Add the DragonFly cvs id and perform general cleanups on cvs/rcs/sccs ids. Most
[dragonfly.git] / lib / libm / common_source / exp.c
1 /*
2  * Copyright (c) 1985, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by the University of
16  *      California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)exp.c    8.1 (Berkeley) 6/4/93
34  */
35
36 /* EXP(X)
37  * RETURN THE EXPONENTIAL OF X
38  * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
39  * CODED IN C BY K.C. NG, 1/19/85;
40  * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
41  *
42  * Required system supported functions:
43  *      scalb(x,n)
44  *      copysign(x,y)
45  *      finite(x)
46  *
47  * Method:
48  *      1. Argument Reduction: given the input x, find r and integer k such
49  *         that
50  *                         x = k*ln2 + r,  |r| <= 0.5*ln2 .
51  *         r will be represented as r := z+c for better accuracy.
52  *
53  *      2. Compute exp(r) by
54  *
55  *              exp(r) = 1 + r + r*R1/(2-R1),
56  *         where
57  *              R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
58  *
59  *      3. exp(x) = 2^k * exp(r) .
60  *
61  * Special cases:
62  *      exp(INF) is INF, exp(NaN) is NaN;
63  *      exp(-INF)=  0;
64  *      for finite argument, only exp(0)=1 is exact.
65  *
66  * Accuracy:
67  *      exp(x) returns the exponential of x nearly rounded. In a test run
68  *      with 1,156,000 random arguments on a VAX, the maximum observed
69  *      error was 0.869 ulps (units in the last place).
70  *
71  * Constants:
72  * The hexadecimal values are the intended ones for the following constants.
73  * The decimal values may be used, provided that the compiler will convert
74  * from decimal to binary accurately enough to produce the hexadecimal values
75  * shown.
76  */
77
78 #include "mathimpl.h"
79
80 vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
81 vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
82 vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
83 vc(lntiny,-9.5654310917272452386E1   ,4f01,c3bf,33af,d72e,   7,-.BF4F01D72E33AF)
84 vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)
85 vc(p1,     1.6666666666666602251E-1  ,aaaa,3f2a,a9f1,aaaa,  -2, .AAAAAAAAAAA9F1)
86 vc(p2,    -2.7777777777015591216E-3  ,0b60,bc36,ec94,b5f5,  -8,-.B60B60B5F5EC94)
87 vc(p3,     6.6137563214379341918E-5  ,b355,398a,f15f,792e, -13, .8AB355792EF15F)
88 vc(p4,    -1.6533902205465250480E-6  ,ea0e,b6dd,5f84,2e93, -19,-.DDEA0E2E935F84)
89 vc(p5,     4.1381367970572387085E-8  ,bb4b,3431,2683,95f5, -24, .B1BB4B95F52683)
90
91 #ifdef vccast
92 #define    ln2hi    vccast(ln2hi)
93 #define    ln2lo    vccast(ln2lo)
94 #define   lnhuge    vccast(lnhuge)
95 #define   lntiny    vccast(lntiny)
96 #define   invln2    vccast(invln2)
97 #define       p1    vccast(p1)
98 #define       p2    vccast(p2)
99 #define       p3    vccast(p3)
100 #define       p4    vccast(p4)
101 #define       p5    vccast(p5)
102 #endif
103
104 ic(p1,     1.6666666666666601904E-1,  -3,  1.555555555553E)
105 ic(p2,    -2.7777777777015593384E-3,  -9, -1.6C16C16BEBD93)
106 ic(p3,     6.6137563214379343612E-5, -14,  1.1566AAF25DE2C)
107 ic(p4,    -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1)
108 ic(p5,     4.1381367970572384604E-8, -25,  1.6376972BEA4D0)
109 ic(ln2hi,  6.9314718036912381649E-1,  -1,  1.62E42FEE00000)
110 ic(ln2lo,  1.9082149292705877000E-10,-33,  1.A39EF35793C76)
111 ic(lnhuge, 7.1602103751842355450E2,    9,  1.6602B15B7ECF2)
112 ic(lntiny,-7.5137154372698068983E2,    9, -1.77AF8EBEAE354)
113 ic(invln2, 1.4426950408889633870E0,    0,  1.71547652B82FE)
114
115 double exp(x)
116 double x;
117 {
118         double  z,hi,lo,c;
119         int k;
120
121 #if !defined(vax)&&!defined(tahoe)
122         if(x!=x) return(x);     /* x is NaN */
123 #endif  /* !defined(vax)&&!defined(tahoe) */
124         if( x <= lnhuge ) {
125                 if( x >= lntiny ) {
126
127                     /* argument reduction : x --> x - k*ln2 */
128
129                         k=invln2*x+copysign(0.5,x);     /* k=NINT(x/ln2) */
130
131                     /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
132
133                         hi=x-k*ln2hi;
134                         x=hi-(lo=k*ln2lo);
135
136                     /* return 2^k*[1+x+x*c/(2+c)]  */
137                         z=x*x;
138                         c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
139                         return  scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
140
141                 }
142                 /* end of x > lntiny */
143
144                 else
145                      /* exp(-big#) underflows to zero */
146                      if(finite(x))  return(scalb(1.0,-5000));
147
148                      /* exp(-INF) is zero */
149                      else return(0.0);
150         }
151         /* end of x < lnhuge */
152
153         else
154         /* exp(INF) is INF, exp(+big#) overflows to INF */
155             return( finite(x) ?  scalb(1.0,5000)  : x);
156 }
157
158 /* returns exp(r = x + c) for |c| < |x| with no overlap.  */
159
160 double __exp__D(x, c)
161 double x, c;
162 {
163         double  z,hi,lo, t;
164         int k;
165
166 #if !defined(vax)&&!defined(tahoe)
167         if (x!=x) return(x);    /* x is NaN */
168 #endif  /* !defined(vax)&&!defined(tahoe) */
169         if ( x <= lnhuge ) {
170                 if ( x >= lntiny ) {
171
172                     /* argument reduction : x --> x - k*ln2 */
173                         z = invln2*x;
174                         k = z + copysign(.5, x);
175
176                     /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
177
178                         hi=(x-k*ln2hi);                 /* Exact. */
179                         x= hi - (lo = k*ln2lo-c);
180                     /* return 2^k*[1+x+x*c/(2+c)]  */
181                         z=x*x;
182                         c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
183                         c = (x*c)/(2.0-c);
184
185                         return  scalb(1.+(hi-(lo - c)), k);
186                 }
187                 /* end of x > lntiny */
188
189                 else
190                      /* exp(-big#) underflows to zero */
191                      if(finite(x))  return(scalb(1.0,-5000));
192
193                      /* exp(-INF) is zero */
194                      else return(0.0);
195         }
196         /* end of x < lnhuge */
197
198         else
199         /* exp(INF) is INF, exp(+big#) overflows to INF */
200             return( finite(x) ?  scalb(1.0,5000)  : x);
201 }