this->sections_elements_->end();
3562       --last;
3563       osp->last_init(last);
3564       this->orphan_section_placement_ = osp;
3565     }
3566
3567   Orphan_output_section* orphan = new Orphan_output_section(os);
3568
3569   // Look for where to put ORPHAN.
3570   Sections_elements::iterator* where;
3571   if (osp->find_place(os, &where))
3572     {
3573       if ((**where)->is_relro())
3574         os->set_is_relro();
3575       else
3576         os->clear_is_relro();
3577
3578       // We want to insert ORPHAN after *WHERE, and then update *WHERE
3579       // so that the next one goes after this one.
3580       Sections_elements::iterator p = *where;
3581       gold_assert(p != this->sections_elements_->end());
3582       ++p;
3583       *where = this->sections_elements_->insert(p, orphan);
3584     }
3585   else
3586     {
3587       os->clear_is_relro();
3588       // We don't have a place to put this orphan section.  Put it,
3589       // and all other sections like it, at the end, but before the
3590       // sections which always come at the end.
3591       Sections_elements::iterator last = osp->last_place();
3592       *where = this->sections_elements_->insert(last, orphan);
3593     }
3594 }
3595
3596 // Set the addresses of all the output sections.  Walk through all the
3597 // elements, tracking the dot symbol.  Apply assignments which set
3598 // absolute symbol values, in case they are used when setting dot.
3599 // Fill in data statement values.  As we find output sections, set the
3600 // address, set the address of all associated input sections, and
3601 // update dot.  Return the segment which should hold the file header
3602 // and segment headers, if any.
3603
3604 Output_segment*
3605 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3606 {
3607   gold_assert(this->saw_sections_clause_);
3608          
3609   // Implement ONLY_IF_RO/ONLY_IF_RW constraints.  These are a pain
3610   // for our representation.
3611   for (Sections_elements::iterator p = this->sections_elements_->begin();
3612        p != this->sections_elements_->end();
3613        ++p)
3614     {
3615       Output_section_definition* posd;
3616       Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3617       if (failed_constraint != CONSTRAINT_NONE)
3618         {
3619           Sections_elements::iterator q;
3620           for (q = this->sections_elements_->begin();
3621                q != this->sections_elements_->end();
3622                ++q)
3623             {
3624               if (q != p)
3625                 {
3626                   if ((*q)->alternate_constraint(posd, failed_constraint))
3627                     break;
3628                 }
3629             }
3630
3631           if (q == this->sections_elements_->end())
3632             gold_error(_("no matching section constraint"));
3633         }
3634     }
3635
3636   // Force the alignment of the first TLS section to be the maximum
3637   // alignment of all TLS sections.
3638   Output_section* first_tls = NULL;
3639   uint64_t tls_align = 0;
3640   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3641        p != this->sections_elements_->end();
3642        ++p)
3643     {
3644       Output_section* os = (*p)->get_output_section();
3645       if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3646         {
3647           if (first_tls == NULL)
3648             first_tls = os;
3649           if (os->addralign() > tls_align)
3650             tls_align = os->addralign();
3651         }
3652     }
3653   if (first_tls != NULL)
3654     first_tls->set_addralign(tls_align);
3655
3656   // For a relocatable link, we implicitly set dot to zero.
3657   uint64_t dot_value = 0;
3658   uint64_t dot_alignment = 0;
3659   uint64_t load_address = 0;
3660
3661   // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3662   // to set section addresses.  If the script has any SEGMENT_START
3663   // expression, we do not set the section addresses.
3664   bool use_tsection_options =
3665     (!this->saw_segment_start_expression_
3666      && (parameters->options().user_set_Ttext()
3667          || parameters->options().user_set_Tdata()
3668          || parameters->options().user_set_Tbss()));
3669
3670   for (Sections_elements::iterator p = this->sections_elements_->begin();
3671        p != this->sections_elements_->end();
3672        ++p)
3673     {
3674       Output_section* os = (*p)->get_output_section();
3675
3676       // Handle -Ttext, -Tdata and -Tbss options.  We do this by looking for
3677       // the special sections by names and doing dot assignments. 
