libm: Properly end some comments before starting a new one.
[dragonfly.git] / lib / libm / src / e_jn.c
1
2 /* @(#)e_jn.c 1.4 95/01/18 */
3 /* $FreeBSD: head/lib/msun/src/e_jn.c 215237 2010-11-13 10:54:10Z uqs $ */
4 /*
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice 
11  * is preserved.
12  * ====================================================
13  */
14
15 /*
16  * __ieee754_jn(n, x), __ieee754_yn(n, x)
17  * floating point Bessel's function of the 1st and 2nd kind
18  * of order n
19  *          
20  * Special cases:
21  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
22  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
23  * Note 2. About jn(n,x), yn(n,x)
24  *      For n=0, j0(x) is called,
25  *      for n=1, j1(x) is called,
26  *      for n<x, forward recursion us used starting
27  *      from values of j0(x) and j1(x).
28  *      for n>x, a continued fraction approximation to
29  *      j(n,x)/j(n-1,x) is evaluated and then backward
30  *      recursion is used starting from a supposed value
31  *      for j(n,x). The resulting value of j(0,x) is
32  *      compared with the actual value to correct the
33  *      supposed value of j(n,x).
34  *
35  *      yn(n,x) is similar in all respects, except
36  *      that forward recursion is used for all
37  *      values of n>1.
38  *      
39  */
40
41 #include "math.h"
42 #include "math_private.h"
43
44 static const double
45 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
46 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
47 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
48
49 static const double zero  =  0.00000000000000000000e+00;
50
51 double
52 __ieee754_jn(int n, double x)
53 {
54         int32_t i,hx,ix,lx, sgn;
55         double a, b, temp, di;
56         double z, w;
57
58     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
59      * Thus, J(-n,x) = J(n,-x)
60      */
61         EXTRACT_WORDS(hx,lx,x);
62         ix = 0x7fffffff&hx;
63     /* if J(n,NaN) is NaN */
64         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
65         if(n<0){                
66                 n = -n;
67                 x = -x;
68                 hx ^= 0x80000000;
69         }
70         if(n==0) return(__ieee754_j0(x));
71         if(n==1) return(__ieee754_j1(x));
72         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
73         x = fabs(x);
74         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
75             b = zero;
76         else if((double)n<=x) {   
77                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
78             if(ix>=0x52D00000) { /* x > 2**302 */
79     /* (x >> n**2) 
80      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
81      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
82      *      Let s=sin(x), c=cos(x), 
83      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
84      *
85      *             n    sin(xn)*sqt2    cos(xn)*sqt2
86      *          ----------------------------------
87      *             0     s-c             c+s
88      *             1    -s-c            -c+s
89      *             2    -s+c            -c-s
90      *             3     s+c             c-s
91      */
92                 switch(n&3) {
93                     case 0: temp =  cos(x)+sin(x); break;
94                     case 1: temp = -cos(x)+sin(x); break;
95                     case 2: temp = -cos(x)-sin(x); break;
96                     case 3: temp =  cos(x)-sin(x); break;
97                 }
98                 b = invsqrtpi*temp/sqrt(x);
99             } else {    
100                 a = __ieee754_j0(x);
101                 b = __ieee754_j1(x);
102                 for(i=1;i<n;i++){
103                     temp = b;
104                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
105                     a = temp;
106                 }
107             }
108         } else {
109             if(ix<0x3e100000) { /* x < 2**-29 */
110     /* x is tiny, return the first Taylor expansion of J(n,x) 
111      * J(n,x) = 1/n!*(x/2)^n  - ...
112      */
113                 if(n>33)        /* underflow */
114                     b = zero;
115                 else {
116                     temp = x*0.5; b = temp;
117                     for (a=one,i=2;i<=n;i++) {
118                         a *= (double)i;         /* a = n! */
119                         b *= temp;              /* b = (x/2)^n */
120                     }
121                     b = b/a;
122                 }
123             } else {
124                 /* use backward recurrence */
125                 /*                      x      x^2      x^2       
126                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
127                  *                      2n  - 2(n+1) - 2(n+2)
128                  *
129                  *                      1      1        1       
130                  *  (for large x)   =  ----  ------   ------   .....
131                  *                      2n   2(n+1)   2(n+2)
132                  *                      -- - ------ - ------ - 
133                  *                       x     x         x
134                  *
135                  * Let w = 2n/x and h=2/x, then the above quotient
136                  * is equal to the continued fraction:
137                  *                  1
138                  *      = -----------------------
139                  *                     1
140                  *         w - -----------------
141                  *                        1
142                  *              w+h - ---------
143                  *                     w+2h - ...
