kernel - Add callout debugging
[dragonfly.git] / sys / kern / kern_slaballoc.c
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
5  * 
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  * 
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  * 
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  * 
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *      Alloc Size      Chunking        Number of zones
68  *      0-127           8               16
69  *      128-255         16              8
70  *      256-511         32              8
71  *      512-1023        64              8
72  *      1024-2047       128             8
73  *      2048-4095       256             8
74  *      4096-8191       512             8
75  *      8192-16383      1024            8
76  *      16384-32767     2048            8
77  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *      Allocations >= ZoneLimit go directly to kmem.
80  *      (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
81  *
82  * Alignment properties:
83  * - All power-of-2 sized allocations are power-of-2 aligned.
84  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
85  *   power-of-2 round up of 'size'.
86  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
87  *   above table 'Chunking' column).
88  *
89  *                      API REQUIREMENTS AND SIDE EFFECTS
90  *
91  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
92  *    have remained compatible with the following API requirements:
93  *
94  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
95  *    + ability to allocate arbitrarily large chunks of memory
96  */
97
98 #include "opt_vm.h"
99
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/kernel.h>
103 #include <sys/slaballoc.h>
104 #include <sys/mbuf.h>
105 #include <sys/vmmeter.h>
106 #include <sys/lock.h>
107 #include <sys/thread.h>
108 #include <sys/globaldata.h>
109 #include <sys/sysctl.h>
110 #include <sys/ktr.h>
111
112 #include <vm/vm.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_object.h>
117 #include <vm/pmap.h>
118 #include <vm/vm_map.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
121
122 #include <machine/cpu.h>
123
124 #include <sys/thread2.h>
125 #include <vm/vm_page2.h>
126
127 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
128
129 #define MEMORY_STRING   "ptr=%p type=%p size=%lu flags=%04x"
130 #define MEMORY_ARGS     void *ptr, void *type, unsigned long size, int flags
131
132 #if !defined(KTR_MEMORY)
133 #define KTR_MEMORY      KTR_ALL
134 #endif
135 KTR_INFO_MASTER(memory);
136 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
137 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
145 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
146 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
147
148 #define logmemory(name, ptr, type, size, flags)                         \
149         KTR_LOG(memory_ ## name, ptr, type, size, flags)
150 #define logmemory_quick(name)                                           \
151         KTR_LOG(memory_ ## name)
152
153 /*
154  * Fixed globals (not per-cpu)
155  */
156 static int ZoneSize;
157 static int ZoneLimit;
158 static int ZonePageCount;
159 static uintptr_t ZoneMask;
160 static int ZoneBigAlloc;                /* in KB */
161 static int ZoneGenAlloc;                /* in KB */
162 struct malloc_type *kmemstatistics;     /* exported to vmstat */
163 #ifdef INVARIANTS
164 static int32_t weirdary[16];
165 #endif
166
167 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
168 static void kmem_slab_free(void *ptr, vm_size_t bytes);
169
170 #if defined(INVARIANTS)
171 static void chunk_mark_allocated(SLZone *z, void *chunk);
172 static void chunk_mark_free(SLZone *z, void *chunk);
173 #else
174 #define chunk_mark_allocated(z, chunk)
175 #define chunk_mark_free(z, chunk)
176 #endif
177
178 /*
179  * Misc constants.  Note that allocations that are exact multiples of 
180  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
181  */
182 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
183
184 #ifdef INVARIANTS
185 /*
186  * The WEIRD_ADDR is used as known text to copy into free objects to
187  * try to create deterministic failure cases if the data is accessed after
188  * free.
189  */    
190 #define WEIRD_ADDR      0xdeadc0de
191 #endif
192 #define ZERO_LENGTH_PTR ((void *)-8)
193
194 /*
195  * Misc global malloc buckets
196  */
197
198 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
199 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
200 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
201 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
202  
203 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
204 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
205
206 /*
207  * Initialize the slab memory allocator.  We have to choose a zone size based
208  * on available physical memory.  We choose a zone side which is approximately
209  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
210  * 128K.  The zone size is limited to the bounds set in slaballoc.h
211  * (typically 32K min, 128K max). 
212  */
213 static void kmeminit(void *dummy);
214
215 char *ZeroPage;
216
217 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
218
219 #ifdef INVARIANTS
220 /*
221  * If enabled any memory allocated without M_ZERO is initialized to -1.
222  */
223 static int  use_malloc_pattern;
224 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
225     &use_malloc_pattern, 0,
226     "Initialize memory to -1 if M_ZERO not specified");
227 #endif
228
229 static int ZoneRelsThresh = ZONE_RELS_THRESH;
230 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
231 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
232 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
233 static long SlabsAllocated;
234 static long SlabsFreed;
235 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
236             &SlabsAllocated, 0, "");
237 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
238             &SlabsFreed, 0, "");
239 static int SlabFreeToTail;
240 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
241             &SlabFreeToTail, 0, "");
242
243 static struct spinlock kmemstat_spin =
244                         SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
245
246 /*
247  * Returns the kernel memory size limit for the purposes of initializing
248  * various subsystem caches.  The smaller of available memory and the KVM
249  * memory space is returned.
250  *
251  * The size in megabytes is returned.
252  */
253 size_t
254 kmem_lim_size(void)
255 {
256     size_t limsize;
257
258     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
259     if (limsize > KvaSize)
260         limsize = KvaSize;
261     return (limsize / (1024 * 1024));
262 }
263
264 static void
265 kmeminit(void *dummy)
266 {
267     size_t limsize;
268     int usesize;
269 #ifdef INVARIANTS
270     int i;
271 #endif
272
273     limsize = kmem_lim_size();
274     usesize = (int)(limsize * 1024);    /* convert to KB */
275
276     /*
277      * If the machine has a large KVM space and more than 8G of ram,
278      * double the zone release threshold to reduce SMP invalidations.
279      * If more than 16G of ram, do it again.
280      *
281      * The BIOS eats a little ram so add some slop.  We want 8G worth of
282      * memory sticks to trigger the first adjustment.
