kernel: Use the new auto-created sysctl ctx/tree in various drivers.
[dragonfly.git] / sys / dev / netif / age / if_age.c
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/age/if_age.c,v 1.6 2008/11/07 07:02:28 yongari Exp $
28  */
29
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/bus.h>
36 #include <sys/interrupt.h>
37 #include <sys/malloc.h>
38 #include <sys/proc.h>
39 #include <sys/rman.h>
40 #include <sys/serialize.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44
45 #include <net/ethernet.h>
46 #include <net/if.h>
47 #include <net/bpf.h>
48 #include <net/if_arp.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/ifq_var.h>
52 #include <net/vlan/if_vlan_var.h>
53 #include <net/vlan/if_vlan_ether.h>
54
55 #include <dev/netif/mii_layer/miivar.h>
56 #include <dev/netif/mii_layer/jmphyreg.h>
57
58 #include <bus/pci/pcireg.h>
59 #include <bus/pci/pcivar.h>
60 #include "pcidevs.h"
61
62 #include <dev/netif/age/if_agereg.h>
63 #include <dev/netif/age/if_agevar.h>
64
65 /* "device miibus" required.  See GENERIC if you get errors here. */
66 #include "miibus_if.h"
67
68 #define AGE_CSUM_FEATURES       (CSUM_TCP | CSUM_UDP)
69
70 struct age_dmamap_ctx {
71         int                     nsegs;
72         bus_dma_segment_t       *segs;
73 };
74
75 static int      age_probe(device_t);
76 static int      age_attach(device_t);
77 static int      age_detach(device_t);
78 static int      age_shutdown(device_t);
79 static int      age_suspend(device_t);
80 static int      age_resume(device_t);
81
82 static int      age_miibus_readreg(device_t, int, int);
83 static int      age_miibus_writereg(device_t, int, int, int);
84 static void     age_miibus_statchg(device_t);
85
86 static void     age_init(void *);
87 static int      age_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
88 static void     age_start(struct ifnet *, struct ifaltq_subque *);
89 static void     age_watchdog(struct ifnet *);
90 static void     age_mediastatus(struct ifnet *, struct ifmediareq *);
91 static int      age_mediachange(struct ifnet *);
92
93 static void     age_intr(void *);
94 static void     age_txintr(struct age_softc *, int);
95 static void     age_rxintr(struct age_softc *, int);
96 static void     age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97
98 static int      age_dma_alloc(struct age_softc *);
99 static void     age_dma_free(struct age_softc *);
100 static void     age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
101 static void     age_dmamap_buf_cb(void *, bus_dma_segment_t *, int,
102                     bus_size_t, int);
103 static int      age_check_boundary(struct age_softc *);
104 static int      age_newbuf(struct age_softc *, struct age_rxdesc *, int);
105 static int      age_encap(struct age_softc *, struct mbuf **);
106 static void     age_init_tx_ring(struct age_softc *);
107 static int      age_init_rx_ring(struct age_softc *);
108 static void     age_init_rr_ring(struct age_softc *);
109 static void     age_init_cmb_block(struct age_softc *);
110 static void     age_init_smb_block(struct age_softc *);
111
112 static void     age_tick(void *);
113 static void     age_stop(struct age_softc *);
114 static void     age_reset(struct age_softc *);
115 static int      age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
116                     uint32_t *);
117 static void     age_get_macaddr(struct age_softc *);
118 static void     age_phy_reset(struct age_softc *);
119 static void     age_mac_config(struct age_softc *);
120 static void     age_stats_update(struct age_softc *);
121 static void     age_stop_txmac(struct age_softc *);
122 static void     age_stop_rxmac(struct age_softc *);
123 static void     age_rxvlan(struct age_softc *);
124 static void     age_rxfilter(struct age_softc *);
125 #ifdef wol_notyet
126 static void age_setwol(struct age_softc *);
127 #endif
128
129 static void     age_sysctl_node(struct age_softc *);
130 static int      sysctl_age_stats(SYSCTL_HANDLER_ARGS);
131 static int      sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
132
133 /*
134  * Devices supported by this driver.
135  */
136 static struct age_dev {
137         uint16_t        age_vendorid;
138         uint16_t        age_deviceid;
139         const char      *age_name;
140 } age_devs[] = {
141         { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
142             "Attansic Technology Corp, L1 Gigabit Ethernet" },
143 };
144
145 static device_method_t age_methods[] = {
146         /* Device interface. */
147         DEVMETHOD(device_probe,         age_probe),
148         DEVMETHOD(device_attach,        age_attach),
149         DEVMETHOD(device_detach,        age_detach),
150         DEVMETHOD(device_shutdown,      age_shutdown),
151         DEVMETHOD(device_suspend,       age_suspend),
152         DEVMETHOD(device_resume,        age_resume),
153
154         /* Bus interface. */
155         DEVMETHOD(bus_print_child,      bus_generic_print_child),
156         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
157
158         /* MII interface. */
159         DEVMETHOD(miibus_readreg,       age_miibus_readreg),
160         DEVMETHOD(miibus_writereg,      age_miibus_writereg),
161         DEVMETHOD(miibus_statchg,       age_miibus_statchg),
162
163         { NULL, NULL }
164 };
165
166 static driver_t age_driver = {
167         "age",
168         age_methods,
169         sizeof(struct age_softc)
170 };
171
172 static devclass_t age_devclass;
173
174 DECLARE_DUMMY_MODULE(if_age);
175 MODULE_DEPEND(if_age, miibus, 1, 1, 1);
176 DRIVER_MODULE(if_age, pci, age_driver, age_devclass, NULL, NULL);
177 DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, NULL, NULL);
178
179 /*
180  *      Read a PHY register on the MII of the L1.
181  */
182 static int
183 age_miibus_readreg(device_t dev, int phy, int reg)
184 {
185         struct age_softc *sc;
186         uint32_t v;
187         int i;
188
189         sc = device_get_softc(dev);
190         if (phy != sc->age_phyaddr)
191                 return (0);
192
193         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
194             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
196                 DELAY(1);
197                 v = CSR_READ_4(sc, AGE_MDIO);
198                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199                         break;
200         }
201
202         if (i == 0) {
203                 device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
204                 return (0);
205         }
206
207         return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
208 }
209
210 /*
211  *      Write a PHY register on the MII of the L1.
212  */
213 static int
214 age_miibus_writereg(device_t dev, int phy, int reg, int val)
215 {
216         struct age_softc *sc;
217         uint32_t v;
218         int i;
219
220         sc = device_get_softc(dev);
221         if (phy != sc->age_phyaddr)
222                 return (0);
223
224         CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
225             (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
226             MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
227         for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
228                 DELAY(1);
229                 v = CSR_READ_4(sc, AGE_MDIO);
230                 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
231                         break;
232         }
233
234         if (i == 0)
235                 device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
236
237         return (0);
238 }
239
240 /*
241  *      Callback from MII layer when media changes.
242  */
243 static void
244 age_miibus_statchg(device_t dev)
245 {
246         struct age_softc *sc = device_get_softc(dev);
247         struct ifnet *ifp = &sc->arpcom.ac_if;
248         struct mii_data *mii;
249
250         ASSERT_SERIALIZED(ifp->if_serializer);
251
252         if ((ifp->if_flags & IFF_RUNNING) == 0)
253                 return;
254
255         mii = device_get_softc(sc->age_miibus);
256
257         sc->age_flags &= ~AGE_FLAG_LINK;
258         if ((mii->mii_media_status & IFM_AVALID) != 0) {
259                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
260                 case IFM_10_T:
261                 case IFM_100_TX:
262                 case IFM_1000_T:
263                         sc->age_flags |= AGE_FLAG_LINK;
264                         break;
265                 default:
266                         break;
267                 }
268         }
269
270         /* Stop Rx/Tx MACs. */
271         age_stop_rxmac(sc);
272         age_stop_txmac(sc);
273
274         /* Program MACs with resolved speed/duplex/flow-control. */
275         if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
276                 uint32_t reg;
277
278                 age_mac_config(sc);
279
280                 reg = CSR_READ_4(sc, AGE_MAC_CFG);
281                 /* Restart DMA engine and Tx/Rx MAC. */
282                 CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
283                     DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
284                 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
285                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
286         }
287 }
288
289 /*
290  *      Get the current interface media status.
291  */
292 static void
293 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
294 {
295         struct age_softc *sc = ifp->if_softc;
296         struct mii_data *mii = device_get_softc(sc->age_miibus);
297
298         ASSERT_SERIALIZED(ifp->if_serializer);
299
300         mii_pollstat(mii);
301         ifmr->ifm_status = mii->mii_media_status;
302         ifmr->ifm_active = mii->mii_media_active;
303 }
304
305 /*
306  *      Set hardware to newly-selected media.
307  */
308 static int
309 age_mediachange(struct ifnet *ifp)
310 {
311         struct age_softc *sc = ifp->if_softc;
312         struct mii_data *mii = device_get_softc(sc->age_miibus);
313         int error;
314
315         ASSERT_SERIALIZED(ifp->if_serializer);
316
317         if (mii->mii_instance != 0) {
318                 struct mii_softc *miisc;
319
320                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
321                         mii_phy_reset(miisc);
322         }
323         error = mii_mediachg(mii);
324
325         return (error);
326 }
327
328 static int
329 age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
330     uint32_t *word)
331 {
332         int i;
333
334         pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
335         for (i = AGE_TIMEOUT; i > 0; i--) {
336                 DELAY(10);
337                 if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
338                     0x8000) == 0x8000)
339                         break;
340         }
341         if (i == 0) {
342                 device_printf(sc->age_dev, "VPD read timeout!\n");
343                 *word = 0;
344                 return (ETIMEDOUT);
345         }
346
347         *word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
348         return (0);
349 }
350
351 static int
352 age_probe(device_t dev)
353 {
354         struct age_dev *sp;
355         int i;
356         uint16_t vendor, devid;
357
358         vendor = pci_get_vendor(dev);
359         devid = pci_get_device(dev);
360         sp = age_devs;
361         for (i = 0; i < NELEM(age_devs); i++, sp++) {
362                 if (vendor == sp->age_vendorid &&
363                     devid == sp->age_deviceid) {
364                         device_set_desc(dev, sp->age_name);
365                         return (0);
366                 }
367         }
368         return (ENXIO);
369 }
370
371 static void
372 age_get_macaddr(struct age_softc *sc)
373 {
374         uint32_t ea[2], off, reg, word;
375         int vpd_error, match, vpdc;
376
377         reg = CSR_READ_4(sc, AGE_SPI_CTRL);
378         if ((reg & SPI_VPD_ENB) != 0) {
379                 /* Get VPD stored in TWSI EEPROM. */
380                 reg &= ~SPI_VPD_ENB;
381                 CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
382         }
383
384         ea[0] = ea[1] = 0;
385         vpdc = pci_get_vpdcap_ptr(sc->age_dev);
386         if (vpdc) {
387                 vpd_error = 0;
388
389                 /*
390                  * PCI VPD capability exists, but it seems that it's
391                  * not in the standard form as stated in PCI VPD
392                  * specification such that driver could not use
393                  * pci_get_vpd_readonly(9) with keyword 'NA'.
394                  * Search VPD data starting at address 0x0100. The data
395                  * should be used as initializers to set AGE_PAR0,
396                  * AGE_PAR1 register including other PCI configuration
397                  * registers.
398                  */
399                 word = 0;
400                 match = 0;
401                 reg = 0;
402                 for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
403                     off += sizeof(uint32_t)) {
404                         vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
405                         if (vpd_error != 0)
406                                 break;
407                         if (match != 0) {
408                                 switch (reg) {
409                                 case AGE_PAR0:
410                                         ea[0] = word;
411                                         break;
412                                 case AGE_PAR1:
413                                         ea[1] = word;
414                                         break;
415                                 default:
416                                         break;
417                                 }
418                                 match = 0;
419                         } else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
420                                 match = 1;
421                                 reg = word >> 16;
422                         } else
423                                 break;
424                 }
425                 if (off >= AGE_VPD_REG_CONF_END)
426                         vpd_error = ENOENT;
427                 if (vpd_error == 0) {
428                         /*
429                          * Don't blindly trust ethernet address obtained
430                          * from VPD. Check whether ethernet address is
431                          * valid one. Otherwise fall-back to reading
432                          * PAR register.
