Replace the global VM page hash table with a per-VM-object RB tree. No
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.27 2006/12/02 23:13:46 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 static void     vm_object_qcollapse(vm_object_t object);
98 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99                                              int pagerflags);
100
101 /*
102  *      Virtual memory objects maintain the actual data
103  *      associated with allocated virtual memory.  A given
104  *      page of memory exists within exactly one object.
105  *
106  *      An object is only deallocated when all "references"
107  *      are given up.  Only one "reference" to a given
108  *      region of an object should be writeable.
109  *
110  *      Associated with each object is a list of all resident
111  *      memory pages belonging to that object; this list is
112  *      maintained by the "vm_page" module, and locked by the object's
113  *      lock.
114  *
115  *      Each object also records a "pager" routine which is
116  *      used to retrieve (and store) pages to the proper backing
117  *      storage.  In addition, objects may be backed by other
118  *      objects from which they were virtual-copied.
119  *
120  *      The only items within the object structure which are
121  *      modified after time of creation are:
122  *              reference count         locked by object's lock
123  *              pager routine           locked by object's lock
124  *
125  */
126
127 struct object_q vm_object_list;
128 static long vm_object_count;            /* count of all objects */
129 vm_object_t kernel_object;
130 vm_object_t kmem_object;
131 static struct vm_object kernel_object_store;
132 static struct vm_object kmem_object_store;
133 extern int vm_pageout_page_count;
134
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 static int object_hash_rand;
141 #define VM_OBJECTS_INIT 256
142 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143
144 void
145 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
146 {
147         int incr;
148         RB_INIT(&object->rb_memq);
149         LIST_INIT(&object->shadow_head);
150
151         object->type = type;
152         object->size = size;
153         object->ref_count = 1;
154         object->flags = 0;
155         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
156                 vm_object_set_flag(object, OBJ_ONEMAPPING);
157         object->paging_in_progress = 0;
158         object->resident_page_count = 0;
159         object->shadow_count = 0;
160         object->pg_color = next_index;
161         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
162                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
163         else
164                 incr = size;
165         next_index = (next_index + incr) & PQ_L2_MASK;
166         object->handle = NULL;
167         object->backing_object = NULL;
168         object->backing_object_offset = (vm_ooffset_t) 0;
169         /*
170          * Try to generate a number that will spread objects out in the
171          * hash table.  We 'wipe' new objects across the hash in 128 page
172          * increments plus 1 more to offset it a little more by the time
173          * it wraps around.
174          */
175         object->hash_rand = object_hash_rand - 129;
176
177         object->generation++;
178
179         crit_enter();
180         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
181         vm_object_count++;
182         object_hash_rand = object->hash_rand;
183         crit_exit();
184 }
185
186 /*
187  *      vm_object_init:
188  *
189  *      Initialize the VM objects module.
190  */
191 void
192 vm_object_init(void)
193 {
194         TAILQ_INIT(&vm_object_list);
195         
196         kernel_object = &kernel_object_store;
197         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
198             kernel_object);
199
200         kmem_object = &kmem_object_store;
201         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
202             kmem_object);
203
204         obj_zone = &obj_zone_store;
205         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
206                 vm_objects_init, VM_OBJECTS_INIT);
207 }
208
209 void
210 vm_object_init2(void)
211 {
212         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
213 }
214
215 /*
216  *      vm_object_allocate:
217  *
218  *      Returns a new object with the given size.
219  */
220
221 vm_object_t
222 vm_object_allocate(objtype_t type, vm_size_t size)
223 {
224         vm_object_t result;
225
226         result = (vm_object_t) zalloc(obj_zone);
227
228         _vm_object_allocate(type, size, result);
229
230         return (result);
231 }
232
233
234 /*
235  *      vm_object_reference:
236  *
237  *      Gets another reference to the given object.
238  */
239 void
240 vm_object_reference(vm_object_t object)
241 {
242         if (object == NULL)
243                 return;
244
245         object->ref_count++;
246         if (object->type == OBJT_VNODE) {
247                 vref(object->handle);
248                 /* XXX what if the vnode is being destroyed? */
249         }
250 }
251
252 static void
253 vm_object_vndeallocate(vm_object_t object)
254 {
255         struct vnode *vp = (struct vnode *) object->handle;
256
257         KASSERT(object->type == OBJT_VNODE,
258             ("vm_object_vndeallocate: not a vnode object"));
259         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
260 #ifdef INVARIANTS
261         if (object->ref_count == 0) {
262                 vprint("vm_object_vndeallocate", vp);
263                 panic("vm_object_vndeallocate: bad object reference count");
264         }
265 #endif
266
267         object->ref_count--;
268         if (object->ref_count == 0)
269                 vp->v_flag &= ~VTEXT;
270         vrele(vp);
271 }
272
273 /*
274  *      vm_object_deallocate:
275  *
276  *      Release a reference to the specified object,
277  *      gained either through a vm_object_allocate
278  *      or a vm_object_reference call.  When all references
279  *      are gone, storage associated with this object
280  *      may be relinquished.
281  *
282  *      No object may be locked.
283  */
284 void
285 vm_object_deallocate(vm_object_t object)
286 {
287         vm_object_t temp;
288
289         while (object != NULL) {
290                 if (object->type == OBJT_VNODE) {
291                         vm_object_vndeallocate(object);
292                         return;
293                 }
294
295                 if (object->ref_count == 0) {
296                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
297                 } else if (object->ref_count > 2) {
298                         object->ref_count--;
299                         return;
300                 }
301
302                 /*
303                  * Here on ref_count of one or two, which are special cases for
304                  * objects.
305                  */
306                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
307                         vm_object_set_flag(object, OBJ_ONEMAPPING);
308                         object->ref_count--;
309                         return;
310                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
311                         object->ref_count--;
312                         if ((object->handle == NULL) &&
313                             (object->type == OBJT_DEFAULT ||
314                              object->type == OBJT_SWAP)) {
315                                 vm_object_t robject;
316
317                                 robject = LIST_FIRST(&object->shadow_head);
318                                 KASSERT(robject != NULL,
319                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
320                                          object->ref_count,
321                                          object->shadow_count));
322                                 if ((robject->handle == NULL) &&
323                                     (robject->type == OBJT_DEFAULT ||
324                                      robject->type == OBJT_SWAP)) {
325
326                                         robject->ref_count++;
327
328                                         while (
329                                                 robject->paging_in_progress ||
330                                                 object->paging_in_progress
331                                         ) {
332                                                 vm_object_pip_sleep(robject, "objde1");
333                                                 vm_object_pip_sleep(object, "objde2");
334                                         }
335
336                                         if (robject->ref_count == 1) {
337                                                 robject->ref_count--;
338                                                 object = robject;
339                                                 goto doterm;
340                                         }
341
342                                         object = robject;
343                                         vm_object_collapse(object);
344                                         continue;
345                                 }
346                         }
347
348                         return;
349
350                 } else {
351                         object->ref_count--;
352                         if (object->ref_count != 0)
353                                 return;
354                 }
355
356 doterm:
357
358                 temp = object->backing_object;
359                 if (temp) {
360                         LIST_REMOVE(object, shadow_list);
361                         temp->shadow_count--;
362                         temp->generation++;
363                         object->backing_object = NULL;
364                 }
365
366                 /*
367                  * Don't double-terminate, we could be in a termination
368                  * recursion due to the terminate having to sync data
369                  * to disk.