283      */
284     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
285             if (limsize >= 7 * 1024)
286                     ZoneRelsThresh *= 2;
287             if (limsize >= 15 * 1024)
288                     ZoneRelsThresh *= 2;
289     }
290
291     /*
292      * Calculate the zone size.  This typically calculates to
293      * ZALLOC_MAX_ZONE_SIZE
294      */
295     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
296     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
297         ZoneSize <<= 1;
298     ZoneLimit = ZoneSize / 4;
299     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
300         ZoneLimit = ZALLOC_ZONE_LIMIT;
301     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
302     ZonePageCount = ZoneSize / PAGE_SIZE;
303
304 #ifdef INVARIANTS
305     for (i = 0; i < NELEM(weirdary); ++i)
306         weirdary[i] = WEIRD_ADDR;
307 #endif
308
309     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
310
311     if (bootverbose)
312         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
313 }
314
315 /*
316  * (low level) Initialize slab-related elements in the globaldata structure.
317  *
318  * Occurs after kmeminit().
319  */
320 void
321 slab_gdinit(globaldata_t gd)
322 {
323         SLGlobalData *slgd;
324         int i;
325
326         slgd = &gd->gd_slab;
327         for (i = 0; i < NZONES; ++i)
328                 TAILQ_INIT(&slgd->ZoneAry[i]);
329         TAILQ_INIT(&slgd->FreeZones);
330         TAILQ_INIT(&slgd->FreeOvZones);
331 }
332
333 /*
334  * Initialize a malloc type tracking structure.
335  */
336 void
337 malloc_init(void *data)
338 {
339     struct malloc_type *type = data;
340     size_t limsize;
341
342     if (type->ks_magic != M_MAGIC)
343         panic("malloc type lacks magic");
344                                            
345     if (type->ks_limit != 0)
346         return;
347
348     if (vmstats.v_page_count == 0)
349         panic("malloc_init not allowed before vm init");
350
351     limsize = kmem_lim_size() * (1024 * 1024);
352     type->ks_limit = limsize / 10;
353
354     spin_lock(&kmemstat_spin);
355     type->ks_next = kmemstatistics;
356     kmemstatistics = type;
357     spin_unlock(&kmemstat_spin);
358 }
359
360 void
361 malloc_uninit(void *data)
362 {
363     struct malloc_type *type = data;
364     struct malloc_type *t;
365 #ifdef INVARIANTS
366     int i;
367     long ttl;
368 #endif
369
370     if (type->ks_magic != M_MAGIC)
371         panic("malloc type lacks magic");
372
373     if (vmstats.v_page_count == 0)
374         panic("malloc_uninit not allowed before vm init");
375
376     if (type->ks_limit == 0)
377         panic("malloc_uninit on uninitialized type");
378
379     /* Make sure that all pending kfree()s are finished. */
380     lwkt_synchronize_ipiqs("muninit");
381
382 #ifdef INVARIANTS
383     /*
384      * memuse is only correct in aggregation.  Due to memory being allocated
385      * on one cpu and freed on another individual array entries may be 
386      * negative or positive (canceling each other out).
387      */
388     for (i = ttl = 0; i < ncpus; ++i)
389         ttl += type->ks_use[i].memuse;
390     if (ttl) {
391         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
392             ttl, type->ks_shortdesc, i);
393     }
394 #endif
395     spin_lock(&kmemstat_spin);
396     if (type == kmemstatistics) {
397         kmemstatistics = type->ks_next;
398     } else {
399         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
400             if (t->ks_next == type) {
401                 t->ks_next = type->ks_next;
402                 break;
403             }
404         }
405     }
406     type->ks_next = NULL;
407     type->ks_limit = 0;
408     spin_unlock(&kmemstat_spin);
409 }
410
411 /*
412  * Increase the kmalloc pool limit for the specified pool.  No changes
413  * are the made if the pool would shrink.
414  */
415 void
416 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
417 {
418     if (type->ks_limit == 0)
419         malloc_init(type);
420     if (bytes == 0)
421         bytes = KvaSize;
422     if (type->ks_limit < bytes)
423         type->ks_limit = bytes;
424 }
425
426 void
427 kmalloc_set_unlimited(struct malloc_type *type)
428 {
429     type->ks_limit = kmem_lim_size() * (1024 * 1024);
430 }
431
432 /*
433  * Dynamically create a malloc pool.  This function is a NOP if *typep is
434  * already non-NULL.
435  */
436 void
437 kmalloc_create(struct malloc_type **typep, const char *descr)
438 {
439         struct malloc_type *type;
440
441         if (*typep == NULL) {
442                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
443                 type->ks_magic = M_MAGIC;
444                 type->ks_shortdesc = descr;
445                 malloc_init(type);
446                 *typep = type;
447         }
448 }
449
450 /*
451  * Destroy a dynamically created malloc pool.  This function is a NOP if
452  * the pool has already been destroyed.
453  */
454 void
455 kmalloc_destroy(struct malloc_type **typep)
456 {
457         if (*typep != NULL) {
458                 malloc_uninit(*typep);
459                 kfree(*typep, M_TEMP);
460                 *typep = NULL;
461         }
462 }
463
464 /*
465  * Calculate the zone index for the allocation request size and set the
466  * allocation request size to that particular zone's chunk size.
