Merge from vendor branch GROFF:
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.14 2005/06/27 18:38:00 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 #define VM_PAGEOUT_PAGE_COUNT 16
199 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
200
201 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
202
203 #if !defined(NO_SWAPPING)
204 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
205 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
206 static freeer_fcn_t vm_pageout_object_deactivate_pages;
207 static void vm_req_vmdaemon (void);
208 #endif
209 static void vm_pageout_page_stats(void);
210
211 /*
212  * vm_pageout_clean:
213  *
214  * Clean the page and remove it from the laundry.  The page must not be
215  * busy on-call.
216  * 
217  * We set the busy bit to cause potential page faults on this page to
218  * block.  Note the careful timing, however, the busy bit isn't set till
219  * late and we cannot do anything that will mess with the page.
220  */
221
222 static int
223 vm_pageout_clean(vm_page_t m)
224 {
225         vm_object_t object;
226         vm_page_t mc[2*vm_pageout_page_count];
227         int pageout_count;
228         int ib, is, page_base;
229         vm_pindex_t pindex = m->pindex;
230
231         object = m->object;
232
233         /*
234          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235          * with the new swapper, but we could have serious problems paging
236          * out other object types if there is insufficient memory.  
237          *
238          * Unfortunately, checking free memory here is far too late, so the
239          * check has been moved up a procedural level.
240          */
241
242         /*
243          * Don't mess with the page if it's busy, held, or special
244          */
245         if ((m->hold_count != 0) ||
246             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
247                 return 0;
248         }
249
250         mc[vm_pageout_page_count] = m;
251         pageout_count = 1;
252         page_base = vm_pageout_page_count;
253         ib = 1;
254         is = 1;
255
256         /*
257          * Scan object for clusterable pages.
258          *
259          * We can cluster ONLY if: ->> the page is NOT
260          * clean, wired, busy, held, or mapped into a
261          * buffer, and one of the following:
262          * 1) The page is inactive, or a seldom used
263          *    active page.
264          * -or-
265          * 2) we force the issue.
266          *
267          * During heavy mmap/modification loads the pageout
268          * daemon can really fragment the underlying file
269          * due to flushing pages out of order and not trying
270          * align the clusters (which leave sporatic out-of-order
271          * holes).  To solve this problem we do the reverse scan
272          * first and attempt to align our cluster, then do a 
273          * forward scan if room remains.
274          */
275
276 more:
277         while (ib && pageout_count < vm_pageout_page_count) {
278                 vm_page_t p;
279
280                 if (ib > pindex) {
281                         ib = 0;
282                         break;
283                 }
284
285                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
286                         ib = 0;
287                         break;
288                 }
289                 if (((p->queue - p->pc) == PQ_CACHE) ||
290                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
291                         ib = 0;
292                         break;
293                 }
294                 vm_page_test_dirty(p);
295                 if ((p->dirty & p->valid) == 0 ||
296                     p->queue != PQ_INACTIVE ||
297                     p->wire_count != 0 ||       /* may be held by buf cache */
298                     p->hold_count != 0) {       /* may be undergoing I/O */
299                         ib = 0;
300                         break;
301                 }
302                 mc[--page_base] = p;
303                 ++pageout_count;
304                 ++ib;
305                 /*
306                  * alignment boundry, stop here and switch directions.  Do
307                  * not clear ib.
308                  */
309                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
310                         break;
311         }
312
313         while (pageout_count < vm_pageout_page_count && 
314             pindex + is < object->size) {
315                 vm_page_t p;
316
317                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
318                         break;
319                 if (((p->queue - p->pc) == PQ_CACHE) ||
320                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
321                         break;
322                 }
323                 vm_page_test_dirty(p);
324                 if ((p->dirty & p->valid) == 0 ||
325                     p->queue != PQ_INACTIVE ||
326                     p->wire_count != 0 ||       /* may be held by buf cache */
327                     p->hold_count != 0) {       /* may be undergoing I/O */
328                         break;
329                 }
330                 mc[page_base + pageout_count] = p;
331                 ++pageout_count;
332                 ++is;
333         }
334
335         /*
336          * If we exhausted our forward scan, continue with the reverse scan
337          * when possible, even past a page boundry.  This catches boundry
338          * conditions.
339          */
340         if (ib && pageout_count < vm_pageout_page_count)
341                 goto more;
342
343         /*
344          * we allow reads during pageouts...
345          */
346         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
347 }
348
349 /*
350  * vm_pageout_flush() - launder the given pages
351  *
352  *      The given pages are laundered.  Note that we setup for the start of
353  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
354  *      reference count all in here rather then in the parent.  If we want
355  *      the parent to do more sophisticated things we may have to change
356  *      the ordering.
357  */
358
359 int
360 vm_pageout_flush(vm_page_t *mc, int count, int flags)
361 {
362         vm_object_t object;
363         int pageout_status[count];
364         int numpagedout = 0;
365         int i;
366
367         /*
368          * Initiate I/O.  Bump the vm_page_t->busy counter and
369          * mark the pages read-only.