370                  */
371                 if ((object->flags & OBJ_DEAD) == 0)
372                         vm_object_terminate(object);
373                 object = temp;
374         }
375 }
376
377 /*
378  *      vm_object_terminate actually destroys the specified object, freeing
379  *      up all previously used resources.
380  *
381  *      The object must be locked.
382  *      This routine may block.
383  */
384 static int vm_object_terminate_callback(vm_page_t p, void *data);
385
386 void
387 vm_object_terminate(vm_object_t object)
388 {
389         /*
390          * Make sure no one uses us.
391          */
392         vm_object_set_flag(object, OBJ_DEAD);
393
394         /*
395          * wait for the pageout daemon to be done with the object
396          */
397         vm_object_pip_wait(object, "objtrm");
398
399         KASSERT(!object->paging_in_progress,
400                 ("vm_object_terminate: pageout in progress"));
401
402         /*
403          * Clean and free the pages, as appropriate. All references to the
404          * object are gone, so we don't need to lock it.
405          */
406         if (object->type == OBJT_VNODE) {
407                 struct vnode *vp;
408
409                 /*
410                  * Clean pages and flush buffers.
411                  */
412                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
413
414                 vp = (struct vnode *) object->handle;
415                 vinvalbuf(vp, V_SAVE, 0, 0);
416         }
417
418         /*
419          * Wait for any I/O to complete, after which there had better not
420          * be any references left on the object.
421          */
422         vm_object_pip_wait(object, "objtrm");
423
424         if (object->ref_count != 0)
425                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
426
427         /*
428          * Now free any remaining pages. For internal objects, this also
429          * removes them from paging queues. Don't free wired pages, just
430          * remove them from the object. 
431          */
432         crit_enter();
433         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
434                                 vm_object_terminate_callback, NULL);
435         crit_exit();
436
437         /*
438          * Let the pager know object is dead.
439          */
440         vm_pager_deallocate(object);
441
442         /*
443          * Remove the object from the global object list.
444          */
445         crit_enter();
446         TAILQ_REMOVE(&vm_object_list, object, object_list);
447         vm_object_count--;
448         crit_exit();
449
450         wakeup(object);
451         if (object->ref_count != 0)
452                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
453
454         /*
455          * Free the space for the object.
456          */
457         zfree(obj_zone, object);
458 }
459
460 static int
461 vm_object_terminate_callback(vm_page_t p, void *data __unused)
462 {
463         if (p->busy || (p->flags & PG_BUSY))
464                 panic("vm_object_terminate: freeing busy page %p", p);
465         if (p->wire_count == 0) {
466                 vm_page_busy(p);
467                 vm_page_free(p);
468                 mycpu->gd_cnt.v_pfree++;
469         } else {
470                 vm_page_busy(p);
471                 vm_page_remove(p);
472                 vm_page_wakeup(p);
473         }
474         return(0);
475 }
476
477 /*
478  *      vm_object_page_clean
479  *
480  *      Clean all dirty pages in the specified range of object.  Leaves page 
481  *      on whatever queue it is currently on.   If NOSYNC is set then do not
482  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
483  *      leaving the object dirty.
484  *
485  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
486  *      synchronous clustering mode implementation.
487  *
488  *      Odd semantics: if start == end, we clean everything.
489  */
490 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
491 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
492
493 void
494 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
495                      int flags)
496 {
497         struct rb_vm_page_scan_info info;
498         struct vnode *vp;
499         int wholescan;
500         int pagerflags;
501         int curgeneration;
502
503         if (object->type != OBJT_VNODE ||
504                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
505                 return;
506
507         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
508                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
509         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
510
511         vp = object->handle;
512
513         /*
514          * Interlock other major object operations.  This allows us to 
515          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
516          */
517         crit_enter();
518         vm_object_set_flag(object, OBJ_CLEANING);
519
520         /*
521          * Handle 'entire object' case
522          */
523         info.start_pindex = start;
524         if (end == 0) {
525                 info.end_pindex = object->size - 1;
526         } else {
527                 info.end_pindex = end - 1;
528         }
529         wholescan = (start == 0 && info.end_pindex == object->size - 1);
530         info.limit = flags;
531         info.pagerflags = pagerflags;
532         info.object = object;
533
534         /*
535          * If cleaning the entire object do a pass to mark the pages read-only.
536          * If everything worked out ok, clear OBJ_WRITEABLE and
537          * OBJ_MIGHTBEDIRTY.
538          */
539         if (wholescan) {
540                 info.error = 0;
541                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
542                                         vm_object_page_clean_pass1, &info);
543                 if (info.error == 0) {
544                         vm_object_clear_flag(object,
545                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
546                         if (object->type == OBJT_VNODE &&
547                             (vp = (struct vnode *)object->handle) != NULL) {
548                                 if (vp->v_flag & VOBJDIRTY) 
549                                         vclrflags(vp, VOBJDIRTY);
550                         }
551                 }
552         }
553
554         /*
555          * Do a pass to clean all the dirty pages we find.
556          */
557         do {
558                 info.error = 0;
559                 curgeneration = object->generation;
560                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
561                                         vm_object_page_clean_pass2, &info);
562         } while (info.error || curgeneration != object->generation);
563
564         vm_object_clear_flag(object, OBJ_CLEANING);
565         crit_exit();
566 }
567
568 static 
569 int
570 vm_object_page_clean_pass1(struct vm_page *p, void *data)
571 {
572         struct rb_vm_page_scan_info *info = data;
573
574         vm_page_flag_set(p, PG_CLEANCHK);
575         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
576                 info->error = 1;
577         else
578                 vm_page_protect(p, VM_PROT_READ);
579         return(0);
580 }
581
582 static 
583 int
584 vm_object_page_clean_pass2(struct vm_page *p, void *data)
585 {
586         struct rb_vm_page_scan_info *info = data;
587         int n;
588
589         /*
590          * Do not mess with pages that were inserted after we started
591          * the cleaning pass.
592          */
593         if ((p->flags & PG_CLEANCHK) == 0)
594                 return(0);
595
596         /*
597          * Before wasting time traversing the pmaps, check for trivial
598          * cases where the page cannot be dirty.
