kernel: Use the new auto-created sysctl ctx/tree in various drivers.
[dragonfly.git] / sys / dev / netif / bnx / if_bnx.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 #include "opt_bnx.h"
37 #include "opt_ifpoll.h"
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
55
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_poll.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 #include <net/toeplitz.h>
66 #include <net/toeplitz2.h>
67 #include <net/vlan/if_vlan_var.h>
68 #include <net/vlan/if_vlan_ether.h>
69
70 #include <dev/netif/mii_layer/mii.h>
71 #include <dev/netif/mii_layer/miivar.h>
72 #include <dev/netif/mii_layer/brgphyreg.h>
73
74 #include "pcidevs.h"
75 #include <bus/pci/pcireg.h>
76 #include <bus/pci/pcivar.h>
77
78 #include <dev/netif/bge/if_bgereg.h>
79 #include <dev/netif/bnx/if_bnxvar.h>
80
81 /* "device miibus" required.  See GENERIC if you get errors here. */
82 #include "miibus_if.h"
83
84 #define BNX_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
85
86 #define BNX_RESET_SHUTDOWN      0
87 #define BNX_RESET_START         1
88 #define BNX_RESET_SUSPEND       2
89
90 #define BNX_INTR_CKINTVL        ((10 * hz) / 1000)      /* 10ms */
91
92 #ifdef BNX_RSS_DEBUG
93 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...) \
94 do { \
95         if (sc->bnx_rss_debug >= lvl) \
96                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
97 } while (0)
98 #else   /* !BNX_RSS_DEBUG */
99 #define BNX_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
100 #endif  /* BNX_RSS_DEBUG */
101
102 static const struct bnx_type {
103         uint16_t                bnx_vid;
104         uint16_t                bnx_did;
105         char                    *bnx_name;
106 } bnx_devs[] = {
107         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717,
108                 "Broadcom BCM5717 Gigabit Ethernet" },
109         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717C,
110                 "Broadcom BCM5717C Gigabit Ethernet" },
111         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718,
112                 "Broadcom BCM5718 Gigabit Ethernet" },
113         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719,
114                 "Broadcom BCM5719 Gigabit Ethernet" },
115         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720_ALT,
116                 "Broadcom BCM5720 Gigabit Ethernet" },
117
118         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5725,
119                 "Broadcom BCM5725 Gigabit Ethernet" },
120         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5727,
121                 "Broadcom BCM5727 Gigabit Ethernet" },
122         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5762,
123                 "Broadcom BCM5762 Gigabit Ethernet" },
124
125         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761,
126                 "Broadcom BCM57761 Gigabit Ethernet" },
127         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762,
128                 "Broadcom BCM57762 Gigabit Ethernet" },
129         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765,
130                 "Broadcom BCM57765 Gigabit Ethernet" },
131         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766,
132                 "Broadcom BCM57766 Gigabit Ethernet" },
133         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781,
134                 "Broadcom BCM57781 Gigabit Ethernet" },
135         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782,
136                 "Broadcom BCM57782 Gigabit Ethernet" },
137         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785,
138                 "Broadcom BCM57785 Gigabit Ethernet" },
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786,
140                 "Broadcom BCM57786 Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791,
142                 "Broadcom BCM57791 Fast Ethernet" },
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795,
144                 "Broadcom BCM57795 Fast Ethernet" },
145
146         { 0, 0, NULL }
147 };
148
149 static const int bnx_tx_mailbox[BNX_TX_RING_MAX] = {
150         BGE_MBX_TX_HOST_PROD0_LO,
151         BGE_MBX_TX_HOST_PROD0_HI,
152         BGE_MBX_TX_HOST_PROD1_LO,
153         BGE_MBX_TX_HOST_PROD1_HI
154 };
155
156 #define BNX_IS_JUMBO_CAPABLE(sc)        ((sc)->bnx_flags & BNX_FLAG_JUMBO)
157 #define BNX_IS_5717_PLUS(sc)            ((sc)->bnx_flags & BNX_FLAG_5717_PLUS)
158 #define BNX_IS_57765_PLUS(sc)           ((sc)->bnx_flags & BNX_FLAG_57765_PLUS)
159 #define BNX_IS_57765_FAMILY(sc)  \
160         ((sc)->bnx_flags & BNX_FLAG_57765_FAMILY)
161
162 typedef int     (*bnx_eaddr_fcn_t)(struct bnx_softc *, uint8_t[]);
163
164 static int      bnx_probe(device_t);
165 static int      bnx_attach(device_t);
166 static int      bnx_detach(device_t);
167 static void     bnx_shutdown(device_t);
168 static int      bnx_suspend(device_t);
169 static int      bnx_resume(device_t);
170 static int      bnx_miibus_readreg(device_t, int, int);
171 static int      bnx_miibus_writereg(device_t, int, int, int);
172 static void     bnx_miibus_statchg(device_t);
173
174 static int      bnx_handle_status(struct bnx_softc *);
175 #ifdef IFPOLL_ENABLE
176 static void     bnx_npoll(struct ifnet *, struct ifpoll_info *);
177 static void     bnx_npoll_rx(struct ifnet *, void *, int);
178 static void     bnx_npoll_tx(struct ifnet *, void *, int);
179 static void     bnx_npoll_tx_notag(struct ifnet *, void *, int);
180 static void     bnx_npoll_status(struct ifnet *);
181 static void     bnx_npoll_status_notag(struct ifnet *);
182 #endif
183 static void     bnx_intr_legacy(void *);
184 static void     bnx_msi(void *);
185 static void     bnx_intr(struct bnx_softc *);
186 static void     bnx_msix_status(void *);
187 static void     bnx_msix_tx_status(void *);
188 static void     bnx_msix_rx(void *);
189 static void     bnx_msix_rxtx(void *);
190 static void     bnx_enable_intr(struct bnx_softc *);
191 static void     bnx_disable_intr(struct bnx_softc *);
192 static void     bnx_txeof(struct bnx_tx_ring *, uint16_t);
193 static void     bnx_rxeof(struct bnx_rx_ret_ring *, uint16_t, int);
194 static int      bnx_alloc_intr(struct bnx_softc *);
195 static int      bnx_setup_intr(struct bnx_softc *);
196 static void     bnx_free_intr(struct bnx_softc *);
197 static void     bnx_teardown_intr(struct bnx_softc *, int);
198 static int      bnx_alloc_msix(struct bnx_softc *);
199 static void     bnx_free_msix(struct bnx_softc *, boolean_t);
200 static void     bnx_check_intr_rxtx(void *);
201 static void     bnx_check_intr_rx(void *);
202 static void     bnx_check_intr_tx(void *);
203 static void     bnx_rx_std_refill_ithread(void *);
204 static void     bnx_rx_std_refill(void *, void *);
205 static void     bnx_rx_std_refill_sched_ipi(void *);
206 static void     bnx_rx_std_refill_stop(void *);
207 static void     bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *,
208                     struct bnx_rx_std_ring *);
209
210 static void     bnx_start(struct ifnet *, struct ifaltq_subque *);
211 static int      bnx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
212 static void     bnx_init(void *);
213 static void     bnx_stop(struct bnx_softc *);
214 static void     bnx_watchdog(struct ifaltq_subque *);
215 static int      bnx_ifmedia_upd(struct ifnet *);
216 static void     bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 static void     bnx_tick(void *);
218 static void     bnx_serialize(struct ifnet *, enum ifnet_serialize);
219 static void     bnx_deserialize(struct ifnet *, enum ifnet_serialize);
220 static int      bnx_tryserialize(struct ifnet *, enum ifnet_serialize);
221 #ifdef INVARIANTS
222 static void     bnx_serialize_assert(struct ifnet *, enum ifnet_serialize,
223                     boolean_t);
224 #endif
225 static void     bnx_serialize_skipmain(struct bnx_softc *);
226 static void     bnx_deserialize_skipmain(struct bnx_softc *sc);
227
228 static int      bnx_alloc_jumbo_mem(struct bnx_softc *);
229 static void     bnx_free_jumbo_mem(struct bnx_softc *);
230 static struct bnx_jslot
231                 *bnx_jalloc(struct bnx_softc *);
232 static void     bnx_jfree(void *);
233 static void     bnx_jref(void *);
234 static int      bnx_newbuf_std(struct bnx_rx_ret_ring *, int, int);
235 static int      bnx_newbuf_jumbo(struct bnx_softc *, int, int);
236 static void     bnx_setup_rxdesc_std(struct bnx_rx_std_ring *, int);
237 static void     bnx_setup_rxdesc_jumbo(struct bnx_softc *, int);
238 static int      bnx_init_rx_ring_std(struct bnx_rx_std_ring *);
239 static void     bnx_free_rx_ring_std(struct bnx_rx_std_ring *);
240 static int      bnx_init_rx_ring_jumbo(struct bnx_softc *);
241 static void     bnx_free_rx_ring_jumbo(struct bnx_softc *);
242 static void     bnx_free_tx_ring(struct bnx_tx_ring *);
243 static int      bnx_init_tx_ring(struct bnx_tx_ring *);
244 static int      bnx_create_tx_ring(struct bnx_tx_ring *);
245 static void     bnx_destroy_tx_ring(struct bnx_tx_ring *);
246 static int      bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *);
247 static void     bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *);
248 static int      bnx_dma_alloc(device_t);
249 static void     bnx_dma_free(struct bnx_softc *);
250 static int      bnx_dma_block_alloc(struct bnx_softc *, bus_size_t,
251                     bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *);
252 static void     bnx_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
253 static struct mbuf *
254                 bnx_defrag_shortdma(struct mbuf *);
255 static int      bnx_encap(struct bnx_tx_ring *, struct mbuf **,
256                     uint32_t *, int *);
257 static int      bnx_setup_tso(struct bnx_tx_ring *, struct mbuf **,
258                     uint16_t *, uint16_t *);
259 static void     bnx_setup_serialize(struct bnx_softc *);
260 static void     bnx_set_tick_cpuid(struct bnx_softc *, boolean_t);
261 static void     bnx_setup_ring_cnt(struct bnx_softc *);
262
263 static struct pktinfo *bnx_rss_info(struct pktinfo *,
264                     const struct bge_rx_bd *);
265 static void     bnx_init_rss(struct bnx_softc *);
266 static void     bnx_reset(struct bnx_softc *);
267 static int      bnx_chipinit(struct bnx_softc *);
268 static int      bnx_blockinit(struct bnx_softc *);
269 static void     bnx_stop_block(struct bnx_softc *, bus_size_t, uint32_t);
270 static void     bnx_enable_msi(struct bnx_softc *, boolean_t);
271 static void     bnx_setmulti(struct bnx_softc *);
272 static void     bnx_setpromisc(struct bnx_softc *);
273 static void     bnx_stats_update_regs(struct bnx_softc *);
274 static uint32_t bnx_dma_swap_options(struct bnx_softc *);
275
276 static uint32_t bnx_readmem_ind(struct bnx_softc *, uint32_t);
277 static void     bnx_writemem_ind(struct bnx_softc *, uint32_t, uint32_t);
278 #ifdef notdef
279 static uint32_t bnx_readreg_ind(struct bnx_softc *, uint32_t);
280 #endif
281 static void     bnx_writemem_direct(struct bnx_softc *, uint32_t, uint32_t);
282 static void     bnx_writembx(struct bnx_softc *, int, int);
283 static int      bnx_read_nvram(struct bnx_softc *, caddr_t, int, int);
284 static uint8_t  bnx_eeprom_getbyte(struct bnx_softc *, uint32_t, uint8_t *);
285 static int      bnx_read_eeprom(struct bnx_softc *, caddr_t, uint32_t, size_t);
286
287 static void     bnx_tbi_link_upd(struct bnx_softc *, uint32_t);
288 static void     bnx_copper_link_upd(struct bnx_softc *, uint32_t);
289 static void     bnx_autopoll_link_upd(struct bnx_softc *, uint32_t);
290 static void     bnx_link_poll(struct bnx_softc *);
291
292 static int      bnx_get_eaddr_mem(struct bnx_softc *, uint8_t[]);
293 static int      bnx_get_eaddr_nvram(struct bnx_softc *, uint8_t[]);
294 static int      bnx_get_eaddr_eeprom(struct bnx_softc *, uint8_t[]);
295 static int      bnx_get_eaddr(struct bnx_softc *, uint8_t[]);
296
297 static void     bnx_coal_change(struct bnx_softc *);
298 static int      bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS);
299 static int      bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS);
300 static int      bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
301 static int      bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
302 static int      bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
303 static int      bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
304 static int      bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
305 static int      bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS);
306 static int      bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
307 static int      bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
308 static int      bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
309                     int, int, uint32_t);
310 #ifdef IFPOLL_ENABLE
311 static int      bnx_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS);
312 static int      bnx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
313 static int      bnx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
314 #endif
315 static int      bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS);
316
317 static void     bnx_sig_post_reset(struct bnx_softc *, int);
318 static void     bnx_sig_pre_reset(struct bnx_softc *, int);
319 static void     bnx_ape_lock_init(struct bnx_softc *);
320 static void     bnx_ape_read_fw_ver(struct bnx_softc *);
321 static int      bnx_ape_lock(struct bnx_softc *, int);
322 static void     bnx_ape_unlock(struct bnx_softc *, int);
323 static void     bnx_ape_send_event(struct bnx_softc *, uint32_t);
324 static void     bnx_ape_driver_state_change(struct bnx_softc *, int);
325
326 static int      bnx_msi_enable = 1;
327 static int      bnx_msix_enable = 1;
328
329 static int      bnx_rx_rings = 0; /* auto */
330 static int      bnx_tx_rings = 0; /* auto */
331
332 TUNABLE_INT("hw.bnx.msi.enable", &bnx_msi_enable);
333 TUNABLE_INT("hw.bnx.msix.enable", &bnx_msix_enable);
334 TUNABLE_INT("hw.bnx.rx_rings", &bnx_rx_rings);
335 TUNABLE_INT("hw.bnx.tx_rings", &bnx_tx_rings);
336
337 static device_method_t bnx_methods[] = {
338         /* Device interface */
339         DEVMETHOD(device_probe,         bnx_probe),
340         DEVMETHOD(device_attach,        bnx_attach),
341         DEVMETHOD(device_detach,        bnx_detach),
342         DEVMETHOD(device_shutdown,      bnx_shutdown),
343         DEVMETHOD(device_suspend,       bnx_suspend),
344         DEVMETHOD(device_resume,        bnx_resume),
345
346         /* bus interface */
347         DEVMETHOD(bus_print_child,      bus_generic_print_child),
348         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
349
350         /* MII interface */
351         DEVMETHOD(miibus_readreg,       bnx_miibus_readreg),
352         DEVMETHOD(miibus_writereg,      bnx_miibus_writereg),
353         DEVMETHOD(miibus_statchg,       bnx_miibus_statchg),
354
355         DEVMETHOD_END
356 };
357
358 static DEFINE_CLASS_0(bnx, bnx_driver, bnx_methods, sizeof(struct bnx_softc));
359 static devclass_t bnx_devclass;
360
361 DECLARE_DUMMY_MODULE(if_bnx);
362 DRIVER_MODULE(if_bnx, pci, bnx_driver, bnx_devclass, NULL, NULL);
363 DRIVER_MODULE(miibus, bnx, miibus_driver, miibus_devclass, NULL, NULL);
364
365 static uint32_t
366 bnx_readmem_ind(struct bnx_softc *sc, uint32_t off)
367 {
368         device_t dev = sc->bnx_dev;
369         uint32_t val;
370
371         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
372         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
373         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
374         return (val);
375 }
376
377 static void
378 bnx_writemem_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
379 {
380         device_t dev = sc->bnx_dev;
381
382         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
383         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
384         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
385 }
386
387 static void
388 bnx_writemem_direct(struct bnx_softc *sc, uint32_t off, uint32_t val)
389 {
390         CSR_WRITE_4(sc, off, val);
391 }
392
393 static void
394 bnx_writembx(struct bnx_softc *sc, int off, int val)
395 {
396         CSR_WRITE_4(sc, off, val);
397 }
398
399 /*
400  * Read a sequence of bytes from NVRAM.
401  */
402 static int
403 bnx_read_nvram(struct bnx_softc *sc, caddr_t dest, int off, int cnt)
404 {
405         return (1);
406 }
407
408 /*
409  * Read a byte of data stored in the EEPROM at address 'addr.' The
410  * BCM570x supports both the traditional bitbang interface and an
411  * auto access interface for reading the EEPROM. We use the auto
412  * access method.
413  */
414 static uint8_t
415 bnx_eeprom_getbyte(struct bnx_softc *sc, uint32_t addr, uint8_t *dest)
416 {
417         int i;
418         uint32_t byte = 0;
419
420         /*
421          * Enable use of auto EEPROM access so we can avoid
422          * having to use the bitbang method.
423          */
424         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
425
426         /* Reset the EEPROM, load the clock period. */
427         CSR_WRITE_4(sc, BGE_EE_ADDR,
428             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
429         DELAY(20);
430
431         /* Issue the read EEPROM command. */
432         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
433
434         /* Wait for completion */
435         for(i = 0; i < BNX_TIMEOUT * 10; i++) {
436                 DELAY(10);
437                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
438                         break;
439         }
440
441         if (i == BNX_TIMEOUT) {
442                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
443                 return(1);
444         }
445
446         /* Get result. */
447         byte = CSR_READ_4(sc, BGE_EE_DATA);
448
449         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
450
451         return(0);
452 }
453
454 /*
455  * Read a sequence of bytes from the EEPROM.
456  */
457 static int
458 bnx_read_eeprom(struct bnx_softc *sc, caddr_t dest, uint32_t off, size_t len)
459 {
460         size_t i;
461         int err;
462         uint8_t byte;
463
464         for (byte = 0, err = 0, i = 0; i < len; i++) {
465                 err = bnx_eeprom_getbyte(sc, off + i, &byte);
466                 if (err)
467                         break;
468                 *(dest + i) = byte;
469         }
470
471         return(err ? 1 : 0);
472 }
473
474 static int
475 bnx_miibus_readreg(device_t dev, int phy, int reg)
476 {
477         struct bnx_softc *sc = device_get_softc(dev);
478         uint32_t val;
479         int i;
480
481         KASSERT(phy == sc->bnx_phyno,
482             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
483
484         if (bnx_ape_lock(sc, sc->bnx_phy_ape_lock) != 0)
485                 return 0;
486
487         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
488         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
489                 CSR_WRITE_4(sc, BGE_MI_MODE,
490                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
491                 DELAY(80);
492         }
493
494         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
495             BGE_MIPHY(phy) | BGE_MIREG(reg));
496
497         /* Poll for the PHY register access to complete. */
498         for (i = 0; i < BNX_TIMEOUT; i++) {
499                 DELAY(10);
500                 val = CSR_READ_4(sc, BGE_MI_COMM);
501                 if ((val & BGE_MICOMM_BUSY) == 0) {
502                         DELAY(5);
503                         val = CSR_READ_4(sc, BGE_MI_COMM);
504                         break;
505                 }
506         }
507         if (i == BNX_TIMEOUT) {
508                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
509                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
510                 val = 0;
511         }
512
513         /* Restore the autopoll bit if necessary. */
514         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
515                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
516                 DELAY(80);
517         }
518
519         bnx_ape_unlock(sc, sc->bnx_phy_ape_lock);
520
521         if (val & BGE_MICOMM_READFAIL)
522                 return 0;
523
524         return (val & 0xFFFF);
525 }
526
527 static int
528 bnx_miibus_writereg(device_t dev, int phy, int reg, int val)
529 {
530         struct bnx_softc *sc = device_get_softc(dev);
531         int i;
532
533         KASSERT(phy == sc->bnx_phyno,
534             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
535
536         if (bnx_ape_lock(sc, sc->bnx_phy_ape_lock) != 0)
537                 return 0;
538
539         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
540         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
541                 CSR_WRITE_4(sc, BGE_MI_MODE,
542                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
543                 DELAY(80);
544         }
545
546         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
547             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
548
549         for (i = 0; i < BNX_TIMEOUT; i++) {
550                 DELAY(10);
551                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
552                         DELAY(5);
553                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
554                         break;
555                 }
556         }
557         if (i == BNX_TIMEOUT) {
558                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
559                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
560         }
561
562         /* Restore the autopoll bit if necessary. */
563         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
564                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
565                 DELAY(80);
566         }
567
568         bnx_ape_unlock(sc, sc->bnx_phy_ape_lock);
569
570         return 0;
571 }
572
573 static void
574 bnx_miibus_statchg(device_t dev)
575 {
576         struct bnx_softc *sc;
577         struct mii_data *mii;
578         uint32_t mac_mode;
579
580         sc = device_get_softc(dev);
581         if ((sc->arpcom.ac_if.if_flags & IFF_RUNNING) == 0)
582                 return;
583
584         mii = device_get_softc(sc->bnx_miibus);
585
586         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
587             (IFM_ACTIVE | IFM_AVALID)) {
588                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
589                 case IFM_10_T:
590                 case IFM_100_TX:
591                         sc->bnx_link = 1;
592                         break;
593                 case IFM_1000_T:
594                 case IFM_1000_SX:
595                 case IFM_2500_SX:
596                         sc->bnx_link = 1;
597                         break;
598                 default:
599                         sc->bnx_link = 0;
600                         break;
601                 }
602         } else {
603                 sc->bnx_link = 0;
604         }
605         if (sc->bnx_link == 0)
606                 return;
607
608         /*
609          * APE firmware touches these registers to keep the MAC
610          * connected to the outside world.  Try to keep the
611          * accesses atomic.