370          *
371          * We do not have to fixup the clean/dirty bits here... we can
372          * allow the pager to do it after the I/O completes.
373          */
374
375         for (i = 0; i < count; i++) {
376                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
377                 vm_page_io_start(mc[i]);
378                 vm_page_protect(mc[i], VM_PROT_READ);
379         }
380
381         object = mc[0]->object;
382         vm_object_pip_add(object, count);
383
384         vm_pager_put_pages(object, mc, count,
385             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
386             pageout_status);
387
388         for (i = 0; i < count; i++) {
389                 vm_page_t mt = mc[i];
390
391                 switch (pageout_status[i]) {
392                 case VM_PAGER_OK:
393                         numpagedout++;
394                         break;
395                 case VM_PAGER_PEND:
396                         numpagedout++;
397                         break;
398                 case VM_PAGER_BAD:
399                         /*
400                          * Page outside of range of object. Right now we
401                          * essentially lose the changes by pretending it
402                          * worked.
403                          */
404                         pmap_clear_modify(mt);
405                         vm_page_undirty(mt);
406                         break;
407                 case VM_PAGER_ERROR:
408                 case VM_PAGER_FAIL:
409                         /*
410                          * If page couldn't be paged out, then reactivate the
411                          * page so it doesn't clog the inactive list.  (We
412                          * will try paging out it again later).
413                          */
414                         vm_page_activate(mt);
415                         break;
416                 case VM_PAGER_AGAIN:
417                         break;
418                 }
419
420                 /*
421                  * If the operation is still going, leave the page busy to
422                  * block all other accesses. Also, leave the paging in
423                  * progress indicator set so that we don't attempt an object
424                  * collapse.
425                  */
426                 if (pageout_status[i] != VM_PAGER_PEND) {
427                         vm_object_pip_wakeup(object);
428                         vm_page_io_finish(mt);
429                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
430                                 vm_page_protect(mt, VM_PROT_READ);
431                 }
432         }
433         return numpagedout;
434 }
435
436 #if !defined(NO_SWAPPING)
437 /*
438  *      vm_pageout_object_deactivate_pages
439  *
440  *      deactivate enough pages to satisfy the inactive target
441  *      requirements or if vm_page_proc_limit is set, then
442  *      deactivate all of the pages in the object and its
443  *      backing_objects.
444  *
445  *      The object and map must be locked.
446  */
447 static void
448 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
449         vm_pindex_t desired, int map_remove_only)
450 {
451         vm_page_t p, next;
452         int rcount;
453         int remove_mode;
454
455         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
456                 return;
457
458         while (object) {
459                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
460                         return;
461                 if (object->paging_in_progress)
462                         return;
463
464                 remove_mode = map_remove_only;
465                 if (object->shadow_count > 1)
466                         remove_mode = 1;
467
468                 /*
469                  * scan the objects entire memory queue.  spl protection is
470                  * required to avoid an interrupt unbusy/free race against
471                  * our busy check.
472                  */
473                 crit_enter();
474                 rcount = object->resident_page_count;
475                 p = TAILQ_FIRST(&object->memq);
476
477                 while (p && (rcount-- > 0)) {
478                         int actcount;
479                         if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
480                                 crit_exit();
481                                 return;
482                         }
483                         next = TAILQ_NEXT(p, listq);
484                         mycpu->gd_cnt.v_pdpages++;
485                         if (p->wire_count != 0 ||
486                             p->hold_count != 0 ||
487                             p->busy != 0 ||
488                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
489                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
490                                 p = next;
491                                 continue;
492                         }
493
494                         actcount = pmap_ts_referenced(p);
495                         if (actcount) {
496                                 vm_page_flag_set(p, PG_REFERENCED);
497                         } else if (p->flags & PG_REFERENCED) {
498                                 actcount = 1;
499                         }
500
501                         if ((p->queue != PQ_ACTIVE) &&
502                                 (p->flags & PG_REFERENCED)) {
503                                 vm_page_activate(p);
504                                 p->act_count += actcount;
505                                 vm_page_flag_clear(p, PG_REFERENCED);
506                         } else if (p->queue == PQ_ACTIVE) {
507                                 if ((p->flags & PG_REFERENCED) == 0) {
508                                         p->act_count -= min(p->act_count, ACT_DECLINE);
509                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
510                                                 vm_page_protect(p, VM_PROT_NONE);
511                                                 vm_page_deactivate(p);
512                                         } else {
513                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
514                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
515                                         }
516                                 } else {
517                                         vm_page_activate(p);
518                                         vm_page_flag_clear(p, PG_REFERENCED);
519                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520                                                 p->act_count += ACT_ADVANCE;
521                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
522                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
523                                 }
524                         } else if (p->queue == PQ_INACTIVE) {
525                                 vm_page_protect(p, VM_PROT_NONE);
526                         }
527                         p = next;
528                 }
529                 crit_exit();
530                 object = object->backing_object;
531         }
532 }
533
534 /*
535  * deactivate some number of pages in a map, try to do it fairly, but
536  * that is really hard to do.