599          */
600         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
601                 KKASSERT((p->dirty & p->valid) == 0);
602                 return(0);
603         }
604
605         /*
606          * Check whether the page is dirty or not.  The page has been set
607          * to be read-only so the check will not race a user dirtying the
608          * page.
609          */
610         vm_page_test_dirty(p);
611         if ((p->dirty & p->valid) == 0) {
612                 vm_page_flag_clear(p, PG_CLEANCHK);
613                 return(0);
614         }
615
616         /*
617          * If we have been asked to skip nosync pages and this is a
618          * nosync page, skip it.  Note that the object flags were
619          * not cleared in this case (because pass1 will have returned an
620          * error), so we do not have to set them.
621          */
622         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
623                 vm_page_flag_clear(p, PG_CLEANCHK);
624                 return(0);
625         }
626
627         /*
628          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
629          * the pages that get successfully flushed.  Set info->error if
630          * we raced an object modification.
631          */
632         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
633         if (n == 0)
634                 info->error = 1;
635         return(0);
636 }
637
638 /*
639  * This routine must be called within a critical section to properly avoid
640  * an interrupt unbusy/free race that can occur prior to the busy check.
641  *
642  * Using the object generation number here to detect page ripout is not
643  * the best idea in the world. XXX
644  *
645  * NOTE: we operate under the assumption that a page found to not be busy
646  * will not be ripped out from under us by an interrupt.  XXX we should
647  * recode this to explicitly busy the pages.
648  */
649 static int
650 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
651 {
652         int runlen;
653         int maxf;
654         int chkb;
655         int maxb;
656         int i;
657         int curgeneration;
658         vm_pindex_t pi;
659         vm_page_t maf[vm_pageout_page_count];
660         vm_page_t mab[vm_pageout_page_count];
661         vm_page_t ma[vm_pageout_page_count];
662
663         curgeneration = object->generation;
664
665         pi = p->pindex;
666         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
667                 if (object->generation != curgeneration) {
668                         return(0);
669                 }
670         }
671         KKASSERT(p->object == object && p->pindex == pi);
672
673         maxf = 0;
674         for(i = 1; i < vm_pageout_page_count; i++) {
675                 vm_page_t tp;
676
677                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
678                         if ((tp->flags & PG_BUSY) ||
679                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
680                                  (tp->flags & PG_CLEANCHK) == 0) ||
681                                 (tp->busy != 0))
682                                 break;
683                         if((tp->queue - tp->pc) == PQ_CACHE) {
684                                 vm_page_flag_clear(tp, PG_CLEANCHK);
685                                 break;
686                         }
687                         vm_page_test_dirty(tp);
688                         if ((tp->dirty & tp->valid) == 0) {
689                                 vm_page_flag_clear(tp, PG_CLEANCHK);
690                                 break;
691                         }
692                         maf[ i - 1 ] = tp;
693                         maxf++;
694                         continue;
695                 }
696                 break;
697         }
698
699         maxb = 0;
700         chkb = vm_pageout_page_count -  maxf;
701         if (chkb) {
702                 for(i = 1; i < chkb;i++) {
703                         vm_page_t tp;
704
705                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
706                                 if ((tp->flags & PG_BUSY) ||
707                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
708                                          (tp->flags & PG_CLEANCHK) == 0) ||
709                                         (tp->busy != 0))
710                                         break;
711                                 if((tp->queue - tp->pc) == PQ_CACHE) {
712                                         vm_page_flag_clear(tp, PG_CLEANCHK);
713                                         break;
714                                 }
715                                 vm_page_test_dirty(tp);
716                                 if ((tp->dirty & tp->valid) == 0) {
717                                         vm_page_flag_clear(tp, PG_CLEANCHK);
718                                         break;
719                                 }
720                                 mab[ i - 1 ] = tp;
721                                 maxb++;
722                                 continue;
723                         }
724                         break;
725                 }
726         }
727
728         for(i = 0; i < maxb; i++) {
729                 int index = (maxb - i) - 1;
730                 ma[index] = mab[i];
731                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
732         }
733         vm_page_flag_clear(p, PG_CLEANCHK);
734         ma[maxb] = p;
735         for(i = 0; i < maxf; i++) {
736                 int index = (maxb + i) + 1;
737                 ma[index] = maf[i];
738                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
739         }
740         runlen = maxb + maxf + 1;
741
742         vm_pageout_flush(ma, runlen, pagerflags);
743         for (i = 0; i < runlen; i++) {
744                 if (ma[i]->valid & ma[i]->dirty) {
745                         vm_page_protect(ma[i], VM_PROT_READ);
746                         vm_page_flag_set(ma[i], PG_CLEANCHK);
747
748                         /*
749                          * maxf will end up being the actual number of pages
750                          * we wrote out contiguously, non-inclusive of the
751                          * first page.  We do not count look-behind pages.
752                          */
753                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
754                                 maxf = i - maxb - 1;
755                 }
756         }
757         return(maxf + 1);
758 }
759
760 #ifdef not_used
761 /* XXX I cannot tell if this should be an exported symbol */
762 /*
763  *      vm_object_deactivate_pages
764  *
765  *      Deactivate all pages in the specified object.  (Keep its pages
766  *      in memory even though it is no longer referenced.)
767  *
768  *      The object must be locked.
769  */
770 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
771
772 static void
773 vm_object_deactivate_pages(vm_object_t object)
774 {
775         crit_enter();
776         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
777                                 vm_object_deactivate_pages_callback, NULL);
778         crit_exit();
779 }
780
781 static int
782 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
783 {
784         vm_page_deactivate(p);
785         return(0);
786 }
787
788 #endif
789
790 /*
791  * Same as vm_object_pmap_copy, except range checking really
792  * works, and is meant for small sections of an object.
793  *
794  * This code protects resident pages by making them read-only
795  * and is typically called on a fork or split when a page
796  * is converted to copy-on-write.  
797  *
798  * NOTE: If the page is already at VM_PROT_NONE, calling
799  * vm_page_protect will have no effect.
800  */
801 void
802 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
803 {
804         vm_pindex_t idx;
805         vm_page_t p;
806
807         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
808                 return;
809
810         /*
811          * spl protection needed to prevent races between the lookup,
812          * an interrupt unbusy/free, and our protect call.
813          */
814         crit_enter();
815         for (idx = start; idx < end; idx++) {
816                 p = vm_page_lookup(object, idx);
817                 if (p == NULL)
818                         continue;
819                 vm_page_protect(p, VM_PROT_READ);
820         }
821         crit_exit();
822 }
823
824 /*
825  *      vm_object_pmap_remove:
826  *
827  *      Removes all physical pages in the specified
828  *      object range from all physical maps.
829  *
830  *      The object must *not* be locked.