612          */
613
614         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
615             ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
616
617         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
618             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
619                 mac_mode |= BGE_PORTMODE_GMII;
620         else
621                 mac_mode |= BGE_PORTMODE_MII;
622
623         if ((mii->mii_media_active & IFM_GMASK) != IFM_FDX)
624                 mac_mode |= BGE_MACMODE_HALF_DUPLEX;
625
626         CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
627         DELAY(40);
628 }
629
630 /*
631  * Memory management for jumbo frames.
632  */
633 static int
634 bnx_alloc_jumbo_mem(struct bnx_softc *sc)
635 {
636         struct ifnet *ifp = &sc->arpcom.ac_if;
637         struct bnx_jslot *entry;
638         uint8_t *ptr;
639         bus_addr_t paddr;
640         int i, error;
641
642         /*
643          * Create tag for jumbo mbufs.
644          * This is really a bit of a kludge. We allocate a special
645          * jumbo buffer pool which (thanks to the way our DMA
646          * memory allocation works) will consist of contiguous
647          * pages. This means that even though a jumbo buffer might
648          * be larger than a page size, we don't really need to
649          * map it into more than one DMA segment. However, the
650          * default mbuf tag will result in multi-segment mappings,
651          * so we have to create a special jumbo mbuf tag that
652          * lets us get away with mapping the jumbo buffers as
653          * a single segment. I think eventually the driver should
654          * be changed so that it uses ordinary mbufs and cluster
655          * buffers, i.e. jumbo frames can span multiple DMA
656          * descriptors. But that's a project for another day.
657          */
658
659         /*
660          * Create DMA stuffs for jumbo RX ring.
661          */
662         error = bnx_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
663                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
664                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_map,
665                                     (void *)&sc->bnx_ldata.bnx_rx_jumbo_ring,
666                                     &sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
667         if (error) {
668                 if_printf(ifp, "could not create jumbo RX ring\n");
669                 return error;
670         }
671
672         /*
673          * Create DMA stuffs for jumbo buffer block.
674          */
675         error = bnx_dma_block_alloc(sc, BNX_JMEM,
676                                     &sc->bnx_cdata.bnx_jumbo_tag,
677                                     &sc->bnx_cdata.bnx_jumbo_map,
678                                     (void **)&sc->bnx_ldata.bnx_jumbo_buf,
679                                     &paddr);
680         if (error) {
681                 if_printf(ifp, "could not create jumbo buffer\n");
682                 return error;
683         }
684
685         SLIST_INIT(&sc->bnx_jfree_listhead);
686
687         /*
688          * Now divide it up into 9K pieces and save the addresses
689          * in an array. Note that we play an evil trick here by using
690          * the first few bytes in the buffer to hold the the address
691          * of the softc structure for this interface. This is because
692          * bnx_jfree() needs it, but it is called by the mbuf management
693          * code which will not pass it to us explicitly.
694          */
695         for (i = 0, ptr = sc->bnx_ldata.bnx_jumbo_buf; i < BNX_JSLOTS; i++) {
696                 entry = &sc->bnx_cdata.bnx_jslots[i];
697                 entry->bnx_sc = sc;
698                 entry->bnx_buf = ptr;
699                 entry->bnx_paddr = paddr;
700                 entry->bnx_inuse = 0;
701                 entry->bnx_slot = i;
702                 SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, entry, jslot_link);
703
704                 ptr += BNX_JLEN;
705                 paddr += BNX_JLEN;
706         }
707         return 0;
708 }
709
710 static void
711 bnx_free_jumbo_mem(struct bnx_softc *sc)
712 {
713         /* Destroy jumbo RX ring. */
714         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
715                            sc->bnx_cdata.bnx_rx_jumbo_ring_map,
716                            sc->bnx_ldata.bnx_rx_jumbo_ring);
717
718         /* Destroy jumbo buffer block. */
719         bnx_dma_block_free(sc->bnx_cdata.bnx_jumbo_tag,
720                            sc->bnx_cdata.bnx_jumbo_map,
721                            sc->bnx_ldata.bnx_jumbo_buf);
722 }
723
724 /*
725  * Allocate a jumbo buffer.
726  */
727 static struct bnx_jslot *
728 bnx_jalloc(struct bnx_softc *sc)
729 {
730         struct bnx_jslot *entry;
731
732         lwkt_serialize_enter(&sc->bnx_jslot_serializer);
733         entry = SLIST_FIRST(&sc->bnx_jfree_listhead);
734         if (entry) {
735                 SLIST_REMOVE_HEAD(&sc->bnx_jfree_listhead, jslot_link);
736                 entry->bnx_inuse = 1;
737         } else {
738                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
739         }
740         lwkt_serialize_exit(&sc->bnx_jslot_serializer);
741         return(entry);
742 }
743
744 /*
745  * Adjust usage count on a jumbo buffer.
746  */
747 static void
748 bnx_jref(void *arg)
749 {
750         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
751         struct bnx_softc *sc = entry->bnx_sc;
752
753         if (sc == NULL)
754                 panic("bnx_jref: can't find softc pointer!");
755
756         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
757                 panic("bnx_jref: asked to reference buffer "
758                     "that we don't manage!");
759         } else if (entry->bnx_inuse == 0) {
760                 panic("bnx_jref: buffer already free!");
761         } else {
762                 atomic_add_int(&entry->bnx_inuse, 1);
763         }
764 }
765
766 /*
767  * Release a jumbo buffer.
768  */
769 static void
770 bnx_jfree(void *arg)
771 {
772         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
773         struct bnx_softc *sc = entry->bnx_sc;
774
775         if (sc == NULL)
776                 panic("bnx_jfree: can't find softc pointer!");
777
778         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
779                 panic("bnx_jfree: asked to free buffer that we don't manage!");
780         } else if (entry->bnx_inuse == 0) {
781                 panic("bnx_jfree: buffer already free!");
782         } else {
783                 /*
784                  * Possible MP race to 0, use the serializer.  The atomic insn
785                  * is still needed for races against bnx_jref().
786                  */
787                 lwkt_serialize_enter(&sc->bnx_jslot_serializer);
788                 atomic_subtract_int(&entry->bnx_inuse, 1);
789                 if (entry->bnx_inuse == 0) {
790                         SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, 
791                                           entry, jslot_link);
792                 }
793                 lwkt_serialize_exit(&sc->bnx_jslot_serializer);
794         }
795 }
796
797
798 /*
799  * Intialize a standard receive ring descriptor.
800  */
801 static int
802 bnx_newbuf_std(struct bnx_rx_ret_ring *ret, int i, int init)
803 {
804         struct mbuf *m_new = NULL;
805         bus_dma_segment_t seg;
806         bus_dmamap_t map;
807         int error, nsegs;
808         struct bnx_rx_buf *rb;
809
810         rb = &ret->bnx_std->bnx_rx_std_buf[i];
811         KASSERT(!rb->bnx_rx_refilled, ("RX buf %dth has been refilled", i));
812
813         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
814         if (m_new == NULL) {
815                 error = ENOBUFS;
816                 goto back;
817         }
818         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
819         m_adj(m_new, ETHER_ALIGN);
820
821         error = bus_dmamap_load_mbuf_segment(ret->bnx_rx_mtag,
822             ret->bnx_rx_tmpmap, m_new, &seg, 1, &nsegs, BUS_DMA_NOWAIT);
823         if (error) {
824                 m_freem(m_new);
825                 goto back;
826         }
827
828         if (!init) {
829                 bus_dmamap_sync(ret->bnx_rx_mtag, rb->bnx_rx_dmamap,
830                     BUS_DMASYNC_POSTREAD);
831                 bus_dmamap_unload(ret->bnx_rx_mtag, rb->bnx_rx_dmamap);
832         }
833
834         map = ret->bnx_rx_tmpmap;
835         ret->bnx_rx_tmpmap = rb->bnx_rx_dmamap;
836
837         rb->bnx_rx_dmamap = map;
838         rb->bnx_rx_mbuf = m_new;
839         rb->bnx_rx_paddr = seg.ds_addr;
840         rb->bnx_rx_len = m_new->m_len;
841 back:
842         cpu_sfence();
843         rb->bnx_rx_refilled = 1;
844         return error;
845 }
846
847 static void
848 bnx_setup_rxdesc_std(struct bnx_rx_std_ring *std, int i)
849 {
850         struct bnx_rx_buf *rb;
851         struct bge_rx_bd *r;
852         bus_addr_t paddr;
853         int len;
854
855         rb = &std->bnx_rx_std_buf[i];
856         KASSERT(rb->bnx_rx_refilled, ("RX buf %dth is not refilled", i));
857
858         paddr = rb->bnx_rx_paddr;
859         len = rb->bnx_rx_len;
860
861         cpu_mfence();
862
863         rb->bnx_rx_refilled = 0;
864
865         r = &std->bnx_rx_std_ring[i];
866         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(paddr);
867         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(paddr);
868         r->bge_len = len;
869         r->bge_idx = i;
870         r->bge_flags = BGE_RXBDFLAG_END;
871 }
872
873 /*
874  * Initialize a jumbo receive ring descriptor. This allocates
875  * a jumbo buffer from the pool managed internally by the driver.
876  */
877 static int
878 bnx_newbuf_jumbo(struct bnx_softc *sc, int i, int init)
879 {
880         struct mbuf *m_new = NULL;
881         struct bnx_jslot *buf;
882         bus_addr_t paddr;
883
884         /* Allocate the mbuf. */
885         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
886         if (m_new == NULL)
887                 return ENOBUFS;
888
889         /* Allocate the jumbo buffer */
890         buf = bnx_jalloc(sc);
891         if (buf == NULL) {
892                 m_freem(m_new);
893                 return ENOBUFS;
894         }
895
896         /* Attach the buffer to the mbuf. */
897         m_new->m_ext.ext_arg = buf;
898         m_new->m_ext.ext_buf = buf->bnx_buf;
899         m_new->m_ext.ext_free = bnx_jfree;
900         m_new->m_ext.ext_ref = bnx_jref;
901         m_new->m_ext.ext_size = BNX_JUMBO_FRAMELEN;
902
903         m_new->m_flags |= M_EXT;
904
905         m_new->m_data = m_new->m_ext.ext_buf;
906         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
907
908         paddr = buf->bnx_paddr;
909         m_adj(m_new, ETHER_ALIGN);
910         paddr += ETHER_ALIGN;
911
912         /* Save necessary information */
913         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_mbuf = m_new;
914         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_rx_paddr = paddr;
915
916         /* Set up the descriptor. */
917         bnx_setup_rxdesc_jumbo(sc, i);
918         return 0;
919 }
920
921 static void
922 bnx_setup_rxdesc_jumbo(struct bnx_softc *sc, int i)
923 {
924         struct bge_rx_bd *r;
925         struct bnx_rx_buf *rc;
926
927         r = &sc->bnx_ldata.bnx_rx_jumbo_ring[i];
928         rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
929
930         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_rx_paddr);
931         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_rx_paddr);
932         r->bge_len = rc->bnx_rx_mbuf->m_len;
933         r->bge_idx = i;
934         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
935 }
936
937 static int
938 bnx_init_rx_ring_std(struct bnx_rx_std_ring *std)
939 {
940         int i, error;
941
942         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
943                 /* Use the first RX return ring's tmp RX mbuf DMA map */
944                 error = bnx_newbuf_std(&std->bnx_sc->bnx_rx_ret_ring[0], i, 1);
945                 if (error)
946                         return error;
947                 bnx_setup_rxdesc_std(std, i);
948         }
949
950         std->bnx_rx_std_used = 0;
951         std->bnx_rx_std_refill = 0;
952         std->bnx_rx_std_running = 0;
953         cpu_sfence();
954         lwkt_serialize_handler_enable(&std->bnx_rx_std_serialize);
955
956         std->bnx_rx_std = BGE_STD_RX_RING_CNT - 1;
957         bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO, std->bnx_rx_std);
958
959         return(0);
960 }
961
962 static void
963 bnx_free_rx_ring_std(struct bnx_rx_std_ring *std)
964 {
965         int i;
966
967         lwkt_serialize_handler_disable(&std->bnx_rx_std_serialize);
968
969         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
970                 struct bnx_rx_buf *rb = &std->bnx_rx_std_buf[i];
971
972                 rb->bnx_rx_refilled = 0;
973                 if (rb->bnx_rx_mbuf != NULL) {
974                         bus_dmamap_unload(std->bnx_rx_mtag, rb->bnx_rx_dmamap);
975                         m_freem(rb->bnx_rx_mbuf);
976                         rb->bnx_rx_mbuf = NULL;
977                 }
978                 bzero(&std->bnx_rx_std_ring[i], sizeof(struct bge_rx_bd));
979         }
980 }
981
982 static int
983 bnx_init_rx_ring_jumbo(struct bnx_softc *sc)
984 {
985         struct bge_rcb *rcb;
986         int i, error;
987
988         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989                 error = bnx_newbuf_jumbo(sc, i, 1);
990                 if (error)
991                         return error;
992         }
993
994         sc->bnx_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
995
996         rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
997         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
998         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
999
1000         bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
1001
1002         return(0);
1003 }
1004
1005 static void
1006 bnx_free_rx_ring_jumbo(struct bnx_softc *sc)
1007 {
1008         int i;
1009
1010         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1011                 struct bnx_rx_buf *rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
1012
1013                 if (rc->bnx_rx_mbuf != NULL) {
1014                         m_freem(rc->bnx_rx_mbuf);
1015                         rc->bnx_rx_mbuf = NULL;
1016                 }
1017                 bzero(&sc->bnx_ldata.bnx_rx_jumbo_ring[i],
1018                     sizeof(struct bge_rx_bd));
1019         }
1020 }
1021
1022 static void
1023 bnx_free_tx_ring(struct bnx_tx_ring *txr)
1024 {
1025         int i;
1026
1027         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1028                 struct bnx_tx_buf *buf = &txr->bnx_tx_buf[i];
1029
1030                 if (buf->bnx_tx_mbuf != NULL) {
1031                         bus_dmamap_unload(txr->bnx_tx_mtag,
1032                             buf->bnx_tx_dmamap);
1033                         m_freem(buf->bnx_tx_mbuf);
1034                         buf->bnx_tx_mbuf = NULL;
1035                 }
1036                 bzero(&txr->bnx_tx_ring[i], sizeof(struct bge_tx_bd));
1037         }
1038         txr->bnx_tx_saved_considx = BNX_TXCONS_UNSET;
1039 }
1040
1041 static int
1042 bnx_init_tx_ring(struct bnx_tx_ring *txr)
1043 {
1044         txr->bnx_tx_cnt = 0;
1045         txr->bnx_tx_saved_considx = 0;
1046         txr->bnx_tx_prodidx = 0;
1047
1048         /* Initialize transmit producer index for host-memory send ring. */
1049         bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, txr->bnx_tx_prodidx);
1050
1051         return(0);
1052 }
1053
1054 static void
1055 bnx_setmulti(struct bnx_softc *sc)
1056 {
1057         struct ifnet *ifp;
1058         struct ifmultiaddr *ifma;
1059         uint32_t hashes[4] = { 0, 0, 0, 0 };
1060         int h, i;
1061
1062         ifp = &sc->arpcom.ac_if;
1063
1064         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1065                 for (i = 0; i < 4; i++)
1066                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1067                 return;
1068         }
1069
1070         /* First, zot all the existing filters. */
1071         for (i = 0; i < 4; i++)
1072                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1073
1074         /* Now program new ones. */
1075         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1076                 if (ifma->ifma_addr->sa_family != AF_LINK)
1077                         continue;
1078                 h = ether_crc32_le(
1079                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1080                     ETHER_ADDR_LEN) & 0x7f;
1081                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1082         }
1083
1084         for (i = 0; i < 4; i++)
1085                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1086 }
1087
1088 /*
1089  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1090  * self-test results.
1091  */
1092 static int
1093 bnx_chipinit(struct bnx_softc *sc)
1094 {
1095         uint32_t dma_rw_ctl, mode_ctl;
1096         int i;
1097
1098         /* Set endian type before we access any non-PCI registers. */
1099         pci_write_config(sc->bnx_dev, BGE_PCI_MISC_CTL,
1100             BGE_INIT | BGE_PCIMISCCTL_TAGGED_STATUS, 4);
1101
1102         /*
1103          * Clear the MAC statistics block in the NIC's
1104          * internal memory.
1105          */
1106         for (i = BGE_STATS_BLOCK;
1107             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1108                 BNX_MEMWIN_WRITE(sc, i, 0);
1109
1110         for (i = BGE_STATUS_BLOCK;
1111             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1112                 BNX_MEMWIN_WRITE(sc, i, 0);
1113
1114         if (BNX_IS_57765_FAMILY(sc)) {
1115                 uint32_t val;
1116
1117                 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0) {
1118                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1119                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1120
1121                         /* Access the lower 1K of PL PCI-E block registers. */
1122                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1123                             val | BGE_MODECTL_PCIE_PL_SEL);
1124
1125                         val = CSR_READ_4(sc, BGE_PCIE_PL_LO_PHYCTL5);
1126                         val |= BGE_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ;
1127                         CSR_WRITE_4(sc, BGE_PCIE_PL_LO_PHYCTL5, val);
1128
1129                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1130                 }
1131                 if (sc->bnx_chiprev != BGE_CHIPREV_57765_AX) {
1132                         /* Fix transmit hangs */
1133                         val = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
1134                         val |= BGE_CPMU_PADRNG_CTL_RDIV2;
1135                         CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, val);
1136
1137                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1138                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1139
1140                         /* Access the lower 1K of DL PCI-E block registers. */
1141                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1142                             val | BGE_MODECTL_PCIE_DL_SEL);
1143
1144                         val = CSR_READ_4(sc, BGE_PCIE_DL_LO_FTSMAX);
1145                         val &= ~BGE_PCIE_DL_LO_FTSMAX_MASK;
1146                         val |= BGE_PCIE_DL_LO_FTSMAX_VAL;
1147                         CSR_WRITE_4(sc, BGE_PCIE_DL_LO_FTSMAX, val);
1148
1149                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1150                 }
1151
1152                 val = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1153                 val &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1154                 val |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1155                 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, val);
1156         }
1157
1158         /*
1159          * Set up the PCI DMA control register.
1160          */
1161         dma_rw_ctl = pci_read_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, 4);
1162         /*
1163          * Disable 32bytes cache alignment for DMA write to host memory
1164          *
1165          * NOTE:
1166          * 64bytes cache alignment for DMA write to host memory is still
1167          * enabled.
1168          */
1169         dma_rw_ctl |= BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1170         if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
1171                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1172         /*
1173          * Enable HW workaround for controllers that misinterpret
1174          * a status tag update and leave interrupts permanently
1175          * disabled.
1176          */
1177         if (sc->bnx_asicrev != BGE_ASICREV_BCM5717 &&
1178             sc->bnx_asicrev != BGE_ASICREV_BCM5762 &&
1179             !BNX_IS_57765_FAMILY(sc))
1180                 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1181         if (bootverbose) {
1182                 if_printf(&sc->arpcom.ac_if, "DMA read/write %#x\n",
1183                     dma_rw_ctl);
1184         }
1185         pci_write_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1186
1187         /*
1188          * Set up general mode register.
1189          */
1190         mode_ctl = bnx_dma_swap_options(sc);
1191         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1192             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1193                 /* Retain Host-2-BMC settings written by APE firmware. */
1194                 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1195                     (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1196                     BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1197                     BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1198         }
1199         mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR |
1200             BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1201         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1202
1203         /*
1204          * Disable memory write invalidate.  Apparently it is not supported
1205          * properly by these devices.  Also ensure that INTx isn't disabled,
1206          * as these chips need it even when using MSI.
1207          */
1208         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_CMD,
1209             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1210
1211         /* Set the timer prescaler (always 66Mhz) */
1212         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1213
1214         return(0);
1215 }
1216
1217 static int
1218 bnx_blockinit(struct bnx_softc *sc)
1219 {
1220         struct bnx_intr_data *intr;
1221         struct bge_rcb *rcb;
1222         bus_size_t vrcb;
1223         bge_hostaddr taddr;
1224         uint32_t val;
1225         int i, limit;
1226
1227         /*
1228          * Initialize the memory window pointer register so that
1229          * we can access the first 32K of internal NIC RAM. This will
1230          * allow us to set up the TX send ring RCBs and the RX return
1231          * ring RCBs, plus other things which live in NIC memory.
1232          */
1233         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1234
1235         /* Configure mbuf pool watermarks */
1236         if (BNX_IS_57765_PLUS(sc)) {
1237                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1238                 if (sc->arpcom.ac_if.if_mtu > ETHERMTU) {
1239                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1240                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1241                 } else {
1242                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1243                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1244                 }
1245         } else {
1246                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1247                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1248                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1249         }
1250
1251         /* Configure DMA resource watermarks */
1252         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1253         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1254
1255         /* Enable buffer manager */
1256         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1257         /*
1258          * Change the arbitration algorithm of TXMBUF read request to
1259          * round-robin instead of priority based for BCM5719.  When
1260          * TXFIFO is almost empty, RDMA will hold its request until
1261          * TXFIFO is not almost empty.