3678       if (use_tsection_options
3679           && os != NULL
3680           && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3681         {
3682           uint64_t new_dot_value = dot_value;
3683
3684           if (parameters->options().user_set_Ttext()
3685               && strcmp(os->name(), ".text") == 0)
3686             new_dot_value = parameters->options().Ttext();
3687           else if (parameters->options().user_set_Tdata()
3688               && strcmp(os->name(), ".data") == 0)
3689             new_dot_value = parameters->options().Tdata();
3690           else if (parameters->options().user_set_Tbss()
3691               && strcmp(os->name(), ".bss") == 0)
3692             new_dot_value = parameters->options().Tbss();
3693
3694           // Update dot and load address if necessary.
3695           if (new_dot_value < dot_value)
3696             gold_error(_("dot may not move backward"));
3697           else if (new_dot_value != dot_value)
3698             {
3699               dot_value = new_dot_value;
3700               load_address = new_dot_value;
3701             }
3702         }
3703
3704       (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3705                                   &load_address);
3706     } 
3707
3708   if (this->phdrs_elements_ != NULL)
3709     {
3710       for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3711            p != this->phdrs_elements_->end();
3712            ++p)
3713         (*p)->eval_load_address(symtab, layout);
3714     }
3715
3716   return this->create_segments(layout, dot_alignment);
3717 }
3718
3719 // Sort the sections in order to put them into segments.
3720
3721 class Sort_output_sections
3722 {
3723  public:
3724   Sort_output_sections(const Script_sections::Sections_elements* elements)
3725    : elements_(elements)
3726   { }
3727
3728   bool
3729   operator()(const Output_section* os1, const Output_section* os2) const;
3730
3731  private:
3732   int
3733   script_compare(const Output_section* os1, const Output_section* os2) const;
3734
3735  private:
3736   const Script_sections::Sections_elements* elements_;
3737 };
3738
3739 bool
3740 Sort_output_sections::operator()(const Output_section* os1,
3741                                  const Output_section* os2) const
3742 {
3743   // Sort first by the load address.
3744   uint64_t lma1 = (os1->has_load_address()
3745                    ? os1->load_address()
3746                    : os1->address());
3747   uint64_t lma2 = (os2->has_load_address()
3748                    ? os2->load_address()
3749                    : os2->address());
3750   if (lma1 != lma2)
3751     return lma1 < lma2;
3752
3753   // Then sort by the virtual address.
3754   if (os1->address() != os2->address())
3755     return os1->address() < os2->address();
3756
3757   // If the linker script says which of these sections is first, go
3758   // with what it says.
3759   int i = this->script_compare(os1, os2);
3760   if (i != 0)
3761     return i < 0;
3762
3763   // Sort PROGBITS before NOBITS.
3764   bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3765   bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3766   if (nobits1 != nobits2)
3767     return nobits2;
3768
3769   // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3770   // beginning.
3771   bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3772   bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3773   if (tls1 != tls2)
3774     return nobits1 ? tls1 : tls2;
3775
3776   // Sort non-NOLOAD before NOLOAD.
3777   if (os1->is_noload() && !os2->is_noload())
3778     return true;
3779   if (!os1->is_noload() && os2->is_noload())
3780     return true;
3781
3782   // The sections seem practically identical.  Sort by name to get a
3783   // stable sort.
3784   return os1->name() < os2->name();
3785 }
3786
3787 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3788 // if either OS1 or OS2 is not mentioned.  This ensures that we keep
3789 // empty sections in the order in which they appear in a linker
3790 // script.
3791
3792 int
3793 Sort_output_sections::script_compare(const Output_section* os1,
3794                                      const Output_section* os2) const
3795 {
3796   if (this->elements_ == NULL)
3797     return 0;
3798
3799   bool found_os1 = false;
3800   bool found_os2 = false;
3801   for (Script_sections::Sections_elements::const_iterator
3802          p = this->elements_->begin();
3803        p != this->elements_->end();
3804        ++p)
3805     {
3806       if (os2 == (*p)->get_output_section())
3807         {
3808           if (found_os1)
3809             return -1;
3810           found_os2 = true;
3811         }
3812       else if (os1 == (*p)->get_output_section())
3813         {
3814           if (found_os2)
3815             return 1;
3816           found_os1 = true;
3817         }
3818     }
3819
3820   return 0;
3821 }
3822
3823 // Return whether OS is a BSS section.  This is a SHT_NOBITS section.
3824 // We treat a section with the SHF_TLS flag set as taking up space
3825 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3826 // space for them in the file.