831  */
832
833 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
834
835 void
836 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
837 {
838         struct rb_vm_page_scan_info info;
839
840         if (object == NULL)
841                 return;
842         info.start_pindex = start;
843         info.end_pindex = end - 1;
844         crit_enter();
845         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
846                                 vm_object_pmap_remove_callback, &info);
847         if (start == 0 && end == object->size)
848                 vm_object_clear_flag(object, OBJ_WRITEABLE);
849         crit_exit();
850 }
851
852 static int
853 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
854 {
855         vm_page_protect(p, VM_PROT_NONE);
856         return(0);
857 }
858
859 /*
860  *      vm_object_madvise:
861  *
862  *      Implements the madvise function at the object/page level.
863  *
864  *      MADV_WILLNEED   (any object)
865  *
866  *          Activate the specified pages if they are resident.
867  *
868  *      MADV_DONTNEED   (any object)
869  *
870  *          Deactivate the specified pages if they are resident.
871  *
872  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
873  *                       OBJ_ONEMAPPING only)
874  *
875  *          Deactivate and clean the specified pages if they are
876  *          resident.  This permits the process to reuse the pages
877  *          without faulting or the kernel to reclaim the pages
878  *          without I/O.
879  */
880 void
881 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
882 {
883         vm_pindex_t end, tpindex;
884         vm_object_t tobject;
885         vm_page_t m;
886
887         if (object == NULL)
888                 return;
889
890         end = pindex + count;
891
892         /*
893          * Locate and adjust resident pages
894          */
895
896         for (; pindex < end; pindex += 1) {
897 relookup:
898                 tobject = object;
899                 tpindex = pindex;
900 shadowlookup:
901                 /*
902                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
903                  * and those pages must be OBJ_ONEMAPPING.
904                  */
905                 if (advise == MADV_FREE) {
906                         if ((tobject->type != OBJT_DEFAULT &&
907                              tobject->type != OBJT_SWAP) ||
908                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
909                                 continue;
910                         }
911                 }
912
913                 /*
914                  * spl protection is required to avoid a race between the
915                  * lookup, an interrupt unbusy/free, and our busy check.
916                  */
917
918                 crit_enter();
919                 m = vm_page_lookup(tobject, tpindex);
920
921                 if (m == NULL) {
922                         /*
923                          * There may be swap even if there is no backing page
924                          */
925                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
926                                 swap_pager_freespace(tobject, tpindex, 1);
927
928                         /*
929                          * next object
930                          */
931                         crit_exit();
932                         if (tobject->backing_object == NULL)
933                                 continue;
934                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
935                         tobject = tobject->backing_object;
936                         goto shadowlookup;
937                 }
938
939                 /*
940                  * If the page is busy or not in a normal active state,
941                  * we skip it.  If the page is not managed there are no
942                  * page queues to mess with.  Things can break if we mess
943                  * with pages in any of the below states.
944                  */
945                 if (
946                     m->hold_count ||
947                     m->wire_count ||
948                     (m->flags & PG_UNMANAGED) ||
949                     m->valid != VM_PAGE_BITS_ALL
950                 ) {
951                         crit_exit();
952                         continue;
953                 }
954
955                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
956                         crit_exit();
957                         goto relookup;
958                 }
959                 crit_exit();
960
961                 /*
962                  * Theoretically once a page is known not to be busy, an
963                  * interrupt cannot come along and rip it out from under us.
964                  */
965
966                 if (advise == MADV_WILLNEED) {
967                         vm_page_activate(m);
968                 } else if (advise == MADV_DONTNEED) {
969                         vm_page_dontneed(m);
970                 } else if (advise == MADV_FREE) {
971                         /*
972                          * Mark the page clean.  This will allow the page
973                          * to be freed up by the system.  However, such pages
974                          * are often reused quickly by malloc()/free()
975                          * so we do not do anything that would cause
976                          * a page fault if we can help it.
977                          *
978                          * Specifically, we do not try to actually free
979                          * the page now nor do we try to put it in the
980                          * cache (which would cause a page fault on reuse).
981                          *
982                          * But we do make the page is freeable as we
983                          * can without actually taking the step of unmapping
984                          * it.
985                          */
986                         pmap_clear_modify(m);
987                         m->dirty = 0;
988                         m->act_count = 0;
989                         vm_page_dontneed(m);
990                         if (tobject->type == OBJT_SWAP)
991                                 swap_pager_freespace(tobject, tpindex, 1);
992                 }
993         }       
994 }
995
996 /*
997  *      vm_object_shadow:
998  *
999  *      Create a new object which is backed by the
1000  *      specified existing object range.  The source
1001  *      object reference is deallocated.
1002  *
1003  *      The new object and offset into that object
1004  *      are returned in the source parameters.
1005  */
1006
1007 void
1008 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1009                  vm_ooffset_t *offset,  /* IN/OUT */
1010                  vm_size_t length)
1011 {
1012         vm_object_t source;
1013         vm_object_t result;
1014
1015         source = *object;
1016
1017         /*
1018          * Don't create the new object if the old object isn't shared.
1019          */
1020
1021         if (source != NULL &&
1022             source->ref_count == 1 &&
1023             source->handle == NULL &&
1024             (source->type == OBJT_DEFAULT ||
1025              source->type == OBJT_SWAP))
1026                 return;
1027
1028         /*
1029          * Allocate a new object with the given length
1030          */
1031
1032         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1033                 panic("vm_object_shadow: no object for shadowing");
1034
1035         /*
1036          * The new object shadows the source object, adding a reference to it.
1037          * Our caller changes his reference to point to the new object,
1038          * removing a reference to the source object.  Net result: no change
1039          * of reference count.
1040          *
1041          * Try to optimize the result object's page color when shadowing
1042          * in order to maintain page coloring consistency in the combined 
1043          * shadowed object.
1044          */
1045         result->backing_object = source;
1046         if (source) {
1047                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1048                 source->shadow_count++;
1049                 source->generation++;
1050                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1051         }
1052
1053         /*
1054          * Store the offset into the source object, and fix up the offset into
1055          * the new object.
1056          */
1057
1058         result->backing_object_offset = *offset;
1059
1060         /*
1061          * Return the new things
1062          */
1063
1064         *offset = 0;
1065         *object = result;
1066 }
1067
1068 #define OBSC_TEST_ALL_SHADOWED  0x0001
1069 #define OBSC_COLLAPSE_NOWAIT    0x0002
1070 #define OBSC_COLLAPSE_WAIT      0x0004
1071
1072 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1073
1074 static __inline int
1075 vm_object_backing_scan(vm_object_t object, int op)
1076 {
1077         struct rb_vm_page_scan_info info;
1078         vm_object_t backing_object;
1079
1080         /*
1081          * spl protection is required to avoid races between the memq/lookup,
1082          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1083          * other things.