1262          */
1263         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719)
1264                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1265         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1266             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0 ||
1267             sc->bnx_chipid == BGE_CHIPID_BCM5720_A0)
1268                 val |= BGE_BMANMODE_LOMBUF_ATTN;
1269         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1270
1271         /* Poll for buffer manager start indication */
1272         for (i = 0; i < BNX_TIMEOUT; i++) {
1273                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1274                         break;
1275                 DELAY(10);
1276         }
1277
1278         if (i == BNX_TIMEOUT) {
1279                 if_printf(&sc->arpcom.ac_if,
1280                           "buffer manager failed to start\n");
1281                 return(ENXIO);
1282         }
1283
1284         /* Enable flow-through queues */
1285         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1286         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1287
1288         /* Wait until queue initialization is complete */
1289         for (i = 0; i < BNX_TIMEOUT; i++) {
1290                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1291                         break;
1292                 DELAY(10);
1293         }
1294
1295         if (i == BNX_TIMEOUT) {
1296                 if_printf(&sc->arpcom.ac_if,
1297                           "flow-through queue init failed\n");
1298                 return(ENXIO);
1299         }
1300
1301         /*
1302          * Summary of rings supported by the controller:
1303          *
1304          * Standard Receive Producer Ring
1305          * - This ring is used to feed receive buffers for "standard"
1306          *   sized frames (typically 1536 bytes) to the controller.
1307          *
1308          * Jumbo Receive Producer Ring
1309          * - This ring is used to feed receive buffers for jumbo sized
1310          *   frames (i.e. anything bigger than the "standard" frames)
1311          *   to the controller.
1312          *
1313          * Mini Receive Producer Ring
1314          * - This ring is used to feed receive buffers for "mini"
1315          *   sized frames to the controller.
1316          * - This feature required external memory for the controller
1317          *   but was never used in a production system.  Should always
1318          *   be disabled.
1319          *
1320          * Receive Return Ring
1321          * - After the controller has placed an incoming frame into a
1322          *   receive buffer that buffer is moved into a receive return
1323          *   ring.  The driver is then responsible to passing the
1324          *   buffer up to the stack.  BCM5718/BCM57785 families support
1325          *   multiple receive return rings.
1326          *
1327          * Send Ring
1328          * - This ring is used for outgoing frames.  BCM5719/BCM5720
1329          *   support multiple send rings.
1330          */
1331
1332         /* Initialize the standard receive producer ring control block. */
1333         rcb = &sc->bnx_ldata.bnx_info.bnx_std_rx_rcb;
1334         rcb->bge_hostaddr.bge_addr_lo =
1335             BGE_ADDR_LO(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1336         rcb->bge_hostaddr.bge_addr_hi =
1337             BGE_ADDR_HI(sc->bnx_rx_std_ring.bnx_rx_std_ring_paddr);
1338         if (BNX_IS_57765_PLUS(sc)) {
1339                 /*
1340                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1341                  * Bits 15-2 : Maximum RX frame size
1342                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1343                  * Bit 0     : Reserved
1344                  */
1345                 rcb->bge_maxlen_flags =
1346                     BGE_RCB_MAXLEN_FLAGS(512, BNX_MAX_FRAMELEN << 2);
1347         } else {
1348                 /*
1349                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1350                  * Bits 15-2 : Reserved (should be 0)
1351                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1352                  * Bit 0     : Reserved
1353                  */
1354                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1355         }
1356         if (BNX_IS_5717_PLUS(sc))
1357                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1358         else
1359                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1360         /* Write the standard receive producer ring control block. */
1361         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1362         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1363         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1364         if (!BNX_IS_5717_PLUS(sc))
1365                 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1366         /* Reset the standard receive producer ring producer index. */
1367         bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1368
1369         /*
1370          * Initialize the jumbo RX producer ring control
1371          * block.  We set the 'ring disabled' bit in the
1372          * flags field until we're actually ready to start
1373          * using this ring (i.e. once we set the MTU
1374          * high enough to require it).
1375          */
1376         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1377                 rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
1378                 /* Get the jumbo receive producer ring RCB parameters. */
1379                 rcb->bge_hostaddr.bge_addr_lo =
1380                     BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1381                 rcb->bge_hostaddr.bge_addr_hi =
1382                     BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1383                 rcb->bge_maxlen_flags =
1384                     BGE_RCB_MAXLEN_FLAGS(BNX_MAX_FRAMELEN,
1385                     BGE_RCB_FLAG_RING_DISABLED);
1386                 if (BNX_IS_5717_PLUS(sc))
1387                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1388                 else
1389                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1390                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1391                     rcb->bge_hostaddr.bge_addr_hi);
1392                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1393                     rcb->bge_hostaddr.bge_addr_lo);
1394                 /* Program the jumbo receive producer ring RCB parameters. */
1395                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1396                     rcb->bge_maxlen_flags);
1397                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1398                 /* Reset the jumbo receive producer ring producer index. */
1399                 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1400         }
1401
1402         /*
1403          * The BD ring replenish thresholds control how often the
1404          * hardware fetches new BD's from the producer rings in host
1405          * memory.  Setting the value too low on a busy system can
1406          * starve the hardware and recue the throughpout.
1407          *
1408          * Set the BD ring replentish thresholds. The recommended
1409          * values are 1/8th the number of descriptors allocated to
1410          * each ring.
1411          */
1412         val = 8;
1413         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1414         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1415                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1416                     BGE_JUMBO_RX_RING_CNT/8);
1417         }
1418         if (BNX_IS_57765_PLUS(sc)) {
1419                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1420                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1421         }
1422
1423         /*
1424          * Disable all send rings by setting the 'ring disabled' bit
1425          * in the flags field of all the TX send ring control blocks,
1426          * located in NIC memory.
1427          */
1428         if (BNX_IS_5717_PLUS(sc))
1429                 limit = 4;
1430         else if (BNX_IS_57765_FAMILY(sc) ||
1431             sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1432                 limit = 2;
1433         else
1434                 limit = 1;
1435         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1436         for (i = 0; i < limit; i++) {
1437                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1438                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1439                 vrcb += sizeof(struct bge_rcb);
1440         }
1441
1442         /*
1443          * Configure send ring RCBs
1444          */
1445         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1446         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
1447                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
1448
1449                 BGE_HOSTADDR(taddr, txr->bnx_tx_ring_paddr);
1450                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1451                     taddr.bge_addr_hi);
1452                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1453                     taddr.bge_addr_lo);
1454                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1455                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1456                 vrcb += sizeof(struct bge_rcb);
1457         }
1458
1459         /*
1460          * Disable all receive return rings by setting the
1461          * 'ring disabled' bit in the flags field of all the receive
1462          * return ring control blocks, located in NIC memory.
1463          */
1464         if (BNX_IS_5717_PLUS(sc)) {
1465                 /* Should be 17, use 16 until we get an SRAM map. */
1466                 limit = 16;
1467         } else if (BNX_IS_57765_FAMILY(sc) ||
1468             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1469                 limit = 4;
1470         } else {
1471                 limit = 1;
1472         }
1473         /* Disable all receive return rings. */
1474         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1475         for (i = 0; i < limit; i++) {
1476                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1477                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1478                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1479                     BGE_RCB_FLAG_RING_DISABLED);
1480                 bnx_writembx(sc, BGE_MBX_RX_CONS0_LO +
1481                     (i * (sizeof(uint64_t))), 0);
1482                 vrcb += sizeof(struct bge_rcb);
1483         }
1484
1485         /*
1486          * Set up receive return rings.
1487          */
1488         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1489         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
1490                 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
1491
1492                 BGE_HOSTADDR(taddr, ret->bnx_rx_ret_ring_paddr);
1493                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi,
1494                     taddr.bge_addr_hi);
1495                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo,
1496                     taddr.bge_addr_lo);
1497                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1498                     BGE_RCB_MAXLEN_FLAGS(BNX_RETURN_RING_CNT, 0));
1499                 vrcb += sizeof(struct bge_rcb);
1500         }
1501
1502         /* Set random backoff seed for TX */
1503         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1504             (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1505              sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1506              sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) &
1507             BGE_TX_BACKOFF_SEED_MASK);
1508
1509         /* Set inter-packet gap */
1510         val = 0x2620;
1511         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1512             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1513                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1514                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1515         }
1516         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1517
1518         /*
1519          * Specify which ring to use for packets that don't match
1520          * any RX rules.
1521          */
1522         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1523
1524         /*
1525          * Configure number of RX lists. One interrupt distribution
1526          * list, sixteen active lists, one bad frames class.
1527          */
1528         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1529
1530         /* Inialize RX list placement stats mask. */
1531         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1532         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1533
1534         /* Disable host coalescing until we get it set up */
1535         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1536
1537         /* Poll to make sure it's shut down. */
1538         for (i = 0; i < BNX_TIMEOUT; i++) {
1539                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1540                         break;
1541                 DELAY(10);
1542         }
1543
1544         if (i == BNX_TIMEOUT) {
1545                 if_printf(&sc->arpcom.ac_if,
1546                           "host coalescing engine failed to idle\n");
1547                 return(ENXIO);
1548         }
1549
1550         /* Set up host coalescing defaults */
1551         sc->bnx_coal_chg = BNX_RX_COAL_TICKS_CHG |
1552             BNX_TX_COAL_TICKS_CHG |
1553             BNX_RX_COAL_BDS_CHG |
1554             BNX_TX_COAL_BDS_CHG |
1555             BNX_RX_COAL_BDS_INT_CHG |
1556             BNX_TX_COAL_BDS_INT_CHG;
1557         bnx_coal_change(sc);
1558
1559         /*
1560          * Set up addresses of status blocks
1561          */
1562         intr = &sc->bnx_intr_data[0];
1563         bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1564         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1565             BGE_ADDR_HI(intr->bnx_status_block_paddr));
1566         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1567             BGE_ADDR_LO(intr->bnx_status_block_paddr));
1568         for (i = 1; i < sc->bnx_intr_cnt; ++i) {
1569                 intr = &sc->bnx_intr_data[i];
1570                 bzero(intr->bnx_status_block, BGE_STATUS_BLK_SZ);
1571                 CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_HI + ((i - 1) * 8),
1572                     BGE_ADDR_HI(intr->bnx_status_block_paddr));
1573                 CSR_WRITE_4(sc, BGE_VEC1_STATUSBLK_ADDR_LO + ((i - 1) * 8),
1574                     BGE_ADDR_LO(intr->bnx_status_block_paddr));
1575         }
1576
1577         /* Set up status block partail update size. */
1578         val = BGE_STATBLKSZ_32BYTE;
1579 #if 0
1580         /*
1581          * Does not seem to have visible effect in both
1582          * bulk data (1472B UDP datagram) and tiny data
1583          * (18B UDP datagram) TX tests.
1584          */
1585         val |= BGE_HCCMODE_CLRTICK_TX;
1586 #endif
1587         /* Turn on host coalescing state machine */
1588         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1589
1590         /* Turn on RX BD completion state machine and enable attentions */
1591         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1592             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1593
1594         /* Turn on RX list placement state machine */
1595         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1596
1597         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1598             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1599             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1600             BGE_MACMODE_FRMHDR_DMA_ENB;
1601
1602         if (sc->bnx_flags & BNX_FLAG_TBI)
1603                 val |= BGE_PORTMODE_TBI;
1604         else if (sc->bnx_flags & BNX_FLAG_MII_SERDES)
1605                 val |= BGE_PORTMODE_GMII;
1606         else
1607                 val |= BGE_PORTMODE_MII;
1608
1609         /* Allow APE to send/receive frames. */
1610         if (sc->bnx_mfw_flags & BNX_MFW_ON_APE)
1611                 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
1612
1613         /* Turn on DMA, clear stats */
1614         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1615         DELAY(40);
1616
1617         /* Set misc. local control, enable interrupts on attentions */
1618         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1619
1620 #ifdef notdef
1621         /* Assert GPIO pins for PHY reset */
1622         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1623             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1624         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1625             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1626 #endif
1627
1628         if (sc->bnx_intr_type == PCI_INTR_TYPE_MSIX)
1629                 bnx_enable_msi(sc, TRUE);
1630
1631         /* Turn on write DMA state machine */
1632         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1633         /* Enable host coalescing bug fix. */
1634         val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1635         if (sc->bnx_asicrev == BGE_ASICREV_BCM5785) {
1636                 /* Request larger DMA burst size to get better performance. */
1637                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1638         }
1639         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1640         DELAY(40);
1641
1642         if (BNX_IS_57765_PLUS(sc)) {
1643                 uint32_t dmactl, dmactl_reg;
1644
1645                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1646                         dmactl_reg = BGE_RDMA_RSRVCTRL2;
1647                 else
1648                         dmactl_reg = BGE_RDMA_RSRVCTRL;
1649
1650                 dmactl = CSR_READ_4(sc, dmactl_reg);
1651                 /*
1652                  * Adjust tx margin to prevent TX data corruption and
1653                  * fix internal FIFO overflow.
1654                  */
1655                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1656                     sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1657                     sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1658                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
1659                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
1660                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
1661                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
1662                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
1663                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
1664                 }
1665                 /*
1666                  * Enable fix for read DMA FIFO overruns.
1667                  * The fix is to limit the number of RX BDs
1668                  * the hardware would fetch at a fime.
1669                  */
1670                 CSR_WRITE_4(sc, dmactl_reg,
1671                     dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1672         }
1673
1674         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719) {
1675                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1676                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1677                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
1678                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1679         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1680             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1681                 uint32_t ctrl_reg;
1682
1683                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1684                         ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL2;
1685                 else
1686                         ctrl_reg = BGE_RDMA_LSO_CRPTEN_CTRL;
1687
1688                 /*
1689                  * Allow 4KB burst length reads for non-LSO frames.
1690                  * Enable 512B burst length reads for buffer descriptors.
1691                  */
1692                 CSR_WRITE_4(sc, ctrl_reg,
1693                     CSR_READ_4(sc, ctrl_reg) |
1694                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
1695                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1696         }
1697
1698         /* Turn on read DMA state machine */
1699         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1700         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717)
1701                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1702         if (sc->bnx_asicrev == BGE_ASICREV_BCM5784 ||
1703             sc->bnx_asicrev == BGE_ASICREV_BCM5785 ||
1704             sc->bnx_asicrev == BGE_ASICREV_BCM57780) {
1705                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1706                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1707                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1708         }
1709         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1710             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
1711                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
1712                     BGE_RDMAMODE_H2BNC_VLAN_DET;
1713                 /*
1714                  * Allow multiple outstanding read requests from
1715                  * non-LSO read DMA engine.
1716                  */
1717                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
1718         }
1719         if (sc->bnx_asicrev == BGE_ASICREV_BCM57766)
1720                 val |= BGE_RDMAMODE_JMB_2K_MMRR;
1721         if (sc->bnx_flags & BNX_FLAG_TSO)
1722                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1723         val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1724         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1725         DELAY(40);
1726
1727         /* Turn on RX data completion state machine */
1728         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1729
1730         /* Turn on RX BD initiator state machine */
1731         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1732
1733         /* Turn on RX data and RX BD initiator state machine */
1734         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1735
1736         /* Turn on send BD completion state machine */
1737         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1738
1739         /* Turn on send data completion state machine */
1740         val = BGE_SDCMODE_ENABLE;
1741         if (sc->bnx_asicrev == BGE_ASICREV_BCM5761)
1742                 val |= BGE_SDCMODE_CDELAY; 
1743         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1744
1745         /* Turn on send data initiator state machine */
1746         if (sc->bnx_flags & BNX_FLAG_TSO) {
1747                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1748                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1749         } else {
1750                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1751         }
1752
1753         /* Turn on send BD initiator state machine */
1754         val = BGE_SBDIMODE_ENABLE;
1755         if (sc->bnx_tx_ringcnt > 1)
1756                 val |= BGE_SBDIMODE_MULTI_TXR;
1757         CSR_WRITE_4(sc, BGE_SBDI_MODE, val);
1758
1759         /* Turn on send BD selector state machine */
1760         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1761
1762         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1763         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1764             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1765
1766         /* ack/clear link change events */
1767         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1768             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1769             BGE_MACSTAT_LINK_CHANGED);
1770         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1771
1772         /*
1773          * Enable attention when the link has changed state for
1774          * devices that use auto polling.
1775          */
1776         if (sc->bnx_flags & BNX_FLAG_TBI) {
1777                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1778         } else {
1779                 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
1780                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
1781                         DELAY(80);
1782                 }
1783         }
1784
1785         /*
1786          * Clear any pending link state attention.
1787          * Otherwise some link state change events may be lost until attention
1788          * is cleared by bnx_intr() -> bnx_softc.bnx_link_upd() sequence.
1789          * It's not necessary on newer BCM chips - perhaps enabling link
1790          * state change attentions implies clearing pending attention.
1791          */
1792         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1793             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1794             BGE_MACSTAT_LINK_CHANGED);
1795
1796         /* Enable link state change attentions. */
1797         BNX_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1798
1799         return(0);
1800 }
1801
1802 /*
1803  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1804  * against our list and return its name if we find a match. Note
1805  * that since the Broadcom controller contains VPD support, we
1806  * can get the device name string from the controller itself instead
1807  * of the compiled-in string. This is a little slow, but it guarantees
1808  * we'll always announce the right product name.
1809  */
1810 static int
1811 bnx_probe(device_t dev)
1812 {
1813         const struct bnx_type *t;
1814         uint16_t product, vendor;
1815
1816         if (!pci_is_pcie(dev))
1817                 return ENXIO;
1818
1819         product = pci_get_device(dev);
1820         vendor = pci_get_vendor(dev);
1821
1822         for (t = bnx_devs; t->bnx_name != NULL; t++) {
1823                 if (vendor == t->bnx_vid && product == t->bnx_did)
1824                         break;
1825         }
1826         if (t->bnx_name == NULL)
1827                 return ENXIO;
1828
1829         device_set_desc(dev, t->bnx_name);
1830         return 0;
1831 }
1832
1833 static int
1834 bnx_attach(device_t dev)
1835 {
1836         struct ifnet *ifp;
1837         struct bnx_softc *sc;
1838         struct bnx_rx_std_ring *std;
1839         struct sysctl_ctx_list *ctx;
1840         struct sysctl_oid_list *tree;
1841         uint32_t hwcfg = 0;
1842         int error = 0, rid, capmask, i, std_cpuid, std_cpuid_def;
1843         uint8_t ether_addr[ETHER_ADDR_LEN];
1844         uint16_t product;
1845         uintptr_t mii_priv = 0;
1846 #if defined(BNX_TSO_DEBUG) || defined(BNX_RSS_DEBUG) || defined(BNX_TSS_DEBUG)
1847         char desc[32];
1848 #endif
1849 #ifdef IFPOLL_ENABLE
1850         int offset, offset_def;
1851 #endif
1852
1853         sc = device_get_softc(dev);
1854         sc->bnx_dev = dev;
1855         callout_init_mp(&sc->bnx_tick_timer);
1856         lwkt_serialize_init(&sc->bnx_jslot_serializer);
1857         lwkt_serialize_init(&sc->bnx_main_serialize);
1858
1859         /* Always setup interrupt mailboxes */
1860         for (i = 0; i < BNX_INTR_MAX; ++i) {
1861                 callout_init_mp(&sc->bnx_intr_data[i].bnx_intr_timer);
1862                 sc->bnx_intr_data[i].bnx_sc = sc;
1863                 sc->bnx_intr_data[i].bnx_intr_mbx = BGE_MBX_IRQ0_LO + (i * 8);
1864                 sc->bnx_intr_data[i].bnx_intr_rid = -1;
1865                 sc->bnx_intr_data[i].bnx_intr_cpuid = -1;
1866         }
1867
1868         sc->bnx_func_addr = pci_get_function(dev);
1869         product = pci_get_device(dev);
1870
1871 #ifndef BURN_BRIDGES
1872         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1873                 uint32_t irq, mem;
1874
1875                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1876                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1877
1878                 device_printf(dev, "chip is in D%d power mode "
1879                     "-- setting to D0\n", pci_get_powerstate(dev));
1880
1881                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1882
1883                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1884                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1885         }
1886 #endif  /* !BURN_BRIDGE */
1887
1888         /*
1889          * Map control/status registers.