433                          */
434                         ea[1] &= 0xFFFF;
435                         if ((ea[0] == 0 && ea[1] == 0) ||
436                             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
437                                 if (bootverbose)
438                                         device_printf(sc->age_dev,
439                                             "invalid ethernet address "
440                                             "returned from VPD.\n");
441                                 vpd_error = EINVAL;
442                         }
443                 }
444                 if (vpd_error != 0 && (bootverbose))
445                         device_printf(sc->age_dev, "VPD access failure!\n");
446         } else {
447                 vpd_error = ENOENT;
448                 if (bootverbose)
449                         device_printf(sc->age_dev,
450                             "PCI VPD capability not found!\n");
451         }
452
453         /*
454          * It seems that L1 also provides a way to extract ethernet
455          * address via SPI flash interface. Because SPI flash memory
456          * device of different vendors vary in their instruction
457          * codes for read ID instruction, it's very hard to get
458          * instructions codes without detailed information for the
459          * flash memory device used on ethernet controller. To simplify
460          * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
461          * address which is supposed to be set by hardware during
462          * power on reset.
463          */
464         if (vpd_error != 0) {
465                 /*
466                  * VPD is mapped to SPI flash memory or BIOS set it.
467                  */
468                 ea[0] = CSR_READ_4(sc, AGE_PAR0);
469                 ea[1] = CSR_READ_4(sc, AGE_PAR1);
470         }
471
472         ea[1] &= 0xFFFF;
473         if ((ea[0] == 0 && ea[1]  == 0) ||
474             (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
475                 device_printf(sc->age_dev,
476                     "generating fake ethernet address.\n");
477                 ea[0] = karc4random();
478                 /* Set OUI to ASUSTek COMPUTER INC. */
479                 sc->age_eaddr[0] = 0x00;
480                 sc->age_eaddr[1] = 0x1B;
481                 sc->age_eaddr[2] = 0xFC;
482                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
483                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
484                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
485         } else {
486                 sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
487                 sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
488                 sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
489                 sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
490                 sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
491                 sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
492         }
493 }
494
495 static void
496 age_phy_reset(struct age_softc *sc)
497 {
498         /* Reset PHY. */
499         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
500         DELAY(1000);
501         CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
502         DELAY(1000);
503 }
504
505 static int
506 age_attach(device_t dev)
507 {
508         struct age_softc *sc = device_get_softc(dev);
509         struct ifnet *ifp = &sc->arpcom.ac_if;
510         uint8_t pcie_ptr;
511         int error;
512
513         error = 0;
514         sc->age_dev = dev;
515         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
516
517         callout_init(&sc->age_tick_ch);
518
519 #ifndef BURN_BRIDGES
520         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
521                 uint32_t irq, mem;
522
523                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
524                 mem = pci_read_config(dev, AGE_PCIR_BAR, 4);
525
526                 device_printf(dev, "chip is in D%d power mode "
527                     "-- setting to D0\n", pci_get_powerstate(dev));
528
529                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
530
531                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
532                 pci_write_config(dev, AGE_PCIR_BAR, mem, 4);
533         }
534 #endif  /* !BURN_BRIDGE */
535
536         /* Enable bus mastering */
537         pci_enable_busmaster(dev);
538
539         /*
540          * Allocate memory mapped IO
541          */
542         sc->age_mem_rid = AGE_PCIR_BAR;
543         sc->age_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
544                                                  &sc->age_mem_rid, RF_ACTIVE);
545         if (sc->age_mem_res == NULL) {
546                 device_printf(dev, "can't allocate IO memory\n");
547                 return ENXIO;
548         }
549         sc->age_mem_bt = rman_get_bustag(sc->age_mem_res);
550         sc->age_mem_bh = rman_get_bushandle(sc->age_mem_res);
551
552         /*
553          * Allocate IRQ
554          */
555         sc->age_irq_rid = 0;
556         sc->age_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
557                                                  &sc->age_irq_rid,
558                                                  RF_SHAREABLE | RF_ACTIVE);
559         if (sc->age_irq_res == NULL) {
560                 device_printf(dev, "can't allocate irq\n");
561                 error = ENXIO;
562                 goto fail;
563         }
564
565         /* Set PHY address. */
566         sc->age_phyaddr = AGE_PHY_ADDR;
567
568         /* Reset PHY. */
569         age_phy_reset(sc);
570
571         /* Reset the ethernet controller. */
572         age_reset(sc);
573
574         /* Get PCI and chip id/revision. */
575         sc->age_rev = pci_get_revid(dev);
576         sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
577             MASTER_CHIP_REV_SHIFT;
578         if (bootverbose) {
579                 device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
580                 device_printf(dev, "Chip id/revision : 0x%04x\n",
581                     sc->age_chip_rev);
582         }
583
584         /*
585          * XXX
586          * Unintialized hardware returns an invalid chip id/revision
587          * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
588          * unplugged cable results in putting hardware into automatic
589          * power down mode which in turn returns invalld chip revision.
590          */
591         if (sc->age_chip_rev == 0xFFFF) {
592                 device_printf(dev,"invalid chip revision : 0x%04x -- "
593                     "not initialized?\n", sc->age_chip_rev);
594                 error = ENXIO;
595                 goto fail;
596         }
597         device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
598             CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
599             CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
600
601         /* Get DMA parameters from PCIe device control register. */
602         pcie_ptr = pci_get_pciecap_ptr(dev);
603         if (pcie_ptr) {
604                 uint16_t devctl;
605
606                 sc->age_flags |= AGE_FLAG_PCIE;
607                 devctl = pci_read_config(dev, pcie_ptr + PCIER_DEVCTRL, 2);
608                 /* Max read request size. */
609                 sc->age_dma_rd_burst = ((devctl >> 12) & 0x07) <<
610                     DMA_CFG_RD_BURST_SHIFT;
611                 /* Max payload size. */
612                 sc->age_dma_wr_burst = ((devctl >> 5) & 0x07) <<
613                     DMA_CFG_WR_BURST_SHIFT;
614                 if (bootverbose) {
615                         device_printf(dev, "Read request size : %d bytes.\n",
616                             128 << ((devctl >> 12) & 0x07));
617                         device_printf(dev, "TLP payload size : %d bytes.\n",
618                             128 << ((devctl >> 5) & 0x07));
619                 }
620         } else {
621                 sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
622                 sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
623         }
624
625         /* Create device sysctl node. */
626         age_sysctl_node(sc);
627
628         if ((error = age_dma_alloc(sc) != 0))
629                 goto fail;
630
631         /* Load station address. */
632         age_get_macaddr(sc);
633
634         ifp->if_softc = sc;
635         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636         ifp->if_ioctl = age_ioctl;
637         ifp->if_start = age_start;
638         ifp->if_init = age_init;
639         ifp->if_watchdog = age_watchdog;
640         ifq_set_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
641         ifq_set_ready(&ifp->if_snd);
642
643         ifp->if_capabilities = IFCAP_HWCSUM |
644                                IFCAP_VLAN_MTU |
645                                IFCAP_VLAN_HWTAGGING;
646         ifp->if_hwassist = AGE_CSUM_FEATURES;
647         ifp->if_capenable = ifp->if_capabilities;
648
649         /* Set up MII bus. */
650         if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
651             age_mediastatus)) != 0) {
652                 device_printf(dev, "no PHY found!\n");
653                 goto fail;
654         }
655
656         ether_ifattach(ifp, sc->age_eaddr, NULL);
657
658         /* Tell the upper layer(s) we support long frames. */
659         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
660
661         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->age_irq_res));
662
663         error = bus_setup_intr(dev, sc->age_irq_res, INTR_MPSAFE, age_intr, sc,
664                                &sc->age_irq_handle, ifp->if_serializer);
665         if (error) {
666                 device_printf(dev, "could not set up interrupt handler.\n");
667                 ether_ifdetach(ifp);
668                 goto fail;
669         }
670
671         return 0;
672 fail:
673         age_detach(dev);
674         return (error);
675 }
676
677 static int
678 age_detach(device_t dev)
679 {
680         struct age_softc *sc = device_get_softc(dev);
681
682         if (device_is_attached(dev)) {
683                 struct ifnet *ifp = &sc->arpcom.ac_if;
684
685                 lwkt_serialize_enter(ifp->if_serializer);
686                 sc->age_flags |= AGE_FLAG_DETACH;
687                 age_stop(sc);
688                 bus_teardown_intr(dev, sc->age_irq_res, sc->age_irq_handle);
689                 lwkt_serialize_exit(ifp->if_serializer);
690
691                 ether_ifdetach(ifp);
692         }
693
694         if (sc->age_miibus != NULL)
695                 device_delete_child(dev, sc->age_miibus);
696         bus_generic_detach(dev);
697
698         if (sc->age_irq_res != NULL) {
699                 bus_release_resource(dev, SYS_RES_IRQ, sc->age_irq_rid,
700                                      sc->age_irq_res);
701         }
702         if (sc->age_mem_res != NULL) {
703                 bus_release_resource(dev, SYS_RES_MEMORY, sc->age_mem_rid,
704                                      sc->age_mem_res);
705         }
706
707         age_dma_free(sc);
708
709         return (0);
710 }
711
712 static void
713 age_sysctl_node(struct age_softc *sc)
714 {
715         struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->age_dev);
716         struct sysctl_oid *tree = device_get_sysctl_tree(sc->age_dev);
717         int error;
718
719         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
720             "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
721             "I", "Statistics");
722
723         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
724             "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
725             sysctl_hw_age_int_mod, "I", "age interrupt moderation");
726
727         /* Pull in device tunables. */
728         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
729         error = resource_int_value(device_get_name(sc->age_dev),
730             device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
731         if (error == 0) {
732                 if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
733                     sc->age_int_mod > AGE_IM_TIMER_MAX) {
734                         device_printf(sc->age_dev,
735                             "int_mod value out of range; using default: %d\n",
736                             AGE_IM_TIMER_DEFAULT);
737                         sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
738                 }
739         }
740 }
741
742 struct age_dmamap_arg {
743         bus_addr_t      age_busaddr;
744 };
745
746 static void
747 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
748 {
749         struct age_dmamap_arg *ctx;
750
751         if (error != 0)
752                 return;
753
754         KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
755
756         ctx = (struct age_dmamap_arg *)arg;
757         ctx->age_busaddr = segs[0].ds_addr;
758 }
759
760 /*
761  * Attansic L1 controller have single register to specify high
762  * address part of DMA blocks. So all descriptor structures and
763  * DMA memory blocks should have the same high address of given
764  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
765  */
766 static int
767 age_check_boundary(struct age_softc *sc)
768 {
769         bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
770         bus_addr_t cmb_block_end, smb_block_end;
771
772         /* Tx/Rx descriptor queue should reside within 4GB boundary. */
773         tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
774         rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
775         rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
776         cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
777         smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
778
779         if ((AGE_ADDR_HI(tx_ring_end) !=
780             AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
781             (AGE_ADDR_HI(rx_ring_end) !=
782             AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
783             (AGE_ADDR_HI(rr_ring_end) !=
784             AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
785             (AGE_ADDR_HI(cmb_block_end) !=
786             AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
787             (AGE_ADDR_HI(smb_block_end) !=
788             AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
789                 return (EFBIG);
790
791         if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
792             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
793             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
794             (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
795                 return (EFBIG);
796
797         return (0);