3827
3828 bool
3829 Script_sections::is_bss_section(const Output_section* os)
3830 {
3831   return (os->type() == elfcpp::SHT_NOBITS
3832           && (os->flags() & elfcpp::SHF_TLS) == 0);
3833 }
3834
3835 // Return the size taken by the file header and the program headers.
3836
3837 size_t
3838 Script_sections::total_header_size(Layout* layout) const
3839 {
3840   size_t segment_count = layout->segment_count();
3841   size_t file_header_size;
3842   size_t segment_headers_size;
3843   if (parameters->target().get_size() == 32)
3844     {
3845       file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3846       segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3847     }
3848   else if (parameters->target().get_size() == 64)
3849     {
3850       file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3851       segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3852     }
3853   else
3854     gold_unreachable();
3855
3856   return file_header_size + segment_headers_size;
3857 }
3858
3859 // Return the amount we have to subtract from the LMA to accommodate
3860 // headers of the given size.  The complication is that the file
3861 // header have to be at the start of a page, as otherwise it will not
3862 // be at the start of the file.
3863
3864 uint64_t
3865 Script_sections::header_size_adjustment(uint64_t lma,
3866                                         size_t sizeof_headers) const
3867 {
3868   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3869   uint64_t hdr_lma = lma - sizeof_headers;
3870   hdr_lma &= ~(abi_pagesize - 1);
3871   return lma - hdr_lma;
3872 }
3873
3874 // Create the PT_LOAD segments when using a SECTIONS clause.  Returns
3875 // the segment which should hold the file header and segment headers,
3876 // if any.
3877
3878 Output_segment*
3879 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3880 {
3881   gold_assert(this->saw_sections_clause_);
3882
3883   if (parameters->options().relocatable())
3884     return NULL;
3885
3886   if (this->saw_phdrs_clause())
3887     return create_segments_from_phdrs_clause(layout, dot_alignment);
3888
3889   Layout::Section_list sections;
3890   layout->get_allocated_sections(&sections);
3891
3892   // Sort the sections by address.
3893   std::stable_sort(sections.begin(), sections.end(), 
3894                    Sort_output_sections(this->sections_elements_));
3895
3896   this->create_note_and_tls_segments(layout, &sections);
3897
3898   // Walk through the sections adding them to PT_LOAD segments.
3899   const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3900   Output_segment* first_seg = NULL;
3901   Output_segment* current_seg = NULL;
3902   bool is_current_seg_readonly = true;
3903   Layout::Section_list::iterator plast = sections.end();
3904   uint64_t last_vma = 0;
3905   uint64_t last_lma = 0;
3906   uint64_t last_size = 0;
3907   for (Layout::Section_list::iterator p = sections.begin();
3908        p != sections.end();
3909        ++p)
3910     {
3911       const uint64_t vma = (*p)->address();
3912       const uint64_t lma = ((*p)->has_load_address()
3913                             ? (*p)->load_address()
3914                             : vma);
3915       const uint64_t size = (*p)->current_data_size();
3916
3917       bool need_new_segment;
3918       if (current_seg == NULL)
3919         need_new_segment = true;
3920       else if (lma - vma != last_lma - last_vma)
3921         {
3922           // This section has a different LMA relationship than the
3923           // last one; we need a new segment.
3924           need_new_segment = true;
3925         }
3926       else if (align_address(last_lma + last_size, abi_pagesize)
3927                < align_address(lma, abi_pagesize))
3928         {
3929           // Putting this section in the segment would require
3930           // skipping a page.
3931           need_new_segment = true;
3932         }
3933       else if (is_bss_section(*plast) && !is_bss_section(*p))
3934         {
3935           // A non-BSS section can not follow a BSS section in the
3936           // same segment.
3937           need_new_segment = true;
3938         }
3939       else if (is_current_seg_readonly
3940                && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3941                && !parameters->options().omagic())
3942         {
3943           // Don't put a writable section in the same segment as a
3944           // non-writable section.
3945           need_new_segment = true;
3946         }
3947       else
3948         {
3949           // Otherwise, reuse the existing segment.