537  */
538 static void
539 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
540 {
541         vm_map_entry_t tmpe;
542         vm_object_t obj, bigobj;
543         int nothingwired;
544
545         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread)) {
546                 return;
547         }
548
549         bigobj = NULL;
550         nothingwired = TRUE;
551
552         /*
553          * first, search out the biggest object, and try to free pages from
554          * that.
555          */
556         tmpe = map->header.next;
557         while (tmpe != &map->header) {
558                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
559                         obj = tmpe->object.vm_object;
560                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
561                                 ((bigobj == NULL) ||
562                                  (bigobj->resident_page_count < obj->resident_page_count))) {
563                                 bigobj = obj;
564                         }
565                 }
566                 if (tmpe->wired_count > 0)
567                         nothingwired = FALSE;
568                 tmpe = tmpe->next;
569         }
570
571         if (bigobj)
572                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
573
574         /*
575          * Next, hunt around for other pages to deactivate.  We actually
576          * do this search sort of wrong -- .text first is not the best idea.
577          */
578         tmpe = map->header.next;
579         while (tmpe != &map->header) {
580                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
581                         break;
582                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
583                         obj = tmpe->object.vm_object;
584                         if (obj)
585                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
586                 }
587                 tmpe = tmpe->next;
588         };
589
590         /*
591          * Remove all mappings if a process is swapped out, this will free page
592          * table pages.
593          */
594         if (desired == 0 && nothingwired)
595                 pmap_remove(vm_map_pmap(map),
596                         VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
597         vm_map_unlock(map);
598 }
599 #endif
600
601 /*
602  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
603  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
604  * which we know can be trivially freed.
605  */
606
607 void
608 vm_pageout_page_free(vm_page_t m) {
609         vm_object_t object = m->object;
610         int type = object->type;
611
612         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
613                 vm_object_reference(object);
614         vm_page_busy(m);
615         vm_page_protect(m, VM_PROT_NONE);
616         vm_page_free(m);
617         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618                 vm_object_deallocate(object);
619 }
620
621 /*
622  *      vm_pageout_scan does the dirty work for the pageout daemon.
623  */
624 static void
625 vm_pageout_scan(int pass)
626 {
627         vm_page_t m, next;
628         struct vm_page marker;
629         int page_shortage, maxscan, pcount;
630         int addl_page_shortage, addl_page_shortage_init;
631         struct proc *p, *bigproc;
632         vm_offset_t size, bigsize;
633         vm_object_t object;
634         int actcount;
635         int vnodes_skipped = 0;
636         int maxlaunder;
637
638         /*
639          * Do whatever cleanup that the pmap code can.
640          */
641         pmap_collect();
642
643         addl_page_shortage_init = vm_pageout_deficit;
644         vm_pageout_deficit = 0;
645
646         /*
647          * Calculate the number of pages we want to either free or move
648          * to the cache.
649          */
650         page_shortage = vm_paging_target() + addl_page_shortage_init;
651
652         /*
653          * Initialize our marker
654          */
655         bzero(&marker, sizeof(marker));
656         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
657         marker.queue = PQ_INACTIVE;
658         marker.wire_count = 1;
659
660         /*
661          * Start scanning the inactive queue for pages we can move to the
662          * cache or free.  The scan will stop when the target is reached or
663          * we have scanned the entire inactive queue.  Note that m->act_count
664          * is not used to form decisions for the inactive queue, only for the
665          * active queue.
666          *
667          * maxlaunder limits the number of dirty pages we flush per scan.
668          * For most systems a smaller value (16 or 32) is more robust under
669          * extreme memory and disk pressure because any unnecessary writes
670          * to disk can result in extreme performance degredation.  However,
671          * systems with excessive dirty pages (especially when MAP_NOSYNC is
672          * used) will die horribly with limited laundering.  If the pageout
673          * daemon cannot clean enough pages in the first pass, we let it go
674          * all out in succeeding passes.
675          */
676         if ((maxlaunder = vm_max_launder) <= 1)
677                 maxlaunder = 1;
678         if (pass)
679                 maxlaunder = 10000;
680
681         /*
682          * We will generally be in a critical section throughout the 
683          * scan, but we can release it temporarily when we are sitting on a
684          * non-busy page without fear.  this is required to prevent an
685          * interrupt from unbusying or freeing a page prior to our busy
686          * check, leaving us on the wrong queue or checking the wrong
687          * page.