798 }
799
800 static int
801 age_dma_alloc(struct age_softc *sc)
802 {
803         struct age_txdesc *txd;
804         struct age_rxdesc *rxd;
805         bus_addr_t lowaddr;
806         struct age_dmamap_arg ctx;
807         int error, i;
808
809         lowaddr = BUS_SPACE_MAXADDR;
810 again:
811         /* Create parent ring/DMA block tag. */
812         error = bus_dma_tag_create(
813             NULL,                       /* parent */
814             1, 0,                       /* alignment, boundary */
815             lowaddr,                    /* lowaddr */
816             BUS_SPACE_MAXADDR,          /* highaddr */
817             NULL, NULL,                 /* filter, filterarg */
818             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
819             0,                          /* nsegments */
820             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
821             0,                          /* flags */
822             &sc->age_cdata.age_parent_tag);
823         if (error != 0) {
824                 device_printf(sc->age_dev,
825                     "could not create parent DMA tag.\n");
826                 goto fail;
827         }
828
829         /* Create tag for Tx ring. */
830         error = bus_dma_tag_create(
831             sc->age_cdata.age_parent_tag, /* parent */
832             AGE_TX_RING_ALIGN, 0,       /* alignment, boundary */
833             BUS_SPACE_MAXADDR,          /* lowaddr */
834             BUS_SPACE_MAXADDR,          /* highaddr */
835             NULL, NULL,                 /* filter, filterarg */
836             AGE_TX_RING_SZ,             /* maxsize */
837             1,                          /* nsegments */
838             AGE_TX_RING_SZ,             /* maxsegsize */
839             0,                          /* flags */
840             &sc->age_cdata.age_tx_ring_tag);
841         if (error != 0) {
842                 device_printf(sc->age_dev,
843                     "could not create Tx ring DMA tag.\n");
844                 goto fail;
845         }
846
847         /* Create tag for Rx ring. */
848         error = bus_dma_tag_create(
849             sc->age_cdata.age_parent_tag, /* parent */
850             AGE_RX_RING_ALIGN, 0,       /* alignment, boundary */
851             BUS_SPACE_MAXADDR,          /* lowaddr */
852             BUS_SPACE_MAXADDR,          /* highaddr */
853             NULL, NULL,                 /* filter, filterarg */
854             AGE_RX_RING_SZ,             /* maxsize */
855             1,                          /* nsegments */
856             AGE_RX_RING_SZ,             /* maxsegsize */
857             0,                          /* flags */
858             &sc->age_cdata.age_rx_ring_tag);
859         if (error != 0) {
860                 device_printf(sc->age_dev,
861                     "could not create Rx ring DMA tag.\n");
862                 goto fail;
863         }
864
865         /* Create tag for Rx return ring. */
866         error = bus_dma_tag_create(
867             sc->age_cdata.age_parent_tag, /* parent */
868             AGE_RR_RING_ALIGN, 0,       /* alignment, boundary */
869             BUS_SPACE_MAXADDR,          /* lowaddr */
870             BUS_SPACE_MAXADDR,          /* highaddr */
871             NULL, NULL,                 /* filter, filterarg */
872             AGE_RR_RING_SZ,             /* maxsize */
873             1,                          /* nsegments */
874             AGE_RR_RING_SZ,             /* maxsegsize */
875             0,                          /* flags */
876             &sc->age_cdata.age_rr_ring_tag);
877         if (error != 0) {
878                 device_printf(sc->age_dev,
879                     "could not create Rx return ring DMA tag.\n");
880                 goto fail;
881         }
882
883         /* Create tag for coalesing message block. */
884         error = bus_dma_tag_create(
885             sc->age_cdata.age_parent_tag, /* parent */
886             AGE_CMB_ALIGN, 0,           /* alignment, boundary */
887             BUS_SPACE_MAXADDR,          /* lowaddr */
888             BUS_SPACE_MAXADDR,          /* highaddr */
889             NULL, NULL,                 /* filter, filterarg */
890             AGE_CMB_BLOCK_SZ,           /* maxsize */
891             1,                          /* nsegments */
892             AGE_CMB_BLOCK_SZ,           /* maxsegsize */
893             0,                          /* flags */
894             &sc->age_cdata.age_cmb_block_tag);
895         if (error != 0) {
896                 device_printf(sc->age_dev,
897                     "could not create CMB DMA tag.\n");
898                 goto fail;
899         }
900
901         /* Create tag for statistics message block. */
902         error = bus_dma_tag_create(
903             sc->age_cdata.age_parent_tag, /* parent */
904             AGE_SMB_ALIGN, 0,           /* alignment, boundary */
905             BUS_SPACE_MAXADDR,          /* lowaddr */
906             BUS_SPACE_MAXADDR,          /* highaddr */
907             NULL, NULL,                 /* filter, filterarg */
908             AGE_SMB_BLOCK_SZ,           /* maxsize */
909             1,                          /* nsegments */
910             AGE_SMB_BLOCK_SZ,           /* maxsegsize */
911             0,                          /* flags */
912             &sc->age_cdata.age_smb_block_tag);
913         if (error != 0) {
914                 device_printf(sc->age_dev,
915                     "could not create SMB DMA tag.\n");
916                 goto fail;
917         }
918
919         /* Allocate DMA'able memory and load the DMA map. */
920         error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
921             (void **)&sc->age_rdata.age_tx_ring,
922             BUS_DMA_WAITOK | BUS_DMA_ZERO,
923             &sc->age_cdata.age_tx_ring_map);
924         if (error != 0) {
925                 device_printf(sc->age_dev,
926                     "could not allocate DMA'able memory for Tx ring.\n");
927                 goto fail;
928         }
929         ctx.age_busaddr = 0;
930         error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
931             sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
932             AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
933         if (error != 0 || ctx.age_busaddr == 0) {
934                 device_printf(sc->age_dev,
935                     "could not load DMA'able memory for Tx ring.\n");
936                 goto fail;
937         }
938         sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
939         /* Rx ring */
940         error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
941             (void **)&sc->age_rdata.age_rx_ring,
942             BUS_DMA_WAITOK | BUS_DMA_ZERO,
943             &sc->age_cdata.age_rx_ring_map);
944         if (error != 0) {
945                 device_printf(sc->age_dev,
946                     "could not allocate DMA'able memory for Rx ring.\n");
947                 goto fail;
948         }
949         ctx.age_busaddr = 0;
950         error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
951             sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
952             AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
953         if (error != 0 || ctx.age_busaddr == 0) {
954                 device_printf(sc->age_dev,
955                     "could not load DMA'able memory for Rx ring.\n");
956                 goto fail;
957         }
958         sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
959         /* Rx return ring */
960         error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
961             (void **)&sc->age_rdata.age_rr_ring,
962             BUS_DMA_WAITOK | BUS_DMA_ZERO,
963             &sc->age_cdata.age_rr_ring_map);
964         if (error != 0) {
965                 device_printf(sc->age_dev,
966                     "could not allocate DMA'able memory for Rx return ring.\n");
967                 goto fail;
968         }
969         ctx.age_busaddr = 0;
970         error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
971             sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
972             AGE_RR_RING_SZ, age_dmamap_cb, &ctx, 0);
973         if (error != 0 || ctx.age_busaddr == 0) {
974                 device_printf(sc->age_dev,
975                     "could not load DMA'able memory for Rx return ring.\n");
976                 goto fail;
977         }
978         sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
979         /* CMB block */
980         error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
981             (void **)&sc->age_rdata.age_cmb_block,
982             BUS_DMA_WAITOK | BUS_DMA_ZERO,
983             &sc->age_cdata.age_cmb_block_map);
984         if (error != 0) {
985                 device_printf(sc->age_dev,
986                     "could not allocate DMA'able memory for CMB block.\n");
987                 goto fail;
988         }
989         ctx.age_busaddr = 0;
990         error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
991             sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
992             AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
993         if (error != 0 || ctx.age_busaddr == 0) {
994                 device_printf(sc->age_dev,
995                     "could not load DMA'able memory for CMB block.\n");
996                 goto fail;
997         }
998         sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
999         /* SMB block */
1000         error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1001             (void **)&sc->age_rdata.age_smb_block,
1002             BUS_DMA_WAITOK | BUS_DMA_ZERO,
1003             &sc->age_cdata.age_smb_block_map);
1004         if (error != 0) {
1005                 device_printf(sc->age_dev,
1006                     "could not allocate DMA'able memory for SMB block.\n");
1007                 goto fail;
1008         }
1009         ctx.age_busaddr = 0;
1010         error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1011             sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1012             AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1013         if (error != 0 || ctx.age_busaddr == 0) {
1014                 device_printf(sc->age_dev,
1015                     "could not load DMA'able memory for SMB block.\n");
1016                 goto fail;
1017         }
1018         sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1019
1020         /*
1021          * All ring buffer and DMA blocks should have the same
1022          * high address part of 64bit DMA address space.
1023          */
1024         if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1025             (error = age_check_boundary(sc)) != 0) {
1026                 device_printf(sc->age_dev, "4GB boundary crossed, "
1027                     "switching to 32bit DMA addressing mode.\n");
1028                 age_dma_free(sc);
1029                 /* Limit DMA address space to 32bit and try again. */
1030                 lowaddr = BUS_SPACE_MAXADDR_32BIT;
1031                 goto again;
1032         }
1033
1034         /*
1035          * Create Tx/Rx buffer parent tag.
1036          * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1037          * so it needs separate parent DMA tag.
1038          */
1039         error = bus_dma_tag_create(
1040             NULL,                       /* parent */
1041             1, 0,                       /* alignment, boundary */
1042             BUS_SPACE_MAXADDR,          /* lowaddr */
1043             BUS_SPACE_MAXADDR,          /* highaddr */
1044             NULL, NULL,                 /* filter, filterarg */
1045             BUS_SPACE_MAXSIZE_32BIT,    /* maxsize */
1046             0,                          /* nsegments */
1047             BUS_SPACE_MAXSIZE_32BIT,    /* maxsegsize */
1048             0,                          /* flags */
1049             &sc->age_cdata.age_buffer_tag);
1050         if (error != 0) {
1051                 device_printf(sc->age_dev,
1052                     "could not create parent buffer DMA tag.\n");
1053                 goto fail;
1054         }
1055
1056         /* Create tag for Tx buffers. */
1057         error = bus_dma_tag_create(
1058             sc->age_cdata.age_buffer_tag, /* parent */
1059             1, 0,                       /* alignment, boundary */
1060             BUS_SPACE_MAXADDR,          /* lowaddr */
1061             BUS_SPACE_MAXADDR,          /* highaddr */
1062             NULL, NULL,                 /* filter, filterarg */
1063             AGE_TSO_MAXSIZE,            /* maxsize */
1064             AGE_MAXTXSEGS,              /* nsegments */
1065             AGE_TSO_MAXSEGSIZE,         /* maxsegsize */
1066             0,                          /* flags */
1067             &sc->age_cdata.age_tx_tag);
1068         if (error != 0) {
1069                 device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1070                 goto fail;
1071         }
1072
1073         /* Create tag for Rx buffers. */
1074         error = bus_dma_tag_create(
1075             sc->age_cdata.age_buffer_tag, /* parent */
1076             1, 0,                       /* alignment, boundary */
1077             BUS_SPACE_MAXADDR,          /* lowaddr */
1078             BUS_SPACE_MAXADDR,          /* highaddr */
1079             NULL, NULL,                 /* filter, filterarg */
1080             MCLBYTES,                   /* maxsize */
1081             1,                          /* nsegments */
1082             MCLBYTES,                   /* maxsegsize */
1083             0,                          /* flags */
1084             &sc->age_cdata.age_rx_tag);
1085         if (error != 0) {
1086                 device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1087                 goto fail;
1088         }
1089
1090         /* Create DMA maps for Tx buffers. */
1091         for (i = 0; i < AGE_TX_RING_CNT; i++) {
1092                 txd = &sc->age_cdata.age_txdesc[i];
1093                 txd->tx_m = NULL;
1094                 txd->tx_dmamap = NULL;
1095                 error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1096                     &txd->tx_dmamap);
1097                 if (error != 0) {
1098                         device_printf(sc->age_dev,
1099                             "could not create Tx dmamap.\n");
1100                         goto fail;
1101                 }
1102         }
1103         /* Create DMA maps for Rx buffers. */
1104         if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1105             &sc->age_cdata.age_rx_sparemap)) != 0) {
1106                 device_printf(sc->age_dev,
1107                     "could not create spare Rx dmamap.\n");
1108                 goto fail;
1109         }
1110         for (i = 0; i < AGE_RX_RING_CNT; i++) {
1111                 rxd = &sc->age_cdata.age_rxdesc[i];