3950           need_new_segment = false;
3951         }
3952
3953       elfcpp::Elf_Word seg_flags =
3954         Layout::section_flags_to_segment((*p)->flags());
3955
3956       if (need_new_segment)
3957         {
3958           current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3959                                                     seg_flags);
3960           current_seg->set_addresses(vma, lma);
3961           current_seg->set_minimum_p_align(dot_alignment);
3962           if (first_seg == NULL)
3963             first_seg = current_seg;
3964           is_current_seg_readonly = true;
3965         }
3966
3967       current_seg->add_output_section_to_load(layout, *p, seg_flags);
3968
3969       if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3970         is_current_seg_readonly = false;
3971
3972       plast = p;
3973       last_vma = vma;
3974       last_lma = lma;
3975       last_size = size;
3976     }
3977
3978   // An ELF program should work even if the program headers are not in
3979   // a PT_LOAD segment.  However, it appears that the Linux kernel
3980   // does not set the AT_PHDR auxiliary entry in that case.  It sets
3981   // the load address to p_vaddr - p_offset of the first PT_LOAD
3982   // segment.  It then sets AT_PHDR to the load address plus the
3983   // offset to the program headers, e_phoff in the file header.  This
3984   // fails when the program headers appear in the file before the
3985   // first PT_LOAD segment.  Therefore, we always create a PT_LOAD
3986   // segment to hold the file header and the program headers.  This is
3987   // effectively what the GNU linker does, and it is slightly more
3988   // efficient in any case.  We try to use the first PT_LOAD segment
3989   // if we can, otherwise we make a new one.
3990
3991   if (first_seg == NULL)
3992     return NULL;
3993
3994   // -n or -N mean that the program is not demand paged and there is
3995   // no need to put the program headers in a PT_LOAD segment.
3996   if (parameters->options().nmagic() || parameters->options().omagic())
3997     return NULL;
3998
3999   size_t sizeof_headers = this->total_header_size(layout);
4000
4001   uint64_t vma = first_seg->vaddr();
4002   uint64_t lma = first_seg->paddr();
4003
4004   uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
4005
4006   if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
4007     {
4008       first_seg->set_addresses(vma - subtract, lma - subtract);
4009       return first_seg;
4010     }
4011
4012   // If there is no room to squeeze in the headers, then punt.  The
4013   // resulting executable probably won't run on GNU/Linux, but we
4014   // trust that the user knows what they are doing.
4015   if (lma < subtract || vma < subtract)
4016     return NULL;
4017
4018   // If memory regions have been specified and the address range
4019   // we are about to use is not contained within any region then
4020   // issue a warning message about the segment we are going to
4021   // create.  It will be outside of any region and so possibly
4022   // using non-existent or protected memory.  We test LMA rather
4023   // than VMA since we assume that the headers will never be
4024   // relocated.
4025   if (this->memory_regions_ != NULL
4026       && !this->block_in_region (NULL, layout, lma - subtract, subtract))
4027     gold_warning(_("creating a segment to contain the file and program"
4028                    " headers outside of any MEMORY region"));
4029
4030   Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4031                                                          elfcpp::PF_R);
4032   load_seg->set_addresses(vma - subtract, lma - subtract);
4033
4034   return load_seg;
4035 }
4036
4037 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
4038 // segment if there are any SHT_TLS sections.
4039
4040 void
4041 Script_sections::create_note_and_tls_segments(
4042     Layout* layout,
4043     const Layout::Section_list* sections)
4044 {
4045   gold_assert(!this->saw_phdrs_clause());
4046
4047   bool saw_tls = false;
4048   for (Layout::Section_list::const_iterator p = sections->begin();
4049        p != sections->end();
4050        ++p)
4051     {
4052       if ((*p)->type() == elfcpp::SHT_NOTE)
4053         {
4054           elfcpp::Elf_Word seg_flags =
4055             Layout::section_flags_to_segment((*p)->flags());
4056           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4057                                                              seg_flags);
4058           oseg->add_output_section_to_nonload(*p, seg_flags);
4059
4060           // Incorporate any subsequent SHT_NOTE sections, in the
4061           // hopes that the script is sensible.
4062           Layout::Section_list::const_iterator pnext = p + 1;
4063           while (pnext != sections->end()
4064                  && (*pnext)->type() == elfcpp::SHT_NOTE)
4065             {
4066               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4067               oseg->add_output_section_to_nonload(*pnext, seg_flags);
4068               p = pnext;
4069               ++pnext;
4070             }
4071         }
4072
4073       if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4074         {
4075           if (saw_tls)
4076             gold_error(_("TLS sections are not adjacent"));
4077
4078           elfcpp::Elf_Word seg_flags =
4079             Layout::section_flags_to_segment((*p)->flags());
4080           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4081                                                              seg_flags);
4082           oseg->add_output_section_to_nonload(*p, seg_flags);
4083
4084           Layout::Section_list::const_iterator pnext = p + 1;
4085           while (pnext != sections->end()
4086                  && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4087             {
4088               seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4089               oseg->add_output_section_to_nonload(*pnext, seg_flags);
4090               p = pnext;
4091               ++pnext;
4092             }
4093
4094           saw_tls = true;
4095         }
4096
4097       // If we see a section named .interp then put the .interp section
4098       // in a PT_INTERP segment.