688          */
689         crit_enter();
690 rescan0:
691         addl_page_shortage = addl_page_shortage_init;
692         maxscan = vmstats.v_inactive_count;
693         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
694              m != NULL && maxscan-- > 0 && page_shortage > 0;
695              m = next
696          ) {
697                 mycpu->gd_cnt.v_pdpages++;
698
699                 /*
700                  * Give interrupts a chance
701                  */
702                 crit_exit();
703                 crit_enter();
704
705                 /*
706                  * It's easier for some of the conditions below to just loop
707                  * and catch queue changes here rather then check everywhere
708                  * else.
709                  */
710                 if (m->queue != PQ_INACTIVE)
711                         goto rescan0;
712                 next = TAILQ_NEXT(m, pageq);
713
714                 /*
715                  * skip marker pages
716                  */
717                 if (m->flags & PG_MARKER)
718                         continue;
719
720                 /*
721                  * A held page may be undergoing I/O, so skip it.
722                  */
723                 if (m->hold_count) {
724                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
725                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
726                         addl_page_shortage++;
727                         continue;
728                 }
729
730                 /*
731                  * Dont mess with busy pages, keep in the front of the
732                  * queue, most likely are being paged out.
733                  */
734                 if (m->busy || (m->flags & PG_BUSY)) {
735                         addl_page_shortage++;
736                         continue;
737                 }
738
739                 if (m->object->ref_count == 0) {
740                         /*
741                          * If the object is not being used, we ignore previous 
742                          * references.
743                          */
744                         vm_page_flag_clear(m, PG_REFERENCED);
745                         pmap_clear_reference(m);
746
747                 } else if (((m->flags & PG_REFERENCED) == 0) &&
748                             (actcount = pmap_ts_referenced(m))) {
749                         /*
750                          * Otherwise, if the page has been referenced while 
751                          * in the inactive queue, we bump the "activation
752                          * count" upwards, making it less likely that the
753                          * page will be added back to the inactive queue
754                          * prematurely again.  Here we check the page tables
755                          * (or emulated bits, if any), given the upper level
756                          * VM system not knowing anything about existing 
757                          * references.
758                          */
759                         vm_page_activate(m);
760                         m->act_count += (actcount + ACT_ADVANCE);
761                         continue;
762                 }
763
764                 /*
765                  * If the upper level VM system knows about any page 
766                  * references, we activate the page.  We also set the 
767                  * "activation count" higher than normal so that we will less 
768                  * likely place pages back onto the inactive queue again.
769                  */
770                 if ((m->flags & PG_REFERENCED) != 0) {
771                         vm_page_flag_clear(m, PG_REFERENCED);
772                         actcount = pmap_ts_referenced(m);
773                         vm_page_activate(m);
774                         m->act_count += (actcount + ACT_ADVANCE + 1);
775                         continue;
776                 }
777
778                 /*
779                  * If the upper level VM system doesn't know anything about 
780                  * the page being dirty, we have to check for it again.  As 
781                  * far as the VM code knows, any partially dirty pages are 
782                  * fully dirty.
783                  *
784                  * Pages marked PG_WRITEABLE may be mapped into the user
785                  * address space of a process running on another cpu.  A
786                  * user process (without holding the MP lock) running on
787                  * another cpu may be able to touch the page while we are
788                  * trying to remove it.  To prevent this from occuring we
789                  * must call pmap_remove_all() or otherwise make the page
790                  * read-only.  If the race occured pmap_remove_all() is
791                  * responsible for setting m->dirty.
792                  */
793                 if (m->dirty == 0) {
794                         vm_page_test_dirty(m);
795 #if 0
796                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
797                                 pmap_remove_all(m);
798 #endif
799                 } else {
800                         vm_page_dirty(m);
801                 }
802
803                 if (m->valid == 0) {
804                         /*
805                          * Invalid pages can be easily freed
806                          */
807                         vm_pageout_page_free(m);
808                         mycpu->gd_cnt.v_dfree++;
809                         --page_shortage;
810                 } else if (m->dirty == 0) {
811                         /*
812                          * Clean pages can be placed onto the cache queue.
813                          * This effectively frees them.
814                          */
815                         vm_page_cache(m);
816                         --page_shortage;
817                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
818                         /*
819                          * Dirty pages need to be paged out, but flushing
820                          * a page is extremely expensive verses freeing
821                          * a clean page.  Rather then artificially limiting
822                          * the number of pages we can flush, we instead give
823                          * dirty pages extra priority on the inactive queue
824                          * by forcing them to be cycled through the queue
825                          * twice before being flushed, after which the 
826                          * (now clean) page will cycle through once more
827                          * before being freed.  This significantly extends
828                          * the thrash point for a heavily loaded machine.
829                          */
830                         vm_page_flag_set(m, PG_WINATCFLS);
831                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
832                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
833                 } else if (maxlaunder > 0) {
834                         /*
835                          * We always want to try to flush some dirty pages if
836                          * we encounter them, to keep the system stable.
837                          * Normally this number is small, but under extreme
838                          * pressure where there are insufficient clean pages
839                          * on the inactive queue, we may have to go all out.