1084          */
1085         crit_enter();
1086
1087         backing_object = object->backing_object;
1088         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1089
1090         /*
1091          * Initial conditions
1092          */
1093
1094         if (op & OBSC_TEST_ALL_SHADOWED) {
1095                 /*
1096                  * We do not want to have to test for the existence of
1097                  * swap pages in the backing object.  XXX but with the
1098                  * new swapper this would be pretty easy to do.
1099                  *
1100                  * XXX what about anonymous MAP_SHARED memory that hasn't
1101                  * been ZFOD faulted yet?  If we do not test for this, the
1102                  * shadow test may succeed! XXX
1103                  */
1104                 if (backing_object->type != OBJT_DEFAULT) {
1105                         crit_exit();
1106                         return(0);
1107                 }
1108         }
1109         if (op & OBSC_COLLAPSE_WAIT) {
1110                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1111                 vm_object_set_flag(backing_object, OBJ_DEAD);
1112         }
1113
1114         /*
1115          * Our scan.   We have to retry if a negative error code is returned,
1116          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1117          * the scan had to be stopped because the parent does not completely
1118          * shadow the child.
1119          */
1120         info.object = object;
1121         info.backing_object = backing_object;
1122         info.limit = op;
1123         do {
1124                 info.error = 1;
1125                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1126                                         vm_object_backing_scan_callback,
1127                                         &info);
1128         } while (info.error < 0);
1129         crit_exit();
1130         return(info.error);
1131 }
1132
1133 static int
1134 vm_object_backing_scan_callback(vm_page_t p, void *data)
1135 {
1136         struct rb_vm_page_scan_info *info = data;
1137         vm_object_t backing_object;
1138         vm_object_t object;
1139         vm_pindex_t new_pindex;
1140         vm_pindex_t backing_offset_index;
1141         int op;
1142
1143         new_pindex = p->pindex - info->backing_offset_index;
1144         op = info->limit;
1145         object = info->object;
1146         backing_object = info->backing_object;
1147         backing_offset_index = info->backing_offset_index;
1148
1149         if (op & OBSC_TEST_ALL_SHADOWED) {
1150                 vm_page_t pp;
1151
1152                 /*
1153                  * Ignore pages outside the parent object's range
1154                  * and outside the parent object's mapping of the 
1155                  * backing object.
1156                  *
1157                  * note that we do not busy the backing object's
1158                  * page.
1159                  */
1160                 if (
1161                     p->pindex < backing_offset_index ||
1162                     new_pindex >= object->size
1163                 ) {
1164                         return(0);
1165                 }
1166
1167                 /*
1168                  * See if the parent has the page or if the parent's
1169                  * object pager has the page.  If the parent has the
1170                  * page but the page is not valid, the parent's
1171                  * object pager must have the page.
1172                  *
1173                  * If this fails, the parent does not completely shadow
1174                  * the object and we might as well give up now.
1175                  */
1176
1177                 pp = vm_page_lookup(object, new_pindex);
1178                 if (
1179                     (pp == NULL || pp->valid == 0) &&
1180                     !vm_pager_has_page(object, new_pindex, NULL, NULL)
1181                 ) {
1182                         info->error = 0;        /* problemo */
1183                         return(-1);             /* stop the scan */
1184                 }
1185         }
1186
1187         /*
1188          * Check for busy page
1189          */
1190
1191         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1192                 vm_page_t pp;
1193
1194                 if (op & OBSC_COLLAPSE_NOWAIT) {
1195                         if (
1196                             (p->flags & PG_BUSY) ||
1197                             !p->valid || 
1198                             p->hold_count || 
1199                             p->wire_count ||
1200                             p->busy
1201                         ) {
1202                                 return(0);
1203                         }
1204                 } else if (op & OBSC_COLLAPSE_WAIT) {
1205                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1206                                 /*
1207                                  * If we slept, anything could have
1208                                  * happened.   Ask that the scan be restarted.
1209                                  *
1210                                  * Since the object is marked dead, the
1211                                  * backing offset should not have changed.  
1212                                  */
1213                                 info->error = -1;
1214                                 return(-1);
1215                         }
1216                 }
1217
1218                 /* 
1219                  * Busy the page
1220                  */
1221                 vm_page_busy(p);
1222
1223                 KASSERT(
1224                     p->object == backing_object,
1225                     ("vm_object_qcollapse(): object mismatch")
1226                 );
1227
1228                 /*
1229                  * Destroy any associated swap
1230                  */
1231                 if (backing_object->type == OBJT_SWAP) {
1232                         swap_pager_freespace(
1233                             backing_object, 
1234                             p->pindex,
1235                             1
1236                         );
1237                 }
1238
1239                 if (
1240                     p->pindex < backing_offset_index ||
1241                     new_pindex >= object->size
1242                 ) {
1243                         /*
1244                          * Page is out of the parent object's range, we 
1245                          * can simply destroy it. 
1246                          */
1247                         vm_page_protect(p, VM_PROT_NONE);
1248                         vm_page_free(p);
1249                         return(0);
1250                 }
1251
1252                 pp = vm_page_lookup(object, new_pindex);
1253                 if (
1254                     pp != NULL ||
1255                     vm_pager_has_page(object, new_pindex, NULL, NULL)
1256                 ) {
1257                         /*
1258                          * page already exists in parent OR swap exists
1259                          * for this location in the parent.  Destroy 
1260                          * the original page from the backing object.
1261                          *
1262                          * Leave the parent's page alone
1263                          */
1264                         vm_page_protect(p, VM_PROT_NONE);
1265                         vm_page_free(p);
1266                         return(0);
1267                 }
1268
1269                 /*
1270                  * Page does not exist in parent, rename the
1271                  * page from the backing object to the main object. 
1272                  *
1273                  * If the page was mapped to a process, it can remain 
1274                  * mapped through the rename.
1275                  */
1276                 if ((p->queue - p->pc) == PQ_CACHE)
1277                         vm_page_deactivate(p);
1278
1279                 vm_page_rename(p, object, new_pindex);
1280                 /* page automatically made dirty by rename */
1281         }
1282         return(0);
1283 }
1284
1285 /*
1286  * this version of collapse allows the operation to occur earlier and
1287  * when paging_in_progress is true for an object...  This is not a complete
1288  * operation, but should plug 99.9% of the rest of the leaks.
1289  */
1290 static void
1291 vm_object_qcollapse(vm_object_t object)
1292 {
1293         vm_object_t backing_object = object->backing_object;
1294
1295         if (backing_object->ref_count != 1)
1296                 return;
1297
1298         backing_object->ref_count += 2;
1299
1300         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1301
1302         backing_object->ref_count -= 2;
1303 }
1304
1305 /*
1306  *      vm_object_collapse:
1307  *
1308  *      Collapse an object with the object backing it.