1112                 rxd->rx_m = NULL;
1113                 rxd->rx_dmamap = NULL;
1114                 error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1115                     &rxd->rx_dmamap);
1116                 if (error != 0) {
1117                         device_printf(sc->age_dev,
1118                             "could not create Rx dmamap.\n");
1119                         goto fail;
1120                 }
1121         }
1122 fail:
1123         return (error);
1124 }
1125
1126 static void
1127 age_dma_free(struct age_softc *sc)
1128 {
1129         struct age_txdesc *txd;
1130         struct age_rxdesc *rxd;
1131         int i;
1132
1133         /* Tx buffers */
1134         if (sc->age_cdata.age_tx_tag != NULL) {
1135                 for (i = 0; i < AGE_TX_RING_CNT; i++) {
1136                         txd = &sc->age_cdata.age_txdesc[i];
1137                         if (txd->tx_dmamap != NULL) {
1138                                 bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1139                                     txd->tx_dmamap);
1140                                 txd->tx_dmamap = NULL;
1141                         }
1142                 }
1143                 bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1144                 sc->age_cdata.age_tx_tag = NULL;
1145         }
1146         /* Rx buffers */
1147         if (sc->age_cdata.age_rx_tag != NULL) {
1148                 for (i = 0; i < AGE_RX_RING_CNT; i++) {
1149                         rxd = &sc->age_cdata.age_rxdesc[i];
1150                         if (rxd->rx_dmamap != NULL) {
1151                                 bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1152                                     rxd->rx_dmamap);
1153                                 rxd->rx_dmamap = NULL;
1154                         }
1155                 }
1156                 if (sc->age_cdata.age_rx_sparemap != NULL) {
1157                         bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1158                             sc->age_cdata.age_rx_sparemap);
1159                         sc->age_cdata.age_rx_sparemap = NULL;
1160                 }
1161                 bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1162                 sc->age_cdata.age_rx_tag = NULL;
1163         }
1164         /* Tx ring. */
1165         if (sc->age_cdata.age_tx_ring_tag != NULL) {
1166                 if (sc->age_cdata.age_tx_ring_map != NULL)
1167                         bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1168                             sc->age_cdata.age_tx_ring_map);
1169                 if (sc->age_cdata.age_tx_ring_map != NULL &&
1170                     sc->age_rdata.age_tx_ring != NULL)
1171                         bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1172                             sc->age_rdata.age_tx_ring,
1173                             sc->age_cdata.age_tx_ring_map);
1174                 sc->age_rdata.age_tx_ring = NULL;
1175                 sc->age_cdata.age_tx_ring_map = NULL;
1176                 bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1177                 sc->age_cdata.age_tx_ring_tag = NULL;
1178         }
1179         /* Rx ring. */
1180         if (sc->age_cdata.age_rx_ring_tag != NULL) {
1181                 if (sc->age_cdata.age_rx_ring_map != NULL)
1182                         bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1183                             sc->age_cdata.age_rx_ring_map);
1184                 if (sc->age_cdata.age_rx_ring_map != NULL &&
1185                     sc->age_rdata.age_rx_ring != NULL)
1186                         bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1187                             sc->age_rdata.age_rx_ring,
1188                             sc->age_cdata.age_rx_ring_map);
1189                 sc->age_rdata.age_rx_ring = NULL;
1190                 sc->age_cdata.age_rx_ring_map = NULL;
1191                 bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1192                 sc->age_cdata.age_rx_ring_tag = NULL;
1193         }
1194         /* Rx return ring. */
1195         if (sc->age_cdata.age_rr_ring_tag != NULL) {
1196                 if (sc->age_cdata.age_rr_ring_map != NULL)
1197                         bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1198                             sc->age_cdata.age_rr_ring_map);
1199                 if (sc->age_cdata.age_rr_ring_map != NULL &&
1200                     sc->age_rdata.age_rr_ring != NULL)
1201                         bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1202                             sc->age_rdata.age_rr_ring,
1203                             sc->age_cdata.age_rr_ring_map);
1204                 sc->age_rdata.age_rr_ring = NULL;
1205                 sc->age_cdata.age_rr_ring_map = NULL;
1206                 bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1207                 sc->age_cdata.age_rr_ring_tag = NULL;
1208         }
1209         /* CMB block */
1210         if (sc->age_cdata.age_cmb_block_tag != NULL) {
1211                 if (sc->age_cdata.age_cmb_block_map != NULL)
1212                         bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1213                             sc->age_cdata.age_cmb_block_map);
1214                 if (sc->age_cdata.age_cmb_block_map != NULL &&
1215                     sc->age_rdata.age_cmb_block != NULL)
1216                         bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1217                             sc->age_rdata.age_cmb_block,
1218                             sc->age_cdata.age_cmb_block_map);
1219                 sc->age_rdata.age_cmb_block = NULL;
1220                 sc->age_cdata.age_cmb_block_map = NULL;
1221                 bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1222                 sc->age_cdata.age_cmb_block_tag = NULL;
1223         }
1224         /* SMB block */
1225         if (sc->age_cdata.age_smb_block_tag != NULL) {
1226                 if (sc->age_cdata.age_smb_block_map != NULL)
1227                         bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1228                             sc->age_cdata.age_smb_block_map);
1229                 if (sc->age_cdata.age_smb_block_map != NULL &&
1230                     sc->age_rdata.age_smb_block != NULL)
1231                         bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1232                             sc->age_rdata.age_smb_block,
1233                             sc->age_cdata.age_smb_block_map);
1234                 sc->age_rdata.age_smb_block = NULL;
1235                 sc->age_cdata.age_smb_block_map = NULL;
1236                 bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1237                 sc->age_cdata.age_smb_block_tag = NULL;
1238         }
1239
1240         if (sc->age_cdata.age_buffer_tag != NULL) {
1241                 bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1242                 sc->age_cdata.age_buffer_tag = NULL;
1243         }
1244         if (sc->age_cdata.age_parent_tag != NULL) {
1245                 bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1246                 sc->age_cdata.age_parent_tag = NULL;
1247         }
1248 }
1249
1250 /*
1251  *      Make sure the interface is stopped at reboot time.
1252  */
1253 static int
1254 age_shutdown(device_t dev)
1255 {
1256         return age_suspend(dev);
1257 }
1258
1259 #ifdef wol_notyet
1260
1261 static void
1262 age_setwol(struct age_softc *sc)
1263 {
1264         struct ifnet *ifp;
1265         struct mii_data *mii;
1266         uint32_t reg, pmcs;
1267         uint16_t pmstat;
1268         int aneg, i, pmc;
1269
1270         AGE_LOCK_ASSERT(sc);
1271
1272         if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1273                 CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1274                 /*
1275                  * No PME capability, PHY power down.
1276                  * XXX
1277                  * Due to an unknown reason powering down PHY resulted
1278                  * in unexpected results such as inaccessbility of
1279                  * hardware of freshly rebooted system. Disable
1280                  * powering down PHY until I got more information for
1281                  * Attansic/Atheros PHY hardwares.
1282                  */
1283 #ifdef notyet
1284                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1285                     MII_BMCR, BMCR_PDOWN);
1286 #endif
1287                 return;
1288         }
1289
1290         ifp = sc->age_ifp;
1291         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1292                 /*
1293                  * Note, this driver resets the link speed to 10/100Mbps with
1294                  * auto-negotiation but we don't know whether that operation
1295                  * would succeed or not as it have no control after powering
1296                  * off. If the renegotiation fail WOL may not work. Running
1297                  * at 1Gbps will draw more power than 375mA at 3.3V which is
1298                  * specified in PCI specification and that would result in
1299                  * complete shutdowning power to ethernet controller.
1300                  *
1301                  * TODO
1302                  *  Save current negotiated media speed/duplex/flow-control
1303                  *  to softc and restore the same link again after resuming.
1304                  *  PHY handling such as power down/resetting to 100Mbps
1305                  *  may be better handled in suspend method in phy driver.
1306                  */
1307                 mii = device_get_softc(sc->age_miibus);
1308                 mii_pollstat(mii);
1309                 aneg = 0;
1310                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1311                         switch IFM_SUBTYPE(mii->mii_media_active) {
1312                         case IFM_10_T:
1313                         case IFM_100_TX:
1314                                 goto got_link;
1315                         case IFM_1000_T:
1316                                 aneg++;
1317                         default:
1318                                 break;
1319                         }
1320                 }
1321                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1322                     MII_100T2CR, 0);
1323                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1324                     MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1325                     ANAR_10 | ANAR_CSMA);
1326                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1327                     MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1328                 DELAY(1000);
1329                 if (aneg != 0) {
1330                         /* Poll link state until age(4) get a 10/100 link. */
1331                         for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1332                                 mii_pollstat(mii);
1333                                 if ((mii->mii_media_status & IFM_AVALID) != 0) {
1334                                         switch (IFM_SUBTYPE(
1335                                             mii->mii_media_active)) {
1336                                         case IFM_10_T:
1337                                         case IFM_100_TX:
1338                                                 age_mac_config(sc);
1339                                                 goto got_link;
1340                                         default:
1341                                                 break;
1342                                         }
1343                                 }
1344                                 AGE_UNLOCK(sc);
1345                                 pause("agelnk", hz);
1346                                 AGE_LOCK(sc);
1347                         }
1348                         if (i == MII_ANEGTICKS_GIGE)
1349                                 device_printf(sc->age_dev,
1350                                     "establishing link failed, "
1351                                     "WOL may not work!");
1352                 }
1353                 /*
1354                  * No link, force MAC to have 100Mbps, full-duplex link.
1355                  * This is the last resort and may/may not work.
1356                  */
1357                 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1358                 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1359                 age_mac_config(sc);
1360         }
1361
1362 got_link:
1363         pmcs = 0;
1364         if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1365                 pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1366         CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1367         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1368         reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1369         reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1370         if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1371                 reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1372         if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1373                 reg |= MAC_CFG_RX_ENB;
1374                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1375         }
1376
1377         /* Request PME. */
1378         pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1379         pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1380         if ((ifp->if_capenable & IFCAP_WOL) != 0)
1381                 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1382         pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1383 #ifdef notyet
1384         /* See above for powering down PHY issues. */
1385         if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1386                 /* No WOL, PHY power down. */
1387                 age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388                     MII_BMCR, BMCR_PDOWN);
1389         }
1390 #endif
1391 }
1392
1393 #endif  /* wol_notyet */
1394
1395 static int
1396 age_suspend(device_t dev)
1397 {
1398         struct age_softc *sc = device_get_softc(dev);
1399         struct ifnet *ifp = &sc->arpcom.ac_if;
1400
1401         lwkt_serialize_enter(ifp->if_serializer);
1402         age_stop(sc);
1403 #ifdef wol_notyet
1404         age_setwol(sc);
1405 #endif
1406         lwkt_serialize_exit(ifp->if_serializer);
1407
1408         return (0);
1409 }
1410
1411 static int
1412 age_resume(device_t dev)
1413 {
1414         struct age_softc *sc = device_get_softc(dev);
1415         struct ifnet *ifp = &sc->arpcom.ac_if;
1416         uint16_t cmd;
1417
1418         lwkt_serialize_enter(ifp->if_serializer);
1419
1420         /*
1421          * Clear INTx emulation disable for hardwares that
1422          * is set in resume event. From Linux.