1890          */
1891         pci_enable_busmaster(dev);
1892
1893         rid = BGE_PCI_BAR0;
1894         sc->bnx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1895             RF_ACTIVE);
1896
1897         if (sc->bnx_res == NULL) {
1898                 device_printf(dev, "couldn't map memory\n");
1899                 return ENXIO;
1900         }
1901
1902         sc->bnx_btag = rman_get_bustag(sc->bnx_res);
1903         sc->bnx_bhandle = rman_get_bushandle(sc->bnx_res);
1904
1905         /* Save various chip information */
1906         sc->bnx_chipid =
1907             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1908             BGE_PCIMISCCTL_ASICREV_SHIFT;
1909         if (BGE_ASICREV(sc->bnx_chipid) == BGE_ASICREV_USE_PRODID_REG) {
1910                 /* All chips having dedicated ASICREV register have CPMU */
1911                 sc->bnx_flags |= BNX_FLAG_CPMU;
1912
1913                 switch (product) {
1914                 case PCI_PRODUCT_BROADCOM_BCM5717:
1915                 case PCI_PRODUCT_BROADCOM_BCM5717C:
1916                 case PCI_PRODUCT_BROADCOM_BCM5718:
1917                 case PCI_PRODUCT_BROADCOM_BCM5719:
1918                 case PCI_PRODUCT_BROADCOM_BCM5720_ALT:
1919                 case PCI_PRODUCT_BROADCOM_BCM5725:
1920                 case PCI_PRODUCT_BROADCOM_BCM5727:
1921                 case PCI_PRODUCT_BROADCOM_BCM5762:
1922                         sc->bnx_chipid = pci_read_config(dev,
1923                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
1924                         break;
1925
1926                 case PCI_PRODUCT_BROADCOM_BCM57761:
1927                 case PCI_PRODUCT_BROADCOM_BCM57762:
1928                 case PCI_PRODUCT_BROADCOM_BCM57765:
1929                 case PCI_PRODUCT_BROADCOM_BCM57766:
1930                 case PCI_PRODUCT_BROADCOM_BCM57781:
1931                 case PCI_PRODUCT_BROADCOM_BCM57782:
1932                 case PCI_PRODUCT_BROADCOM_BCM57785:
1933                 case PCI_PRODUCT_BROADCOM_BCM57786:
1934                 case PCI_PRODUCT_BROADCOM_BCM57791:
1935                 case PCI_PRODUCT_BROADCOM_BCM57795:
1936                         sc->bnx_chipid = pci_read_config(dev,
1937                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
1938                         break;
1939
1940                 default:
1941                         sc->bnx_chipid = pci_read_config(dev,
1942                             BGE_PCI_PRODID_ASICREV, 4);
1943                         break;
1944                 }
1945         }
1946         if (sc->bnx_chipid == BGE_CHIPID_BCM5717_C0)
1947                 sc->bnx_chipid = BGE_CHIPID_BCM5720_A0;
1948
1949         sc->bnx_asicrev = BGE_ASICREV(sc->bnx_chipid);
1950         sc->bnx_chiprev = BGE_CHIPREV(sc->bnx_chipid);
1951
1952         switch (sc->bnx_asicrev) {
1953         case BGE_ASICREV_BCM5717:
1954         case BGE_ASICREV_BCM5719:
1955         case BGE_ASICREV_BCM5720:
1956                 sc->bnx_flags |= BNX_FLAG_5717_PLUS | BNX_FLAG_57765_PLUS;
1957                 break;
1958
1959         case BGE_ASICREV_BCM5762:
1960                 sc->bnx_flags |= BNX_FLAG_57765_PLUS;
1961                 break;
1962
1963         case BGE_ASICREV_BCM57765:
1964         case BGE_ASICREV_BCM57766:
1965                 sc->bnx_flags |= BNX_FLAG_57765_FAMILY | BNX_FLAG_57765_PLUS;
1966                 break;
1967         }
1968
1969         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1970             sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1971             sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
1972             sc->bnx_asicrev == BGE_ASICREV_BCM5762)
1973                 sc->bnx_flags |= BNX_FLAG_APE;
1974
1975         sc->bnx_flags |= BNX_FLAG_TSO;
1976         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 &&
1977             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0)
1978                 sc->bnx_flags &= ~BNX_FLAG_TSO;
1979
1980         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1981             BNX_IS_57765_FAMILY(sc)) {
1982                 /*
1983                  * All BCM57785 and BCM5718 families chips have a bug that
1984                  * under certain situation interrupt will not be enabled
1985                  * even if status tag is written to interrupt mailbox.
1986                  *
1987                  * While BCM5719 and BCM5720 have a hardware workaround
1988                  * which could fix the above bug.
1989                  * See the comment near BGE_PCIDMARWCTL_TAGGED_STATUS_WA in
1990                  * bnx_chipinit().
1991                  *
1992                  * For the rest of the chips in these two families, we will
1993                  * have to poll the status block at high rate (10ms currently)
1994                  * to check whether the interrupt is hosed or not.
1995                  * See bnx_check_intr_*() for details.
1996                  */
1997                 sc->bnx_flags |= BNX_FLAG_STATUSTAG_BUG;
1998         }
1999
2000         sc->bnx_pciecap = pci_get_pciecap_ptr(sc->bnx_dev);
2001         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
2002             sc->bnx_asicrev == BGE_ASICREV_BCM5720)
2003                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_2048);
2004         else
2005                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2006         device_printf(dev, "CHIP ID 0x%08x; "
2007                       "ASIC REV 0x%02x; CHIP REV 0x%02x\n",
2008                       sc->bnx_chipid, sc->bnx_asicrev, sc->bnx_chiprev);
2009
2010         /*
2011          * Set various PHY quirk flags.
2012          */
2013
2014         capmask = MII_CAPMASK_DEFAULT;
2015         if (product == PCI_PRODUCT_BROADCOM_BCM57791 ||
2016             product == PCI_PRODUCT_BROADCOM_BCM57795) {
2017                 /* 10/100 only */
2018                 capmask &= ~BMSR_EXTSTAT;
2019         }
2020
2021         mii_priv |= BRGPHY_FLAG_WIRESPEED;
2022         if (sc->bnx_chipid == BGE_CHIPID_BCM5762_A0)
2023                 mii_priv |= BRGPHY_FLAG_5762_A0;
2024
2025         /*
2026          * Chips with APE need BAR2 access for APE registers/memory.
2027          */
2028         if (sc->bnx_flags & BNX_FLAG_APE) {
2029                 uint32_t pcistate;
2030
2031                 rid = PCIR_BAR(2);
2032                 sc->bnx_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2033                     RF_ACTIVE);
2034                 if (sc->bnx_res2 == NULL) {
2035                         device_printf(dev, "couldn't map BAR2 memory\n");
2036                         error = ENXIO;
2037                         goto fail;
2038                 }
2039
2040                 /* Enable APE register/memory access by host driver. */
2041                 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2042                 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2043                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2044                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2045                 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
2046
2047                 bnx_ape_lock_init(sc);
2048                 bnx_ape_read_fw_ver(sc);
2049         }
2050
2051         /* Initialize if_name earlier, so if_printf could be used */
2052         ifp = &sc->arpcom.ac_if;
2053         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2054
2055         /*
2056          * Try to reset the chip.
2057          */
2058         bnx_sig_pre_reset(sc, BNX_RESET_SHUTDOWN);
2059         bnx_reset(sc);
2060         bnx_sig_post_reset(sc, BNX_RESET_SHUTDOWN);
2061
2062         if (bnx_chipinit(sc)) {
2063                 device_printf(dev, "chip initialization failed\n");
2064                 error = ENXIO;
2065                 goto fail;
2066         }
2067
2068         /*
2069          * Get station address
2070          */
2071         error = bnx_get_eaddr(sc, ether_addr);
2072         if (error) {
2073                 device_printf(dev, "failed to read station address\n");
2074                 goto fail;
2075         }
2076
2077         /* Setup RX/TX and interrupt count */
2078         bnx_setup_ring_cnt(sc);
2079
2080         if ((sc->bnx_rx_retcnt == 1 && sc->bnx_tx_ringcnt == 1) ||
2081             (sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt > 1)) {
2082                 /*
2083                  * The RX ring and the corresponding TX ring processing
2084                  * should be on the same CPU, since they share the same
2085                  * status block.
2086                  */
2087                 sc->bnx_flags |= BNX_FLAG_RXTX_BUNDLE;
2088                 if (bootverbose)
2089                         device_printf(dev, "RX/TX bundle\n");
2090                 if (sc->bnx_tx_ringcnt > 1) {
2091                         /*
2092                          * Multiple TX rings do not share status block
2093                          * with link status, so link status will have
2094                          * to save its own status_tag.
2095                          */
2096                         sc->bnx_flags |= BNX_FLAG_STATUS_HASTAG;
2097                         if (bootverbose)
2098                                 device_printf(dev, "status needs tag\n");
2099                 }
2100         } else {
2101                 KKASSERT(sc->bnx_rx_retcnt > 1 && sc->bnx_tx_ringcnt == 1);
2102                 if (bootverbose)
2103                         device_printf(dev, "RX/TX not bundled\n");
2104         }
2105
2106         error = bnx_dma_alloc(dev);
2107         if (error)
2108                 goto fail;
2109
2110 #ifdef IFPOLL_ENABLE
2111         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
2112                 /*
2113                  * NPOLLING RX/TX CPU offset
2114                  */
2115                 if (sc->bnx_rx_retcnt == ncpus2) {
2116                         offset = 0;
2117                 } else {
2118                         offset_def =
2119                         (sc->bnx_rx_retcnt * device_get_unit(dev)) % ncpus2;
2120                         offset = device_getenv_int(dev, "npoll.offset",
2121                             offset_def);
2122                         if (offset >= ncpus2 ||
2123                             offset % sc->bnx_rx_retcnt != 0) {
2124                                 device_printf(dev, "invalid npoll.offset %d, "
2125                                     "use %d\n", offset, offset_def);
2126                                 offset = offset_def;
2127                         }
2128                 }
2129                 sc->bnx_npoll_rxoff = offset;
2130                 sc->bnx_npoll_txoff = offset;
2131         } else {
2132                 /*
2133                  * NPOLLING RX CPU offset
2134                  */
2135                 if (sc->bnx_rx_retcnt == ncpus2) {
2136                         offset = 0;
2137                 } else {
2138                         offset_def =
2139                         (sc->bnx_rx_retcnt * device_get_unit(dev)) % ncpus2;
2140                         offset = device_getenv_int(dev, "npoll.rxoff",
2141                             offset_def);
2142                         if (offset >= ncpus2 ||
2143                             offset % sc->bnx_rx_retcnt != 0) {
2144                                 device_printf(dev, "invalid npoll.rxoff %d, "
2145                                     "use %d\n", offset, offset_def);
2146                                 offset = offset_def;
2147                         }
2148                 }
2149                 sc->bnx_npoll_rxoff = offset;
2150
2151                 /*
2152                  * NPOLLING TX CPU offset
2153                  */
2154                 offset_def = device_get_unit(dev) % ncpus2;
2155                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
2156                 if (offset >= ncpus2) {
2157                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
2158                             offset, offset_def);
2159                         offset = offset_def;
2160                 }
2161                 sc->bnx_npoll_txoff = offset;
2162         }
2163 #endif  /* IFPOLL_ENABLE */
2164
2165         /*
2166          * Allocate interrupt
2167          */
2168         error = bnx_alloc_intr(sc);
2169         if (error)
2170                 goto fail;
2171
2172         /* Setup serializers */
2173         bnx_setup_serialize(sc);
2174
2175         /* Set default tuneable values. */
2176         sc->bnx_rx_coal_ticks = BNX_RX_COAL_TICKS_DEF;
2177         sc->bnx_tx_coal_ticks = BNX_TX_COAL_TICKS_DEF;
2178         sc->bnx_rx_coal_bds = BNX_RX_COAL_BDS_DEF;
2179         sc->bnx_rx_coal_bds_poll = sc->bnx_rx_ret_ring[0].bnx_rx_cntmax;
2180         sc->bnx_tx_coal_bds = BNX_TX_COAL_BDS_DEF;
2181         sc->bnx_tx_coal_bds_poll = BNX_TX_COAL_BDS_POLL_DEF;
2182         sc->bnx_rx_coal_bds_int = BNX_RX_COAL_BDS_INT_DEF;
2183         sc->bnx_tx_coal_bds_int = BNX_TX_COAL_BDS_INT_DEF;
2184
2185         /* Set up ifnet structure */
2186         ifp->if_softc = sc;
2187         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2188         ifp->if_ioctl = bnx_ioctl;
2189         ifp->if_start = bnx_start;
2190 #ifdef IFPOLL_ENABLE
2191         ifp->if_npoll = bnx_npoll;
2192 #endif
2193         ifp->if_init = bnx_init;
2194         ifp->if_serialize = bnx_serialize;
2195         ifp->if_deserialize = bnx_deserialize;
2196         ifp->if_tryserialize = bnx_tryserialize;
2197 #ifdef INVARIANTS
2198         ifp->if_serialize_assert = bnx_serialize_assert;
2199 #endif
2200         ifp->if_mtu = ETHERMTU;
2201         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2202
2203         ifp->if_capabilities |= IFCAP_HWCSUM;
2204         ifp->if_hwassist = BNX_CSUM_FEATURES;
2205         if (sc->bnx_flags & BNX_FLAG_TSO) {
2206                 ifp->if_capabilities |= IFCAP_TSO;
2207                 ifp->if_hwassist |= CSUM_TSO;
2208         }
2209         if (BNX_RSS_ENABLED(sc))
2210                 ifp->if_capabilities |= IFCAP_RSS;
2211         ifp->if_capenable = ifp->if_capabilities;
2212
2213         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2214         ifq_set_ready(&ifp->if_snd);
2215         ifq_set_subq_cnt(&ifp->if_snd, sc->bnx_tx_ringcnt);
2216
2217         if (sc->bnx_tx_ringcnt > 1) {
2218                 ifp->if_mapsubq = ifq_mapsubq_mask;
2219                 ifq_set_subq_mask(&ifp->if_snd, sc->bnx_tx_ringcnt - 1);
2220         }
2221
2222         /*
2223          * Figure out what sort of media we have by checking the
2224          * hardware config word in the first 32k of NIC internal memory,
2225          * or fall back to examining the EEPROM if necessary.
2226          * Note: on some BCM5700 cards, this value appears to be unset.
2227          * If that's the case, we have to rely on identifying the NIC
2228          * by its PCI subsystem ID, as we do below for the SysKonnect
2229          * SK-9D41.
2230          */
2231         if (bnx_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
2232                 hwcfg = bnx_readmem_ind(sc, BGE_SRAM_DATA_CFG);
2233         } else {
2234                 if (bnx_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2235                                     sizeof(hwcfg))) {
2236                         device_printf(dev, "failed to read EEPROM\n");
2237                         error = ENXIO;
2238                         goto fail;
2239                 }
2240                 hwcfg = ntohl(hwcfg);
2241         }
2242
2243         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2244         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2245             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2246                 sc->bnx_flags |= BNX_FLAG_TBI;
2247
2248         /* Setup MI MODE */
2249         if (sc->bnx_flags & BNX_FLAG_CPMU)
2250                 sc->bnx_mi_mode = BGE_MIMODE_500KHZ_CONST;
2251         else
2252                 sc->bnx_mi_mode = BGE_MIMODE_BASE;
2253
2254         /* Setup link status update stuffs */
2255         if (sc->bnx_flags & BNX_FLAG_TBI) {
2256                 sc->bnx_link_upd = bnx_tbi_link_upd;
2257                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2258         } else if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
2259                 sc->bnx_link_upd = bnx_autopoll_link_upd;
2260                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2261         } else {
2262                 sc->bnx_link_upd = bnx_copper_link_upd;
2263                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2264         }
2265
2266         /* Set default PHY address */
2267         sc->bnx_phyno = 1;
2268
2269         /*
2270          * PHY address mapping for various devices.
2271          *
2272          *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2273          * ---------+-------+-------+-------+-------+
2274          * BCM57XX  |   1   |   X   |   X   |   X   |
2275          * BCM5717  |   1   |   8   |   2   |   9   |
2276          * BCM5719  |   1   |   8   |   2   |   9   |
2277          * BCM5720  |   1   |   8   |   2   |   9   |
2278          *
2279          *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2280          * ---------+-------+-------+-------+-------+
2281          * BCM57XX  |   X   |   X   |   X   |   X   |
2282          * BCM5717  |   X   |   X   |   X   |   X   |
2283          * BCM5719  |   3   |   10  |   4   |   11  |
2284          * BCM5720  |   X   |   X   |   X   |   X   |
2285          *
2286          * Other addresses may respond but they are not
2287          * IEEE compliant PHYs and should be ignored.
2288          */
2289         if (BNX_IS_5717_PLUS(sc)) {
2290                 if (sc->bnx_chipid == BGE_CHIPID_BCM5717_A0) {
2291                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2292                             BGE_SGDIGSTS_IS_SERDES)
2293                                 sc->bnx_phyno = sc->bnx_func_addr + 8;
2294                         else
2295                                 sc->bnx_phyno = sc->bnx_func_addr + 1;
2296                 } else {
2297                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2298                             BGE_CPMU_PHY_STRAP_IS_SERDES)
2299                                 sc->bnx_phyno = sc->bnx_func_addr + 8;
2300                         else
2301                                 sc->bnx_phyno = sc->bnx_func_addr + 1;
2302                 }
2303         }
2304
2305         if (sc->bnx_flags & BNX_FLAG_TBI) {
2306                 ifmedia_init(&sc->bnx_ifmedia, IFM_IMASK,
2307                     bnx_ifmedia_upd, bnx_ifmedia_sts);
2308                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2309                 ifmedia_add(&sc->bnx_ifmedia,
2310                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2311                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2312                 ifmedia_set(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO);
2313                 sc->bnx_ifmedia.ifm_media = sc->bnx_ifmedia.ifm_cur->ifm_media;
2314         } else {
2315                 struct mii_probe_args mii_args;
2316
2317                 mii_probe_args_init(&mii_args, bnx_ifmedia_upd, bnx_ifmedia_sts);
2318                 mii_args.mii_probemask = 1 << sc->bnx_phyno;
2319                 mii_args.mii_capmask = capmask;
2320                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2321                 mii_args.mii_priv = mii_priv;
2322
2323                 error = mii_probe(dev, &sc->bnx_miibus, &mii_args);
2324                 if (error) {
2325                         device_printf(dev, "MII without any PHY!\n");
2326                         goto fail;
2327                 }
2328         }
2329
2330         ctx = device_get_sysctl_ctx(sc->bnx_dev);
2331         tree = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bnx_dev));
2332
2333         SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2334             "rx_rings", CTLFLAG_RD, &sc->bnx_rx_retcnt, 0, "# of RX rings");
2335         SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2336             "tx_rings", CTLFLAG_RD, &sc->bnx_tx_ringcnt, 0, "# of TX rings");
2337
2338         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_coal_ticks",
2339                         CTLTYPE_INT | CTLFLAG_RW,
2340                         sc, 0, bnx_sysctl_rx_coal_ticks, "I",
2341                         "Receive coalescing ticks (usec).");
2342         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_coal_ticks",
2343                         CTLTYPE_INT | CTLFLAG_RW,
2344                         sc, 0, bnx_sysctl_tx_coal_ticks, "I",
2345                         "Transmit coalescing ticks (usec).");
2346         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_coal_bds",
2347                         CTLTYPE_INT | CTLFLAG_RW,
2348                         sc, 0, bnx_sysctl_rx_coal_bds, "I",
2349                         "Receive max coalesced BD count.");
2350         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rx_coal_bds_poll",
2351                         CTLTYPE_INT | CTLFLAG_RW,
2352                         sc, 0, bnx_sysctl_rx_coal_bds_poll, "I",
2353                         "Receive max coalesced BD count in polling.");
2354         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_coal_bds",
2355                         CTLTYPE_INT | CTLFLAG_RW,
2356                         sc, 0, bnx_sysctl_tx_coal_bds, "I",
2357                         "Transmit max coalesced BD count.");
2358         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "tx_coal_bds_poll",
2359                         CTLTYPE_INT | CTLFLAG_RW,
2360                         sc, 0, bnx_sysctl_tx_coal_bds_poll, "I",
2361                         "Transmit max coalesced BD count in polling.");
2362         /*
2363          * A common design characteristic for many Broadcom
2364          * client controllers is that they only support a
2365          * single outstanding DMA read operation on the PCIe
2366          * bus. This means that it will take twice as long to
2367          * fetch a TX frame that is split into header and
2368          * payload buffers as it does to fetch a single,
2369          * contiguous TX frame (2 reads vs. 1 read). For these
2370          * controllers, coalescing buffers to reduce the number
2371          * of memory reads is effective way to get maximum
2372          * performance(about 940Mbps).  Without collapsing TX
2373          * buffers the maximum TCP bulk transfer performance
2374          * is about 850Mbps. However forcing coalescing mbufs
2375          * consumes a lot of CPU cycles, so leave it off by
2376          * default.