1309  *      Pages in the backing object are moved into the
1310  *      parent, and the backing object is deallocated.
1311  */
1312 void
1313 vm_object_collapse(vm_object_t object)
1314 {
1315         while (TRUE) {
1316                 vm_object_t backing_object;
1317
1318                 /*
1319                  * Verify that the conditions are right for collapse:
1320                  *
1321                  * The object exists and the backing object exists.
1322                  */
1323                 if (object == NULL)
1324                         break;
1325
1326                 if ((backing_object = object->backing_object) == NULL)
1327                         break;
1328
1329                 /*
1330                  * we check the backing object first, because it is most likely
1331                  * not collapsable.
1332                  */
1333                 if (backing_object->handle != NULL ||
1334                     (backing_object->type != OBJT_DEFAULT &&
1335                      backing_object->type != OBJT_SWAP) ||
1336                     (backing_object->flags & OBJ_DEAD) ||
1337                     object->handle != NULL ||
1338                     (object->type != OBJT_DEFAULT &&
1339                      object->type != OBJT_SWAP) ||
1340                     (object->flags & OBJ_DEAD)) {
1341                         break;
1342                 }
1343
1344                 if (
1345                     object->paging_in_progress != 0 ||
1346                     backing_object->paging_in_progress != 0
1347                 ) {
1348                         vm_object_qcollapse(object);
1349                         break;
1350                 }
1351
1352                 /*
1353                  * We know that we can either collapse the backing object (if
1354                  * the parent is the only reference to it) or (perhaps) have
1355                  * the parent bypass the object if the parent happens to shadow
1356                  * all the resident pages in the entire backing object.
1357                  *
1358                  * This is ignoring pager-backed pages such as swap pages.
1359                  * vm_object_backing_scan fails the shadowing test in this
1360                  * case.
1361                  */
1362
1363                 if (backing_object->ref_count == 1) {
1364                         /*
1365                          * If there is exactly one reference to the backing
1366                          * object, we can collapse it into the parent.  
1367                          */
1368                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1369
1370                         /*
1371                          * Move the pager from backing_object to object.
1372                          */
1373
1374                         if (backing_object->type == OBJT_SWAP) {
1375                                 vm_object_pip_add(backing_object, 1);
1376
1377                                 /*
1378                                  * scrap the paging_offset junk and do a 
1379                                  * discrete copy.  This also removes major 
1380                                  * assumptions about how the swap-pager 
1381                                  * works from where it doesn't belong.  The
1382                                  * new swapper is able to optimize the
1383                                  * destroy-source case.
1384                                  */
1385
1386                                 vm_object_pip_add(object, 1);
1387                                 swap_pager_copy(
1388                                     backing_object,
1389                                     object,
1390                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1391                                 vm_object_pip_wakeup(object);
1392
1393                                 vm_object_pip_wakeup(backing_object);
1394                         }
1395                         /*
1396                          * Object now shadows whatever backing_object did.
1397                          * Note that the reference to 
1398                          * backing_object->backing_object moves from within 
1399                          * backing_object to within object.
1400                          */
1401
1402                         LIST_REMOVE(object, shadow_list);
1403                         object->backing_object->shadow_count--;
1404                         object->backing_object->generation++;
1405                         if (backing_object->backing_object) {
1406                                 LIST_REMOVE(backing_object, shadow_list);
1407                                 backing_object->backing_object->shadow_count--;
1408                                 backing_object->backing_object->generation++;
1409                         }
1410                         object->backing_object = backing_object->backing_object;
1411                         if (object->backing_object) {
1412                                 LIST_INSERT_HEAD(
1413                                     &object->backing_object->shadow_head,
1414                                     object, 
1415                                     shadow_list
1416                                 );
1417                                 object->backing_object->shadow_count++;
1418                                 object->backing_object->generation++;
1419                         }
1420
1421                         object->backing_object_offset +=
1422                             backing_object->backing_object_offset;
1423
1424                         /*
1425                          * Discard backing_object.
1426                          *
1427                          * Since the backing object has no pages, no pager left,
1428                          * and no object references within it, all that is
1429                          * necessary is to dispose of it.
1430                          */
1431
1432                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1433                         KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1434                         crit_enter();
1435                         TAILQ_REMOVE(
1436                             &vm_object_list, 
1437                             backing_object,
1438                             object_list
1439                         );
1440                         vm_object_count--;
1441                         crit_exit();
1442
1443                         zfree(obj_zone, backing_object);
1444
1445                         object_collapses++;
1446                 } else {
1447                         vm_object_t new_backing_object;
1448
1449                         /*
1450                          * If we do not entirely shadow the backing object,
1451                          * there is nothing we can do so we give up.
1452                          */
1453
1454                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1455                                 break;
1456                         }
1457
1458                         /*
1459                          * Make the parent shadow the next object in the
1460                          * chain.  Deallocating backing_object will not remove
1461                          * it, since its reference count is at least 2.
1462                          */
1463
1464                         LIST_REMOVE(object, shadow_list);
1465                         backing_object->shadow_count--;
1466                         backing_object->generation++;
1467
1468                         new_backing_object = backing_object->backing_object;
1469                         if ((object->backing_object = new_backing_object) != NULL) {
1470                                 vm_object_reference(new_backing_object);
1471                                 LIST_INSERT_HEAD(
1472                                     &new_backing_object->shadow_head,
1473                                     object,
1474                                     shadow_list
1475                                 );
1476                                 new_backing_object->shadow_count++;
1477                                 new_backing_object->generation++;
1478                                 object->backing_object_offset +=
1479                                         backing_object->backing_object_offset;
1480                         }
1481
1482                         /*
1483                          * Drop the reference count on backing_object. Since
1484                          * its ref_count was at least 2, it will not vanish;
1485                          * so we don't need to call vm_object_deallocate, but
1486                          * we do anyway.
1487                          */
1488                         vm_object_deallocate(backing_object);
1489                         object_bypasses++;
1490                 }
1491
1492                 /*
1493                  * Try again with this object's new backing object.
1494                  */
1495         }
1496 }
1497
1498 /*
1499  *      vm_object_page_remove: [internal]
1500  *
1501  *      Removes all physical pages in the specified
1502  *      object range from the object's list of pages.
1503  */
1504 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1505
1506 void
1507 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1508                       boolean_t clean_only)
1509 {
1510         struct rb_vm_page_scan_info info;
1511         int all;
1512
1513         /*
1514          * Degenerate cases and assertions
1515          */
1516         if (object == NULL || object->resident_page_count == 0)
1517                 return;
1518         KASSERT(object->type != OBJT_PHYS, 
1519                 ("attempt to remove pages from a physical object"));
1520
1521         /*
1522          * Indicate that paging is occuring on the object
1523          */
1524         crit_enter();
1525         vm_object_pip_add(object, 1);
1526
1527         /*
1528          * Figure out the actual removal range and whether we are removing
1529          * the entire contents of the object or not.  If removing the entire
1530          * contents, be sure to get all pages, even those that might be 
1531          * beyond the end of the object.