1423          */
1424         cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1425         if ((cmd & 0x0400) != 0) {
1426                 cmd &= ~0x0400;
1427                 pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1428         }
1429         if ((ifp->if_flags & IFF_UP) != 0)
1430                 age_init(sc);
1431
1432         lwkt_serialize_exit(ifp->if_serializer);
1433
1434         return (0);
1435 }
1436
1437 static int
1438 age_encap(struct age_softc *sc, struct mbuf **m_head)
1439 {
1440         struct age_txdesc *txd, *txd_last;
1441         struct tx_desc *desc;
1442         struct mbuf *m;
1443         struct age_dmamap_ctx ctx;
1444         bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1445         bus_dmamap_t map;
1446         uint32_t cflags, poff, vtag;
1447         int error, i, nsegs, prod;
1448
1449         M_ASSERTPKTHDR((*m_head));
1450
1451         m = *m_head;
1452         cflags = vtag = 0;
1453         poff = 0;
1454
1455         prod = sc->age_cdata.age_tx_prod;
1456         txd = &sc->age_cdata.age_txdesc[prod];
1457         txd_last = txd;
1458         map = txd->tx_dmamap;
1459
1460         ctx.nsegs = AGE_MAXTXSEGS;
1461         ctx.segs = txsegs;
1462         error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1463                                      *m_head, age_dmamap_buf_cb, &ctx,
1464                                      BUS_DMA_NOWAIT);
1465         if (!error && ctx.nsegs == 0) {
1466                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1467                 error = EFBIG;
1468         }
1469         if (error == EFBIG) {
1470                 m = m_defrag(*m_head, MB_DONTWAIT);
1471                 if (m == NULL) {
1472                         m_freem(*m_head);
1473                         *m_head = NULL;
1474                         return (ENOBUFS);
1475                 }
1476                 *m_head = m;
1477
1478                 ctx.nsegs = AGE_MAXTXSEGS;
1479                 ctx.segs = txsegs;
1480                 error = bus_dmamap_load_mbuf(sc->age_cdata.age_tx_tag, map,
1481                                              *m_head, age_dmamap_buf_cb, &ctx,
1482                                              BUS_DMA_NOWAIT);
1483                 if (error || ctx.nsegs == 0) {
1484                         if (!error) {
1485                                 bus_dmamap_unload(sc->age_cdata.age_tx_tag,
1486                                                   map);
1487                                 error = EFBIG;
1488                         }
1489                         m_freem(*m_head);
1490                         *m_head = NULL;
1491                         return (error);
1492                 }
1493         } else if (error != 0) {
1494                 return (error);
1495         }
1496         nsegs = ctx.nsegs;
1497
1498         if (nsegs == 0) {
1499                 m_freem(*m_head);
1500                 *m_head = NULL;
1501                 return (EIO);
1502         }
1503
1504         /* Check descriptor overrun. */
1505         if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1506                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1507                 return (ENOBUFS);
1508         }
1509
1510         m = *m_head;
1511         /* Configure Tx IP/TCP/UDP checksum offload. */
1512         if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1513                 cflags |= AGE_TD_CSUM;
1514                 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1515                         cflags |= AGE_TD_TCPCSUM;
1516                 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1517                         cflags |= AGE_TD_UDPCSUM;
1518                 /* Set checksum start offset. */
1519                 cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1520                 /* Set checksum insertion position of TCP/UDP. */
1521                 cflags |= ((poff + m->m_pkthdr.csum_data) <<
1522                     AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1523         }
1524
1525         /* Configure VLAN hardware tag insertion. */
1526         if ((m->m_flags & M_VLANTAG) != 0) {
1527                 vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vlantag);
1528                 vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1529                 cflags |= AGE_TD_INSERT_VLAN_TAG;
1530         }
1531
1532         desc = NULL;
1533         for (i = 0; i < nsegs; i++) {
1534                 desc = &sc->age_rdata.age_tx_ring[prod];
1535                 desc->addr = htole64(txsegs[i].ds_addr);
1536                 desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1537                 desc->flags = htole32(cflags);
1538                 sc->age_cdata.age_tx_cnt++;
1539                 AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1540         }
1541         /* Update producer index. */
1542         sc->age_cdata.age_tx_prod = prod;
1543
1544         /* Set EOP on the last descriptor. */
1545         prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1546         desc = &sc->age_rdata.age_tx_ring[prod];
1547         desc->flags |= htole32(AGE_TD_EOP);
1548
1549         /* Swap dmamap of the first and the last. */
1550         txd = &sc->age_cdata.age_txdesc[prod];
1551         map = txd_last->tx_dmamap;
1552         txd_last->tx_dmamap = txd->tx_dmamap;
1553         txd->tx_dmamap = map;
1554         txd->tx_m = m;
1555
1556         /* Sync descriptors. */
1557         bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1558         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1559             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1560
1561         return (0);
1562 }
1563
1564 static void
1565 age_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1566 {
1567         struct age_softc *sc = ifp->if_softc;
1568         struct mbuf *m_head;
1569         int enq;
1570
1571         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1572         ASSERT_SERIALIZED(ifp->if_serializer);
1573
1574         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1575                 ifq_purge(&ifp->if_snd);
1576                 return;
1577         }
1578
1579         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1580                 return;
1581
1582         enq = 0;
1583         while (!ifq_is_empty(&ifp->if_snd)) {
1584                 m_head = ifq_dequeue(&ifp->if_snd);
1585                 if (m_head == NULL)
1586                         break;
1587
1588                 /*
1589                  * Pack the data into the transmit ring. If we
1590                  * don't have room, set the OACTIVE flag and wait
1591                  * for the NIC to drain the ring.
1592                  */
1593                 if (age_encap(sc, &m_head)) {
1594                         if (m_head == NULL)
1595                                 break;
1596                         ifq_prepend(&ifp->if_snd, m_head);
1597                         ifq_set_oactive(&ifp->if_snd);
1598                         break;
1599                 }
1600                 enq = 1;
1601
1602                 /*
1603                  * If there's a BPF listener, bounce a copy of this frame
1604                  * to him.
1605                  */
1606                 ETHER_BPF_MTAP(ifp, m_head);
1607         }
1608
1609         if (enq) {
1610                 /* Update mbox. */
1611                 AGE_COMMIT_MBOX(sc);
1612                 /* Set a timeout in case the chip goes out to lunch. */
1613                 ifp->if_timer = AGE_TX_TIMEOUT;
1614         }
1615 }
1616
1617 static void
1618 age_watchdog(struct ifnet *ifp)
1619 {
1620         struct age_softc *sc = ifp->if_softc;
1621
1622         ASSERT_SERIALIZED(ifp->if_serializer);
1623
1624         if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1625                 if_printf(ifp, "watchdog timeout (missed link)\n");
1626                 IFNET_STAT_INC(ifp, oerrors, 1);
1627                 age_init(sc);
1628                 return;
1629         }
1630
1631         if (sc->age_cdata.age_tx_cnt == 0) {
1632                 if_printf(ifp,
1633                     "watchdog timeout (missed Tx interrupts) -- recovering\n");
1634                 if (!ifq_is_empty(&ifp->if_snd))
1635                         if_devstart(ifp);
1636                 return;
1637         }
1638
1639         if_printf(ifp, "watchdog timeout\n");
1640         IFNET_STAT_INC(ifp, oerrors, 1);
1641         age_init(sc);
1642         if (!ifq_is_empty(&ifp->if_snd))
1643                 if_devstart(ifp);
1644 }
1645
1646 static int
1647 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1648 {
1649         struct age_softc *sc = ifp->if_softc;
1650         struct ifreq *ifr;
1651         struct mii_data *mii;
1652         uint32_t reg;
1653         int error, mask;
1654
1655         ASSERT_SERIALIZED(ifp->if_serializer);
1656
1657         ifr = (struct ifreq *)data;
1658         error = 0;
1659         switch (cmd) {
1660         case SIOCSIFMTU:
1661                 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU) {
1662                         error = EINVAL;
1663                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
1664                         ifp->if_mtu = ifr->ifr_mtu;
1665                         if ((ifp->if_flags & IFF_RUNNING) != 0)
1666                                 age_init(sc);
1667                 }
1668                 break;
1669
1670         case SIOCSIFFLAGS:
1671                 if ((ifp->if_flags & IFF_UP) != 0) {
1672                         if ((ifp->if_flags & IFF_RUNNING) != 0) {
1673                                 if (((ifp->if_flags ^ sc->age_if_flags)
1674                                     & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1675                                         age_rxfilter(sc);
1676                         } else {
1677                                 if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1678                                         age_init(sc);
1679                         }
1680                 } else {
1681                         if ((ifp->if_flags & IFF_RUNNING) != 0)
1682                                 age_stop(sc);
1683                 }
1684                 sc->age_if_flags = ifp->if_flags;
1685                 break;
1686
1687         case SIOCADDMULTI:
1688         case SIOCDELMULTI:
1689                 if ((ifp->if_flags & IFF_RUNNING) != 0)
1690                         age_rxfilter(sc);
1691                 break;
1692
1693         case SIOCSIFMEDIA:
1694         case SIOCGIFMEDIA:
1695                 mii = device_get_softc(sc->age_miibus);
1696                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1697                 break;
1698
1699         case SIOCSIFCAP:
1700                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1701
1702                 if ((mask & IFCAP_TXCSUM) != 0 &&
1703                     (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1704                         ifp->if_capenable ^= IFCAP_TXCSUM;
1705                         if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1706                                 ifp->if_hwassist |= AGE_CSUM_FEATURES;
1707                         else
1708                                 ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1709                 }
1710
1711                 if ((mask & IFCAP_RXCSUM) != 0 &&
1712                     (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1713                         ifp->if_capenable ^= IFCAP_RXCSUM;
1714                         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1715                         reg &= ~MAC_CFG_RXCSUM_ENB;
1716                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1717                                 reg |= MAC_CFG_RXCSUM_ENB;
1718                         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1719                 }
1720
1721                 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1722                     (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1723                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1724                         age_rxvlan(sc);
1725                 }
1726                 break;
1727
1728         default:
1729                 error = ether_ioctl(ifp, cmd, data);
1730                 break;
1731         }
1732         return (error);
1733 }
1734
1735 static void
1736 age_mac_config(struct age_softc *sc)
1737 {
1738         struct mii_data *mii = device_get_softc(sc->age_miibus);
1739         uint32_t reg;
1740
1741         reg = CSR_READ_4(sc, AGE_MAC_CFG);
1742         reg &= ~MAC_CFG_FULL_DUPLEX;
1743         reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1744         reg &= ~MAC_CFG_SPEED_MASK;
1745
1746         /* Reprogram MAC with resolved speed/duplex. */
1747         switch (IFM_SUBTYPE(mii->mii_media_active)) {
1748         case IFM_10_T:
1749         case IFM_100_TX:
1750                 reg |= MAC_CFG_SPEED_10_100;
1751                 break;
1752         case IFM_1000_T:
1753                 reg |= MAC_CFG_SPEED_1000;
1754                 break;
1755         }
1756         if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1757                 reg |= MAC_CFG_FULL_DUPLEX;
1758 #ifdef notyet
1759                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1760                         reg |= MAC_CFG_TX_FC;
1761                 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1762                         reg |= MAC_CFG_RX_FC;
1763 #endif
1764         }
1765         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1766 }
1767
1768 static void
1769 age_stats_update(struct age_softc *sc)
1770 {
1771         struct ifnet *ifp = &sc->arpcom.ac_if;
1772         struct age_stats *stat;
1773         struct smb *smb;
1774
1775         stat = &sc->age_stat;
1776
1777         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1778             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_POSTREAD);
1779
1780         smb = sc->age_rdata.age_smb_block;
1781         if (smb->updated == 0)
1782                 return;
1783
1784         /* Rx stats. */
1785         stat->rx_frames += smb->rx_frames;
1786         stat->rx_bcast_frames += smb->rx_bcast_frames;
1787         stat->rx_mcast_frames += smb->rx_mcast_frames;
1788         stat->rx_pause_frames += smb->rx_pause_frames;
1789         stat->rx_control_frames += smb->rx_control_frames;
1790         stat->rx_crcerrs += smb->rx_crcerrs;
1791         stat->rx_lenerrs += smb->rx_lenerrs;
1792         stat->rx_bytes += smb->rx_bytes;
1793         stat->rx_runts += smb->rx_runts;
1794         stat->rx_fragments += smb->rx_fragments;
1795         stat->rx_pkts_64 += smb->rx_pkts_64;
1796         stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1797         stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1798         stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1799         stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1800         stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1801         stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1802         stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1803         stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1804         stat->rx_desc_oflows += smb->rx_desc_oflows;
1805         stat->rx_alignerrs += smb->rx_alignerrs;
1806         stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1807         stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1808         stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1809
1810         /* Tx stats. */
1811         stat->tx_frames += smb->tx_frames;
1812         stat->tx_bcast_frames += smb->tx_bcast_frames;
1813         stat->tx_mcast_frames += smb->tx_mcast_frames;
1814         stat->tx_pause_frames += smb->tx_pause_frames;
1815         stat->tx_excess_defer += smb->tx_excess_defer;
1816         stat->tx_control_frames += smb->tx_control_frames;
1817         stat->tx_deferred += smb->tx_deferred;
1818         stat->tx_bytes += smb->tx_bytes;
1819         stat->tx_pkts_64 += smb->tx_pkts_64;
1820         stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1821         stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1822         stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1823         stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1824         stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1825         stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1826         stat->tx_single_colls += smb->tx_single_colls;
1827         stat->tx_multi_colls += smb->tx_multi_colls;
1828         stat->tx_late_colls += smb->tx_late_colls;
1829         stat->tx_excess_colls += smb->tx_excess_colls;
1830         stat->tx_underrun += smb->tx_underrun;
1831         stat->tx_desc_underrun += smb->tx_desc_underrun;
1832         stat->tx_lenerrs += smb->tx_lenerrs;
1833         stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1834         stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1835         stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1836
1837         /* Update counters in ifnet. */
1838         IFNET_STAT_INC(ifp, opackets, smb->tx_frames);
1839
1840         IFNET_STAT_INC(ifp, collisions, smb->tx_single_colls +
1841             smb->tx_multi_colls + smb->tx_late_colls +
1842             smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
1843
1844         IFNET_STAT_INC(ifp, oerrors, smb->tx_excess_colls +
1845             smb->tx_late_colls + smb->tx_underrun +
1846             smb->tx_pkts_truncated);
1847
1848         IFNET_STAT_INC(ifp, ipackets, smb->rx_frames);
1849
1850         IFNET_STAT_INC(ifp, ierrors, smb->rx_crcerrs + smb->rx_lenerrs +
1851             smb->rx_runts + smb->rx_pkts_truncated +
1852             smb->rx_fifo_oflows + smb->rx_desc_oflows +
1853             smb->rx_alignerrs);
1854
1855         /* Update done, clear. */
1856         smb->updated = 0;
1857
1858         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
1859             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
1860 }
1861
1862 static void
1863 age_intr(void *xsc)
1864 {
1865         struct age_softc *sc = xsc;
1866         struct ifnet *ifp = &sc->arpcom.ac_if;
1867         struct cmb *cmb;
1868         uint32_t status;
1869
1870         ASSERT_SERIALIZED(ifp->if_serializer);
1871
1872         status = CSR_READ_4(sc, AGE_INTR_STATUS);
1873         if (status == 0 || (status & AGE_INTRS) == 0)
1874                 return;
1875
1876         /* Disable and acknowledge interrupts. */
1877         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1878
1879         cmb = sc->age_rdata.age_cmb_block;
1880
1881         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1882             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1883         status = le32toh(cmb->intr_status);
1884         if ((status & AGE_INTRS) == 0)
1885                 goto done;
1886 again:
1887         sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
1888             TPD_CONS_SHIFT;
1889         sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
1890             RRD_PROD_SHIFT;
1891
1892         /* Let hardware know CMB was served. */
1893         cmb->intr_status = 0;
1894         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1895             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
1896
1897 #if 0
1898         kprintf("INTR: 0x%08x\n", status);
1899         status &= ~INTR_DIS_DMA;
1900         CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
1901 #endif
1902
1903         if ((ifp->if_flags & IFF_RUNNING) != 0) {
1904                 if ((status & INTR_CMB_RX) != 0)
1905                         age_rxintr(sc, sc->age_rr_prod);
1906
1907                 if ((status & INTR_CMB_TX) != 0)
1908                         age_txintr(sc, sc->age_tpd_cons);
1909
1910                 if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
1911                         if ((status & INTR_DMA_RD_TO_RST) != 0)
1912                                 device_printf(sc->age_dev,
1913                                     "DMA read error! -- resetting\n");
1914                         if ((status & INTR_DMA_WR_TO_RST) != 0)
1915                                 device_printf(sc->age_dev,
1916                                     "DMA write error! -- resetting\n");
1917                         age_init(sc);
1918                         /* XXX return? */
1919                 }
1920
1921                 if (!ifq_is_empty(&ifp->if_snd))
1922                         if_devstart(ifp);
1923
1924                 if ((status & INTR_SMB) != 0)
1925                         age_stats_update(sc);
1926         }
1927
1928         /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
1929         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
1930             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_POSTREAD);
1931         status = le32toh(cmb->intr_status);
1932         if ((status & AGE_INTRS) != 0)
1933                 goto again;
1934 done:
1935         /* Re-enable interrupts. */
1936         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1937 }
1938
1939 static void
1940 age_txintr(struct age_softc *sc, int tpd_cons)
1941 {
1942         struct ifnet *ifp = &sc->arpcom.ac_if;
1943         struct age_txdesc *txd;
1944         int cons, prog;
1945
1946         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1947             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_POSTREAD);
1948
1949         /*
1950          * Go through our Tx list and free mbufs for those
1951          * frames which have been transmitted.