467  */
468 static __inline int
469 zoneindex(unsigned long *bytes, unsigned long *align)
470 {
471     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
472
473     if (n < 128) {
474         *bytes = n = (n + 7) & ~7;
475         *align = 8;
476         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
477     }
478     if (n < 256) {
479         *bytes = n = (n + 15) & ~15;
480         *align = 16;
481         return(n / 16 + 7);
482     }
483     if (n < 8192) {
484         if (n < 512) {
485             *bytes = n = (n + 31) & ~31;
486             *align = 32;
487             return(n / 32 + 15);
488         }
489         if (n < 1024) {
490             *bytes = n = (n + 63) & ~63;
491             *align = 64;
492             return(n / 64 + 23);
493         } 
494         if (n < 2048) {
495             *bytes = n = (n + 127) & ~127;
496             *align = 128;
497             return(n / 128 + 31);
498         }
499         if (n < 4096) {
500             *bytes = n = (n + 255) & ~255;
501             *align = 256;
502             return(n / 256 + 39);
503         }
504         *bytes = n = (n + 511) & ~511;
505         *align = 512;
506         return(n / 512 + 47);
507     }
508 #if ZALLOC_ZONE_LIMIT > 8192
509     if (n < 16384) {
510         *bytes = n = (n + 1023) & ~1023;
511         *align = 1024;
512         return(n / 1024 + 55);
513     }
514 #endif
515 #if ZALLOC_ZONE_LIMIT > 16384
516     if (n < 32768) {
517         *bytes = n = (n + 2047) & ~2047;
518         *align = 2048;
519         return(n / 2048 + 63);
520     }
521 #endif
522     panic("Unexpected byte count %d", n);
523     return(0);
524 }
525
526 static __inline void
527 clean_zone_rchunks(SLZone *z)
528 {
529     SLChunk *bchunk;
530
531     while ((bchunk = z->z_RChunks) != NULL) {
532         cpu_ccfence();
533         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
534             *z->z_LChunksp = bchunk;
535             while (bchunk) {
536                 chunk_mark_free(z, bchunk);
537                 z->z_LChunksp = &bchunk->c_Next;
538                 bchunk = bchunk->c_Next;
539                 ++z->z_NFree;
540             }
541             break;
542         }
543         /* retry */
544     }
545 }
546
547 /*
548  * If the zone becomes totally free and is not the only zone listed for a
549  * chunk size we move it to the FreeZones list.  We always leave at least
550  * one zone per chunk size listed, even if it is freeable.
551  *
552  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
553  * otherwise MP races can result in our free_remote code accessing a
554  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
555  * so one has to test both z_NFree and z_RCount.
556  *
557  * Since this code can be called from an IPI callback, do *NOT* try to mess
558  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
559  */
560 static __inline SLZone *
561 check_zone_free(SLGlobalData *slgd, SLZone *z)
562 {
563     SLZone *znext;
564
565     znext = TAILQ_NEXT(z, z_Entry);
566     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
567         (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
568         int *kup;
569
570         TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
571
572         z->z_Magic = -1;
573         TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
574         ++slgd->NFreeZones;
575         kup = btokup(z);
576         *kup = 0;
577     }
578     return znext;
579 }
580
581 #ifdef SLAB_DEBUG
582 /*
583  * Used to debug memory corruption issues.  Record up to (typically 32)
584  * allocation sources for this zone (for a particular chunk size).
585  */
586
587 static void
588 slab_record_source(SLZone *z, const char *file, int line)
589 {
590     int i;
591     int b = line & (SLAB_DEBUG_ENTRIES - 1);
592
593     i = b;
594     do {
595         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
596                 return;
597         if (z->z_Sources[i].file == NULL)
598                 break;
599         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
600     } while (i != b);
601     z->z_Sources[i].file = file;
602     z->z_Sources[i].line = line;
603 }
604
605 #endif
606
607 static __inline unsigned long
608 powerof2_size(unsigned long size)
609 {
610         int i;
611
612         if (size == 0 || powerof2(size))
613                 return size;
614
615         i = flsl(size);
616         return (1UL << i);
617 }
618
619 /*
620  * kmalloc()    (SLAB ALLOCATOR)
621  *
622  *      Allocate memory via the slab allocator.  If the request is too large,
623  *      or if it page-aligned beyond a certain size, we fall back to the
624  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
625  *      &SlabMisc if you don't care.
626  *
627  *      M_RNOWAIT       - don't block.
628  *      M_NULLOK        - return NULL instead of blocking.
629  *      M_ZERO          - zero the returned memory.
630  *      M_USE_RESERVE   - allow greater drawdown of the free list
631  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
632  *      M_POWEROF2      - roundup size to the nearest power of 2
633  *
634  * MPSAFE
635  */
636
637 /* don't let kmalloc macro mess up function declaration */
638 #undef kmalloc
639
640 #ifdef SLAB_DEBUG
641 void *
642 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
643               const char *file, int line)
644 #else
645 void *
646 kmalloc(unsigned long size, struct malloc_type *type, int flags)
647 #endif
648 {
649     SLZone *z;
650     SLChunk *chunk;
651     SLGlobalData *slgd;
652     struct globaldata *gd;
653     unsigned long align;
654     int zi;
655 #ifdef INVARIANTS
656     int i;
657 #endif
658
659     logmemory_quick(malloc_beg);
660     gd = mycpu;
661     slgd = &gd->gd_slab;
662
663     /*
664      * XXX silly to have this in the critical path.
665      */
666     if (type->ks_limit == 0) {
667         crit_enter();
668         malloc_init(type);
669         crit_exit();
670     }
671     ++type->ks_use[gd->gd_cpuid].calls;
672
673     if (flags & M_POWEROF2)
674         size = powerof2_size(size);
675
676     /*
677      * Handle the case where the limit is reached.  Panic if we can't return
678      * NULL.  The original malloc code looped, but this tended to
679      * simply deadlock the computer.
680      *
681      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
682      * to determine if a more complete limit check should be done.  The
683      * actual memory use is tracked via ks_use[cpu].memuse.
684      */
685     while (type->ks_loosememuse >= type->ks_limit) {
686         int i;
687         long ttl;
688
689         for (i = ttl = 0; i < ncpus; ++i)
690             ttl += type->ks_use[i].memuse;
691         type->ks_loosememuse = ttl;     /* not MP synchronized */
692         if ((ssize_t)ttl < 0)           /* deal with occassional race */
693                 ttl = 0;
694         if (ttl >= type->ks_limit) {
695             if (flags & M_NULLOK) {
696                 logmemory(malloc_end, NULL, type, size, flags);
697                 return(NULL);
698             }
699             panic("%s: malloc limit exceeded", type->ks_shortdesc);
700         }
701     }
702
703     /*
704      * Handle the degenerate size == 0 case.  Yes, this does happen.
705      * Return a special pointer.  This is to maintain compatibility with
706      * the original malloc implementation.  Certain devices, such as the
707      * adaptec driver, not only allocate 0 bytes, they check for NULL and
708      * also realloc() later on.  Joy.