2377          */
2378         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2379             "force_defrag", CTLTYPE_INT | CTLFLAG_RW,
2380             sc, 0, bnx_sysctl_force_defrag, "I",
2381             "Force defragment on TX path");
2382
2383         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2384             "tx_wreg", CTLTYPE_INT | CTLFLAG_RW,
2385             sc, 0, bnx_sysctl_tx_wreg, "I",
2386             "# of segments before writing to hardware register");
2387
2388         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2389             "std_refill", CTLTYPE_INT | CTLFLAG_RW,
2390             sc, 0, bnx_sysctl_std_refill, "I",
2391             "# of packets received before scheduling standard refilling");
2392
2393         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2394             "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2395             sc, 0, bnx_sysctl_rx_coal_bds_int, "I",
2396             "Receive max coalesced BD count during interrupt.");
2397         SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2398             "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2399             sc, 0, bnx_sysctl_tx_coal_bds_int, "I",
2400             "Transmit max coalesced BD count during interrupt.");
2401
2402 #ifdef IFPOLL_ENABLE
2403         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
2404                 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2405                     "npoll_offset", CTLTYPE_INT | CTLFLAG_RW,
2406                     sc, 0, bnx_sysctl_npoll_offset, "I",
2407                     "NPOLLING cpu offset");
2408         } else {
2409                 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2410                     "npoll_rxoff", CTLTYPE_INT | CTLFLAG_RW,
2411                     sc, 0, bnx_sysctl_npoll_rxoff, "I",
2412                     "NPOLLING RX cpu offset");
2413                 SYSCTL_ADD_PROC(ctx, tree, OID_AUTO,
2414                     "npoll_txoff", CTLTYPE_INT | CTLFLAG_RW,
2415                     sc, 0, bnx_sysctl_npoll_txoff, "I",
2416                     "NPOLLING TX cpu offset");
2417         }
2418 #endif
2419
2420 #ifdef BNX_RSS_DEBUG
2421         SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2422             "std_refill_mask", CTLFLAG_RD,
2423             &sc->bnx_rx_std_ring.bnx_rx_std_refill, 0, "");
2424         SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2425             "std_used", CTLFLAG_RD,
2426             &sc->bnx_rx_std_ring.bnx_rx_std_used, 0, "");
2427         SYSCTL_ADD_INT(ctx, tree, OID_AUTO,
2428             "rss_debug", CTLFLAG_RW, &sc->bnx_rss_debug, 0, "");
2429         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
2430                 ksnprintf(desc, sizeof(desc), "rx_pkt%d", i);
2431                 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2432                     desc, CTLFLAG_RW, &sc->bnx_rx_ret_ring[i].bnx_rx_pkt, "");
2433
2434                 ksnprintf(desc, sizeof(desc), "rx_force_sched%d", i);
2435                 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2436                     desc, CTLFLAG_RW,
2437                     &sc->bnx_rx_ret_ring[i].bnx_rx_force_sched, "");
2438         }
2439 #endif
2440 #ifdef BNX_TSS_DEBUG
2441         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2442                 ksnprintf(desc, sizeof(desc), "tx_pkt%d", i);
2443                 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2444                     desc, CTLFLAG_RW, &sc->bnx_tx_ring[i].bnx_tx_pkt, "");
2445         }
2446 #endif
2447
2448         SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2449             "norxbds", CTLFLAG_RW, &sc->bnx_norxbds, "");
2450
2451         SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2452             "errors", CTLFLAG_RW, &sc->bnx_errors, "");
2453
2454 #ifdef BNX_TSO_DEBUG
2455         for (i = 0; i < BNX_TSO_NSTATS; ++i) {
2456                 ksnprintf(desc, sizeof(desc), "tso%d", i + 1);
2457                 SYSCTL_ADD_ULONG(ctx, tree, OID_AUTO,
2458                     desc, CTLFLAG_RW, &sc->bnx_tsosegs[i], "");
2459         }
2460 #endif
2461
2462         /*
2463          * Call MI attach routine.
2464          */
2465         ether_ifattach(ifp, ether_addr, NULL);
2466
2467         /* Setup TX rings and subqueues */
2468         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
2469                 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
2470                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
2471
2472                 ifsq_set_cpuid(ifsq, txr->bnx_tx_cpuid);
2473                 ifsq_set_hw_serialize(ifsq, &txr->bnx_tx_serialize);
2474                 ifsq_set_priv(ifsq, txr);
2475                 txr->bnx_ifsq = ifsq;
2476
2477                 ifsq_watchdog_init(&txr->bnx_tx_watchdog, ifsq, bnx_watchdog);
2478
2479                 if (bootverbose) {
2480                         device_printf(dev, "txr %d -> cpu%d\n", i,
2481                             txr->bnx_tx_cpuid);
2482                 }
2483         }
2484
2485         error = bnx_setup_intr(sc);
2486         if (error) {
2487                 ether_ifdetach(ifp);
2488                 goto fail;
2489         }
2490         bnx_set_tick_cpuid(sc, FALSE);
2491
2492         /*
2493          * Create RX standard ring refilling thread
2494          */
2495         std_cpuid_def = device_get_unit(dev) % ncpus;
2496         std_cpuid = device_getenv_int(dev, "std.cpuid", std_cpuid_def);
2497         if (std_cpuid < 0 || std_cpuid >= ncpus) {
2498                 device_printf(dev, "invalid std.cpuid %d, use %d\n",
2499                     std_cpuid, std_cpuid_def);
2500                 std_cpuid = std_cpuid_def;
2501         }
2502
2503         std = &sc->bnx_rx_std_ring;
2504         lwkt_create(bnx_rx_std_refill_ithread, std, NULL,
2505             &std->bnx_rx_std_ithread, TDF_NOSTART | TDF_INTTHREAD, std_cpuid,
2506             "%s std", device_get_nameunit(dev));
2507         lwkt_setpri(&std->bnx_rx_std_ithread, TDPRI_INT_MED);
2508         std->bnx_rx_std_ithread.td_preemptable = lwkt_preempt;
2509         sc->bnx_flags |= BNX_FLAG_STD_THREAD;
2510
2511         return(0);
2512 fail:
2513         bnx_detach(dev);
2514         return(error);
2515 }
2516
2517 static int
2518 bnx_detach(device_t dev)
2519 {
2520         struct bnx_softc *sc = device_get_softc(dev);
2521
2522         if (device_is_attached(dev)) {
2523                 struct ifnet *ifp = &sc->arpcom.ac_if;
2524
2525                 ifnet_serialize_all(ifp);
2526                 bnx_stop(sc);
2527                 bnx_teardown_intr(sc, sc->bnx_intr_cnt);
2528                 ifnet_deserialize_all(ifp);
2529
2530                 ether_ifdetach(ifp);
2531         }
2532
2533         if (sc->bnx_flags & BNX_FLAG_STD_THREAD) {
2534                 struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
2535
2536                 tsleep_interlock(std, 0);
2537
2538                 if (std->bnx_rx_std_ithread.td_gd == mycpu) {
2539                         bnx_rx_std_refill_stop(std);
2540                 } else {
2541                         lwkt_send_ipiq(std->bnx_rx_std_ithread.td_gd,
2542                             bnx_rx_std_refill_stop, std);
2543                 }
2544
2545                 tsleep(std, PINTERLOCKED, "bnx_detach", 0);
2546                 if (bootverbose)
2547                         device_printf(dev, "RX std ithread exited\n");
2548
2549                 lwkt_synchronize_ipiqs("bnx_detach_ipiq");
2550         }
2551
2552         if (sc->bnx_flags & BNX_FLAG_TBI)
2553                 ifmedia_removeall(&sc->bnx_ifmedia);
2554         if (sc->bnx_miibus)
2555                 device_delete_child(dev, sc->bnx_miibus);
2556         bus_generic_detach(dev);
2557
2558         bnx_free_intr(sc);
2559
2560         if (sc->bnx_msix_mem_res != NULL) {
2561                 bus_release_resource(dev, SYS_RES_MEMORY, sc->bnx_msix_mem_rid,
2562                     sc->bnx_msix_mem_res);
2563         }
2564         if (sc->bnx_res != NULL) {
2565                 bus_release_resource(dev, SYS_RES_MEMORY,
2566                     BGE_PCI_BAR0, sc->bnx_res);
2567         }
2568         if (sc->bnx_res2 != NULL) {
2569                 bus_release_resource(dev, SYS_RES_MEMORY,
2570                     PCIR_BAR(2), sc->bnx_res2);
2571         }
2572
2573         bnx_dma_free(sc);
2574
2575         if (sc->bnx_serialize != NULL)
2576                 kfree(sc->bnx_serialize, M_DEVBUF);
2577
2578         return 0;
2579 }
2580
2581 static void
2582 bnx_reset(struct bnx_softc *sc)
2583 {
2584         device_t dev = sc->bnx_dev;
2585         uint32_t cachesize, command, reset, mac_mode, mac_mode_mask;
2586         void (*write_op)(struct bnx_softc *, uint32_t, uint32_t);
2587         int i, val = 0;
2588         uint16_t devctl;
2589
2590         mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
2591         if (sc->bnx_mfw_flags & BNX_MFW_ON_APE)
2592                 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2593         mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
2594
2595         write_op = bnx_writemem_direct;
2596
2597         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
2598         for (i = 0; i < 8000; i++) {
2599                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
2600                         break;
2601                 DELAY(20);
2602         }
2603         if (i == 8000)
2604                 if_printf(&sc->arpcom.ac_if, "NVRAM lock timedout!\n");
2605
2606         /* Take APE lock when performing reset. */
2607         bnx_ape_lock(sc, BGE_APE_LOCK_GRC);
2608
2609         /* Save some important PCI state. */
2610         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2611         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2612
2613         pci_write_config(dev, BGE_PCI_MISC_CTL,
2614             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2615             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2616             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2617
2618         /* Disable fastboot on controllers that support it. */
2619         if (bootverbose)
2620                 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2621         CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2622
2623         /*
2624          * Write the magic number to SRAM at offset 0xB50.
2625          * When firmware finishes its initialization it will
2626          * write ~BGE_SRAM_FW_MB_MAGIC to the same location.
2627          */
2628         bnx_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2629
2630         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2631
2632         /* XXX: Broadcom Linux driver. */
2633         /* Force PCI-E 1.0a mode */
2634         if (!BNX_IS_57765_PLUS(sc) &&
2635             CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2636             (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2637              BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2638                 CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2639                     BGE_PCIE_PHY_TSTCTL_PSCRAM);
2640         }
2641         if (sc->bnx_chipid != BGE_CHIPID_BCM5750_A0) {
2642                 /* Prevent PCIE link training during global reset */
2643                 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2644                 reset |= (1<<29);
2645         }
2646
2647         /* 
2648          * Set GPHY Power Down Override to leave GPHY
2649          * powered up in D0 uninitialized.
2650          */
2651         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0)
2652                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2653
2654         /* Issue global reset */
2655         write_op(sc, BGE_MISC_CFG, reset);
2656
2657         DELAY(100 * 1000);
2658
2659         /* XXX: Broadcom Linux driver. */
2660         if (sc->bnx_chipid == BGE_CHIPID_BCM5750_A0) {
2661                 uint32_t v;
2662
2663                 DELAY(500000); /* wait for link training to complete */
2664                 v = pci_read_config(dev, 0xc4, 4);
2665                 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2666         }
2667
2668         devctl = pci_read_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL, 2);
2669
2670         /* Disable no snoop and disable relaxed ordering. */
2671         devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2672
2673         /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2674         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0) {
2675                 devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2676                 devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2677         }
2678
2679         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL,
2680             devctl, 2);
2681
2682         /* Clear error status. */
2683         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVSTS,
2684             PCIEM_DEVSTS_CORR_ERR |
2685             PCIEM_DEVSTS_NFATAL_ERR |
2686             PCIEM_DEVSTS_FATAL_ERR |
2687             PCIEM_DEVSTS_UNSUPP_REQ, 2);
2688
2689         /* Reset some of the PCI state that got zapped by reset */
2690         pci_write_config(dev, BGE_PCI_MISC_CTL,
2691             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2692             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2693             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2694         val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
2695         if (sc->bnx_mfw_flags & BNX_MFW_ON_APE) {
2696                 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
2697                     BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
2698                     BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
2699         }
2700         pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
2701         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2702         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2703
2704         /* Enable memory arbiter */
2705         CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2706
2707         /* Fix up byte swapping */
2708         CSR_WRITE_4(sc, BGE_MODE_CTL, bnx_dma_swap_options(sc));
2709
2710         val = CSR_READ_4(sc, BGE_MAC_MODE);
2711         val = (val & ~mac_mode_mask) | mac_mode;
2712         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2713         DELAY(40);
2714
2715         bnx_ape_unlock(sc, BGE_APE_LOCK_GRC);
2716
2717         /*
2718          * Poll until we see the 1's complement of the magic number.
2719          * This indicates that the firmware initialization is complete.
2720          */
2721         for (i = 0; i < BNX_FIRMWARE_TIMEOUT; i++) {
2722                 val = bnx_readmem_ind(sc, BGE_SRAM_FW_MB);
2723                 if (val == ~BGE_SRAM_FW_MB_MAGIC)
2724                         break;
2725                 DELAY(10);
2726         }
2727         if (i == BNX_FIRMWARE_TIMEOUT) {
2728                 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2729                           "timed out, found 0x%08x\n", val);
2730         }
2731
2732         /* BCM57765 A0 needs additional time before accessing. */
2733         if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
2734                 DELAY(10 * 1000);
2735
2736         /*
2737          * The 5704 in TBI mode apparently needs some special
2738          * adjustment to insure the SERDES drive level is set
2739          * to 1.2V.
2740          */
2741         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704 &&
2742             (sc->bnx_flags & BNX_FLAG_TBI)) {
2743                 uint32_t serdescfg;
2744
2745                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2746                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2747                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2748         }
2749
2750         CSR_WRITE_4(sc, BGE_MI_MODE,
2751             sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
2752         DELAY(80);
2753
2754         /* XXX: Broadcom Linux driver. */
2755         if (!BNX_IS_57765_PLUS(sc)) {
2756                 uint32_t v;
2757
2758                 /* Enable Data FIFO protection. */
2759                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2760                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2761         }
2762
2763         DELAY(10000);
2764
2765         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
2766                 BNX_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
2767                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
2768         }
2769 }
2770
2771 /*
2772  * Frame reception handling. This is called if there's a frame
2773  * on the receive return list.
2774  *
2775  * Note: we have to be able to handle two possibilities here:
2776  * 1) the frame is from the jumbo recieve ring
2777  * 2) the frame is from the standard receive ring
2778  */
2779
2780 static void
2781 bnx_rxeof(struct bnx_rx_ret_ring *ret, uint16_t rx_prod, int count)
2782 {
2783         struct bnx_softc *sc = ret->bnx_sc;
2784         struct bnx_rx_std_ring *std = ret->bnx_std;
2785         struct ifnet *ifp = &sc->arpcom.ac_if;
2786         int std_used = 0, cpuid = mycpuid;
2787
2788         while (ret->bnx_rx_saved_considx != rx_prod && count != 0) {
2789                 struct pktinfo pi0, *pi = NULL;
2790                 struct bge_rx_bd *cur_rx;
2791                 struct bnx_rx_buf *rb;
2792                 uint32_t rxidx;
2793                 struct mbuf *m = NULL;
2794                 uint16_t vlan_tag = 0;
2795                 int have_tag = 0;
2796
2797                 --count;
2798
2799                 cur_rx = &ret->bnx_rx_ret_ring[ret->bnx_rx_saved_considx];
2800
2801                 rxidx = cur_rx->bge_idx;
2802                 KKASSERT(rxidx < BGE_STD_RX_RING_CNT);
2803
2804                 BNX_INC(ret->bnx_rx_saved_considx, BNX_RETURN_RING_CNT);
2805 #ifdef BNX_RSS_DEBUG
2806                 ret->bnx_rx_pkt++;
2807 #endif
2808
2809                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2810                         have_tag = 1;
2811                         vlan_tag = cur_rx->bge_vlan_tag;
2812                 }
2813
2814                 if (ret->bnx_rx_cnt >= ret->bnx_rx_cntmax) {
2815                         atomic_add_int(&std->bnx_rx_std_used, std_used);
2816                         std_used = 0;
2817
2818                         bnx_rx_std_refill_sched(ret, std);
2819                 }
2820                 ret->bnx_rx_cnt++;
2821                 ++std_used;
2822
2823                 rb = &std->bnx_rx_std_buf[rxidx];
2824                 m = rb->bnx_rx_mbuf;
2825                 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2826                         IFNET_STAT_INC(ifp, ierrors, 1);
2827                         cpu_sfence();
2828                         rb->bnx_rx_refilled = 1;
2829                         continue;
2830                 }
2831                 if (bnx_newbuf_std(ret, rxidx, 0)) {
2832                         IFNET_STAT_INC(ifp, ierrors, 1);
2833                         continue;
2834                 }
2835
2836                 IFNET_STAT_INC(ifp, ipackets, 1);
2837                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2838                 m->m_pkthdr.rcvif = ifp;
2839
2840                 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2841                     (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
2842                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2843                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2844                                 if ((cur_rx->bge_error_flag &
2845                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
2846                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2847                         }
2848                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2849                                 m->m_pkthdr.csum_data =
2850                                     cur_rx->bge_tcp_udp_csum;
2851                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2852                                     CSUM_PSEUDO_HDR;
2853                         }
2854                 }
2855                 if (ifp->if_capenable & IFCAP_RSS) {
2856                         pi = bnx_rss_info(&pi0, cur_rx);
2857                         if (pi != NULL &&
2858                             (cur_rx->bge_flags & BGE_RXBDFLAG_RSS_HASH)) {
2859                                 m->m_flags |= M_HASH;
2860                                 m->m_pkthdr.hash =
2861                                     toeplitz_hash(cur_rx->bge_hash);
2862                         }
2863                 }
2864
2865                 /*
2866                  * If we received a packet with a vlan tag, pass it
2867                  * to vlan_input() instead of ether_input().
2868                  */
2869                 if (have_tag) {
2870                         m->m_flags |= M_VLANTAG;
2871                         m->m_pkthdr.ether_vlantag = vlan_tag;
2872                 }
2873                 ifp->if_input(ifp, m, pi, cpuid);
2874         }
2875         bnx_writembx(sc, ret->bnx_rx_mbx, ret->bnx_rx_saved_considx);
2876
2877         if (std_used > 0) {
2878                 int cur_std_used;
2879
2880                 cur_std_used = atomic_fetchadd_int(&std->bnx_rx_std_used,
2881                     std_used);
2882                 if (cur_std_used + std_used >= (BGE_STD_RX_RING_CNT / 2)) {
2883 #ifdef BNX_RSS_DEBUG
2884                         ret->bnx_rx_force_sched++;
2885 #endif
2886                         bnx_rx_std_refill_sched(ret, std);
2887                 }
2888         }
2889 }
2890
2891 static void
2892 bnx_txeof(struct bnx_tx_ring *txr, uint16_t tx_cons)
2893 {
2894         struct ifnet *ifp = &txr->bnx_sc->arpcom.ac_if;
2895
2896         /*
2897          * Go through our tx ring and free mbufs for those
2898          * frames that have been sent.
2899          */
2900         while (txr->bnx_tx_saved_considx != tx_cons) {
2901                 struct bnx_tx_buf *buf;
2902                 uint32_t idx = 0;
2903
2904                 idx = txr->bnx_tx_saved_considx;
2905                 buf = &txr->bnx_tx_buf[idx];
2906                 if (buf->bnx_tx_mbuf != NULL) {
2907                         IFNET_STAT_INC(ifp, opackets, 1);
2908 #ifdef BNX_TSS_DEBUG
2909                         txr->bnx_tx_pkt++;
2910 #endif
2911                         bus_dmamap_unload(txr->bnx_tx_mtag,
2912                             buf->bnx_tx_dmamap);
2913                         m_freem(buf->bnx_tx_mbuf);
2914                         buf->bnx_tx_mbuf = NULL;
2915                 }
2916                 txr->bnx_tx_cnt--;
2917                 BNX_INC(txr->bnx_tx_saved_considx, BGE_TX_RING_CNT);
2918         }
2919
2920         if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) >=
2921             (BNX_NSEG_RSVD + BNX_NSEG_SPARE))
2922                 ifsq_clr_oactive(txr->bnx_ifsq);
2923
2924         if (txr->bnx_tx_cnt == 0)
2925                 txr->bnx_tx_watchdog.wd_timer = 0;
2926
2927         if (!ifsq_is_empty(txr->bnx_ifsq))
2928                 ifsq_devstart(txr->bnx_ifsq);
2929 }
2930
2931 static int
2932 bnx_handle_status(struct bnx_softc *sc)
2933 {
2934         uint32_t status;
2935         int handle = 0;
2936
2937         status = *sc->bnx_hw_status;
2938
2939         if (status & BGE_STATFLAG_ERROR) {
2940                 uint32_t val;
2941                 int reset = 0;
2942
2943                 sc->bnx_errors++;
2944
2945                 val = CSR_READ_4(sc, BGE_FLOW_ATTN);
2946                 if (val & ~BGE_FLOWATTN_MB_LOWAT) {
2947                         if_printf(&sc->arpcom.ac_if,
2948                             "flow attn 0x%08x\n", val);
2949                         reset = 1;
2950                 }
2951
2952                 val = CSR_READ_4(sc, BGE_MSI_STATUS);
2953                 if (val & ~BGE_MSISTAT_MSI_PCI_REQ) {
2954                         if_printf(&sc->arpcom.ac_if,
2955                             "msi status 0x%08x\n", val);
2956                         reset = 1;
2957                 }
2958
2959                 val = CSR_READ_4(sc, BGE_RDMA_STATUS);
2960                 if (val) {
2961                         if_printf(&sc->arpcom.ac_if,
2962                             "rmda status 0x%08x\n", val);
2963                         reset = 1;
2964                 }
2965
2966                 val = CSR_READ_4(sc, BGE_WDMA_STATUS);
2967                 if (val) {
2968                         if_printf(&sc->arpcom.ac_if,
2969                             "wdma status 0x%08x\n", val);
2970                         reset = 1;
2971                 }
2972
2973                 if (reset) {
2974                         bnx_serialize_skipmain(sc);
2975                         bnx_init(sc);
2976                         bnx_deserialize_skipmain(sc);
2977                 }
2978                 handle = 1;
2979         }
2980
2981         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bnx_link_evt) {
2982                 if (bootverbose) {
2983                         if_printf(&sc->arpcom.ac_if, "link change, "
2984                             "link_evt %d\n", sc->bnx_link_evt);
2985                 }
2986                 bnx_link_poll(sc);
2987                 handle = 1;
2988         }
2989
2990         return handle;
2991 }
2992
2993 #ifdef IFPOLL_ENABLE
2994
2995 static void
2996 bnx_npoll_rx(struct ifnet *ifp __unused, void *xret, int cycle)
2997 {
2998         struct bnx_rx_ret_ring *ret = xret;
2999         uint16_t rx_prod;
3000
3001         ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3002
3003         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3004         cpu_lfence();
3005
3006         rx_prod = *ret->bnx_rx_considx;
3007         if (ret->bnx_rx_saved_considx != rx_prod)
3008                 bnx_rxeof(ret, rx_prod, cycle);
3009 }
3010
3011 static void
3012 bnx_npoll_tx_notag(struct ifnet *ifp __unused, void *xtxr, int cycle __unused)
3013 {
3014         struct bnx_tx_ring *txr = xtxr;
3015         uint16_t tx_cons;
3016
3017         ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3018
3019         tx_cons = *txr->bnx_tx_considx;
3020         if (txr->bnx_tx_saved_considx != tx_cons)
3021                 bnx_txeof(txr, tx_cons);
3022 }
3023
3024 static void
3025 bnx_npoll_tx(struct ifnet *ifp, void *xtxr, int cycle)
3026 {
3027         struct bnx_tx_ring *txr = xtxr;
3028
3029         ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3030
3031         txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
3032         cpu_lfence();
3033         bnx_npoll_tx_notag(ifp, txr, cycle);
3034 }
3035
3036 static void
3037 bnx_npoll_status_notag(struct ifnet *ifp)
3038 {
3039         struct bnx_softc *sc = ifp->if_softc;
3040
3041         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3042
3043         if (bnx_handle_status(sc)) {
3044                 /*
3045                  * Status changes are handled; force the chip to
3046                  * update the status block to reflect whether there
3047                  * are more status changes or not, else staled status
3048                  * changes are always seen.