1532          */
1533         info.start_pindex = start;
1534         if (end == 0)
1535                 info.end_pindex = (vm_pindex_t)-1;
1536         else
1537                 info.end_pindex = end - 1;
1538         info.limit = clean_only;
1539         all = (start == 0 && info.end_pindex >= object->size - 1);
1540
1541         /*
1542          * Loop until we are sure we have gotten them all.
1543          */
1544         do {
1545                 info.error = 0;
1546                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1547                                         vm_object_page_remove_callback, &info);
1548         } while (info.error);
1549
1550         /*
1551          * Cleanup
1552          */
1553         vm_object_pip_wakeup(object);
1554         crit_exit();
1555 }
1556
1557 static int
1558 vm_object_page_remove_callback(vm_page_t p, void *data)
1559 {
1560         struct rb_vm_page_scan_info *info = data;
1561
1562         /*
1563          * Wired pages cannot be destroyed, but they can be invalidated
1564          * and we do so if clean_only (limit) is not set.
1565          */
1566         if (p->wire_count != 0) {
1567                 vm_page_protect(p, VM_PROT_NONE);
1568                 if (info->limit == 0)
1569                         p->valid = 0;
1570                 return(0);
1571         }
1572
1573         /*
1574          * The busy flags are only cleared at
1575          * interrupt -- minimize the spl transitions
1576          */
1577
1578         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1579                 info->error = 1;
1580                 return(0);
1581         }
1582
1583         /*
1584          * limit is our clean_only flag.  If set and the page is dirty, do
1585          * not free it.
1586          */
1587         if (info->limit && p->valid) {
1588                 vm_page_test_dirty(p);
1589                 if (p->valid & p->dirty)
1590                         return(0);
1591         }
1592
1593         /*
1594          * Destroy the page
1595          */
1596         vm_page_busy(p);
1597         vm_page_protect(p, VM_PROT_NONE);
1598         vm_page_free(p);
1599         return(0);
1600 }
1601
1602 /*
1603  *      Routine:        vm_object_coalesce
1604  *      Function:       Coalesces two objects backing up adjoining
1605  *                      regions of memory into a single object.
1606  *
1607  *      returns TRUE if objects were combined.
1608  *
1609  *      NOTE:   Only works at the moment if the second object is NULL -
1610  *              if it's not, which object do we lock first?
1611  *
1612  *      Parameters:
1613  *              prev_object     First object to coalesce
1614  *              prev_offset     Offset into prev_object
1615  *              next_object     Second object into coalesce
1616  *              next_offset     Offset into next_object
1617  *
1618  *              prev_size       Size of reference to prev_object
1619  *              next_size       Size of reference to next_object
1620  *
1621  *      Conditions:
1622  *      The object must *not* be locked.
1623  */
1624 boolean_t
1625 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1626     vm_size_t prev_size, vm_size_t next_size)
1627 {
1628         vm_pindex_t next_pindex;
1629
1630         if (prev_object == NULL) {
1631                 return (TRUE);
1632         }
1633
1634         if (prev_object->type != OBJT_DEFAULT &&
1635             prev_object->type != OBJT_SWAP) {
1636                 return (FALSE);
1637         }
1638
1639         /*
1640          * Try to collapse the object first
1641          */
1642         vm_object_collapse(prev_object);
1643
1644         /*
1645          * Can't coalesce if: . more than one reference . paged out . shadows
1646          * another object . has a copy elsewhere (any of which mean that the
1647          * pages not mapped to prev_entry may be in use anyway)
1648          */
1649
1650         if (prev_object->backing_object != NULL) {
1651                 return (FALSE);
1652         }
1653
1654         prev_size >>= PAGE_SHIFT;
1655         next_size >>= PAGE_SHIFT;
1656         next_pindex = prev_pindex + prev_size;
1657
1658         if ((prev_object->ref_count > 1) &&
1659             (prev_object->size != next_pindex)) {
1660                 return (FALSE);
1661         }
1662
1663         /*
1664          * Remove any pages that may still be in the object from a previous
1665          * deallocation.
1666          */
1667         if (next_pindex < prev_object->size) {
1668                 vm_object_page_remove(prev_object,
1669                                       next_pindex,
1670                                       next_pindex + next_size, FALSE);
1671                 if (prev_object->type == OBJT_SWAP)
1672                         swap_pager_freespace(prev_object,
1673                                              next_pindex, next_size);
1674         }
1675
1676         /*
1677          * Extend the object if necessary.
1678          */
1679         if (next_pindex + next_size > prev_object->size)
1680                 prev_object->size = next_pindex + next_size;
1681
1682         return (TRUE);
1683 }
1684
1685 void
1686 vm_object_set_writeable_dirty(vm_object_t object)
1687 {
1688         struct vnode *vp;
1689
1690         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1691         if (object->type == OBJT_VNODE &&
1692             (vp = (struct vnode *)object->handle) != NULL) {
1693                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1694                         vsetflags(vp, VOBJDIRTY);
1695                 }
1696         }
1697 }
1698
1699
1700
1701 #include "opt_ddb.h"
1702 #ifdef DDB
1703 #include <sys/kernel.h>
1704
1705 #include <sys/cons.h>
1706
1707 #include <ddb/ddb.h>
1708
1709 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1710                                        vm_map_entry_t entry);
1711 static int      vm_object_in_map (vm_object_t object);
1712
1713 static int
1714 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1715 {
1716         vm_map_t tmpm;
1717         vm_map_entry_t tmpe;
1718         vm_object_t obj;
1719         int entcount;
1720
1721         if (map == 0)
1722                 return 0;
1723         if (entry == 0) {
1724                 tmpe = map->header.next;
1725                 entcount = map->nentries;
1726                 while (entcount-- && (tmpe != &map->header)) {
1727                         if( _vm_object_in_map(map, object, tmpe)) {
1728                                 return 1;
1729                         }
1730                         tmpe = tmpe->next;
1731                 }
1732                 return (0);
1733         }
1734         switch(entry->maptype) {
1735         case VM_MAPTYPE_SUBMAP:
1736                 tmpm = entry->object.sub_map;
1737                 tmpe = tmpm->header.next;
1738                 entcount = tmpm->nentries;
1739                 while (entcount-- && tmpe != &tmpm->header) {
1740                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1741                                 return 1;
1742                         }
1743                         tmpe = tmpe->next;
1744                 }
1745                 break;
1746         case VM_MAPTYPE_NORMAL:
1747         case VM_MAPTYPE_VPAGETABLE:
1748                 obj = entry->object.vm_object;
1749                 while (obj) {
1750                         if (obj == object)
1751                                 return 1;
1752                         obj = obj->backing_object;
1753                 }
1754                 break;
1755         default:
1756                 break;
1757         }
1758         return 0;
1759 }
1760
1761 static int vm_object_in_map_callback(struct proc *p, void *data);
1762
1763 struct vm_object_in_map_info {
1764         vm_object_t object;
1765         int rv;
1766 };
1767
1768 static int
1769 vm_object_in_map(vm_object_t object)
1770 {
1771         struct vm_object_in_map_info info;
1772
1773         info.rv = 0;
1774         info.object = object;
1775
1776         allproc_scan(vm_object_in_map_callback, &info);
1777         if (info.rv)
1778                 return 1;
1779         if( _vm_object_in_map( kernel_map, object, 0))
1780                 return 1;
1781         if( _vm_object_in_map( pager_map, object, 0))
1782                 return 1;
1783         if( _vm_object_in_map( buffer_map, object, 0))
1784                 return 1;
1785         return 0;
1786 }
1787
1788 static int
1789 vm_object_in_map_callback(struct proc *p, void *data)
1790 {
1791         struct vm_object_in_map_info *info = data;
1792
1793         if (p->p_vmspace) {
1794                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1795                         info->rv = 1;
1796                         return -1;
1797                 }
1798         }
1799         return (0);
1800 }
1801
1802 DB_SHOW_COMMAND(vmochk, vm_object_check)
1803 {
1804         vm_object_t object;
1805
1806         /*
1807          * make sure that internal objs are in a map somewhere
1808          * and none have zero ref counts.