709      */
710     if (size == 0) {
711         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
712         return(ZERO_LENGTH_PTR);
713     }
714
715     /*
716      * Handle hysteresis from prior frees here in malloc().  We cannot
717      * safely manipulate the kernel_map in free() due to free() possibly
718      * being called via an IPI message or from sensitive interrupt code.
719      *
720      * NOTE: ku_pagecnt must be cleared before we free the slab or we
721      *       might race another cpu allocating the kva and setting
722      *       ku_pagecnt.
723      */
724     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
725         crit_enter();
726         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
727             int *kup;
728
729             z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
730             KKASSERT(z != NULL);
731             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
732             --slgd->NFreeZones;
733             kup = btokup(z);
734             *kup = 0;
735             kmem_slab_free(z, ZoneSize);        /* may block */
736             atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
737         }
738         crit_exit();
739     }
740
741     /*
742      * XXX handle oversized frees that were queued from kfree().
743      */
744     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
745         crit_enter();
746         if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
747             vm_size_t tsize;
748
749             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
750             TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
751             tsize = z->z_ChunkSize;
752             kmem_slab_free(z, tsize);   /* may block */
753             atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
754         }
755         crit_exit();
756     }
757
758     /*
759      * Handle large allocations directly.  There should not be very many of
760      * these so performance is not a big issue.
761      *
762      * The backend allocator is pretty nasty on a SMP system.   Use the
763      * slab allocator for one and two page-sized chunks even though we lose
764      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
765      */
766     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
767         int *kup;
768
769         size = round_page(size);
770         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
771         if (chunk == NULL) {
772             logmemory(malloc_end, NULL, type, size, flags);
773             return(NULL);
774         }
775         atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
776         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
777         flags |= M_PASSIVE_ZERO;
778         kup = btokup(chunk);
779         *kup = size / PAGE_SIZE;
780         crit_enter();
781         goto done;
782     }
783
784     /*
785      * Attempt to allocate out of an existing zone.  First try the free list,
786      * then allocate out of unallocated space.  If we find a good zone move
787      * it to the head of the list so later allocations find it quickly
788      * (we might have thousands of zones in the list).
789      *
790      * Note: zoneindex() will panic of size is too large.
791      */
792     zi = zoneindex(&size, &align);
793     KKASSERT(zi < NZONES);
794     crit_enter();
795
796     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
797         /*
798          * Locate a chunk - we have to have at least one.  If this is the
799          * last chunk go ahead and do the work to retrieve chunks freed
800          * from remote cpus, and if the zone is still empty move it off
801          * the ZoneAry.
802          */
803         if (--z->z_NFree <= 0) {
804             KKASSERT(z->z_NFree == 0);
805
806             /*
807              * WARNING! This code competes with other cpus.  It is ok
808              * for us to not drain RChunks here but we might as well, and
809              * it is ok if more accumulate after we're done.
810              *
811              * Set RSignal before pulling rchunks off, indicating that we
812              * will be moving ourselves off of the ZoneAry.  Remote ends will
813              * read RSignal before putting rchunks on thus interlocking
814              * their IPI signaling.
815              */
816             if (z->z_RChunks == NULL)
817                 atomic_swap_int(&z->z_RSignal, 1);
818
819             clean_zone_rchunks(z);
820
821             /*
822              * Remove from the zone list if no free chunks remain.
823              * Clear RSignal
824              */
825             if (z->z_NFree == 0) {
826                 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
827             } else {
828                 z->z_RSignal = 0;
829             }
830         }
831
832         /*
833          * Fast path, we have chunks available in z_LChunks.
834          */
835         chunk = z->z_LChunks;
836         if (chunk) {
837                 chunk_mark_allocated(z, chunk);
838                 z->z_LChunks = chunk->c_Next;
839                 if (z->z_LChunks == NULL)
840                         z->z_LChunksp = &z->z_LChunks;
841 #ifdef SLAB_DEBUG
842                 slab_record_source(z, file, line);
843 #endif
844                 goto done;
845         }
846
847         /*
848          * No chunks are available in LChunks, the free chunk MUST be
849          * in the never-before-used memory area, controlled by UIndex.
850          *
851          * The consequences are very serious if our zone got corrupted so
852          * we use an explicit panic rather than a KASSERT.
853          */
854         if (z->z_UIndex + 1 != z->z_NMax)
855             ++z->z_UIndex;
856         else
857             z->z_UIndex = 0;
858
859         if (z->z_UIndex == z->z_UEndIndex)
860             panic("slaballoc: corrupted zone");
861
862         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
863         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
864             flags &= ~M_ZERO;
865             flags |= M_PASSIVE_ZERO;
866         }
867         chunk_mark_allocated(z, chunk);
868 #ifdef SLAB_DEBUG
869         slab_record_source(z, file, line);
870 #endif
871         goto done;
872     }
873
874     /*
875      * If all zones are exhausted we need to allocate a new zone for this
876      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
877      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
878      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
879      * we do not pre-zero it because we do not want to mess up the L1 cache.
880      *
881      * At least one subsystem, the tty code (see CROUND) expects power-of-2
882      * allocations to be power-of-2 aligned.  We maintain compatibility by
883      * adjusting the base offset below.
884      */
885     {
886         int off;
887         int *kup;
888
889         if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
890             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
891             --slgd->NFreeZones;
892             bzero(z, sizeof(SLZone));
893             z->z_Flags |= SLZF_UNOTZEROD;
894         } else {
895             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
896             if (z == NULL)
897                 goto fail;
898             atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
899         }
900
901         /*
902          * How big is the base structure?
903          */
904 #if defined(INVARIANTS)
905         /*
906          * Make room for z_Bitmap.  An exact calculation is somewhat more
907          * complicated so don't make an exact calculation.
908          */
909         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
910         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
911 #else
912         off = sizeof(SLZone);
913 #endif
914
915         /*
916          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
917          * Otherwise properly align the data according to the chunk size.