1952          */
1953         cons = sc->age_cdata.age_tx_cons;
1954         for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1955                 if (sc->age_cdata.age_tx_cnt <= 0)
1956                         break;
1957                 prog++;
1958                 ifq_clr_oactive(&ifp->if_snd);
1959                 sc->age_cdata.age_tx_cnt--;
1960                 txd = &sc->age_cdata.age_txdesc[cons];
1961                 /*
1962                  * Clear Tx descriptors, it's not required but would
1963                  * help debugging in case of Tx issues.
1964                  */
1965                 txd->tx_desc->addr = 0;
1966                 txd->tx_desc->len = 0;
1967                 txd->tx_desc->flags = 0;
1968
1969                 if (txd->tx_m == NULL)
1970                         continue;
1971                 /* Reclaim transmitted mbufs. */
1972                 bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
1973                 m_freem(txd->tx_m);
1974                 txd->tx_m = NULL;
1975         }
1976
1977         if (prog > 0) {
1978                 sc->age_cdata.age_tx_cons = cons;
1979
1980                 /*
1981                  * Unarm watchdog timer only when there are no pending
1982                  * Tx descriptors in queue.
1983                  */
1984                 if (sc->age_cdata.age_tx_cnt == 0)
1985                         ifp->if_timer = 0;
1986                 bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1987                     sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
1988         }
1989 }
1990
1991 /* Receive a frame. */
1992 static void
1993 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1994 {
1995         struct ifnet *ifp = &sc->arpcom.ac_if;
1996         struct age_rxdesc *rxd;
1997         struct rx_desc *desc;
1998         struct mbuf *mp, *m;
1999         uint32_t status, index, vtag;
2000         int count, nsegs, pktlen;
2001         int rx_cons;
2002
2003         status = le32toh(rxrd->flags);
2004         index = le32toh(rxrd->index);
2005         rx_cons = AGE_RX_CONS(index);
2006         nsegs = AGE_RX_NSEGS(index);
2007
2008         sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2009         if ((status & AGE_RRD_ERROR) != 0 &&
2010             (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2011             AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2012                 /*
2013                  * We want to pass the following frames to upper
2014                  * layer regardless of error status of Rx return
2015                  * ring.
2016                  *
2017                  *  o IP/TCP/UDP checksum is bad.
2018                  *  o frame length and protocol specific length
2019                  *     does not match.
2020                  */
2021                 sc->age_cdata.age_rx_cons += nsegs;
2022                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2023                 return;
2024         }
2025
2026         pktlen = 0;
2027         for (count = 0; count < nsegs; count++,
2028             AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2029                 rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2030                 mp = rxd->rx_m;
2031                 desc = rxd->rx_desc;
2032                 /* Add a new receive buffer to the ring. */
2033                 if (age_newbuf(sc, rxd, 0) != 0) {
2034                         IFNET_STAT_INC(ifp, iqdrops, 1);
2035                         /* Reuse Rx buffers. */
2036                         if (sc->age_cdata.age_rxhead != NULL) {
2037                                 m_freem(sc->age_cdata.age_rxhead);
2038                                 AGE_RXCHAIN_RESET(sc);
2039                         }
2040                         break;
2041                 }
2042
2043                 /* The length of the first mbuf is computed last. */
2044                 if (count != 0) {
2045                         mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2046                         pktlen += mp->m_len;
2047                 }
2048
2049                 /* Chain received mbufs. */
2050                 if (sc->age_cdata.age_rxhead == NULL) {
2051                         sc->age_cdata.age_rxhead = mp;
2052                         sc->age_cdata.age_rxtail = mp;
2053                 } else {
2054                         mp->m_flags &= ~M_PKTHDR;
2055                         sc->age_cdata.age_rxprev_tail =
2056                             sc->age_cdata.age_rxtail;
2057                         sc->age_cdata.age_rxtail->m_next = mp;
2058                         sc->age_cdata.age_rxtail = mp;
2059                 }
2060
2061                 if (count == nsegs - 1) {
2062                         /*
2063                          * It seems that L1 controller has no way
2064                          * to tell hardware to strip CRC bytes.
2065                          */
2066                         sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2067                         if (nsegs > 1) {
2068                                 /* Remove the CRC bytes in chained mbufs. */
2069                                 pktlen -= ETHER_CRC_LEN;
2070                                 if (mp->m_len <= ETHER_CRC_LEN) {
2071                                         sc->age_cdata.age_rxtail =
2072                                             sc->age_cdata.age_rxprev_tail;
2073                                         sc->age_cdata.age_rxtail->m_len -=
2074                                             (ETHER_CRC_LEN - mp->m_len);
2075                                         sc->age_cdata.age_rxtail->m_next = NULL;
2076                                         m_freem(mp);
2077                                 } else {
2078                                         mp->m_len -= ETHER_CRC_LEN;
2079                                 }
2080                         }
2081
2082                         m = sc->age_cdata.age_rxhead;
2083                         m->m_flags |= M_PKTHDR;
2084                         m->m_pkthdr.rcvif = ifp;
2085                         m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2086                         /* Set the first mbuf length. */
2087                         m->m_len = sc->age_cdata.age_rxlen - pktlen;
2088
2089                         /*
2090                          * Set checksum information.
2091                          * It seems that L1 controller can compute partial
2092                          * checksum. The partial checksum value can be used
2093                          * to accelerate checksum computation for fragmented
2094                          * TCP/UDP packets. Upper network stack already
2095                          * takes advantage of the partial checksum value in
2096                          * IP reassembly stage. But I'm not sure the
2097                          * correctness of the partial hardware checksum
2098                          * assistance due to lack of data sheet. If it is
2099                          * proven to work on L1 I'll enable it.
2100                          */
2101                         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2102                             (status & AGE_RRD_IPV4) != 0) {
2103                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2104                                 if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2105                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2106                                 if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2107                                     (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2108                                         m->m_pkthdr.csum_flags |=
2109                                             CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2110                                         m->m_pkthdr.csum_data = 0xffff;
2111                                 }
2112                                 /*
2113                                  * Don't mark bad checksum for TCP/UDP frames
2114                                  * as fragmented frames may always have set
2115                                  * bad checksummed bit of descriptor status.
2116                                  */
2117                         }
2118
2119                         /* Check for VLAN tagged frames. */
2120                         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2121                             (status & AGE_RRD_VLAN) != 0) {
2122                                 vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2123                                 m->m_pkthdr.ether_vlantag =
2124                                     AGE_RX_VLAN_TAG(vtag);
2125                                 m->m_flags |= M_VLANTAG;
2126                         }
2127
2128                         /* Pass it on. */
2129                         ifp->if_input(ifp, m, NULL, -1);
2130
2131                         /* Reset mbuf chains. */
2132                         AGE_RXCHAIN_RESET(sc);
2133                 }
2134         }
2135
2136         if (count != nsegs) {
2137                 sc->age_cdata.age_rx_cons += nsegs;
2138                 sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2139         } else {
2140                 sc->age_cdata.age_rx_cons = rx_cons;
2141         }
2142 }
2143
2144 static void
2145 age_rxintr(struct age_softc *sc, int rr_prod)
2146 {
2147         struct rx_rdesc *rxrd;
2148         int rr_cons, nsegs, pktlen, prog;
2149
2150         rr_cons = sc->age_cdata.age_rr_cons;
2151         if (rr_cons == rr_prod)
2152                 return;
2153
2154         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2155             sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_POSTREAD);
2156
2157         for (prog = 0; rr_cons != rr_prod; prog++) {
2158                 rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2159                 nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2160                 if (nsegs == 0)
2161                         break;
2162
2163                 /*
2164                  * Check number of segments against received bytes.
2165                  * Non-matching value would indicate that hardware
2166                  * is still trying to update Rx return descriptors.
2167                  * I'm not sure whether this check is really needed.
2168                  */
2169                 pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2170                 if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2171                     (MCLBYTES - ETHER_ALIGN)))
2172                         break;
2173
2174                 /* Received a frame. */
2175                 age_rxeof(sc, rxrd);
2176
2177                 /* Clear return ring. */
2178                 rxrd->index = 0;
2179                 AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2180         }
2181
2182         if (prog > 0) {
2183                 /* Update the consumer index. */
2184                 sc->age_cdata.age_rr_cons = rr_cons;
2185
2186                 /* Sync descriptors. */
2187                 bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2188                     sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2189
2190                 /* Notify hardware availability of new Rx buffers. */
2191                 AGE_COMMIT_MBOX(sc);
2192         }
2193 }
2194
2195 static void
2196 age_tick(void *xsc)
2197 {
2198         struct age_softc *sc = xsc;
2199         struct ifnet *ifp = &sc->arpcom.ac_if;
2200         struct mii_data *mii = device_get_softc(sc->age_miibus);
2201
2202         lwkt_serialize_enter(ifp->if_serializer);
2203
2204         mii_tick(mii);
2205         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2206
2207         lwkt_serialize_exit(ifp->if_serializer);
2208 }
2209
2210 static void
2211 age_reset(struct age_softc *sc)
2212 {
2213         uint32_t reg;
2214         int i;
2215
2216         CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2217         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2218                 DELAY(1);
2219                 if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2220                         break;
2221         }
2222         if (i == 0)
2223                 device_printf(sc->age_dev, "master reset timeout!\n");
2224
2225         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2226                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2227                         break;
2228                 DELAY(10);
2229         }
2230         if (i == 0)
2231                 device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2232
2233         /* Initialize PCIe module. From Linux. */
2234         CSR_WRITE_4(sc, 0x12FC, 0x6500);
2235         CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2236 }
2237
2238 static void
2239 age_init(void *xsc)
2240 {
2241         struct age_softc *sc = xsc;
2242         struct ifnet *ifp = &sc->arpcom.ac_if;
2243         struct mii_data *mii;
2244         uint8_t eaddr[ETHER_ADDR_LEN];
2245         bus_addr_t paddr;
2246         uint32_t reg, fsize;
2247         uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2248         int error;
2249
2250         ASSERT_SERIALIZED(ifp->if_serializer);
2251
2252         mii = device_get_softc(sc->age_miibus);
2253
2254         /*
2255          * Cancel any pending I/O.