144                  *
145                  * To determine how many terms needed, let
146                  * Q(0) = w, Q(1) = w(w+h) - 1,
147                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
148                  * When Q(k) > 1e4      good for single 
149                  * When Q(k) > 1e9      good for double 
150                  * When Q(k) > 1e17     good for quadruple 
151                  */
152             /* determine k */
153                 double t,v;
154                 double q0,q1,h,tmp; int32_t k,m;
155                 w  = (n+n)/(double)x; h = 2.0/(double)x;
156                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
157                 while(q1<1.0e9) {
158                         k += 1; z += h;
159                         tmp = z*q1 - q0;
160                         q0 = q1;
161                         q1 = tmp;
162                 }
163                 m = n+n;
164                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
165                 a = t;
166                 b = one;
167                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
168                  *  Hence, if n*(log(2n/x)) > ...
169                  *  single 8.8722839355e+01
170                  *  double 7.09782712893383973096e+02
171                  *  long double 1.1356523406294143949491931077970765006170e+04
172                  *  then recurrent value may overflow and the result is
173                  *  likely underflow to zero
174                  */
175                 tmp = n;
176                 v = two/x;
177                 tmp = tmp*__ieee754_log(fabs(v*tmp));
178                 if(tmp<7.09782712893383973096e+02) {
179                     for(i=n-1,di=(double)(i+i);i>0;i--){
180                         temp = b;
181                         b *= di;
182                         b  = b/x - a;
183                         a = temp;
184                         di -= two;
185                     }
186                 } else {
187                     for(i=n-1,di=(double)(i+i);i>0;i--){
188                         temp = b;
189                         b *= di;
190                         b  = b/x - a;
191                         a = temp;
192                         di -= two;
193                     /* scale b to avoid spurious overflow */
194                         if(b>1e100) {
195                             a /= b;
196                             t /= b;
197                             b  = one;
198                         }
199                     }
200                 }
201                 z = __ieee754_j0(x);
202                 w = __ieee754_j1(x);
203                 if (fabs(z) >= fabs(w))
204                     b = (t*z/b);
205                 else
206                     b = (t*w/a);
207             }
208         }
209         if(sgn==1) return -b; else return b;
210 }
211
212 double
213 __ieee754_yn(int n, double x)
214 {
215         int32_t i,hx,ix,lx;
216         int32_t sign;
217         double a, b, temp;
218
219         EXTRACT_WORDS(hx,lx,x);
220         ix = 0x7fffffff&hx;
221     /* if Y(n,NaN) is NaN */
222         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
223         if((ix|lx)==0) return -one/zero;
224         if(hx<0) return zero/zero;
225         sign = 1;
226         if(n<0){
227                 n = -n;
228                 sign = 1 - ((n&1)<<1);
229         }
230         if(n==0) return(__ieee754_y0(x));
231         if(n==1) return(sign*__ieee754_y1(x));
232         if(ix==0x7ff00000) return zero;
233         if(ix>=0x52D00000) { /* x > 2**302 */
234     /* (x >> n**2) 
235      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
236      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
237      *      Let s=sin(x), c=cos(x), 
238      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
239      *
240      *             n    sin(xn)*sqt2    cos(xn)*sqt2
241      *          ----------------------------------
242      *             0     s-c             c+s
243      *             1    -s-c            -c+s
244      *             2    -s+c            -c-s
245      *             3     s+c             c-s
246      */
247                 switch(n&3) {
248                     case 0: temp =  sin(x)-cos(x); break;
249                     case 1: temp = -sin(x)-cos(x); break;
250                     case 2: temp = -sin(x)+cos(x); break;
251                     case 3: temp =  sin(x)+cos(x); break;
252                 }
253                 b = invsqrtpi*temp/sqrt(x);
254         } else {
255             u_int32_t high;
256             a = __ieee754_y0(x);
257             b = __ieee754_y1(x);
258         /* quit if b is -inf */
259             GET_HIGH_WORD(high,b);
260             for(i=1;i<n&&high!=0xfff00000;i++){
261                 temp = b;
262                 b = ((double)(i+i)/x)*b - a;
263                 GET_HIGH_WORD(high,b);
264                 a = temp;
265             }
266         }
267         if(sign>0) return b; else return -b;
268 }