4099       // This is for GNU ld compatibility.
4100       if (strcmp((*p)->name(), ".interp") == 0)
4101         {
4102           elfcpp::Elf_Word seg_flags =
4103             Layout::section_flags_to_segment((*p)->flags());
4104           Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4105                                                              seg_flags);
4106           oseg->add_output_section_to_nonload(*p, seg_flags);
4107         }
4108     }
4109
4110     this->segments_created_ = true;
4111 }
4112
4113 // Add a program header.  The PHDRS clause is syntactically distinct
4114 // from the SECTIONS clause, but we implement it with the SECTIONS
4115 // support because PHDRS is useless if there is no SECTIONS clause.
4116
4117 void
4118 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4119                           bool includes_filehdr, bool includes_phdrs,
4120                           bool is_flags_valid, unsigned int flags,
4121                           Expression* load_address)
4122 {
4123   if (this->phdrs_elements_ == NULL)
4124     this->phdrs_elements_ = new Phdrs_elements();
4125   this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4126                                                      includes_filehdr,
4127                                                      includes_phdrs,
4128                                                      is_flags_valid, flags,
4129                                                      load_address));
4130 }
4131
4132 // Return the number of segments we expect to create based on the
4133 // SECTIONS clause.  This is used to implement SIZEOF_HEADERS.
4134
4135 size_t
4136 Script_sections::expected_segment_count(const Layout* layout) const
4137 {
4138   // If we've already created the segments, we won't be adding any more.
4139   if (this->segments_created_)
4140     return 0;
4141
4142   if (this->saw_phdrs_clause())
4143     return this->phdrs_elements_->size();
4144
4145   Layout::Section_list sections;
4146   layout->get_allocated_sections(&sections);
4147
4148   // We assume that we will need two PT_LOAD segments.
4149   size_t ret = 2;
4150
4151   bool saw_note = false;
4152   bool saw_tls = false;
4153   bool saw_interp = false;
4154   for (Layout::Section_list::const_iterator p = sections.begin();
4155        p != sections.end();
4156        ++p)
4157     {
4158       if ((*p)->type() == elfcpp::SHT_NOTE)
4159         {
4160           // Assume that all note sections will fit into a single
4161           // PT_NOTE segment.
4162           if (!saw_note)
4163             {
4164               ++ret;
4165               saw_note = true;
4166             }
4167         }
4168       else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4169         {
4170           // There can only be one PT_TLS segment.
4171           if (!saw_tls)
4172             {
4173               ++ret;
4174               saw_tls = true;
4175             }
4176         }
4177       else if (strcmp((*p)->name(), ".interp") == 0)
4178         {
4179           // There can only be one PT_INTERP segment.
4180           if (!saw_interp)
4181             {
4182               ++ret;
4183               saw_interp = true;
4184             }
4185         }
4186     }
4187
4188   return ret;
4189 }
4190
4191 // Create the segments from a PHDRS clause.  Return the segment which
4192 // should hold the file header and program headers, if any.
4193
4194 Output_segment*
4195 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4196                                                    uint64_t dot_alignment)
4197 {
4198   this->attach_sections_using_phdrs_clause(layout);
4199   return this->set_phdrs_clause_addresses(layout, dot_alignment);
4200 }
4201
4202 // Create the segments from the PHDRS clause, and put the output
4203 // sections in them.
4204
4205 void
4206 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4207 {
4208   typedef std::map<std::string, Output_segment*> Name_to_segment;
4209   Name_to_segment name_to_segment;
4210   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4211        p != this->phdrs_elements_->end();
4212        ++p)
4213     name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4214   this->segments_created_ = true;
4215
4216   // Walk through the output sections and attach them to segments.
4217   // Output sections in the script which do not list segments are
4218   // attached to the same set of segments as the immediately preceding
4219   // output section.