840                          */
841                         int swap_pageouts_ok;
842                         struct vnode *vp = NULL;
843
844                         object = m->object;
845
846                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
847                                 swap_pageouts_ok = 1;
848                         } else {
849                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
850                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
851                                 vm_page_count_min());
852                                                                                 
853                         }
854
855                         /*
856                          * We don't bother paging objects that are "dead".  
857                          * Those objects are in a "rundown" state.
858                          */
859                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
860                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
861                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
862                                 continue;
863                         }
864
865                         /*
866                          * The object is already known NOT to be dead.   It
867                          * is possible for the vget() to block the whole
868                          * pageout daemon, but the new low-memory handling
869                          * code should prevent it.
870                          *
871                          * The previous code skipped locked vnodes and, worse,
872                          * reordered pages in the queue.  This results in
873                          * completely non-deterministic operation because,
874                          * quite often, a vm_fault has initiated an I/O and
875                          * is holding a locked vnode at just the point where
876                          * the pageout daemon is woken up.
877                          *
878                          * We can't wait forever for the vnode lock, we might
879                          * deadlock due to a vn_read() getting stuck in
880                          * vm_wait while holding this vnode.  We skip the 
881                          * vnode if we can't get it in a reasonable amount
882                          * of time.
883                          */
884
885                         if (object->type == OBJT_VNODE) {
886                                 vp = object->handle;
887
888                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
889                                         ++pageout_lock_miss;
890                                         if (object->flags & OBJ_MIGHTBEDIRTY)
891                                                     vnodes_skipped++;
892                                         continue;
893                                 }
894
895                                 /*
896                                  * The page might have been moved to another
897                                  * queue during potential blocking in vget()
898                                  * above.  The page might have been freed and
899                                  * reused for another vnode.  The object might
900                                  * have been reused for another vnode.
901                                  */
902                                 if (m->queue != PQ_INACTIVE ||
903                                     m->object != object ||
904                                     object->handle != vp) {
905                                         if (object->flags & OBJ_MIGHTBEDIRTY)
906                                                 vnodes_skipped++;
907                                         vput(vp);
908                                         continue;
909                                 }
910         
911                                 /*
912                                  * The page may have been busied during the
913                                  * blocking in vput();  We don't move the
914                                  * page back onto the end of the queue so that
915                                  * statistics are more correct if we don't.
916                                  */
917                                 if (m->busy || (m->flags & PG_BUSY)) {
918                                         vput(vp);
919                                         continue;
920                                 }
921
922                                 /*
923                                  * If the page has become held it might
924                                  * be undergoing I/O, so skip it
925                                  */
926                                 if (m->hold_count) {
927                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
928                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
929                                         if (object->flags & OBJ_MIGHTBEDIRTY)
930                                                 vnodes_skipped++;
931                                         vput(vp);
932                                         continue;
933                                 }
934                         }
935
936                         /*
937                          * If a page is dirty, then it is either being washed
938                          * (but not yet cleaned) or it is still in the
939                          * laundry.  If it is still in the laundry, then we
940                          * start the cleaning operation. 
941                          *
942                          * This operation may cluster, invalidating the 'next'
943                          * pointer.  To prevent an inordinate number of
944                          * restarts we use our marker to remember our place.
945                          *
946                          * decrement page_shortage on success to account for
947                          * the (future) cleaned page.  Otherwise we could wind
948                          * up laundering or cleaning too many pages.
949                          */
950                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
951                         if (vm_pageout_clean(m) != 0) {
952                                 --page_shortage;
953                                 --maxlaunder;
954                         } 
955                         next = TAILQ_NEXT(&marker, pageq);
956                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
957                         if (vp != NULL)
958                                 vput(vp);
959                 }
960         }
961
962         /*
963          * Compute the number of pages we want to try to move from the
964          * active queue to the inactive queue.
965          */
966         page_shortage = vm_paging_target() +
967             vmstats.v_inactive_target - vmstats.v_inactive_count;
968         page_shortage += addl_page_shortage;
969
970         /*
971          * Scan the active queue for things we can deactivate. We nominally
972          * track the per-page activity counter and use it to locate 
973          * deactivation candidates.
974          *
975          * NOTE: we are still in a critical section.
976          */
977         pcount = vmstats.v_active_count;
978         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
979
980         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
981                 /*
982                  * Give interrupts a chance.
983                  */
984                 crit_exit();
985                 crit_enter();
986
987                 /*
988                  * If the page was ripped out from under us, just stop.
989                  */
990                 if (m->queue != PQ_ACTIVE)
991                         break;
992                 next = TAILQ_NEXT(m, pageq);
993
994                 /*
995                  * Don't deactivate pages that are busy.
996                  */
997                 if ((m->busy != 0) ||
998                     (m->flags & PG_BUSY) ||
999                     (m->hold_count != 0)) {
1000                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1001                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1002                         m = next;
1003                         continue;
1004                 }
1005
1006                 /*
1007                  * The count for pagedaemon pages is done after checking the
1008                  * page for eligibility...