1809          */
1810         for (object = TAILQ_FIRST(&vm_object_list);
1811                         object != NULL;
1812                         object = TAILQ_NEXT(object, object_list)) {
1813                 if (object->handle == NULL &&
1814                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1815                         if (object->ref_count == 0) {
1816                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1817                                         (long)object->size);
1818                         }
1819                         if (!vm_object_in_map(object)) {
1820                                 db_printf(
1821                         "vmochk: internal obj is not in a map: "
1822                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1823                                     object->ref_count, (u_long)object->size, 
1824                                     (u_long)object->size,
1825                                     (void *)object->backing_object);
1826                         }
1827                 }
1828         }
1829 }
1830
1831 /*
1832  *      vm_object_print:        [ debug ]
1833  */
1834 DB_SHOW_COMMAND(object, vm_object_print_static)
1835 {
1836         /* XXX convert args. */
1837         vm_object_t object = (vm_object_t)addr;
1838         boolean_t full = have_addr;
1839
1840         vm_page_t p;
1841
1842         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1843 #define count   was_count
1844
1845         int count;
1846
1847         if (object == NULL)
1848                 return;
1849
1850         db_iprintf(
1851             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1852             object, (int)object->type, (u_long)object->size,
1853             object->resident_page_count, object->ref_count, object->flags);
1854         /*
1855          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1856          */
1857         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1858             object->shadow_count, 
1859             object->backing_object ? object->backing_object->ref_count : 0,
1860             object->backing_object, (long)object->backing_object_offset);
1861
1862         if (!full)
1863                 return;
1864
1865         db_indent += 2;
1866         count = 0;
1867         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1868                 if (count == 0)
1869                         db_iprintf("memory:=");
1870                 else if (count == 6) {
1871                         db_printf("\n");
1872                         db_iprintf(" ...");
1873                         count = 0;
1874                 } else
1875                         db_printf(",");
1876                 count++;
1877
1878                 db_printf("(off=0x%lx,page=0x%lx)",
1879                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1880         }
1881         if (count != 0)
1882                 db_printf("\n");
1883         db_indent -= 2;
1884 }
1885
1886 /* XXX. */
1887 #undef count
1888
1889 /* XXX need this non-static entry for calling from vm_map_print. */
1890 void
1891 vm_object_print(/* db_expr_t */ long addr,
1892                 boolean_t have_addr,
1893                 /* db_expr_t */ long count,
1894                 char *modif)
1895 {
1896         vm_object_print_static(addr, have_addr, count, modif);
1897 }
1898
1899 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1900 {
1901         vm_object_t object;
1902         int nl = 0;
1903         int c;
1904         for (object = TAILQ_FIRST(&vm_object_list);
1905                         object != NULL;
1906                         object = TAILQ_NEXT(object, object_list)) {
1907                 vm_pindex_t idx, fidx;
1908                 vm_pindex_t osize;
1909                 vm_paddr_t pa = -1, padiff;
1910                 int rcount;
1911                 vm_page_t m;
1912
1913                 db_printf("new object: %p\n", (void *)object);
1914                 if ( nl > 18) {
1915                         c = cngetc();
1916                         if (c != ' ')
1917                                 return;
1918                         nl = 0;
1919                 }
1920                 nl++;
1921                 rcount = 0;
1922                 fidx = 0;
1923                 osize = object->size;
1924                 if (osize > 128)
1925                         osize = 128;
1926                 for (idx = 0; idx < osize; idx++) {
1927                         m = vm_page_lookup(object, idx);
1928                         if (m == NULL) {
1929                                 if (rcount) {
1930                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1931                                                 (long)fidx, rcount, (long)pa);
1932                                         if ( nl > 18) {
1933                                                 c = cngetc();
1934                                                 if (c != ' ')
1935                                                         return;
1936                                                 nl = 0;
1937                                         }
1938                                         nl++;
1939                                         rcount = 0;
1940                                 }
1941                                 continue;
1942                         }
1943
1944                                 
1945                         if (rcount &&
1946                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1947                                 ++rcount;
1948                                 continue;
1949                         }
1950                         if (rcount) {
1951                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1952                                 padiff >>= PAGE_SHIFT;
1953                                 padiff &= PQ_L2_MASK;
1954                                 if (padiff == 0) {
1955                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1956                                         ++rcount;
1957                                         continue;
1958                                 }
1959                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1960                                         (long)fidx, rcount, (long)pa);
1961                                 db_printf("pd(%ld)\n", (long)padiff);
1962                                 if ( nl > 18) {
1963                                         c = cngetc();
1964                                         if (c != ' ')
1965                                                 return;
1966                                         nl = 0;
1967                                 }
1968                                 nl++;
1969                         }
1970                         fidx = idx;
1971                         pa = VM_PAGE_TO_PHYS(m);
1972                         rcount = 1;
1973                 }
1974                 if (rcount) {
1975                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1976                                 (long)fidx, rcount, (long)pa);
1977                         if ( nl > 18) {
1978                                 c = cngetc();
1979                                 if (c != ' ')
1980                                         return;
1981                                 nl = 0;
1982                         }
1983                         nl++;
1984                 }
1985         }
1986 }
1987 #endif /* DDB */