4220   
4221   String_list* phdr_names = NULL;
4222   bool load_segments_only = false;
4223   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4224        p != this->sections_elements_->end();
4225        ++p)
4226     {
4227       bool is_orphan;
4228       String_list* old_phdr_names = phdr_names;
4229       Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4230       if (os == NULL)
4231         continue;
4232
4233       elfcpp::Elf_Word seg_flags =
4234         Layout::section_flags_to_segment(os->flags());
4235
4236       if (phdr_names == NULL)
4237         {
4238           // Don't worry about empty orphan sections.
4239           if (is_orphan && os->current_data_size() > 0)
4240             gold_error(_("allocated section %s not in any segment"),
4241                        os->name());
4242
4243           // To avoid later crashes drop this section into the first
4244           // PT_LOAD segment.
4245           for (Phdrs_elements::const_iterator ppe =
4246                  this->phdrs_elements_->begin();
4247                ppe != this->phdrs_elements_->end();
4248                ++ppe)
4249             {
4250               Output_segment* oseg = (*ppe)->segment();
4251               if (oseg->type() == elfcpp::PT_LOAD)
4252                 {
4253                   oseg->add_output_section_to_load(layout, os, seg_flags);
4254                   break;
4255                 }
4256             }
4257
4258           continue;
4259         }
4260
4261       // We see a list of segments names.  Disable PT_LOAD segment only
4262       // filtering.
4263       if (old_phdr_names != phdr_names)
4264         load_segments_only = false;
4265                 
4266       // If this is an orphan section--one that was not explicitly
4267       // mentioned in the linker script--then it should not inherit
4268       // any segment type other than PT_LOAD.  Otherwise, e.g., the
4269       // PT_INTERP segment will pick up following orphan sections,
4270       // which does not make sense.  If this is not an orphan section,
4271       // we trust the linker script.
4272       if (is_orphan)
4273         {
4274           // Enable PT_LOAD segments only filtering until we see another
4275           // list of segment names.
4276           load_segments_only = true;
4277         }
4278
4279       bool in_load_segment = false;
4280       for (String_list::const_iterator q = phdr_names->begin();
4281            q != phdr_names->end();
4282            ++q)
4283         {
4284           Name_to_segment::const_iterator r = name_to_segment.find(*q);
4285           if (r == name_to_segment.end())
4286             gold_error(_("no segment %s"), q->c_str());
4287           else
4288             {
4289               if (load_segments_only
4290                   && r->second->type() != elfcpp::PT_LOAD)
4291                 continue;
4292
4293               if (r->second->type() != elfcpp::PT_LOAD)
4294                 r->second->add_output_section_to_nonload(os, seg_flags);
4295               else
4296                 {
4297                   r->second->add_output_section_to_load(layout, os, seg_flags);
4298                   if (in_load_segment)
4299                     gold_error(_("section in two PT_LOAD segments"));
4300                   in_load_segment = true;
4301                 }
4302             }
4303         }
4304
4305       if (!in_load_segment)
4306         gold_error(_("allocated section not in any PT_LOAD segment"));
4307     }
4308 }
4309
4310 // Set the addresses for segments created from a PHDRS clause.  Return
4311 // the segment which should hold the file header and program headers,
4312 // if any.
4313
4314 Output_segment*
4315 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4316                                             uint64_t dot_alignment)
4317 {
4318   Output_segment* load_seg = NULL;
4319   for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4320        p != this->phdrs_elements_->end();
4321        ++p)
4322     {
4323       // Note that we have to set the flags after adding the output
4324       // sections to the segment, as adding an output segment can
4325       // change the flags.
4326       (*p)->set_flags_if_valid();
4327
4328       Output_segment* oseg = (*p)->segment();
4329
4330       if (oseg->type() != elfcpp::PT_LOAD)
4331         {
4332           // The addresses of non-PT_LOAD segments are set from the
4333           // PT_LOAD segments.
4334           if ((*p)->has_load_address())
4335             gold_error(_("may only specify load address for PT_LOAD segment"));
4336           continue;
4337         }
4338
4339       oseg->set_minimum_p_align(dot_alignment);
4340
4341       // The output sections should have addresses from the SECTIONS
4342       // clause.  The addresses don't have to be in order, so find the
4343       // one with the lowest load address.  Use that to set the
4344       // address of the segment.