2256          */
2257         age_stop(sc);
2258
2259         /*
2260          * Reset the chip to a known state.
2261          */
2262         age_reset(sc);
2263
2264         /* Initialize descriptors. */
2265         error = age_init_rx_ring(sc);
2266         if (error != 0) {
2267                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2268                 age_stop(sc);
2269                 return;
2270         }
2271         age_init_rr_ring(sc);
2272         age_init_tx_ring(sc);
2273         age_init_cmb_block(sc);
2274         age_init_smb_block(sc);
2275
2276         /* Reprogram the station address. */
2277         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2278         CSR_WRITE_4(sc, AGE_PAR0,
2279             eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2280         CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2281
2282         /* Set descriptor base addresses. */
2283         paddr = sc->age_rdata.age_tx_ring_paddr;
2284         CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2285         paddr = sc->age_rdata.age_rx_ring_paddr;
2286         CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2287         paddr = sc->age_rdata.age_rr_ring_paddr;
2288         CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2289         paddr = sc->age_rdata.age_tx_ring_paddr;
2290         CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2291         paddr = sc->age_rdata.age_cmb_block_paddr;
2292         CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2293         paddr = sc->age_rdata.age_smb_block_paddr;
2294         CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2295
2296         /* Set Rx/Rx return descriptor counter. */
2297         CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2298             ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2299             DESC_RRD_CNT_MASK) |
2300             ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2301
2302         /* Set Tx descriptor counter. */
2303         CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2304             (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2305
2306         /* Tell hardware that we're ready to load descriptors. */
2307         CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2308
2309         /*
2310          * Initialize mailbox register.
2311          * Updated producer/consumer index information is exchanged
2312          * through this mailbox register. However Tx producer and
2313          * Rx return consumer/Rx producer are all shared such that
2314          * it's hard to separate code path between Tx and Rx without
2315          * locking. If L1 hardware have a separate mail box register
2316          * for Tx and Rx consumer/producer management we could have
2317          * indepent Tx/Rx handler which in turn Rx handler could have
2318          * been run without any locking.
2319          */
2320         AGE_COMMIT_MBOX(sc);
2321
2322         /* Configure IPG/IFG parameters. */
2323         CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2324             ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2325             ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2326             ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2327             ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2328
2329         /* Set parameters for half-duplex media. */
2330         CSR_WRITE_4(sc, AGE_HDPX_CFG,
2331             ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2332             HDPX_CFG_LCOL_MASK) |
2333             ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2334             HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2335             ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2336             HDPX_CFG_ABEBT_MASK) |
2337             ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2338             HDPX_CFG_JAMIPG_MASK));
2339
2340         /* Configure interrupt moderation timer. */
2341         CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2342         reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2343         reg &= ~MASTER_MTIMER_ENB;
2344         if (AGE_USECS(sc->age_int_mod) == 0)
2345                 reg &= ~MASTER_ITIMER_ENB;
2346         else
2347                 reg |= MASTER_ITIMER_ENB;
2348         CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2349         if (bootverbose)
2350                 device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2351                     sc->age_int_mod);
2352         CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2353
2354         /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2355         if (ifp->if_mtu < ETHERMTU)
2356                 sc->age_max_frame_size = ETHERMTU;
2357         else
2358                 sc->age_max_frame_size = ifp->if_mtu;
2359         sc->age_max_frame_size += ETHER_HDR_LEN +
2360             sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2361         CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2362
2363         /* Configure jumbo frame. */
2364         fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2365         CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2366             (((fsize / sizeof(uint64_t)) <<
2367             RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2368             ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2369             RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2370             ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2371             RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2372
2373         /* Configure flow-control parameters. From Linux. */
2374         if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2375                 /*
2376                  * Magic workaround for old-L1.
2377                  * Don't know which hw revision requires this magic.
2378                  */
2379                 CSR_WRITE_4(sc, 0x12FC, 0x6500);
2380                 /*
2381                  * Another magic workaround for flow-control mode
2382                  * change. From Linux.
2383                  */
2384                 CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2385         }
2386         /*
2387          * TODO
2388          *  Should understand pause parameter relationships between FIFO
2389          *  size and number of Rx descriptors and Rx return descriptors.
2390          *
2391          *  Magic parameters came from Linux.
2392          */
2393         switch (sc->age_chip_rev) {
2394         case 0x8001:
2395         case 0x9001:
2396         case 0x9002:
2397         case 0x9003:
2398                 rxf_hi = AGE_RX_RING_CNT / 16;
2399                 rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2400                 rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2401                 rrd_lo = AGE_RR_RING_CNT / 16;
2402                 break;
2403         default:
2404                 reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2405                 rxf_lo = reg / 16;
2406                 if (rxf_lo < 192)
2407                         rxf_lo = 192;
2408                 rxf_hi = (reg * 7) / 8;
2409                 if (rxf_hi < rxf_lo)
2410                         rxf_hi = rxf_lo + 16;
2411                 reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2412                 rrd_lo = reg / 8;
2413                 rrd_hi = (reg * 7) / 8;
2414                 if (rrd_lo < 2)
2415                         rrd_lo = 2;
2416                 if (rrd_hi < rrd_lo)
2417                         rrd_hi = rrd_lo + 3;
2418                 break;
2419         }
2420         CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2421             ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2422             RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2423             ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2424             RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2425         CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2426             ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2427             RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2428             ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2429             RXQ_RRD_PAUSE_THRESH_HI_MASK));
2430
2431         /* Configure RxQ. */
2432         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2433             ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2434             RXQ_CFG_RD_BURST_MASK) |
2435             ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2436             RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2437             ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2438             RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2439             RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2440
2441         /* Configure TxQ. */
2442         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2443             ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2444             TXQ_CFG_TPD_BURST_MASK) |
2445             ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2446             TXQ_CFG_TX_FIFO_BURST_MASK) |
2447             ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2448             TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2449             TXQ_CFG_ENB);
2450
2451         CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2452             (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2453             TX_JUMBO_TPD_TH_MASK) |
2454             ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2455             TX_JUMBO_TPD_IPG_MASK));
2456
2457         /* Configure DMA parameters. */
2458         CSR_WRITE_4(sc, AGE_DMA_CFG,
2459             DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2460             sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2461             sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2462
2463         /* Configure CMB DMA write threshold. */
2464         CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2465             ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2466             CMB_WR_THRESH_RRD_MASK) |
2467             ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2468             CMB_WR_THRESH_TPD_MASK));
2469
2470         /* Set CMB/SMB timer and enable them. */
2471         CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2472             ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2473             ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2474
2475         /* Request SMB updates for every seconds. */
2476         CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2477         CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2478
2479         /*
2480          * Disable all WOL bits as WOL can interfere normal Rx
2481          * operation.
2482          */
2483         CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2484
2485         /*
2486          * Configure Tx/Rx MACs.
2487          *  - Auto-padding for short frames.
2488          *  - Enable CRC generation.
2489          *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2490          *  of MAC is followed after link establishment.
2491          */
2492         CSR_WRITE_4(sc, AGE_MAC_CFG,
2493             MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2494             MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2495             ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2496             MAC_CFG_PREAMBLE_MASK));
2497
2498         /* Set up the receive filter. */
2499         age_rxfilter(sc);
2500         age_rxvlan(sc);
2501
2502         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2503         if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2504                 reg |= MAC_CFG_RXCSUM_ENB;
2505
2506         /* Ack all pending interrupts and clear it. */
2507         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2508         CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2509
2510         /* Finally enable Tx/Rx MAC. */
2511         CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2512
2513         sc->age_flags &= ~AGE_FLAG_LINK;
2514         /* Switch to the current media. */
2515         mii_mediachg(mii);
2516
2517         callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2518
2519         ifp->if_flags |= IFF_RUNNING;
2520         ifq_clr_oactive(&ifp->if_snd);
2521 }
2522
2523 static void
2524 age_stop(struct age_softc *sc)
2525 {
2526         struct ifnet *ifp = &sc->arpcom.ac_if;
2527         struct age_txdesc *txd;
2528         struct age_rxdesc *rxd;
2529         uint32_t reg;
2530         int i;
2531
2532         ASSERT_SERIALIZED(ifp->if_serializer);
2533
2534         /*
2535          * Mark the interface down and cancel the watchdog timer.
2536          */
2537         ifp->if_flags &= ~IFF_RUNNING;
2538         ifq_clr_oactive(&ifp->if_snd);
2539         ifp->if_timer = 0;
2540
2541         sc->age_flags &= ~AGE_FLAG_LINK;
2542         callout_stop(&sc->age_tick_ch);
2543
2544         /*
2545          * Disable interrupts.
2546          */
2547         CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2548         CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2549
2550         /* Stop CMB/SMB updates. */
2551         CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2552
2553         /* Stop Rx/Tx MAC. */
2554         age_stop_rxmac(sc);
2555         age_stop_txmac(sc);
2556
2557         /* Stop DMA. */
2558         CSR_WRITE_4(sc, AGE_DMA_CFG,
2559             CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2560
2561         /* Stop TxQ/RxQ. */
2562         CSR_WRITE_4(sc, AGE_TXQ_CFG,
2563             CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2564         CSR_WRITE_4(sc, AGE_RXQ_CFG,
2565             CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2566         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2567                 if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2568                         break;
2569                 DELAY(10);
2570         }
2571         if (i == 0)
2572                 device_printf(sc->age_dev,
2573                     "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2574
2575         /* Reclaim Rx buffers that have been processed. */
2576         if (sc->age_cdata.age_rxhead != NULL)
2577                 m_freem(sc->age_cdata.age_rxhead);
2578         AGE_RXCHAIN_RESET(sc);
2579
2580         /*
2581          * Free RX and TX mbufs still in the queues.