1009                  */
1010                 mycpu->gd_cnt.v_pdpages++;
1011
1012                 /*
1013                  * Check to see "how much" the page has been used.
1014                  */
1015                 actcount = 0;
1016                 if (m->object->ref_count != 0) {
1017                         if (m->flags & PG_REFERENCED) {
1018                                 actcount += 1;
1019                         }
1020                         actcount += pmap_ts_referenced(m);
1021                         if (actcount) {
1022                                 m->act_count += ACT_ADVANCE + actcount;
1023                                 if (m->act_count > ACT_MAX)
1024                                         m->act_count = ACT_MAX;
1025                         }
1026                 }
1027
1028                 /*
1029                  * Since we have "tested" this bit, we need to clear it now.
1030                  */
1031                 vm_page_flag_clear(m, PG_REFERENCED);
1032
1033                 /*
1034                  * Only if an object is currently being used, do we use the
1035                  * page activation count stats.
1036                  */
1037                 if (actcount && (m->object->ref_count != 0)) {
1038                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1039                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1040                 } else {
1041                         m->act_count -= min(m->act_count, ACT_DECLINE);
1042                         if (vm_pageout_algorithm ||
1043                             m->object->ref_count == 0 ||
1044                             m->act_count == 0) {
1045                                 page_shortage--;
1046                                 if (m->object->ref_count == 0) {
1047                                         vm_page_protect(m, VM_PROT_NONE);
1048                                         if (m->dirty == 0)
1049                                                 vm_page_cache(m);
1050                                         else
1051                                                 vm_page_deactivate(m);
1052                                 } else {
1053                                         vm_page_deactivate(m);
1054                                 }
1055                         } else {
1056                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1057                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1058                         }
1059                 }
1060                 m = next;
1061         }
1062
1063         /*
1064          * We try to maintain some *really* free pages, this allows interrupt
1065          * code to be guaranteed space.  Since both cache and free queues 
1066          * are considered basically 'free', moving pages from cache to free
1067          * does not effect other calculations.
1068          *
1069          * NOTE: we are still in a critical section.
1070          */
1071
1072         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1073                 static int cache_rover = 0;
1074                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1075                 if (!m)
1076                         break;
1077                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1078                     m->busy || 
1079                     m->hold_count || 
1080                     m->wire_count) {
1081 #ifdef INVARIANTS
1082                         printf("Warning: busy page %p found in cache\n", m);
1083 #endif
1084                         vm_page_deactivate(m);
1085                         continue;
1086                 }
1087                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1088                 vm_pageout_page_free(m);
1089                 mycpu->gd_cnt.v_dfree++;
1090         }
1091
1092         crit_exit();
1093
1094 #if !defined(NO_SWAPPING)
1095         /*
1096          * Idle process swapout -- run once per second.
1097          */
1098         if (vm_swap_idle_enabled) {
1099                 static long lsec;
1100                 if (time_second != lsec) {
1101                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1102                         vm_req_vmdaemon();
1103                         lsec = time_second;
1104                 }
1105         }
1106 #endif
1107                 
1108         /*
1109          * If we didn't get enough free pages, and we have skipped a vnode
1110          * in a writeable object, wakeup the sync daemon.  And kick swapout
1111          * if we did not get enough free pages.
1112          */
1113         if (vm_paging_target() > 0) {
1114                 if (vnodes_skipped && vm_page_count_min())
1115                         (void) speedup_syncer();
1116 #if !defined(NO_SWAPPING)
1117                 if (vm_swap_enabled && vm_page_count_target()) {
1118                         vm_req_vmdaemon();
1119                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1120                 }
1121 #endif
1122         }
1123
1124         /*
1125          * If we are out of swap and were not able to reach our paging
1126          * target, kill the largest process.
1127          */
1128         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1129             (swap_pager_full && vm_paging_target() > 0)) {
1130 #if 0
1131         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1132 #endif
1133                 bigproc = NULL;
1134                 bigsize = 0;
1135                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1136                         /*
1137                          * if this is a system process, skip it
1138                          */
1139                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1140                             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1141                                 continue;
1142                         }
1143                         /*
1144                          * if the process is in a non-running type state,
1145                          * don't touch it.
1146                          */
1147                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1148                                 continue;
1149                         }
1150                         /*
1151                          * get the process size
1152                          */
1153                         size = vmspace_resident_count(p->p_vmspace) +
1154                                 vmspace_swap_count(p->p_vmspace);
1155                         /*
1156                          * if the this process is bigger than the biggest one
1157                          * remember it.
1158                          */
1159                         if (size > bigsize) {
1160                                 bigproc = p;
1161                                 bigsize = size;
1162                         }
1163                 }
1164                 if (bigproc != NULL) {
1165                         killproc(bigproc, "out of swap space");
1166                         bigproc->p_nice = PRIO_MIN;
1167                         bigproc->p_usched->resetpriority(bigproc);
1168                         wakeup(&vmstats.v_free_count);
1169                 }
1170         }
1171 }
1172
1173 /*
1174  * This routine tries to maintain the pseudo LRU active queue,
1175  * so that during long periods of time where there is no paging,
1176  * that some statistic accumulation still occurs.  This code
1177  * helps the situation where paging just starts to occur.