4345
4346       Output_section* osec = oseg->section_with_lowest_load_address();
4347       if (osec == NULL)
4348         {
4349           oseg->set_addresses(0, 0);
4350           continue;
4351         }
4352
4353       uint64_t vma = osec->address();
4354       uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4355
4356       // Override the load address of the section with the load
4357       // address specified for the segment.
4358       if ((*p)->has_load_address())
4359         {
4360           if (osec->has_load_address())
4361             gold_warning(_("PHDRS load address overrides "
4362                            "section %s load address"),
4363                          osec->name());
4364
4365           lma = (*p)->load_address();
4366         }
4367
4368       bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4369       if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4370         {
4371           // We could support this if we wanted to.
4372           gold_error(_("using only one of FILEHDR and PHDRS is "
4373                        "not currently supported"));
4374         }
4375       if (headers)
4376         {
4377           size_t sizeof_headers = this->total_header_size(layout);
4378           uint64_t subtract = this->header_size_adjustment(lma,
4379                                                            sizeof_headers);
4380           if (lma >= subtract && vma >= subtract)
4381             {
4382               lma -= subtract;
4383               vma -= subtract;
4384             }
4385           else
4386             {
4387               gold_error(_("sections loaded on first page without room "
4388                            "for file and program headers "
4389                            "are not supported"));
4390             }
4391
4392           if (load_seg != NULL)
4393             gold_error(_("using FILEHDR and PHDRS on more than one "
4394                          "PT_LOAD segment is not currently supported"));
4395           load_seg = oseg;
4396         }
4397
4398       oseg->set_addresses(vma, lma);
4399     }
4400
4401   return load_seg;
4402 }
4403
4404 // Add the file header and segment headers to non-load segments
4405 // specified in the PHDRS clause.
4406
4407 void
4408 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4409                                       Output_data* segment_headers)
4410 {
4411   gold_assert(this->saw_phdrs_clause());
4412   for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4413        p != this->phdrs_elements_->end();
4414        ++p)
4415     {
4416       if ((*p)->type() != elfcpp::PT_LOAD)
4417         {
4418           if ((*p)->includes_phdrs())
4419             (*p)->segment()->add_initial_output_data(segment_headers);
4420           if ((*p)->includes_filehdr())
4421             (*p)->segment()->add_initial_output_data(file_header);
4422         }
4423     }
4424 }
4425
4426 // Look for an output section by name and return the address, the load
4427 // address, the alignment, and the size.  This is used when an
4428 // expression refers to an output section which was not actually
4429 // created.  This returns true if the section was found, false
4430 // otherwise.
4431
4432 bool
4433 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4434                                          uint64_t* load_address,
4435                                          uint64_t* addralign,
4436                                          uint64_t* size) const
4437 {
4438   if (!this->saw_sections_clause_)
4439     return false;
4440   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4441        p != this->sections_elements_->end();
4442        ++p)
4443     if ((*p)->get_output_section_info(name, address, load_address, addralign,
4444                                       size))
4445       return true;
4446   return false;
4447 }
4448
4449 // Release all Output_segments.  This remove all pointers to all
4450 // Output_segments.
4451
4452 void
4453 Script_sections::release_segments()
4454 {
4455   if (this->saw_phdrs_clause())
4456     {
4457       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4458            p != this->phdrs_elements_->end();
4459            ++p)
4460         (*p)->release_segment();
4461     }
4462 }
4463
4464 // Print the SECTIONS clause to F for debugging.
4465
4466 void
4467 Script_sections::print(FILE* f) const
4468 {
4469   if (this->phdrs_elements_ != NULL)
4470     {
4471       fprintf(f, "PHDRS {\n");
4472       for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4473            p != this->phdrs_elements_->end();
4474            ++p)
4475         (*p)->print(f);
4476       fprintf(f, "}\n");
4477     }
4478
4479   if (this->memory_regions_ != NULL)
4480     {
4481       fprintf(f, "MEMORY {\n");
4482       for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4483            m != this->memory_regions_->end();
4484            ++m)
4485         (*m)->print(f);
4486       fprintf(f, "}\n");
4487     }
4488
4489   if (!this->saw_sections_clause_)
4490     return;
4491
4492   fprintf(f, "SECTIONS {\n");
4493
4494   for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4495        p != this->sections_elements_->end();
4496        ++p)
4497     (*p)->print(f);
4498
4499   fprintf(f, "}\n");
4500 }
4501
4502 } // End namespace gold.