918          */
919         if (powerof2(size))
920             align = size;
921         off = roundup2(off, align);
922
923         z->z_Magic = ZALLOC_SLAB_MAGIC;
924         z->z_ZoneIndex = zi;
925         z->z_NMax = (ZoneSize - off) / size;
926         z->z_NFree = z->z_NMax - 1;
927         z->z_BasePtr = (char *)z + off;
928         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
929         z->z_ChunkSize = size;
930         z->z_CpuGd = gd;
931         z->z_Cpu = gd->gd_cpuid;
932         z->z_LChunksp = &z->z_LChunks;
933 #ifdef SLAB_DEBUG
934         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
935         bzero(z->z_Sources, sizeof(z->z_Sources));
936 #endif
937         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
938         TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
939         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
940             flags &= ~M_ZERO;   /* already zero'd */
941             flags |= M_PASSIVE_ZERO;
942         }
943         kup = btokup(z);
944         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
945         chunk_mark_allocated(z, chunk);
946 #ifdef SLAB_DEBUG
947         slab_record_source(z, file, line);
948 #endif
949
950         /*
951          * Slide the base index for initial allocations out of the next
952          * zone we create so we do not over-weight the lower part of the
953          * cpu memory caches.
954          */
955         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
956                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
957     }
958
959 done:
960     ++type->ks_use[gd->gd_cpuid].inuse;
961     type->ks_use[gd->gd_cpuid].memuse += size;
962     type->ks_use[gd->gd_cpuid].loosememuse += size;
963     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
964         /* not MP synchronized */
965         type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
966         type->ks_use[gd->gd_cpuid].loosememuse = 0;
967     }
968     crit_exit();
969
970     if (flags & M_ZERO)
971         bzero(chunk, size);
972 #ifdef INVARIANTS
973     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
974         if (use_malloc_pattern) {
975             for (i = 0; i < size; i += sizeof(int)) {
976                 *(int *)((char *)chunk + i) = -1;
977             }
978         }
979         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
980     }
981 #endif
982     logmemory(malloc_end, chunk, type, size, flags);
983     return(chunk);
984 fail:
985     crit_exit();
986     logmemory(malloc_end, NULL, type, size, flags);
987     return(NULL);
988 }
989
990 /*
991  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
992  *
993  * Generally speaking this routine is not called very often and we do
994  * not attempt to optimize it beyond reusing the same pointer if the
995  * new size fits within the chunking of the old pointer's zone.
996  */
997 #ifdef SLAB_DEBUG
998 void *
999 krealloc_debug(void *ptr, unsigned long size,
1000                struct malloc_type *type, int flags,
1001                const char *file, int line)
1002 #else
1003 void *
1004 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1005 #endif
1006 {
1007     unsigned long osize;
1008     unsigned long align;
1009     SLZone *z;
1010     void *nptr;
1011     int *kup;
1012
1013     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
1014
1015     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1016         return(kmalloc_debug(size, type, flags, file, line));
1017     if (size == 0) {
1018         kfree(ptr, type);
1019         return(NULL);
1020     }
1021
1022     /*
1023      * Handle oversized allocations.  XXX we really should require that a
1024      * size be passed to free() instead of this nonsense.
1025      */
1026     kup = btokup(ptr);
1027     if (*kup > 0) {
1028         osize = *kup << PAGE_SHIFT;
1029         if (osize == round_page(size))
1030             return(ptr);
1031         if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1032             return(NULL);
1033         bcopy(ptr, nptr, min(size, osize));
1034         kfree(ptr, type);
1035         return(nptr);
1036     }
1037
1038     /*
1039      * Get the original allocation's zone.  If the new request winds up
1040      * using the same chunk size we do not have to do anything.
1041      */
1042     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1043     kup = btokup(z);
1044     KKASSERT(*kup < 0);
1045     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1046
1047     /*
1048      * Allocate memory for the new request size.  Note that zoneindex has
1049      * already adjusted the request size to the appropriate chunk size, which
1050      * should optimize our bcopy().  Then copy and return the new pointer.
1051      *
1052      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1053      * necessary align the result.
1054      *
1055      * We can only zoneindex (to align size to the chunk size) if the new
1056      * size is not too large.
1057      */
1058     if (size < ZoneLimit) {
1059         zoneindex(&size, &align);
1060         if (z->z_ChunkSize == size)
1061             return(ptr);
1062     }
1063     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1064         return(NULL);
1065     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1066     kfree(ptr, type);
1067     return(nptr);
1068 }
1069
1070 /*
1071  * Return the kmalloc limit for this type, in bytes.
1072  */
1073 long
1074 kmalloc_limit(struct malloc_type *type)
1075 {
1076     if (type->ks_limit == 0) {
1077         crit_enter();
1078         if (type->ks_limit == 0)
1079             malloc_init(type);
1080         crit_exit();
1081     }
1082     return(type->ks_limit);
1083 }
1084
1085 /*
1086  * Allocate a copy of the specified string.
1087  *
1088  * (MP SAFE) (MAY BLOCK)
1089  */
1090 #ifdef SLAB_DEBUG
1091 char *
1092 kstrdup_debug(const char *str, struct malloc_type *type,
1093               const char *file, int line)
1094 #else
1095 char *
1096 kstrdup(const char *str, struct malloc_type *type)
1097 #endif
1098 {
1099     int zlen;   /* length inclusive of terminating NUL */
1100     char *nstr;
1101
1102     if (str == NULL)
1103         return(NULL);
1104     zlen = strlen(str) + 1;
1105     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1106     bcopy(str, nstr, zlen);
1107     return(nstr);
1108 }
1109
1110 #ifdef SLAB_DEBUG
1111 char *
1112 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1113               const char *file, int line)
1114 #else
1115 char *
1116 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1117 #endif
1118 {
1119     int zlen;   /* length inclusive of terminating NUL */
1120     char *nstr;
1121
1122     if (str == NULL)
1123         return(NULL);
1124     zlen = strnlen(str, maxlen) + 1;
1125     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1126     bcopy(str, nstr, zlen);
1127     nstr[zlen - 1] = '\0';
1128     return(nstr);
1129 }
1130
1131 /*
1132  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1133  * we own.  RCount will be bumped so the memory should be good, but validate
1134  * that it really is.