1178  */
1179 static void
1180 vm_pageout_page_stats(void)
1181 {
1182         vm_page_t m,next;
1183         int pcount,tpcount;             /* Number of pages to check */
1184         static int fullintervalcount = 0;
1185         int page_shortage;
1186
1187         page_shortage = 
1188             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1189             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1190
1191         if (page_shortage <= 0)
1192                 return;
1193
1194         crit_enter();
1195
1196         pcount = vmstats.v_active_count;
1197         fullintervalcount += vm_pageout_stats_interval;
1198         if (fullintervalcount < vm_pageout_full_stats_interval) {
1199                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1200                 if (pcount > tpcount)
1201                         pcount = tpcount;
1202         } else {
1203                 fullintervalcount = 0;
1204         }
1205
1206         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1207         while ((m != NULL) && (pcount-- > 0)) {
1208                 int actcount;
1209
1210                 if (m->queue != PQ_ACTIVE) {
1211                         break;
1212                 }
1213
1214                 next = TAILQ_NEXT(m, pageq);
1215                 /*
1216                  * Don't deactivate pages that are busy.
1217                  */
1218                 if ((m->busy != 0) ||
1219                     (m->flags & PG_BUSY) ||
1220                     (m->hold_count != 0)) {
1221                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1222                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1223                         m = next;
1224                         continue;
1225                 }
1226
1227                 actcount = 0;
1228                 if (m->flags & PG_REFERENCED) {
1229                         vm_page_flag_clear(m, PG_REFERENCED);
1230                         actcount += 1;
1231                 }
1232
1233                 actcount += pmap_ts_referenced(m);
1234                 if (actcount) {
1235                         m->act_count += ACT_ADVANCE + actcount;
1236                         if (m->act_count > ACT_MAX)
1237                                 m->act_count = ACT_MAX;
1238                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1239                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1240                 } else {
1241                         if (m->act_count == 0) {
1242                                 /*
1243                                  * We turn off page access, so that we have
1244                                  * more accurate RSS stats.  We don't do this
1245                                  * in the normal page deactivation when the
1246                                  * system is loaded VM wise, because the
1247                                  * cost of the large number of page protect
1248                                  * operations would be higher than the value
1249                                  * of doing the operation.
1250                                  */
1251                                 vm_page_protect(m, VM_PROT_NONE);
1252                                 vm_page_deactivate(m);
1253                         } else {
1254                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1255                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1256                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1257                         }
1258                 }
1259
1260                 m = next;
1261         }
1262         crit_exit();
1263 }
1264
1265 static int
1266 vm_pageout_free_page_calc(vm_size_t count)
1267 {
1268         if (count < vmstats.v_page_count)
1269                  return 0;
1270         /*
1271          * free_reserved needs to include enough for the largest swap pager
1272          * structures plus enough for any pv_entry structs when paging.
1273          */
1274         if (vmstats.v_page_count > 1024)
1275                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1276         else
1277                 vmstats.v_free_min = 4;
1278         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1279                 vmstats.v_interrupt_free_min;
1280         vmstats.v_free_reserved = vm_pageout_page_count +
1281                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1282         vmstats.v_free_severe = vmstats.v_free_min / 2;
1283         vmstats.v_free_min += vmstats.v_free_reserved;
1284         vmstats.v_free_severe += vmstats.v_free_reserved;
1285         return 1;
1286 }
1287
1288
1289 /*
1290  *      vm_pageout is the high level pageout daemon.
1291  */
1292 static void
1293 vm_pageout(void)
1294 {
1295         int pass;
1296
1297         /*
1298          * Initialize some paging parameters.
1299          */
1300
1301         vmstats.v_interrupt_free_min = 2;
1302         if (vmstats.v_page_count < 2000)
1303                 vm_pageout_page_count = 8;
1304
1305         vm_pageout_free_page_calc(vmstats.v_page_count);
1306         /*
1307          * v_free_target and v_cache_min control pageout hysteresis.  Note
1308          * that these are more a measure of the VM cache queue hysteresis
1309          * then the VM free queue.  Specifically, v_free_target is the
1310          * high water mark (free+cache pages).
1311          *
1312          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1313          * low water mark, while v_free_min is the stop.  v_cache_min must
1314          * be big enough to handle memory needs while the pageout daemon
1315          * is signalled and run to free more pages.