3049                  */
3050                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3051         }
3052 }
3053
3054 static void
3055 bnx_npoll_status(struct ifnet *ifp)
3056 {
3057         struct bnx_softc *sc = ifp->if_softc;
3058
3059         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3060
3061         sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3062         cpu_lfence();
3063         bnx_npoll_status_notag(ifp);
3064 }
3065
3066 static void
3067 bnx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3068 {
3069         struct bnx_softc *sc = ifp->if_softc;
3070         int i;
3071
3072         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3073
3074         if (info != NULL) {
3075                 if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG)
3076                         info->ifpi_status.status_func = bnx_npoll_status;
3077                 else
3078                         info->ifpi_status.status_func = bnx_npoll_status_notag;
3079                 info->ifpi_status.serializer = &sc->bnx_main_serialize;
3080
3081                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3082                         struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3083                         int idx = i + sc->bnx_npoll_txoff;
3084
3085                         KKASSERT(idx < ncpus2);
3086                         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
3087                                 info->ifpi_tx[idx].poll_func =
3088                                     bnx_npoll_tx_notag;
3089                         } else {
3090                                 info->ifpi_tx[idx].poll_func = bnx_npoll_tx;
3091                         }
3092                         info->ifpi_tx[idx].arg = txr;
3093                         info->ifpi_tx[idx].serializer = &txr->bnx_tx_serialize;
3094                         ifsq_set_cpuid(txr->bnx_ifsq, idx);
3095                 }
3096
3097                 for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3098                         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3099                         int idx = i + sc->bnx_npoll_rxoff;
3100
3101                         KKASSERT(idx < ncpus2);
3102                         info->ifpi_rx[idx].poll_func = bnx_npoll_rx;
3103                         info->ifpi_rx[idx].arg = ret;
3104                         info->ifpi_rx[idx].serializer =
3105                             &ret->bnx_rx_ret_serialize;
3106                 }
3107
3108                 if (ifp->if_flags & IFF_RUNNING) {
3109                         bnx_disable_intr(sc);
3110                         bnx_set_tick_cpuid(sc, TRUE);
3111
3112                         sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3113                             BNX_RX_COAL_BDS_CHG;
3114                         bnx_coal_change(sc);
3115                 }
3116         } else {
3117                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3118                         ifsq_set_cpuid(sc->bnx_tx_ring[i].bnx_ifsq,
3119                             sc->bnx_tx_ring[i].bnx_tx_cpuid);
3120                 }
3121                 if (ifp->if_flags & IFF_RUNNING) {
3122                         sc->bnx_coal_chg = BNX_TX_COAL_BDS_CHG |
3123                             BNX_RX_COAL_BDS_CHG;
3124                         bnx_coal_change(sc);
3125
3126                         bnx_enable_intr(sc);
3127                         bnx_set_tick_cpuid(sc, FALSE);
3128                 }
3129         }
3130 }
3131
3132 #endif  /* IFPOLL_ENABLE */
3133
3134 static void
3135 bnx_intr_legacy(void *xsc)
3136 {
3137         struct bnx_softc *sc = xsc;
3138         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3139
3140         if (ret->bnx_saved_status_tag == *ret->bnx_hw_status_tag) {
3141                 uint32_t val;
3142
3143                 val = pci_read_config(sc->bnx_dev, BGE_PCI_PCISTATE, 4);
3144                 if (val & BGE_PCISTAT_INTR_NOTACT)
3145                         return;
3146         }
3147
3148         /*
3149          * NOTE:
3150          * Interrupt will have to be disabled if tagged status
3151          * is used, else interrupt will always be asserted on
3152          * certain chips (at least on BCM5750 AX/BX).
3153          */
3154         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3155
3156         bnx_intr(sc);
3157 }
3158
3159 static void
3160 bnx_msi(void *xsc)
3161 {
3162         bnx_intr(xsc);
3163 }
3164
3165 static void
3166 bnx_intr(struct bnx_softc *sc)
3167 {
3168         struct ifnet *ifp = &sc->arpcom.ac_if;
3169         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
3170
3171         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3172
3173         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3174         /*
3175          * Use a load fence to ensure that status_tag is saved 
3176          * before rx_prod, tx_cons and status.
3177          */
3178         cpu_lfence();
3179
3180         bnx_handle_status(sc);
3181
3182         if (ifp->if_flags & IFF_RUNNING) {
3183                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
3184                 uint16_t rx_prod, tx_cons;
3185
3186                 lwkt_serialize_enter(&ret->bnx_rx_ret_serialize);
3187                 rx_prod = *ret->bnx_rx_considx;
3188                 if (ret->bnx_rx_saved_considx != rx_prod)
3189                         bnx_rxeof(ret, rx_prod, -1);
3190                 lwkt_serialize_exit(&ret->bnx_rx_ret_serialize);
3191
3192                 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3193                 tx_cons = *txr->bnx_tx_considx;
3194                 if (txr->bnx_tx_saved_considx != tx_cons)
3195                         bnx_txeof(txr, tx_cons);
3196                 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3197         }
3198
3199         bnx_writembx(sc, BGE_MBX_IRQ0_LO, ret->bnx_saved_status_tag << 24);
3200 }
3201
3202 static void
3203 bnx_msix_tx_status(void *xtxr)
3204 {
3205         struct bnx_tx_ring *txr = xtxr;
3206         struct bnx_softc *sc = txr->bnx_sc;
3207         struct ifnet *ifp = &sc->arpcom.ac_if;
3208
3209         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3210
3211         txr->bnx_saved_status_tag = *txr->bnx_hw_status_tag;
3212         /*
3213          * Use a load fence to ensure that status_tag is saved 
3214          * before tx_cons and status.
3215          */
3216         cpu_lfence();
3217
3218         bnx_handle_status(sc);
3219
3220         if (ifp->if_flags & IFF_RUNNING) {
3221                 uint16_t tx_cons;
3222
3223                 lwkt_serialize_enter(&txr->bnx_tx_serialize);
3224                 tx_cons = *txr->bnx_tx_considx;
3225                 if (txr->bnx_tx_saved_considx != tx_cons)
3226                         bnx_txeof(txr, tx_cons);
3227                 lwkt_serialize_exit(&txr->bnx_tx_serialize);
3228         }
3229
3230         bnx_writembx(sc, BGE_MBX_IRQ0_LO, txr->bnx_saved_status_tag << 24);
3231 }
3232
3233 static void
3234 bnx_msix_rx(void *xret)
3235 {
3236         struct bnx_rx_ret_ring *ret = xret;
3237         uint16_t rx_prod;
3238
3239         ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3240
3241         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3242         /*
3243          * Use a load fence to ensure that status_tag is saved
3244          * before rx_prod.
3245          */
3246         cpu_lfence();
3247
3248         rx_prod = *ret->bnx_rx_considx;
3249         if (ret->bnx_rx_saved_considx != rx_prod)
3250                 bnx_rxeof(ret, rx_prod, -1);
3251
3252         bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3253             ret->bnx_saved_status_tag << 24);
3254 }
3255
3256 static void
3257 bnx_msix_rxtx(void *xret)
3258 {
3259         struct bnx_rx_ret_ring *ret = xret;
3260         struct bnx_tx_ring *txr = ret->bnx_txr;
3261         uint16_t rx_prod, tx_cons;
3262
3263         ASSERT_SERIALIZED(&ret->bnx_rx_ret_serialize);
3264
3265         ret->bnx_saved_status_tag = *ret->bnx_hw_status_tag;
3266         /*
3267          * Use a load fence to ensure that status_tag is saved
3268          * before rx_prod and tx_cons.
3269          */
3270         cpu_lfence();
3271
3272         rx_prod = *ret->bnx_rx_considx;
3273         if (ret->bnx_rx_saved_considx != rx_prod)
3274                 bnx_rxeof(ret, rx_prod, -1);
3275
3276         lwkt_serialize_enter(&txr->bnx_tx_serialize);
3277         tx_cons = *txr->bnx_tx_considx;
3278         if (txr->bnx_tx_saved_considx != tx_cons)
3279                 bnx_txeof(txr, tx_cons);
3280         lwkt_serialize_exit(&txr->bnx_tx_serialize);
3281
3282         bnx_writembx(ret->bnx_sc, ret->bnx_msix_mbx,
3283             ret->bnx_saved_status_tag << 24);
3284 }
3285
3286 static void
3287 bnx_msix_status(void *xsc)
3288 {
3289         struct bnx_softc *sc = xsc;
3290
3291         ASSERT_SERIALIZED(&sc->bnx_main_serialize);
3292
3293         sc->bnx_saved_status_tag = *sc->bnx_hw_status_tag;
3294         /*
3295          * Use a load fence to ensure that status_tag is saved
3296          * before status.
3297          */
3298         cpu_lfence();
3299
3300         bnx_handle_status(sc);
3301
3302         bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_saved_status_tag << 24);
3303 }
3304
3305 static void
3306 bnx_tick(void *xsc)
3307 {
3308         struct bnx_softc *sc = xsc;
3309
3310         lwkt_serialize_enter(&sc->bnx_main_serialize);
3311
3312         bnx_stats_update_regs(sc);
3313
3314         if (sc->bnx_flags & BNX_FLAG_TBI) {
3315                 /*
3316                  * Since in TBI mode auto-polling can't be used we should poll
3317                  * link status manually. Here we register pending link event
3318                  * and trigger interrupt.
3319                  */
3320                 sc->bnx_link_evt++;
3321                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3322         } else if (!sc->bnx_link) {
3323                 mii_tick(device_get_softc(sc->bnx_miibus));
3324         }
3325
3326         callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3327             sc->bnx_tick_cpuid);
3328
3329         lwkt_serialize_exit(&sc->bnx_main_serialize);
3330 }
3331
3332 static void
3333 bnx_stats_update_regs(struct bnx_softc *sc)
3334 {
3335         struct ifnet *ifp = &sc->arpcom.ac_if;
3336         struct bge_mac_stats_regs stats;
3337         uint32_t *s, val;
3338         int i;
3339
3340         s = (uint32_t *)&stats;
3341         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3342                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3343                 s++;
3344         }
3345
3346         IFNET_STAT_SET(ifp, collisions,
3347            (stats.dot3StatsSingleCollisionFrames +
3348            stats.dot3StatsMultipleCollisionFrames +
3349            stats.dot3StatsExcessiveCollisions +
3350            stats.dot3StatsLateCollisions));
3351
3352         val = CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3353         sc->bnx_norxbds += val;
3354 }
3355
3356 /*
3357  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3358  * pointers to descriptors.
3359  */
3360 static int
3361 bnx_encap(struct bnx_tx_ring *txr, struct mbuf **m_head0, uint32_t *txidx,
3362     int *segs_used)
3363 {
3364         struct bge_tx_bd *d = NULL;
3365         uint16_t csum_flags = 0, vlan_tag = 0, mss = 0;
3366         bus_dma_segment_t segs[BNX_NSEG_NEW];
3367         bus_dmamap_t map;
3368         int error, maxsegs, nsegs, idx, i;
3369         struct mbuf *m_head = *m_head0, *m_new;
3370
3371         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3372 #ifdef BNX_TSO_DEBUG
3373                 int tso_nsegs;
3374 #endif
3375
3376                 error = bnx_setup_tso(txr, m_head0, &mss, &csum_flags);
3377                 if (error)
3378                         return error;
3379                 m_head = *m_head0;
3380
3381 #ifdef BNX_TSO_DEBUG
3382                 tso_nsegs = (m_head->m_pkthdr.len /
3383                     m_head->m_pkthdr.tso_segsz) - 1;
3384                 if (tso_nsegs > (BNX_TSO_NSTATS - 1))
3385                         tso_nsegs = BNX_TSO_NSTATS - 1;
3386                 else if (tso_nsegs < 0)
3387                         tso_nsegs = 0;
3388                 txr->bnx_sc->bnx_tsosegs[tso_nsegs]++;
3389 #endif
3390         } else if (m_head->m_pkthdr.csum_flags & BNX_CSUM_FEATURES) {
3391                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3392                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3393                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3394                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3395                 if (m_head->m_flags & M_LASTFRAG)
3396                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3397                 else if (m_head->m_flags & M_FRAG)
3398                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3399         }
3400         if (m_head->m_flags & M_VLANTAG) {
3401                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
3402                 vlan_tag = m_head->m_pkthdr.ether_vlantag;
3403         }
3404
3405         idx = *txidx;
3406         map = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3407
3408         maxsegs = (BGE_TX_RING_CNT - txr->bnx_tx_cnt) - BNX_NSEG_RSVD;
3409         KASSERT(maxsegs >= BNX_NSEG_SPARE,
3410                 ("not enough segments %d", maxsegs));
3411
3412         if (maxsegs > BNX_NSEG_NEW)
3413                 maxsegs = BNX_NSEG_NEW;
3414
3415         /*
3416          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
3417          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
3418          * but when such padded frames employ the bge IP/TCP checksum
3419          * offload, the hardware checksum assist gives incorrect results
3420          * (possibly from incorporating its own padding into the UDP/TCP
3421          * checksum; who knows).  If we pad such runts with zeros, the
3422          * onboard checksum comes out correct.
3423          */
3424         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3425             m_head->m_pkthdr.len < BNX_MIN_FRAMELEN) {
3426                 error = m_devpad(m_head, BNX_MIN_FRAMELEN);
3427                 if (error)
3428                         goto back;
3429         }
3430
3431         if ((txr->bnx_tx_flags & BNX_TX_FLAG_SHORTDMA) &&
3432             m_head->m_next != NULL) {
3433                 m_new = bnx_defrag_shortdma(m_head);
3434                 if (m_new == NULL) {
3435                         error = ENOBUFS;
3436                         goto back;
3437                 }
3438                 *m_head0 = m_head = m_new;
3439         }
3440         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
3441             (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG) &&
3442             m_head->m_next != NULL) {
3443                 /*
3444                  * Forcefully defragment mbuf chain to overcome hardware
3445                  * limitation which only support a single outstanding
3446                  * DMA read operation.  If it fails, keep moving on using
3447                  * the original mbuf chain.
3448                  */
3449                 m_new = m_defrag(m_head, MB_DONTWAIT);
3450                 if (m_new != NULL)
3451                         *m_head0 = m_head = m_new;
3452         }
3453
3454         error = bus_dmamap_load_mbuf_defrag(txr->bnx_tx_mtag, map,
3455             m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3456         if (error)
3457                 goto back;
3458         *segs_used += nsegs;
3459
3460         m_head = *m_head0;
3461         bus_dmamap_sync(txr->bnx_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3462
3463         for (i = 0; ; i++) {
3464                 d = &txr->bnx_tx_ring[idx];
3465
3466                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3467                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3468                 d->bge_len = segs[i].ds_len;
3469                 d->bge_flags = csum_flags;
3470                 d->bge_vlan_tag = vlan_tag;
3471                 d->bge_mss = mss;
3472
3473                 if (i == nsegs - 1)
3474                         break;
3475                 BNX_INC(idx, BGE_TX_RING_CNT);
3476         }
3477         /* Mark the last segment as end of packet... */
3478         d->bge_flags |= BGE_TXBDFLAG_END;
3479
3480         /*
3481          * Insure that the map for this transmission is placed at
3482          * the array index of the last descriptor in this chain.
3483          */
3484         txr->bnx_tx_buf[*txidx].bnx_tx_dmamap = txr->bnx_tx_buf[idx].bnx_tx_dmamap;
3485         txr->bnx_tx_buf[idx].bnx_tx_dmamap = map;
3486         txr->bnx_tx_buf[idx].bnx_tx_mbuf = m_head;
3487         txr->bnx_tx_cnt += nsegs;
3488
3489         BNX_INC(idx, BGE_TX_RING_CNT);
3490         *txidx = idx;
3491 back:
3492         if (error) {
3493                 m_freem(*m_head0);
3494                 *m_head0 = NULL;
3495         }
3496         return error;
3497 }
3498
3499 /*
3500  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3501  * to the mbuf data regions directly in the transmit descriptors.
3502  */
3503 static void
3504 bnx_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3505 {
3506         struct bnx_tx_ring *txr = ifsq_get_priv(ifsq);
3507         struct mbuf *m_head = NULL;
3508         uint32_t prodidx;
3509         int nsegs = 0;
3510
3511         KKASSERT(txr->bnx_ifsq == ifsq);
3512         ASSERT_SERIALIZED(&txr->bnx_tx_serialize);
3513
3514         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3515                 return;
3516
3517         prodidx = txr->bnx_tx_prodidx;
3518
3519         while (txr->bnx_tx_buf[prodidx].bnx_tx_mbuf == NULL) {
3520                 /*
3521                  * Sanity check: avoid coming within BGE_NSEG_RSVD
3522                  * descriptors of the end of the ring.  Also make
3523                  * sure there are BGE_NSEG_SPARE descriptors for
3524                  * jumbo buffers' or TSO segments' defragmentation.
3525                  */
3526                 if ((BGE_TX_RING_CNT - txr->bnx_tx_cnt) <
3527                     (BNX_NSEG_RSVD + BNX_NSEG_SPARE)) {
3528                         ifsq_set_oactive(ifsq);
3529                         break;
3530                 }
3531
3532                 m_head = ifsq_dequeue(ifsq);
3533                 if (m_head == NULL)
3534                         break;
3535
3536                 /*
3537                  * Pack the data into the transmit ring. If we
3538                  * don't have room, set the OACTIVE flag and wait
3539                  * for the NIC to drain the ring.
3540                  */
3541                 if (bnx_encap(txr, &m_head, &prodidx, &nsegs)) {
3542                         ifsq_set_oactive(ifsq);
3543                         IFNET_STAT_INC(ifp, oerrors, 1);
3544                         break;
3545                 }
3546
3547                 if (nsegs >= txr->bnx_tx_wreg) {
3548                         /* Transmit */
3549                         bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3550                         nsegs = 0;
3551                 }
3552
3553                 ETHER_BPF_MTAP(ifp, m_head);
3554
3555                 /*
3556                  * Set a timeout in case the chip goes out to lunch.
3557                  */
3558                 txr->bnx_tx_watchdog.wd_timer = 5;
3559         }
3560
3561         if (nsegs > 0) {
3562                 /* Transmit */
3563                 bnx_writembx(txr->bnx_sc, txr->bnx_tx_mbx, prodidx);
3564         }
3565         txr->bnx_tx_prodidx = prodidx;
3566 }
3567
3568 static void
3569 bnx_init(void *xsc)
3570 {
3571         struct bnx_softc *sc = xsc;
3572         struct ifnet *ifp = &sc->arpcom.ac_if;
3573         uint16_t *m;
3574         uint32_t mode;
3575         int i;
3576         boolean_t polling;
3577
3578         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3579
3580         /* Cancel pending I/O and flush buffers. */
3581         bnx_stop(sc);
3582
3583         bnx_sig_pre_reset(sc, BNX_RESET_START);
3584         bnx_reset(sc);
3585         bnx_sig_post_reset(sc, BNX_RESET_START);
3586
3587         bnx_chipinit(sc);
3588
3589         /*
3590          * Init the various state machines, ring
3591          * control blocks and firmware.