1135  */
1136 static void
1137 kfree_remote(void *ptr)
1138 {
1139     SLGlobalData *slgd;
1140     SLZone *z;
1141     int nfree;
1142     int *kup;
1143
1144     slgd = &mycpu->gd_slab;
1145     z = ptr;
1146     kup = btokup(z);
1147     KKASSERT(*kup == -((int)mycpuid + 1));
1148     KKASSERT(z->z_RCount > 0);
1149     atomic_subtract_int(&z->z_RCount, 1);
1150
1151     logmemory(free_rem_beg, z, NULL, 0L, 0);
1152     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1153     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1154     nfree = z->z_NFree;
1155
1156     /*
1157      * Indicate that we will no longer be off of the ZoneAry by
1158      * clearing RSignal.
1159      */
1160     if (z->z_RChunks)
1161         z->z_RSignal = 0;
1162
1163     /*
1164      * Atomically extract the bchunks list and then process it back
1165      * into the lchunks list.  We want to append our bchunks to the
1166      * lchunks list and not prepend since we likely do not have
1167      * cache mastership of the related data (not that it helps since
1168      * we are using c_Next).
1169      */
1170     clean_zone_rchunks(z);
1171     if (z->z_NFree && nfree == 0) {
1172         TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1173     }
1174
1175     check_zone_free(slgd, z);
1176     logmemory(free_rem_end, z, NULL, 0L, 0);
1177 }
1178
1179 /*
1180  * free (SLAB ALLOCATOR)
1181  *
1182  * Free a memory block previously allocated by malloc.
1183  *
1184  * Note: We do not attempt to update ks_loosememuse as MP races could
1185  * prevent us from checking memory limits in malloc.   YYY we may
1186  * consider updating ks_cpu.loosememuse.
1187  *
1188  * MPSAFE
1189  */
1190 void
1191 kfree(void *ptr, struct malloc_type *type)
1192 {
1193     SLZone *z;
1194     SLChunk *chunk;
1195     SLGlobalData *slgd;
1196     struct globaldata *gd;
1197     int *kup;
1198     unsigned long size;
1199     SLChunk *bchunk;
1200     int rsignal;
1201
1202     logmemory_quick(free_beg);
1203     gd = mycpu;
1204     slgd = &gd->gd_slab;
1205
1206     if (ptr == NULL)
1207         panic("trying to free NULL pointer");
1208
1209     /*
1210      * Handle special 0-byte allocations
1211      */
1212     if (ptr == ZERO_LENGTH_PTR) {
1213         logmemory(free_zero, ptr, type, -1UL, 0);
1214         logmemory_quick(free_end);
1215         return;
1216     }
1217
1218     /*
1219      * Panic on bad malloc type
1220      */
1221     if (type->ks_magic != M_MAGIC)
1222         panic("free: malloc type lacks magic");
1223
1224     /*
1225      * Handle oversized allocations.  XXX we really should require that a
1226      * size be passed to free() instead of this nonsense.
1227      *
1228      * This code is never called via an ipi.
1229      */
1230     kup = btokup(ptr);
1231     if (*kup > 0) {
1232         size = *kup << PAGE_SHIFT;
1233         *kup = 0;
1234 #ifdef INVARIANTS
1235         KKASSERT(sizeof(weirdary) <= size);
1236         bcopy(weirdary, ptr, sizeof(weirdary));
1237 #endif
1238         /*
1239          * NOTE: For oversized allocations we do not record the
1240          *           originating cpu.  It gets freed on the cpu calling
1241          *           kfree().  The statistics are in aggregate.
1242          *
1243          * note: XXX we have still inherited the interrupts-can't-block
1244          * assumption.  An interrupt thread does not bump
1245          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1246          * primarily until we can fix softupdate's assumptions about free().
1247          */
1248         crit_enter();
1249         --type->ks_use[gd->gd_cpuid].inuse;
1250         type->ks_use[gd->gd_cpuid].memuse -= size;
1251         if (mycpu->gd_intr_nesting_level ||
1252             (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1253             logmemory(free_ovsz_delayed, ptr, type, size, 0);
1254             z = (SLZone *)ptr;
1255             z->z_Magic = ZALLOC_OVSZ_MAGIC;
1256             z->z_ChunkSize = size;
1257
1258             TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1259             crit_exit();
1260         } else {
1261             crit_exit();
1262             logmemory(free_ovsz, ptr, type, size, 0);
1263             kmem_slab_free(ptr, size);  /* may block */
1264             atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1265         }
1266         logmemory_quick(free_end);
1267         return;
1268     }
1269
1270     /*
1271      * Zone case.  Figure out the zone based on the fact that it is
1272      * ZoneSize aligned. 
1273      */
1274     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1275     kup = btokup(z);
1276     KKASSERT(*kup < 0);
1277     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1278
1279     /*
1280      * If we do not own the zone then use atomic ops to free to the
1281      * remote cpu linked list and notify the target zone using a
1282      * passive message.
1283      *
1284      * The target zone cannot be deallocated while we own a chunk of it,
1285      * so the zone header's storage is stable until the very moment
1286      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1287      *
1288      * (no critical section needed)
1289      */
1290     if (z->z_CpuGd != gd) {
1291         /*
1292          * Making these adjustments now allow us to avoid passing (type)
1293          * to the remote cpu.  Note that inuse/memuse is being
1294          * adjusted on OUR cpu, not the zone cpu, but it should all still
1295          * sum up properly and cancel out.
1296          */
1297         crit_enter();
1298         --type->ks_use[gd->gd_cpuid].inuse;
1299         type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1300         crit_exit();
1301
1302         /*
1303          * WARNING! This code competes with other cpus.  Once we
1304          *          successfully link the chunk to RChunks the remote
1305          *          cpu can rip z's storage out from under us.
1306          *
1307          *          Bumping RCount prevents z's storage from getting
1308          *          ripped out.
1309          */
1310         rsignal = z->z_RSignal;
1311         cpu_lfence();
1312         if (rsignal)
1313                 atomic_add_int(&z->z_RCount, 1);
1314
1315         chunk = ptr;
1316         for (;;) {
1317             bchunk = z->z_RChunks;
1318             cpu_ccfence();
1319             chunk->c_Next = bchunk;
1320             cpu_sfence();
1321
1322             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1323                 break;
1324         }
1325
1326         /*
1327          * We have to signal the remote cpu if our actions will cause
1328          * the remote zone to be placed back on ZoneAry so it can
1329          * move the zone back on.