1316          */
1317         if (vmstats.v_free_count > 6144)
1318                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1319         else
1320                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1321
1322         if (vmstats.v_free_count > 2048) {
1323                 vmstats.v_cache_min = vmstats.v_free_target;
1324                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1325                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1326         } else {
1327                 vmstats.v_cache_min = 0;
1328                 vmstats.v_cache_max = 0;
1329                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1330         }
1331         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1332                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1333
1334         /* XXX does not really belong here */
1335         if (vm_page_max_wired == 0)
1336                 vm_page_max_wired = vmstats.v_free_count / 3;
1337
1338         if (vm_pageout_stats_max == 0)
1339                 vm_pageout_stats_max = vmstats.v_free_target;
1340
1341         /*
1342          * Set interval in seconds for stats scan.
1343          */
1344         if (vm_pageout_stats_interval == 0)
1345                 vm_pageout_stats_interval = 5;
1346         if (vm_pageout_full_stats_interval == 0)
1347                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1348         
1349
1350         /*
1351          * Set maximum free per pass
1352          */
1353         if (vm_pageout_stats_free_max == 0)
1354                 vm_pageout_stats_free_max = 5;
1355
1356         swap_pager_swap_init();
1357         pass = 0;
1358         /*
1359          * The pageout daemon is never done, so loop forever.
1360          */
1361         while (TRUE) {
1362                 int error;
1363
1364                 /*
1365                  * If we have enough free memory, wakeup waiters.  Do
1366                  * not clear vm_pages_needed until we reach our target,
1367                  * otherwise we may be woken up over and over again and
1368                  * waste a lot of cpu.
1369                  */
1370                 crit_enter();
1371                 if (vm_pages_needed && !vm_page_count_min()) {
1372                         if (vm_paging_needed() <= 0)
1373                                 vm_pages_needed = 0;
1374                         wakeup(&vmstats.v_free_count);
1375                 }
1376                 if (vm_pages_needed) {
1377                         /*
1378                          * Still not done, take a second pass without waiting
1379                          * (unlimited dirty cleaning), otherwise sleep a bit
1380                          * and try again.
1381                          */
1382                         ++pass;
1383                         if (pass > 1)
1384                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1385                 } else {
1386                         /*
1387                          * Good enough, sleep & handle stats.  Prime the pass
1388                          * for the next run.
1389                          */
1390                         if (pass > 1)
1391                                 pass = 1;
1392                         else
1393                                 pass = 0;
1394                         error = tsleep(&vm_pages_needed,
1395                                 0, "psleep", vm_pageout_stats_interval * hz);
1396                         if (error && !vm_pages_needed) {
1397                                 crit_exit();
1398                                 pass = 0;
1399                                 vm_pageout_page_stats();
1400                                 continue;
1401                         }
1402                 }
1403
1404                 if (vm_pages_needed)
1405                         mycpu->gd_cnt.v_pdwakeups++;
1406                 crit_exit();
1407                 vm_pageout_scan(pass);
1408                 vm_pageout_deficit = 0;
1409         }
1410 }
1411
1412 void
1413 pagedaemon_wakeup(void)
1414 {
1415         if (!vm_pages_needed && curthread != pagethread) {
1416                 vm_pages_needed++;
1417                 wakeup(&vm_pages_needed);
1418         }
1419 }
1420
1421 #if !defined(NO_SWAPPING)
1422 static void
1423 vm_req_vmdaemon(void)
1424 {
1425         static int lastrun = 0;
1426
1427         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1428                 wakeup(&vm_daemon_needed);
1429                 lastrun = ticks;
1430         }
1431 }
1432
1433 static void
1434 vm_daemon(void)
1435 {
1436         struct proc *p;
1437
1438         while (TRUE) {
1439                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1440                 if (vm_pageout_req_swapout) {
1441                         swapout_procs(vm_pageout_req_swapout);
1442                         vm_pageout_req_swapout = 0;
1443                 }
1444                 /*
1445                  * scan the processes for exceeding their rlimits or if
1446                  * process is swapped out -- deactivate pages
1447                  */
1448
1449                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1450                         vm_pindex_t limit, size;
1451
1452                         /*
1453                          * if this is a system process or if we have already
1454                          * looked at this process, skip it.
1455                          */
1456                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1457                                 continue;
1458                         }
1459                         /*
1460                          * if the process is in a non-running type state,
1461                          * don't touch it.
1462                          */
1463                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1464                                 continue;
1465                         }
1466                         /*
1467                          * get a limit
1468                          */
1469                         limit = OFF_TO_IDX(
1470                             qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1471                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1472
1473                         /*
1474                          * let processes that are swapped out really be
1475                          * swapped out set the limit to nothing (will force a
1476                          * swap-out.)
1477                          */
1478                         if ((p->p_flag & P_INMEM) == 0)
1479                                 limit = 0;      /* XXX */
1480
1481                         size = vmspace_resident_count(p->p_vmspace);
1482                         if (limit >= 0 && size >= limit) {
1483                                 vm_pageout_map_deactivate_pages(
1484                                     &p->p_vmspace->vm_map, limit);
1485                         }
1486                 }
1487         }
1488 }
1489 #endif