3592          */
3593         if (bnx_blockinit(sc)) {
3594                 if_printf(ifp, "initialization failure\n");
3595                 bnx_stop(sc);
3596                 return;
3597         }
3598
3599         /* Specify MTU. */
3600         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3601             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3602
3603         /* Load our MAC address. */
3604         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3605         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3606         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3607
3608         /* Enable or disable promiscuous mode as needed. */
3609         bnx_setpromisc(sc);
3610
3611         /* Program multicast filter. */
3612         bnx_setmulti(sc);
3613
3614         /* Init RX ring. */
3615         if (bnx_init_rx_ring_std(&sc->bnx_rx_std_ring)) {
3616                 if_printf(ifp, "RX ring initialization failed\n");
3617                 bnx_stop(sc);
3618                 return;
3619         }
3620
3621         /* Init jumbo RX ring. */
3622         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3623                 if (bnx_init_rx_ring_jumbo(sc)) {
3624                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3625                         bnx_stop(sc);
3626                         return;
3627                 }
3628         }
3629
3630         /* Init our RX return ring index */
3631         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
3632                 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
3633
3634                 ret->bnx_rx_saved_considx = 0;
3635                 ret->bnx_rx_cnt = 0;
3636         }
3637
3638         /* Init TX ring. */
3639         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3640                 bnx_init_tx_ring(&sc->bnx_tx_ring[i]);
3641
3642         /* Enable TX MAC state machine lockup fix. */
3643         mode = CSR_READ_4(sc, BGE_TX_MODE);
3644         mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3645         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720 ||
3646             sc->bnx_asicrev == BGE_ASICREV_BCM5762) {
3647                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3648                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
3649                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3650         }
3651         /* Turn on transmitter */
3652         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3653         DELAY(100);
3654
3655         /* Initialize RSS */
3656         mode = BGE_RXMODE_ENABLE | BGE_RXMODE_IPV6_ENABLE;
3657         if (BNX_RSS_ENABLED(sc)) {
3658                 bnx_init_rss(sc);
3659                 mode |= BGE_RXMODE_RSS_ENABLE |
3660                     BGE_RXMODE_RSS_HASH_MASK_BITS |
3661                     BGE_RXMODE_RSS_IPV4_HASH |
3662                     BGE_RXMODE_RSS_TCP_IPV4_HASH;
3663         }
3664         /* Turn on receiver */
3665         BNX_SETBIT(sc, BGE_RX_MODE, mode);
3666         DELAY(10);
3667
3668         /*
3669          * Set the number of good frames to receive after RX MBUF
3670          * Low Watermark has been reached.  After the RX MAC receives
3671          * this number of frames, it will drop subsequent incoming
3672          * frames until the MBUF High Watermark is reached.
3673          */
3674         if (BNX_IS_57765_FAMILY(sc))
3675                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
3676         else
3677                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3678
3679         if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI ||
3680             sc->bnx_intr_type == PCI_INTR_TYPE_MSIX) {
3681                 if (bootverbose) {
3682                         if_printf(ifp, "MSI_MODE: %#x\n",
3683                             CSR_READ_4(sc, BGE_MSI_MODE));
3684                 }
3685         }
3686
3687         /* Tell firmware we're alive. */
3688         BNX_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3689
3690         /* Enable host interrupts if polling(4) is not enabled. */
3691         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3692
3693         polling = FALSE;
3694 #ifdef IFPOLL_ENABLE
3695         if (ifp->if_flags & IFF_NPOLLING)
3696                 polling = TRUE;
3697 #endif
3698         if (polling)
3699                 bnx_disable_intr(sc);
3700         else
3701                 bnx_enable_intr(sc);
3702         bnx_set_tick_cpuid(sc, polling);
3703
3704         ifp->if_flags |= IFF_RUNNING;
3705         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3706                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3707
3708                 ifsq_clr_oactive(txr->bnx_ifsq);
3709                 ifsq_watchdog_start(&txr->bnx_tx_watchdog);
3710         }
3711
3712         bnx_ifmedia_upd(ifp);
3713
3714         callout_reset_bycpu(&sc->bnx_tick_timer, hz, bnx_tick, sc,
3715             sc->bnx_tick_cpuid);
3716 }
3717
3718 /*
3719  * Set media options.
3720  */
3721 static int
3722 bnx_ifmedia_upd(struct ifnet *ifp)
3723 {
3724         struct bnx_softc *sc = ifp->if_softc;
3725
3726         /* If this is a 1000baseX NIC, enable the TBI port. */
3727         if (sc->bnx_flags & BNX_FLAG_TBI) {
3728                 struct ifmedia *ifm = &sc->bnx_ifmedia;
3729
3730                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3731                         return(EINVAL);
3732
3733                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3734                 case IFM_AUTO:
3735                         break;
3736
3737                 case IFM_1000_SX:
3738                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3739                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
3740                                     BGE_MACMODE_HALF_DUPLEX);
3741                         } else {
3742                                 BNX_SETBIT(sc, BGE_MAC_MODE,
3743                                     BGE_MACMODE_HALF_DUPLEX);
3744                         }
3745                         DELAY(40);
3746                         break;
3747                 default:
3748                         return(EINVAL);
3749                 }
3750         } else {
3751                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3752
3753                 sc->bnx_link_evt++;
3754                 sc->bnx_link = 0;
3755                 if (mii->mii_instance) {
3756                         struct mii_softc *miisc;
3757
3758                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3759                                 mii_phy_reset(miisc);
3760                 }
3761                 mii_mediachg(mii);
3762
3763                 /*
3764                  * Force an interrupt so that we will call bnx_link_upd
3765                  * if needed and clear any pending link state attention.
3766                  * Without this we are not getting any further interrupts
3767                  * for link state changes and thus will not UP the link and
3768                  * not be able to send in bnx_start.  The only way to get
3769                  * things working was to receive a packet and get an RX
3770                  * intr.
3771                  *
3772                  * bnx_tick should help for fiber cards and we might not
3773                  * need to do this here if BNX_FLAG_TBI is set but as
3774                  * we poll for fiber anyway it should not harm.
3775                  */
3776                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3777         }
3778         return(0);
3779 }
3780
3781 /*
3782  * Report current media status.
3783  */
3784 static void
3785 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3786 {
3787         struct bnx_softc *sc = ifp->if_softc;
3788
3789         if ((ifp->if_flags & IFF_RUNNING) == 0)
3790                 return;
3791
3792         if (sc->bnx_flags & BNX_FLAG_TBI) {
3793                 ifmr->ifm_status = IFM_AVALID;
3794                 ifmr->ifm_active = IFM_ETHER;
3795                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3796                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3797                         ifmr->ifm_status |= IFM_ACTIVE;
3798                 } else {
3799                         ifmr->ifm_active |= IFM_NONE;
3800                         return;
3801                 }
3802
3803                 ifmr->ifm_active |= IFM_1000_SX;
3804                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3805                         ifmr->ifm_active |= IFM_HDX;    
3806                 else
3807                         ifmr->ifm_active |= IFM_FDX;
3808         } else {
3809                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3810
3811                 mii_pollstat(mii);
3812                 ifmr->ifm_active = mii->mii_media_active;
3813                 ifmr->ifm_status = mii->mii_media_status;
3814         }
3815 }
3816
3817 static int
3818 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3819 {
3820         struct bnx_softc *sc = ifp->if_softc;
3821         struct ifreq *ifr = (struct ifreq *)data;
3822         int mask, error = 0;
3823
3824         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3825
3826         switch (command) {
3827         case SIOCSIFMTU:
3828                 if ((!BNX_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3829                     (BNX_IS_JUMBO_CAPABLE(sc) &&
3830                      ifr->ifr_mtu > BNX_JUMBO_MTU)) {
3831                         error = EINVAL;
3832                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3833                         ifp->if_mtu = ifr->ifr_mtu;
3834                         if (ifp->if_flags & IFF_RUNNING)
3835                                 bnx_init(sc);
3836                 }
3837                 break;
3838         case SIOCSIFFLAGS:
3839                 if (ifp->if_flags & IFF_UP) {
3840                         if (ifp->if_flags & IFF_RUNNING) {
3841                                 mask = ifp->if_flags ^ sc->bnx_if_flags;
3842
3843                                 /*
3844                                  * If only the state of the PROMISC flag
3845                                  * changed, then just use the 'set promisc
3846                                  * mode' command instead of reinitializing
3847                                  * the entire NIC. Doing a full re-init
3848                                  * means reloading the firmware and waiting
3849                                  * for it to start up, which may take a
3850                                  * second or two.  Similarly for ALLMULTI.
3851                                  */
3852                                 if (mask & IFF_PROMISC)
3853                                         bnx_setpromisc(sc);
3854                                 if (mask & IFF_ALLMULTI)
3855                                         bnx_setmulti(sc);
3856                         } else {
3857                                 bnx_init(sc);
3858                         }
3859                 } else if (ifp->if_flags & IFF_RUNNING) {
3860                         bnx_stop(sc);
3861                 }
3862                 sc->bnx_if_flags = ifp->if_flags;
3863                 break;
3864         case SIOCADDMULTI:
3865         case SIOCDELMULTI:
3866                 if (ifp->if_flags & IFF_RUNNING)
3867                         bnx_setmulti(sc);
3868                 break;
3869         case SIOCSIFMEDIA:
3870         case SIOCGIFMEDIA:
3871                 if (sc->bnx_flags & BNX_FLAG_TBI) {
3872                         error = ifmedia_ioctl(ifp, ifr,
3873                             &sc->bnx_ifmedia, command);
3874                 } else {
3875                         struct mii_data *mii;
3876
3877                         mii = device_get_softc(sc->bnx_miibus);
3878                         error = ifmedia_ioctl(ifp, ifr,
3879                                               &mii->mii_media, command);
3880                 }
3881                 break;
3882         case SIOCSIFCAP:
3883                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3884                 if (mask & IFCAP_HWCSUM) {
3885                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3886                         if (ifp->if_capenable & IFCAP_TXCSUM)
3887                                 ifp->if_hwassist |= BNX_CSUM_FEATURES;
3888                         else
3889                                 ifp->if_hwassist &= ~BNX_CSUM_FEATURES;
3890                 }
3891                 if (mask & IFCAP_TSO) {
3892                         ifp->if_capenable ^= (mask & IFCAP_TSO);
3893                         if (ifp->if_capenable & IFCAP_TSO)
3894                                 ifp->if_hwassist |= CSUM_TSO;
3895                         else
3896                                 ifp->if_hwassist &= ~CSUM_TSO;
3897                 }
3898                 if (mask & IFCAP_RSS)
3899                         ifp->if_capenable ^= IFCAP_RSS;
3900                 break;
3901         default:
3902                 error = ether_ioctl(ifp, command, data);
3903                 break;
3904         }
3905         return error;
3906 }
3907
3908 static void
3909 bnx_watchdog(struct ifaltq_subque *ifsq)
3910 {
3911         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3912         struct bnx_softc *sc = ifp->if_softc;
3913         int i;
3914
3915         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3916
3917         if_printf(ifp, "watchdog timeout -- resetting\n");
3918
3919         bnx_init(sc);
3920
3921         IFNET_STAT_INC(ifp, oerrors, 1);
3922
3923         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
3924                 ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
3925 }
3926
3927 /*
3928  * Stop the adapter and free any mbufs allocated to the
3929  * RX and TX lists.
3930  */
3931 static void
3932 bnx_stop(struct bnx_softc *sc)
3933 {
3934         struct ifnet *ifp = &sc->arpcom.ac_if;
3935         int i;
3936
3937         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3938
3939         callout_stop(&sc->bnx_tick_timer);
3940
3941         /* Disable host interrupts. */
3942         bnx_disable_intr(sc);
3943
3944         /*
3945          * Tell firmware we're shutting down.
3946          */
3947         bnx_sig_pre_reset(sc, BNX_RESET_SHUTDOWN);
3948
3949         /*
3950          * Disable all of the receiver blocks
3951          */
3952         bnx_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3953         bnx_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3954         bnx_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3955         bnx_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3956         bnx_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3957         bnx_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3958
3959         /*
3960          * Disable all of the transmit blocks
3961          */
3962         bnx_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3963         bnx_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3964         bnx_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3965         bnx_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3966         bnx_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3967         bnx_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3968
3969         /*
3970          * Shut down all of the memory managers and related
3971          * state machines.
3972          */
3973         bnx_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3974         bnx_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3975         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3976         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3977
3978         bnx_reset(sc);
3979         bnx_sig_post_reset(sc, BNX_RESET_SHUTDOWN);
3980
3981         /*
3982          * Tell firmware we're shutting down.
3983          */
3984         BNX_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3985
3986         /* Free the RX lists. */
3987         bnx_free_rx_ring_std(&sc->bnx_rx_std_ring);
3988
3989         /* Free jumbo RX list. */
3990         if (BNX_IS_JUMBO_CAPABLE(sc))
3991                 bnx_free_rx_ring_jumbo(sc);
3992
3993         /* Free TX buffers. */
3994         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
3995                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
3996
3997                 txr->bnx_saved_status_tag = 0;
3998                 bnx_free_tx_ring(txr);
3999         }
4000
4001         /* Clear saved status tag */
4002         for (i = 0; i < sc->bnx_rx_retcnt; ++i)
4003                 sc->bnx_rx_ret_ring[i].bnx_saved_status_tag = 0;
4004
4005         sc->bnx_link = 0;
4006         sc->bnx_coal_chg = 0;
4007
4008         ifp->if_flags &= ~IFF_RUNNING;
4009         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4010                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4011
4012                 ifsq_clr_oactive(txr->bnx_ifsq);
4013                 ifsq_watchdog_stop(&txr->bnx_tx_watchdog);
4014         }
4015 }
4016
4017 /*
4018  * Stop all chip I/O so that the kernel's probe routines don't
4019  * get confused by errant DMAs when rebooting.
4020  */
4021 static void
4022 bnx_shutdown(device_t dev)
4023 {
4024         struct bnx_softc *sc = device_get_softc(dev);
4025         struct ifnet *ifp = &sc->arpcom.ac_if;
4026
4027         ifnet_serialize_all(ifp);
4028         bnx_stop(sc);
4029         ifnet_deserialize_all(ifp);
4030 }
4031
4032 static int
4033 bnx_suspend(device_t dev)
4034 {
4035         struct bnx_softc *sc = device_get_softc(dev);
4036         struct ifnet *ifp = &sc->arpcom.ac_if;
4037
4038         ifnet_serialize_all(ifp);
4039         bnx_stop(sc);
4040         ifnet_deserialize_all(ifp);
4041
4042         return 0;
4043 }
4044
4045 static int
4046 bnx_resume(device_t dev)
4047 {
4048         struct bnx_softc *sc = device_get_softc(dev);
4049         struct ifnet *ifp = &sc->arpcom.ac_if;
4050
4051         ifnet_serialize_all(ifp);
4052
4053         if (ifp->if_flags & IFF_UP) {
4054                 int i;
4055
4056                 bnx_init(sc);
4057                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4058                         ifsq_devstart_sched(sc->bnx_tx_ring[i].bnx_ifsq);
4059         }
4060
4061         ifnet_deserialize_all(ifp);
4062
4063         return 0;
4064 }
4065
4066 static void
4067 bnx_setpromisc(struct bnx_softc *sc)
4068 {
4069         struct ifnet *ifp = &sc->arpcom.ac_if;
4070
4071         if (ifp->if_flags & IFF_PROMISC)
4072                 BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4073         else
4074                 BNX_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4075 }
4076
4077 static void
4078 bnx_dma_free(struct bnx_softc *sc)
4079 {
4080         struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4081         int i;
4082
4083         /* Destroy RX return rings */
4084         if (sc->bnx_rx_ret_ring != NULL) {
4085                 for (i = 0; i < sc->bnx_rx_retcnt; ++i)
4086                         bnx_destroy_rx_ret_ring(&sc->bnx_rx_ret_ring[i]);
4087                 kfree(sc->bnx_rx_ret_ring, M_DEVBUF);
4088         }
4089
4090         /* Destroy RX mbuf DMA stuffs. */
4091         if (std->bnx_rx_mtag != NULL) {
4092                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
4093                         KKASSERT(std->bnx_rx_std_buf[i].bnx_rx_mbuf == NULL);
4094                         bus_dmamap_destroy(std->bnx_rx_mtag,
4095                             std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4096                 }
4097                 bus_dma_tag_destroy(std->bnx_rx_mtag);
4098         }
4099
4100         /* Destroy standard RX ring */
4101         bnx_dma_block_free(std->bnx_rx_std_ring_tag,
4102             std->bnx_rx_std_ring_map, std->bnx_rx_std_ring);
4103
4104         /* Destroy TX rings */
4105         if (sc->bnx_tx_ring != NULL) {
4106                 for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
4107                         bnx_destroy_tx_ring(&sc->bnx_tx_ring[i]);
4108                 kfree(sc->bnx_tx_ring, M_DEVBUF);
4109         }
4110
4111         if (BNX_IS_JUMBO_CAPABLE(sc))
4112                 bnx_free_jumbo_mem(sc);
4113
4114         /* Destroy status blocks */
4115         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4116                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4117
4118                 bnx_dma_block_free(intr->bnx_status_tag,
4119                     intr->bnx_status_map, intr->bnx_status_block);
4120         }
4121
4122         /* Destroy the parent tag */
4123         if (sc->bnx_cdata.bnx_parent_tag != NULL)
4124                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_parent_tag);
4125 }
4126
4127 static int
4128 bnx_dma_alloc(device_t dev)
4129 {
4130         struct bnx_softc *sc = device_get_softc(dev);
4131         struct bnx_rx_std_ring *std = &sc->bnx_rx_std_ring;
4132         int i, error, mbx;
4133
4134         /*
4135          * Allocate the parent bus DMA tag appropriate for PCI.
4136          *
4137          * All of the NetExtreme/NetLink controllers have 4GB boundary
4138          * DMA bug.
4139          * Whenever an address crosses a multiple of the 4GB boundary
4140          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
4141          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
4142          * state machine will lockup and cause the device to hang.
4143          */
4144         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
4145             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
4146             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
4147             0, &sc->bnx_cdata.bnx_parent_tag);
4148         if (error) {
4149                 device_printf(dev, "could not create parent DMA tag\n");
4150                 return error;
4151         }
4152
4153         /*
4154          * Create DMA stuffs for status blocks.
4155          */
4156         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4157                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4158
4159                 error = bnx_dma_block_alloc(sc,
4160                     __VM_CACHELINE_ALIGN(BGE_STATUS_BLK_SZ),
4161                     &intr->bnx_status_tag, &intr->bnx_status_map,
4162                     (void *)&intr->bnx_status_block,
4163                     &intr->bnx_status_block_paddr);
4164                 if (error) {
4165                         device_printf(dev,
4166                             "could not create %dth status block\n", i);
4167                         return error;
4168                 }
4169         }
4170         sc->bnx_hw_status = &sc->bnx_intr_data[0].bnx_status_block->bge_status;
4171         if (sc->bnx_flags & BNX_FLAG_STATUS_HASTAG) {
4172                 sc->bnx_hw_status_tag =
4173                     &sc->bnx_intr_data[0].bnx_status_block->bge_status_tag;
4174         }
4175
4176         /*
4177          * Create DMA tag and maps for RX mbufs.
4178          */
4179         std->bnx_sc = sc;
4180         lwkt_serialize_init(&std->bnx_rx_std_serialize);
4181         error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
4182             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4183             NULL, NULL, MCLBYTES, 1, MCLBYTES,
4184             BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK, &std->bnx_rx_mtag);
4185         if (error) {
4186                 device_printf(dev, "could not create RX mbuf DMA tag\n");
4187                 return error;
4188         }
4189
4190         for (i = 0; i < BGE_STD_RX_RING_CNT; ++i) {
4191                 error = bus_dmamap_create(std->bnx_rx_mtag, BUS_DMA_WAITOK,
4192                     &std->bnx_rx_std_buf[i].bnx_rx_dmamap);
4193                 if (error) {
4194                         int j;
4195
4196                         for (j = 0; j < i; ++j) {
4197                                 bus_dmamap_destroy(std->bnx_rx_mtag,
4198                                     std->bnx_rx_std_buf[j].bnx_rx_dmamap);
4199                         }
4200                         bus_dma_tag_destroy(std->bnx_rx_mtag);
4201                         std->bnx_rx_mtag = NULL;
4202
4203                         device_printf(dev,
4204                             "could not create %dth RX mbuf DMA map\n", i);
4205                         return error;
4206                 }
4207         }
4208
4209         /*
4210          * Create DMA stuffs for standard RX ring.