1330          *
1331          * We only need to deal with NULL->non-NULL RChunk transitions
1332          * and only if z_RSignal is set.  We interlock by reading rsignal
1333          * before adding our chunk to RChunks.  This should result in
1334          * virtually no IPI traffic.
1335          *
1336          * We can use a passive IPI to reduce overhead even further.
1337          */
1338         if (bchunk == NULL && rsignal) {
1339             logmemory(free_request, ptr, type,
1340                       (unsigned long)z->z_ChunkSize, 0);
1341             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1342             /* z can get ripped out from under us from this point on */
1343         } else if (rsignal) {
1344             atomic_subtract_int(&z->z_RCount, 1);
1345             /* z can get ripped out from under us from this point on */
1346         }
1347         logmemory_quick(free_end);
1348         return;
1349     }
1350
1351     /*
1352      * kfree locally
1353      */
1354     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1355
1356     crit_enter();
1357     chunk = ptr;
1358     chunk_mark_free(z, chunk);
1359
1360     /*
1361      * Put weird data into the memory to detect modifications after freeing,
1362      * illegal pointer use after freeing (we should fault on the odd address),
1363      * and so forth.  XXX needs more work, see the old malloc code.
1364      */
1365 #ifdef INVARIANTS
1366     if (z->z_ChunkSize < sizeof(weirdary))
1367         bcopy(weirdary, chunk, z->z_ChunkSize);
1368     else
1369         bcopy(weirdary, chunk, sizeof(weirdary));
1370 #endif
1371
1372     /*
1373      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1374      * to the front of the linked list so it is more likely to be
1375      * reallocated, since it is already in our L1 cache.
1376      */
1377 #ifdef INVARIANTS
1378     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1379         panic("BADFREE %p", chunk);
1380 #endif
1381     chunk->c_Next = z->z_LChunks;
1382     z->z_LChunks = chunk;
1383     if (chunk->c_Next == NULL)
1384         z->z_LChunksp = &chunk->c_Next;
1385
1386 #ifdef INVARIANTS
1387     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1388         panic("BADFREE2");
1389 #endif
1390
1391     /*
1392      * Bump the number of free chunks.  If it becomes non-zero the zone
1393      * must be added back onto the appropriate list.  A fully allocated
1394      * zone that sees its first free is considered 'mature' and is placed
1395      * at the head, giving the system time to potentially free the remaining
1396      * entries even while other allocations are going on and making the zone
1397      * freeable.
1398      */
1399     if (z->z_NFree++ == 0) {
1400         if (SlabFreeToTail)
1401             TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1402         else
1403             TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1404     }
1405
1406     --type->ks_use[gd->gd_cpuid].inuse;
1407     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1408
1409     check_zone_free(slgd, z);
1410     logmemory_quick(free_end);
1411     crit_exit();
1412 }
1413
1414 /*
1415  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1416  * free and can be moved to the free list if not moved by other means.
1417  *
1418  * Called once every 10 seconds on all cpus.
1419  */
1420 void
1421 slab_cleanup(void)
1422 {
1423     SLGlobalData *slgd = &mycpu->gd_slab;
1424     SLZone *z;
1425     int i;
1426
1427     crit_enter();
1428     for (i = 0; i < NZONES; ++i) {
1429         if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1430                 continue;
1431
1432         /*
1433          * Scan zones.
1434          */
1435         while (z) {
1436             /*
1437              * Shift all RChunks to the end of the LChunks list.  This is
1438              * an O(1) operation.
1439              *
1440              * Then free the zone if possible.
1441              */
1442             clean_zone_rchunks(z);
1443             z = check_zone_free(slgd, z);
1444         }
1445     }
1446     crit_exit();
1447 }
1448
1449 #if defined(INVARIANTS)
1450
1451 /*
1452  * Helper routines for sanity checks
1453  */
1454 static void
1455 chunk_mark_allocated(SLZone *z, void *chunk)
1456 {
1457     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1458     uint32_t *bitptr;
1459
1460     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1461     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1462             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1463     bitptr = &z->z_Bitmap[bitdex >> 5];
1464     bitdex &= 31;
1465     KASSERT((*bitptr & (1 << bitdex)) == 0,
1466             ("memory chunk %p is already allocated!", chunk));
1467     *bitptr |= 1 << bitdex;
1468 }
1469
1470 static void
1471 chunk_mark_free(SLZone *z, void *chunk)
1472 {
1473     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1474     uint32_t *bitptr;
1475
1476     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1477     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1478             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1479     bitptr = &z->z_Bitmap[bitdex >> 5];
1480     bitdex &= 31;
1481     KASSERT((*bitptr & (1 << bitdex)) != 0,
1482             ("memory chunk %p is already free!", chunk));
1483     *bitptr &= ~(1 << bitdex);
1484 }
1485
1486 #endif
1487
1488 /*
1489  * kmem_slab_alloc()
1490  *
1491  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1492  *      specified alignment.  M_* flags are expected in the flags field.
1493  *
1494  *      Alignment must be a multiple of PAGE_SIZE.
1495  *
1496  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1497  *      but when we move zalloc() over to use this function as its backend
1498  *      we will have to switch to kreserve/krelease and call reserve(0)
1499  *      after the new space is made available.
1500  *
1501  *      Interrupt code which has preempted other code is not allowed to
1502  *      use PQ_CACHE pages.  However, if an interrupt thread is run
1503  *      non-preemptively or blocks and then runs non-preemptively, then
1504  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1505  */
1506 static void *
1507 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1508 {
1509     vm_size_t i;
1510     vm_offset_t addr;
1511     int count, vmflags, base_vmflags;
1512     vm_page_t mbase = NULL;
1513     vm_page_t m;
1514     thread_t td;
1515
1516     size = round_page(size);
1517     addr = vm_map_min(&kernel_map);
1518
1519     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1520     crit_enter();
1521     vm_map_lock(&kernel_map);
1522     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1523         vm_map_unlock(&kernel_map);
1524         if ((flags & M_NULLOK) == 0)
1525             panic("kmem_slab_alloc(): kernel_map ran out of space!");
1526         vm_map_entry_release(count);
1527         crit_exit();
1528         return(NULL);
1529     }
1530
1531     /*
1532      * kernel_object maps 1:1 to kernel_map.