2582          */
2583         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2584                 rxd = &sc->age_cdata.age_rxdesc[i];
2585                 if (rxd->rx_m != NULL) {
2586                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2587                             rxd->rx_dmamap);
2588                         m_freem(rxd->rx_m);
2589                         rxd->rx_m = NULL;
2590                 }
2591         }
2592         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2593                 txd = &sc->age_cdata.age_txdesc[i];
2594                 if (txd->tx_m != NULL) {
2595                         bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2596                             txd->tx_dmamap);
2597                         m_freem(txd->tx_m);
2598                         txd->tx_m = NULL;
2599                 }
2600         }
2601 }
2602
2603 static void
2604 age_stop_txmac(struct age_softc *sc)
2605 {
2606         uint32_t reg;
2607         int i;
2608
2609         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2610         if ((reg & MAC_CFG_TX_ENB) != 0) {
2611                 reg &= ~MAC_CFG_TX_ENB;
2612                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2613         }
2614         /* Stop Tx DMA engine. */
2615         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2616         if ((reg & DMA_CFG_RD_ENB) != 0) {
2617                 reg &= ~DMA_CFG_RD_ENB;
2618                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2619         }
2620         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2621                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2622                     (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2623                         break;
2624                 DELAY(10);
2625         }
2626         if (i == 0)
2627                 device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2628 }
2629
2630 static void
2631 age_stop_rxmac(struct age_softc *sc)
2632 {
2633         uint32_t reg;
2634         int i;
2635
2636         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2637         if ((reg & MAC_CFG_RX_ENB) != 0) {
2638                 reg &= ~MAC_CFG_RX_ENB;
2639                 CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2640         }
2641         /* Stop Rx DMA engine. */
2642         reg = CSR_READ_4(sc, AGE_DMA_CFG);
2643         if ((reg & DMA_CFG_WR_ENB) != 0) {
2644                 reg &= ~DMA_CFG_WR_ENB;
2645                 CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2646         }
2647         for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2648                 if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2649                     (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2650                         break;
2651                 DELAY(10);
2652         }
2653         if (i == 0)
2654                 device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2655 }
2656
2657 static void
2658 age_init_tx_ring(struct age_softc *sc)
2659 {
2660         struct age_ring_data *rd;
2661         struct age_txdesc *txd;
2662         int i;
2663
2664         sc->age_cdata.age_tx_prod = 0;
2665         sc->age_cdata.age_tx_cons = 0;
2666         sc->age_cdata.age_tx_cnt = 0;
2667
2668         rd = &sc->age_rdata;
2669         bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2670         for (i = 0; i < AGE_TX_RING_CNT; i++) {
2671                 txd = &sc->age_cdata.age_txdesc[i];
2672                 txd->tx_desc = &rd->age_tx_ring[i];
2673                 txd->tx_m = NULL;
2674         }
2675
2676         bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2677             sc->age_cdata.age_tx_ring_map, BUS_DMASYNC_PREWRITE);
2678 }
2679
2680 static int
2681 age_init_rx_ring(struct age_softc *sc)
2682 {
2683         struct age_ring_data *rd;
2684         struct age_rxdesc *rxd;
2685         int i;
2686
2687         sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2688         rd = &sc->age_rdata;
2689         bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2690         for (i = 0; i < AGE_RX_RING_CNT; i++) {
2691                 rxd = &sc->age_cdata.age_rxdesc[i];
2692                 rxd->rx_m = NULL;
2693                 rxd->rx_desc = &rd->age_rx_ring[i];
2694                 if (age_newbuf(sc, rxd, 1) != 0)
2695                         return (ENOBUFS);
2696         }
2697
2698         bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2699             sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2700
2701         return (0);
2702 }
2703
2704 static void
2705 age_init_rr_ring(struct age_softc *sc)
2706 {
2707         struct age_ring_data *rd;
2708
2709         sc->age_cdata.age_rr_cons = 0;
2710         AGE_RXCHAIN_RESET(sc);
2711
2712         rd = &sc->age_rdata;
2713         bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2714         bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2715             sc->age_cdata.age_rr_ring_map, BUS_DMASYNC_PREWRITE);
2716 }
2717
2718 static void
2719 age_init_cmb_block(struct age_softc *sc)
2720 {
2721         struct age_ring_data *rd;
2722
2723         rd = &sc->age_rdata;
2724         bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2725         bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2726             sc->age_cdata.age_cmb_block_map, BUS_DMASYNC_PREWRITE);
2727 }
2728
2729 static void
2730 age_init_smb_block(struct age_softc *sc)
2731 {
2732         struct age_ring_data *rd;
2733
2734         rd = &sc->age_rdata;
2735         bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2736         bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2737             sc->age_cdata.age_smb_block_map, BUS_DMASYNC_PREWRITE);
2738 }
2739
2740 static int
2741 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
2742 {
2743         struct rx_desc *desc;
2744         struct mbuf *m;
2745         struct age_dmamap_ctx ctx;
2746         bus_dma_segment_t segs[1];
2747         bus_dmamap_t map;
2748         int error;
2749
2750         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2751         if (m == NULL)
2752                 return (ENOBUFS);
2753
2754         m->m_len = m->m_pkthdr.len = MCLBYTES;
2755         m_adj(m, ETHER_ALIGN);
2756
2757         ctx.nsegs = 1;
2758         ctx.segs = segs;
2759         error = bus_dmamap_load_mbuf(sc->age_cdata.age_rx_tag,
2760                                      sc->age_cdata.age_rx_sparemap,
2761                                      m, age_dmamap_buf_cb, &ctx,
2762                                      BUS_DMA_NOWAIT);
2763         if (error || ctx.nsegs == 0) {
2764                 if (!error) {
2765                         bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2766                                           sc->age_cdata.age_rx_sparemap);
2767                         error = EFBIG;
2768                         if_printf(&sc->arpcom.ac_if, "too many segments?!\n");
2769                 }
2770                 m_freem(m);
2771
2772                 if (init)
2773                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
2774                 return (error);
2775         }
2776         KASSERT(ctx.nsegs == 1,
2777                 ("%s: %d segments returned!", __func__, ctx.nsegs));
2778
2779         if (rxd->rx_m != NULL) {
2780                 bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
2781                     BUS_DMASYNC_POSTREAD);
2782                 bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
2783         }
2784         map = rxd->rx_dmamap;
2785         rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2786         sc->age_cdata.age_rx_sparemap = map;
2787         rxd->rx_m = m;
2788
2789         desc = rxd->rx_desc;
2790         desc->addr = htole64(segs[0].ds_addr);
2791         desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
2792             AGE_RD_LEN_SHIFT);
2793         return (0);
2794 }
2795
2796 static void
2797 age_rxvlan(struct age_softc *sc)
2798 {
2799         struct ifnet *ifp = &sc->arpcom.ac_if;
2800         uint32_t reg;
2801
2802         reg = CSR_READ_4(sc, AGE_MAC_CFG);
2803         reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2804         if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2805                 reg |= MAC_CFG_VLAN_TAG_STRIP;
2806         CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2807 }
2808
2809 static void
2810 age_rxfilter(struct age_softc *sc)
2811 {
2812         struct ifnet *ifp = &sc->arpcom.ac_if;
2813         struct ifmultiaddr *ifma;
2814         uint32_t crc;
2815         uint32_t mchash[2];
2816         uint32_t rxcfg;
2817
2818         rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2819         rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2820         if ((ifp->if_flags & IFF_BROADCAST) != 0)
2821                 rxcfg |= MAC_CFG_BCAST;
2822         if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2823                 if ((ifp->if_flags & IFF_PROMISC) != 0)
2824                         rxcfg |= MAC_CFG_PROMISC;
2825                 if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2826                         rxcfg |= MAC_CFG_ALLMULTI;
2827                 CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
2828                 CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
2829                 CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2830                 return;
2831         }
2832
2833         /* Program new filter. */
2834         bzero(mchash, sizeof(mchash));
2835
2836         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2837                 if (ifma->ifma_addr->sa_family != AF_LINK)
2838                         continue;
2839                 crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
2840                     ifma->ifma_addr), ETHER_ADDR_LEN);
2841                 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2842         }
2843
2844         CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2845         CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2846         CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2847 }
2848
2849 static int
2850 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
2851 {
2852         struct age_softc *sc;
2853         struct age_stats *stats;
2854         int error, result;
2855
2856         result = -1;
2857         error = sysctl_handle_int(oidp, &result, 0, req);
2858
2859         if (error != 0 || req->newptr == NULL)
2860                 return (error);
2861
2862         if (result != 1)
2863                 return (error);
2864
2865         sc = (struct age_softc *)arg1;
2866         stats = &sc->age_stat;
2867         kprintf("%s statistics:\n", device_get_nameunit(sc->age_dev));
2868         kprintf("Transmit good frames : %ju\n",
2869             (uintmax_t)stats->tx_frames);
2870         kprintf("Transmit good broadcast frames : %ju\n",
2871             (uintmax_t)stats->tx_bcast_frames);
2872         kprintf("Transmit good multicast frames : %ju\n",
2873             (uintmax_t)stats->tx_mcast_frames);
2874         kprintf("Transmit pause control frames : %u\n",
2875             stats->tx_pause_frames);
2876         kprintf("Transmit control frames : %u\n",
2877             stats->tx_control_frames);
2878         kprintf("Transmit frames with excessive deferrals : %u\n",
2879             stats->tx_excess_defer);
2880         kprintf("Transmit deferrals : %u\n",
2881             stats->tx_deferred);
2882         kprintf("Transmit good octets : %ju\n",
2883             (uintmax_t)stats->tx_bytes);
2884         kprintf("Transmit good broadcast octets : %ju\n",
2885             (uintmax_t)stats->tx_bcast_bytes);
2886         kprintf("Transmit good multicast octets : %ju\n",
2887             (uintmax_t)stats->tx_mcast_bytes);
2888         kprintf("Transmit frames 64 bytes : %ju\n",
2889             (uintmax_t)stats->tx_pkts_64);
2890         kprintf("Transmit frames 65 to 127 bytes : %ju\n",
2891             (uintmax_t)stats->tx_pkts_65_127);
2892         kprintf("Transmit frames 128 to 255 bytes : %ju\n",
2893             (uintmax_t)stats->tx_pkts_128_255);
2894         kprintf("Transmit frames 256 to 511 bytes : %ju\n",
2895             (uintmax_t)stats->tx_pkts_256_511);
2896         kprintf("Transmit frames 512 to 1024 bytes : %ju\n",
2897             (uintmax_t)stats->tx_pkts_512_1023);
2898         kprintf("Transmit frames 1024 to 1518 bytes : %ju\n",
2899             (uintmax_t)stats->tx_pkts_1024_1518);
2900         kprintf("Transmit frames 1519 to MTU bytes : %ju\n",
2901             (uintmax_t)stats->tx_pkts_1519_max);
2902         kprintf("Transmit single collisions : %u\n",
2903             stats->tx_single_colls);
2904         kprintf("Transmit multiple collisions : %u\n",
2905             stats->tx_multi_colls);
2906         kprintf("Transmit late collisions : %u\n",
2907             stats->tx_late_colls);
2908         kprintf("Transmit abort due to excessive collisions : %u\n",
2909             stats->tx_excess_colls);
2910         kprintf("Transmit underruns due to FIFO underruns : %u\n",
2911             stats->tx_underrun);
2912         kprintf("Transmit descriptor write-back errors : %u\n",
2913             stats->tx_desc_underrun);
2914         kprintf("Transmit frames with length mismatched frame size : %u\n",
2915             stats->tx_lenerrs);
2916         kprintf("Transmit frames with truncated due to MTU size : %u\n",
2917             stats->tx_lenerrs);
2918
2919         kprintf("Receive good frames : %ju\n",
2920             (uintmax_t)stats->rx_frames);
2921         kprintf("Receive good broadcast frames : %ju\n",
2922             (uintmax_t)stats->rx_bcast_frames);
2923         kprintf("Receive good multicast frames : %ju\n",
2924             (uintmax_t)stats->rx_mcast_frames);
2925         kprintf("Receive pause control frames : %u\n",
2926             stats->rx_pause_frames);
2927         kprintf("Receive control frames : %u\n",
2928             stats->rx_control_frames);
2929         kprintf("Receive CRC errors : %u\n",
2930             stats->rx_crcerrs);
2931         kprintf("Receive frames with length errors : %u\n",
2932             stats->rx_lenerrs);
2933         kprintf("Receive good octets : %ju\n",
2934             (uintmax_t)stats->rx_bytes);
2935         kprintf("Receive good broadcast octets : %ju\n",
2936             (uintmax_t)stats->rx_bcast_bytes);
2937         kprintf("Receive good multicast octets : %ju\n",
2938             (uintmax_t)stats->rx_mcast_bytes);
2939         kprintf("Receive frames too short : %u\n",
2940             stats->rx_runts);
2941         kprintf("Receive fragmented frames : %ju\n",
2942             (uintmax_t)stats->rx_fragments);
2943         kprintf("Receive frames 64 bytes : %ju\n",
2944             (uintmax_t)stats->rx_pkts_64);
2945         kprintf("Receive frames 65 to 127 bytes : %ju\n",
2946             (uintmax_t)stats->rx_pkts_65_127);
2947         kprintf("Receive frames 128 to 255 bytes : %ju\n",
2948             (uintmax_t)stats->rx_pkts_128_255);
2949         kprintf("Receive frames 256 to 511 bytes : %ju\n",
2950             (uintmax_t)stats->rx_pkts_256_511);
2951         kprintf("Receive frames 512 to 1024 bytes : %ju\n",
2952             (uintmax_t)stats->rx_pkts_512_1023);
2953         kprintf("Receive frames 1024 to 1518 bytes : %ju\n",
2954             (uintmax_t)stats->rx_pkts_1024_1518);
2955         kprintf("Receive frames 1519 to MTU bytes : %ju\n",
2956             (uintmax_t)stats->rx_pkts_1519_max);
2957         kprintf("Receive frames too long : %ju\n",
2958             (uint64_t)stats->rx_pkts_truncated);
2959         kprintf("Receive frames with FIFO overflow : %u\n",
2960             stats->rx_fifo_oflows);
2961         kprintf("Receive frames with return descriptor overflow : %u\n",
2962             stats->rx_desc_oflows);
2963         kprintf("Receive frames with alignment errors : %u\n",
2964             stats->rx_alignerrs);
2965         kprintf("Receive frames dropped due to address filtering : %ju\n",
2966             (uint64_t)stats->rx_pkts_filtered);
2967
2968         return (error);
2969 }
2970
2971 static int
2972 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
2973 {
2974
2975         return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
2976             AGE_IM_TIMER_MAX));
2977 }
2978
2979 static void
2980 age_dmamap_buf_cb(void *xctx, bus_dma_segment_t *segs, int nsegs,
2981                   bus_size_t mapsz __unused, int error)
2982 {
2983         struct age_dmamap_ctx *ctx = xctx;
2984         int i;
2985
2986         if (error)
2987                 return;
2988
2989         if (nsegs > ctx->nsegs) {
2990                 ctx->nsegs = 0;
2991                 return;
2992         }
2993
2994         ctx->nsegs = nsegs;
2995         for (i = 0; i < nsegs; ++i)
2996                 ctx->segs[i] = segs[i];
2997 }