1533      */
1534     vm_object_hold(&kernel_object);
1535     vm_object_reference_locked(&kernel_object);
1536     vm_map_insert(&kernel_map, &count,
1537                   &kernel_object, NULL,
1538                   addr, addr, addr + size,
1539                   VM_MAPTYPE_NORMAL,
1540                   VM_SUBSYS_KMALLOC,
1541                   VM_PROT_ALL, VM_PROT_ALL, 0);
1542     vm_object_drop(&kernel_object);
1543     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1544     vm_map_unlock(&kernel_map);
1545
1546     td = curthread;
1547
1548     base_vmflags = 0;
1549     if (flags & M_ZERO)
1550         base_vmflags |= VM_ALLOC_ZERO;
1551     if (flags & M_USE_RESERVE)
1552         base_vmflags |= VM_ALLOC_SYSTEM;
1553     if (flags & M_USE_INTERRUPT_RESERVE)
1554         base_vmflags |= VM_ALLOC_INTERRUPT;
1555     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1556         panic("kmem_slab_alloc: bad flags %08x (%p)",
1557               flags, ((int **)&size)[-1]);
1558     }
1559
1560     /*
1561      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1562      * be set if we are not preempting.
1563      *
1564      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1565      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1566      * implied in this case), though I'm not sure if we really need to
1567      * do that.
1568      */
1569     vmflags = base_vmflags;
1570     if (flags & M_WAITOK) {
1571         if (td->td_preempted)
1572             vmflags |= VM_ALLOC_SYSTEM;
1573         else
1574             vmflags |= VM_ALLOC_NORMAL;
1575     }
1576
1577     vm_object_hold(&kernel_object);
1578     for (i = 0; i < size; i += PAGE_SIZE) {
1579         m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1580         if (i == 0)
1581                 mbase = m;
1582
1583         /*
1584          * If the allocation failed we either return NULL or we retry.
1585          *
1586          * If M_WAITOK is specified we wait for more memory and retry.
1587          * If M_WAITOK is specified from a preemption we yield instead of
1588          * wait.  Livelock will not occur because the interrupt thread
1589          * will not be preempting anyone the second time around after the
1590          * yield.
1591          */
1592         if (m == NULL) {
1593             if (flags & M_WAITOK) {
1594                 if (td->td_preempted) {
1595                     lwkt_switch();
1596                 } else {
1597                     vm_wait(0);
1598                 }
1599                 i -= PAGE_SIZE; /* retry */
1600                 continue;
1601             }
1602             break;
1603         }
1604     }
1605
1606     /*
1607      * Check and deal with an allocation failure
1608      */
1609     if (i != size) {
1610         while (i != 0) {
1611             i -= PAGE_SIZE;
1612             m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1613             /* page should already be busy */
1614             vm_page_free(m);
1615         }
1616         vm_map_lock(&kernel_map);
1617         vm_map_delete(&kernel_map, addr, addr + size, &count);
1618         vm_map_unlock(&kernel_map);
1619         vm_object_drop(&kernel_object);
1620
1621         vm_map_entry_release(count);
1622         crit_exit();
1623         return(NULL);
1624     }
1625
1626     /*
1627      * Success!
1628      *
1629      * NOTE: The VM pages are still busied.  mbase points to the first one
1630      *       but we have to iterate via vm_page_next()
1631      */
1632     vm_object_drop(&kernel_object);
1633     crit_exit();
1634
1635     /*
1636      * Enter the pages into the pmap and deal with M_ZERO.
1637      */
1638     m = mbase;
1639     i = 0;
1640
1641     while (i < size) {
1642         /*
1643          * page should already be busy
1644          */
1645         m->valid = VM_PAGE_BITS_ALL;
1646         vm_page_wire(m);
1647         pmap_enter(&kernel_pmap, addr + i, m,
1648                    VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1649         if (flags & M_ZERO)
1650                 pagezero((char *)addr + i);
1651         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1652         vm_page_flag_set(m, PG_REFERENCED);
1653         vm_page_wakeup(m);
1654
1655         i += PAGE_SIZE;
1656         vm_object_hold(&kernel_object);
1657         m = vm_page_next(m);
1658         vm_object_drop(&kernel_object);
1659     }
1660     smp_invltlb();
1661     vm_map_entry_release(count);
1662     atomic_add_long(&SlabsAllocated, 1);
1663     return((void *)addr);
1664 }
1665
1666 /*
1667  * kmem_slab_free()
1668  */
1669 static void
1670 kmem_slab_free(void *ptr, vm_size_t size)
1671 {
1672     crit_enter();
1673     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1674     atomic_add_long(&SlabsFreed, 1);
1675     crit_exit();
1676 }
1677
1678 void *
1679 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1680     int flags)
1681 {
1682 #if (__VM_CACHELINE_SIZE == 32)
1683 #define CAN_CACHEALIGN(sz)      ((sz) >= 256)
1684 #elif (__VM_CACHELINE_SIZE == 64)
1685 #define CAN_CACHEALIGN(sz)      ((sz) >= 512)
1686 #elif (__VM_CACHELINE_SIZE == 128)
1687 #define CAN_CACHEALIGN(sz)      ((sz) >= 1024)
1688 #else
1689 #error "unsupported cacheline size"
1690 #endif
1691
1692         void *ret;
1693
1694         if (size_alloc < __VM_CACHELINE_SIZE)
1695                 size_alloc = __VM_CACHELINE_SIZE;
1696         else if (!CAN_CACHEALIGN(size_alloc))
1697                 flags |= M_POWEROF2;
1698
1699 #ifdef SLAB_DEBUG
1700         ret = kmalloc_debug(size_alloc, type, flags, __FILE__, __LINE__);
1701 #else
1702         ret = kmalloc(size_alloc, type, flags);
1703 #endif
1704         KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1705             ("%p(%lu) not cacheline %d aligned",
1706              ret, size_alloc, __VM_CACHELINE_SIZE));
1707         return ret;
1708
1709 #undef CAN_CACHEALIGN
1710 }