4211          */
4212         error = bnx_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4213             &std->bnx_rx_std_ring_tag,
4214             &std->bnx_rx_std_ring_map,
4215             (void *)&std->bnx_rx_std_ring,
4216             &std->bnx_rx_std_ring_paddr);
4217         if (error) {
4218                 device_printf(dev, "could not create std RX ring\n");
4219                 return error;
4220         }
4221
4222         /*
4223          * Create RX return rings
4224          */
4225         mbx = BGE_MBX_RX_CONS0_LO;
4226         sc->bnx_rx_ret_ring = kmalloc_cachealign(
4227             sizeof(struct bnx_rx_ret_ring) * sc->bnx_rx_retcnt, M_DEVBUF,
4228             M_WAITOK | M_ZERO);
4229         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4230                 struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[i];
4231                 struct bnx_intr_data *intr;
4232
4233                 ret->bnx_sc = sc;
4234                 ret->bnx_std = std;
4235                 ret->bnx_rx_mbx = mbx;
4236                 ret->bnx_rx_cntmax = (BGE_STD_RX_RING_CNT / 4) /
4237                     sc->bnx_rx_retcnt;
4238                 ret->bnx_rx_mask = 1 << i;
4239
4240                 if (!BNX_RSS_ENABLED(sc)) {
4241                         intr = &sc->bnx_intr_data[0];
4242                 } else {
4243                         KKASSERT(i + 1 < sc->bnx_intr_cnt);
4244                         intr = &sc->bnx_intr_data[i + 1];
4245                 }
4246
4247                 if (i == 0) {
4248                         ret->bnx_rx_considx =
4249                             &intr->bnx_status_block->bge_idx[0].bge_rx_prod_idx;
4250                 } else if (i == 1) {
4251                         ret->bnx_rx_considx =
4252                             &intr->bnx_status_block->bge_rx_jumbo_cons_idx;
4253                 } else if (i == 2) {
4254                         ret->bnx_rx_considx =
4255                             &intr->bnx_status_block->bge_rsvd1;
4256                 } else if (i == 3) {
4257                         ret->bnx_rx_considx =
4258                             &intr->bnx_status_block->bge_rx_mini_cons_idx;
4259                 } else {
4260                         panic("unknown RX return ring %d\n", i);
4261                 }
4262                 ret->bnx_hw_status_tag =
4263                     &intr->bnx_status_block->bge_status_tag;
4264
4265                 error = bnx_create_rx_ret_ring(ret);
4266                 if (error) {
4267                         device_printf(dev,
4268                             "could not create %dth RX ret ring\n", i);
4269                         return error;
4270                 }
4271                 mbx += 8;
4272         }
4273
4274         /*
4275          * Create TX rings
4276          */
4277         sc->bnx_tx_ring = kmalloc_cachealign(
4278             sizeof(struct bnx_tx_ring) * sc->bnx_tx_ringcnt, M_DEVBUF,
4279             M_WAITOK | M_ZERO);
4280         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4281                 struct bnx_tx_ring *txr = &sc->bnx_tx_ring[i];
4282                 struct bnx_intr_data *intr;
4283
4284                 txr->bnx_sc = sc;
4285                 txr->bnx_tx_mbx = bnx_tx_mailbox[i];
4286
4287                 if (sc->bnx_tx_ringcnt == 1) {
4288                         intr = &sc->bnx_intr_data[0];
4289                 } else {
4290                         KKASSERT(i + 1 < sc->bnx_intr_cnt);
4291                         intr = &sc->bnx_intr_data[i + 1];
4292                 }
4293
4294                 if ((sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) == 0) {
4295                         txr->bnx_hw_status_tag =
4296                             &intr->bnx_status_block->bge_status_tag;
4297                 }
4298                 txr->bnx_tx_considx =
4299                     &intr->bnx_status_block->bge_idx[0].bge_tx_cons_idx;
4300
4301                 error = bnx_create_tx_ring(txr);
4302                 if (error) {
4303                         device_printf(dev,
4304                             "could not create %dth TX ring\n", i);
4305                         return error;
4306                 }
4307         }
4308
4309         /*
4310          * Create jumbo buffer pool.
4311          */
4312         if (BNX_IS_JUMBO_CAPABLE(sc)) {
4313                 error = bnx_alloc_jumbo_mem(sc);
4314                 if (error) {
4315                         device_printf(dev,
4316                             "could not create jumbo buffer pool\n");
4317                         return error;
4318                 }
4319         }
4320
4321         return 0;
4322 }
4323
4324 static int
4325 bnx_dma_block_alloc(struct bnx_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4326                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4327 {
4328         bus_dmamem_t dmem;
4329         int error;
4330
4331         error = bus_dmamem_coherent(sc->bnx_cdata.bnx_parent_tag, PAGE_SIZE, 0,
4332                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4333                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4334         if (error)
4335                 return error;
4336
4337         *tag = dmem.dmem_tag;
4338         *map = dmem.dmem_map;
4339         *addr = dmem.dmem_addr;
4340         *paddr = dmem.dmem_busaddr;
4341
4342         return 0;
4343 }
4344
4345 static void
4346 bnx_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4347 {
4348         if (tag != NULL) {
4349                 bus_dmamap_unload(tag, map);
4350                 bus_dmamem_free(tag, addr, map);
4351                 bus_dma_tag_destroy(tag);
4352         }
4353 }
4354
4355 static void
4356 bnx_tbi_link_upd(struct bnx_softc *sc, uint32_t status)
4357 {
4358         struct ifnet *ifp = &sc->arpcom.ac_if;
4359
4360 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4361
4362         /*
4363          * Sometimes PCS encoding errors are detected in
4364          * TBI mode (on fiber NICs), and for some reason
4365          * the chip will signal them as link changes.
4366          * If we get a link change event, but the 'PCS
4367          * encoding error' bit in the MAC status register
4368          * is set, don't bother doing a link check.
4369          * This avoids spurious "gigabit link up" messages
4370          * that sometimes appear on fiber NICs during
4371          * periods of heavy traffic.
4372          */
4373         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4374                 if (!sc->bnx_link) {
4375                         sc->bnx_link++;
4376                         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704) {
4377                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
4378                                     BGE_MACMODE_TBI_SEND_CFGS);
4379                                 DELAY(40);
4380                         }
4381                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4382
4383                         if (bootverbose)
4384                                 if_printf(ifp, "link UP\n");
4385
4386                         ifp->if_link_state = LINK_STATE_UP;
4387                         if_link_state_change(ifp);
4388                 }
4389         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4390                 if (sc->bnx_link) {
4391                         sc->bnx_link = 0;
4392
4393                         if (bootverbose)
4394                                 if_printf(ifp, "link DOWN\n");
4395
4396                         ifp->if_link_state = LINK_STATE_DOWN;
4397                         if_link_state_change(ifp);
4398                 }
4399         }
4400
4401 #undef PCS_ENCODE_ERR
4402
4403         /* Clear the attention. */
4404         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4405             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4406             BGE_MACSTAT_LINK_CHANGED);
4407 }
4408
4409 static void
4410 bnx_copper_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4411 {
4412         struct ifnet *ifp = &sc->arpcom.ac_if;
4413         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4414
4415         mii_pollstat(mii);
4416         bnx_miibus_statchg(sc->bnx_dev);
4417
4418         if (bootverbose) {
4419                 if (sc->bnx_link)
4420                         if_printf(ifp, "link UP\n");
4421                 else
4422                         if_printf(ifp, "link DOWN\n");
4423         }
4424
4425         /* Clear the attention. */
4426         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4427             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4428             BGE_MACSTAT_LINK_CHANGED);
4429 }
4430
4431 static void
4432 bnx_autopoll_link_upd(struct bnx_softc *sc, uint32_t status __unused)
4433 {
4434         struct ifnet *ifp = &sc->arpcom.ac_if;
4435         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
4436
4437         mii_pollstat(mii);
4438
4439         if (!sc->bnx_link &&
4440             (mii->mii_media_status & IFM_ACTIVE) &&
4441             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4442                 sc->bnx_link++;
4443                 if (bootverbose)
4444                         if_printf(ifp, "link UP\n");
4445         } else if (sc->bnx_link &&
4446             (!(mii->mii_media_status & IFM_ACTIVE) ||
4447             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4448                 sc->bnx_link = 0;
4449                 if (bootverbose)
4450                         if_printf(ifp, "link DOWN\n");
4451         }
4452
4453         /* Clear the attention. */
4454         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4455             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4456             BGE_MACSTAT_LINK_CHANGED);
4457 }
4458
4459 static int
4460 bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4461 {
4462         struct bnx_softc *sc = arg1;
4463
4464         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4465             &sc->bnx_rx_coal_ticks,
4466             BNX_RX_COAL_TICKS_MIN, BNX_RX_COAL_TICKS_MAX,
4467             BNX_RX_COAL_TICKS_CHG);
4468 }
4469
4470 static int
4471 bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4472 {
4473         struct bnx_softc *sc = arg1;
4474
4475         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4476             &sc->bnx_tx_coal_ticks,
4477             BNX_TX_COAL_TICKS_MIN, BNX_TX_COAL_TICKS_MAX,
4478             BNX_TX_COAL_TICKS_CHG);
4479 }
4480
4481 static int
4482 bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4483 {
4484         struct bnx_softc *sc = arg1;
4485
4486         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4487             &sc->bnx_rx_coal_bds,
4488             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4489             BNX_RX_COAL_BDS_CHG);
4490 }
4491
4492 static int
4493 bnx_sysctl_rx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4494 {
4495         struct bnx_softc *sc = arg1;
4496
4497         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4498             &sc->bnx_rx_coal_bds_poll,
4499             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4500             BNX_RX_COAL_BDS_CHG);
4501 }
4502
4503 static int
4504 bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4505 {
4506         struct bnx_softc *sc = arg1;
4507
4508         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4509             &sc->bnx_tx_coal_bds,
4510             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4511             BNX_TX_COAL_BDS_CHG);
4512 }
4513
4514 static int
4515 bnx_sysctl_tx_coal_bds_poll(SYSCTL_HANDLER_ARGS)
4516 {
4517         struct bnx_softc *sc = arg1;
4518
4519         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4520             &sc->bnx_tx_coal_bds_poll,
4521             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4522             BNX_TX_COAL_BDS_CHG);
4523 }
4524
4525 static int
4526 bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4527 {
4528         struct bnx_softc *sc = arg1;
4529
4530         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4531             &sc->bnx_rx_coal_bds_int,
4532             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
4533             BNX_RX_COAL_BDS_INT_CHG);
4534 }
4535
4536 static int
4537 bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4538 {
4539         struct bnx_softc *sc = arg1;
4540
4541         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
4542             &sc->bnx_tx_coal_bds_int,
4543             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
4544             BNX_TX_COAL_BDS_INT_CHG);
4545 }
4546
4547 static int
4548 bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4549     int coal_min, int coal_max, uint32_t coal_chg_mask)
4550 {
4551         struct bnx_softc *sc = arg1;
4552         struct ifnet *ifp = &sc->arpcom.ac_if;
4553         int error = 0, v;
4554
4555         ifnet_serialize_all(ifp);
4556
4557         v = *coal;
4558         error = sysctl_handle_int(oidp, &v, 0, req);
4559         if (!error && req->newptr != NULL) {
4560                 if (v < coal_min || v > coal_max) {
4561                         error = EINVAL;
4562                 } else {
4563                         *coal = v;
4564                         sc->bnx_coal_chg |= coal_chg_mask;
4565
4566                         /* Commit changes */
4567                         bnx_coal_change(sc);
4568                 }
4569         }
4570
4571         ifnet_deserialize_all(ifp);
4572         return error;
4573 }
4574
4575 static void
4576 bnx_coal_change(struct bnx_softc *sc)
4577 {
4578         struct ifnet *ifp = &sc->arpcom.ac_if;
4579         int i;
4580
4581         ASSERT_IFNET_SERIALIZED_ALL(ifp);
4582
4583         if (sc->bnx_coal_chg & BNX_RX_COAL_TICKS_CHG) {
4584                 if (sc->bnx_rx_retcnt == 1) {
4585                         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4586                             sc->bnx_rx_coal_ticks);
4587                         i = 0;
4588                 } else {
4589                         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, 0);
4590                         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4591                                 CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4592                                     (i * BGE_VEC_COALSET_SIZE),
4593                                     sc->bnx_rx_coal_ticks);
4594                         }
4595                 }
4596                 for (; i < BNX_INTR_MAX - 1; ++i) {
4597                         CSR_WRITE_4(sc, BGE_VEC1_RX_COAL_TICKS +
4598                             (i * BGE_VEC_COALSET_SIZE), 0);
4599                 }
4600                 if (bootverbose) {
4601                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4602                             sc->bnx_rx_coal_ticks);
4603                 }
4604         }
4605
4606         if (sc->bnx_coal_chg & BNX_TX_COAL_TICKS_CHG) {
4607                 if (sc->bnx_tx_ringcnt == 1) {
4608                         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4609                             sc->bnx_tx_coal_ticks);
4610                         i = 0;
4611                 } else {
4612                         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, 0);
4613                         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4614                                 CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4615                                     (i * BGE_VEC_COALSET_SIZE),
4616                                     sc->bnx_tx_coal_ticks);
4617                         }
4618                 }
4619                 for (; i < BNX_INTR_MAX - 1; ++i) {
4620                         CSR_WRITE_4(sc, BGE_VEC1_TX_COAL_TICKS +
4621                             (i * BGE_VEC_COALSET_SIZE), 0);
4622                 }
4623                 if (bootverbose) {
4624                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4625                             sc->bnx_tx_coal_ticks);
4626                 }
4627         }
4628
4629         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_CHG) {
4630                 uint32_t rx_coal_bds;
4631
4632                 if (ifp->if_flags & IFF_NPOLLING)
4633                         rx_coal_bds = sc->bnx_rx_coal_bds_poll;
4634                 else
4635                         rx_coal_bds = sc->bnx_rx_coal_bds;
4636
4637                 if (sc->bnx_rx_retcnt == 1) {
4638                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_coal_bds);
4639                         i = 0;
4640                 } else {
4641                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, 0);
4642                         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4643                                 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4644                                     (i * BGE_VEC_COALSET_SIZE), rx_coal_bds);
4645                         }
4646                 }
4647                 for (; i < BNX_INTR_MAX - 1; ++i) {
4648                         CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS +
4649                             (i * BGE_VEC_COALSET_SIZE), 0);
4650                 }
4651                 if (bootverbose) {
4652                         if_printf(ifp, "%srx_coal_bds -> %u\n",
4653                             (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4654                             rx_coal_bds);
4655                 }
4656         }
4657
4658         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_CHG) {
4659                 uint32_t tx_coal_bds;
4660
4661                 if (ifp->if_flags & IFF_NPOLLING)
4662                         tx_coal_bds = sc->bnx_tx_coal_bds_poll;
4663                 else
4664                         tx_coal_bds = sc->bnx_tx_coal_bds;
4665
4666                 if (sc->bnx_tx_ringcnt == 1) {
4667                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_coal_bds);
4668                         i = 0;
4669                 } else {
4670                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, 0);
4671                         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4672                                 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4673                                     (i * BGE_VEC_COALSET_SIZE), tx_coal_bds);
4674                         }
4675                 }
4676                 for (; i < BNX_INTR_MAX - 1; ++i) {
4677                         CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS +
4678                             (i * BGE_VEC_COALSET_SIZE), 0);
4679                 }
4680                 if (bootverbose) {
4681                         if_printf(ifp, "%stx_coal_bds -> %u\n",
4682                             (ifp->if_flags & IFF_NPOLLING) ? "polling " : "",
4683                             tx_coal_bds);
4684                 }
4685         }
4686
4687         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_INT_CHG) {
4688                 if (sc->bnx_rx_retcnt == 1) {
4689                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4690                             sc->bnx_rx_coal_bds_int);
4691                         i = 0;
4692                 } else {
4693                         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
4694                         for (i = 0; i < sc->bnx_rx_retcnt; ++i) {
4695                                 CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4696                                     (i * BGE_VEC_COALSET_SIZE),
4697                                     sc->bnx_rx_coal_bds_int);
4698                         }
4699                 }
4700                 for (; i < BNX_INTR_MAX - 1; ++i) {
4701                         CSR_WRITE_4(sc, BGE_VEC1_RX_MAX_COAL_BDS_INT +
4702                             (i * BGE_VEC_COALSET_SIZE), 0);
4703                 }
4704                 if (bootverbose) {
4705                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4706                             sc->bnx_rx_coal_bds_int);
4707                 }
4708         }
4709
4710         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_INT_CHG) {
4711                 if (sc->bnx_tx_ringcnt == 1) {
4712                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4713                             sc->bnx_tx_coal_bds_int);
4714                         i = 0;
4715                 } else {
4716                         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
4717                         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
4718                                 CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4719                                     (i * BGE_VEC_COALSET_SIZE),
4720                                     sc->bnx_tx_coal_bds_int);
4721                         }
4722                 }
4723                 for (; i < BNX_INTR_MAX - 1; ++i) {
4724                         CSR_WRITE_4(sc, BGE_VEC1_TX_MAX_COAL_BDS_INT +
4725                             (i * BGE_VEC_COALSET_SIZE), 0);
4726                 }
4727                 if (bootverbose) {
4728                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4729                             sc->bnx_tx_coal_bds_int);
4730                 }
4731         }
4732
4733         sc->bnx_coal_chg = 0;
4734 }
4735
4736 static void
4737 bnx_check_intr_rxtx(void *xintr)
4738 {
4739         struct bnx_intr_data *intr = xintr;
4740         struct bnx_rx_ret_ring *ret;
4741         struct bnx_tx_ring *txr;
4742         struct ifnet *ifp;
4743
4744         lwkt_serialize_enter(intr->bnx_intr_serialize);
4745
4746         KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4747
4748         ifp = &intr->bnx_sc->arpcom.ac_if;
4749         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4750                 lwkt_serialize_exit(intr->bnx_intr_serialize);
4751                 return;
4752         }
4753
4754         txr = intr->bnx_txr;
4755         ret = intr->bnx_ret;
4756
4757         if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx ||
4758             *txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4759                 if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx &&
4760                     intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4761                         if (!intr->bnx_intr_maylose) {
4762                                 intr->bnx_intr_maylose = TRUE;
4763                                 goto done;
4764                         }
4765                         if (bootverbose)
4766                                 if_printf(ifp, "lost interrupt\n");
4767                         intr->bnx_intr_func(intr->bnx_intr_arg);
4768                 }
4769         }
4770         intr->bnx_intr_maylose = FALSE;
4771         intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4772         intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4773
4774 done:
4775         callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4776             intr->bnx_intr_check, intr);
4777         lwkt_serialize_exit(intr->bnx_intr_serialize);
4778 }
4779
4780 static void
4781 bnx_check_intr_tx(void *xintr)
4782 {
4783         struct bnx_intr_data *intr = xintr;
4784         struct bnx_tx_ring *txr;
4785         struct ifnet *ifp;
4786
4787         lwkt_serialize_enter(intr->bnx_intr_serialize);
4788
4789         KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4790
4791         ifp = &intr->bnx_sc->arpcom.ac_if;
4792         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4793                 lwkt_serialize_exit(intr->bnx_intr_serialize);
4794                 return;
4795         }
4796
4797         txr = intr->bnx_txr;
4798
4799         if (*txr->bnx_tx_considx != txr->bnx_tx_saved_considx) {
4800                 if (intr->bnx_tx_check_considx == txr->bnx_tx_saved_considx) {
4801                         if (!intr->bnx_intr_maylose) {
4802                                 intr->bnx_intr_maylose = TRUE;
4803                                 goto done;
4804                         }
4805                         if (bootverbose)
4806                                 if_printf(ifp, "lost interrupt\n");
4807                         intr->bnx_intr_func(intr->bnx_intr_arg);
4808                 }
4809         }
4810         intr->bnx_intr_maylose = FALSE;
4811         intr->bnx_tx_check_considx = txr->bnx_tx_saved_considx;
4812
4813 done:
4814         callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4815             intr->bnx_intr_check, intr);
4816         lwkt_serialize_exit(intr->bnx_intr_serialize);
4817 }
4818
4819 static void
4820 bnx_check_intr_rx(void *xintr)
4821 {
4822         struct bnx_intr_data *intr = xintr;
4823         struct bnx_rx_ret_ring *ret;
4824         struct ifnet *ifp;
4825
4826         lwkt_serialize_enter(intr->bnx_intr_serialize);
4827
4828         KKASSERT(mycpuid == intr->bnx_intr_cpuid);
4829
4830         ifp = &intr->bnx_sc->arpcom.ac_if;
4831         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4832                 lwkt_serialize_exit(intr->bnx_intr_serialize);
4833                 return;
4834         }
4835
4836         ret = intr->bnx_ret;
4837
4838         if (*ret->bnx_rx_considx != ret->bnx_rx_saved_considx) {
4839                 if (intr->bnx_rx_check_considx == ret->bnx_rx_saved_considx) {
4840                         if (!intr->bnx_intr_maylose) {
4841                                 intr->bnx_intr_maylose = TRUE;
4842                                 goto done;
4843                         }
4844                         if (bootverbose)
4845                                 if_printf(ifp, "lost interrupt\n");
4846                         intr->bnx_intr_func(intr->bnx_intr_arg);
4847                 }
4848         }
4849         intr->bnx_intr_maylose = FALSE;
4850         intr->bnx_rx_check_considx = ret->bnx_rx_saved_considx;
4851
4852 done:
4853         callout_reset(&intr->bnx_intr_timer, BNX_INTR_CKINTVL,
4854             intr->bnx_intr_check, intr);
4855         lwkt_serialize_exit(intr->bnx_intr_serialize);
4856 }
4857
4858 static void
4859 bnx_enable_intr(struct bnx_softc *sc)
4860 {
4861         struct ifnet *ifp = &sc->arpcom.ac_if;
4862         int i;
4863
4864         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4865                 lwkt_serialize_handler_enable(
4866                     sc->bnx_intr_data[i].bnx_intr_serialize);
4867         }
4868
4869         /*
4870          * Enable interrupt.
4871          */
4872         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4873                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4874
4875                 bnx_writembx(sc, intr->bnx_intr_mbx,
4876                     (*intr->bnx_saved_status_tag) << 24);
4877                 /* XXX Linux driver */
4878                 bnx_writembx(sc, intr->bnx_intr_mbx,
4879                     (*intr->bnx_saved_status_tag) << 24);
4880         }
4881
4882         /*
4883          * Unmask the interrupt when we stop polling.
4884          */
4885         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4886             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4887
4888         /*
4889          * Trigger another interrupt, since above writing
4890          * to interrupt mailbox0 may acknowledge pending
4891          * interrupt.
4892          */
4893         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4894
4895         if (sc->bnx_flags & BNX_FLAG_STATUSTAG_BUG) {
4896                 if (bootverbose)
4897                         if_printf(ifp, "status tag bug workaround\n");
4898
4899                 for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4900                         struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4901
4902                         if (intr->bnx_intr_check == NULL)
4903                                 continue;
4904                         intr->bnx_intr_maylose = FALSE;
4905                         intr->bnx_rx_check_considx = 0;
4906                         intr->bnx_tx_check_considx = 0;
4907                         callout_reset_bycpu(&intr->bnx_intr_timer,
4908                             BNX_INTR_CKINTVL, intr->bnx_intr_check, intr,
4909                             intr->bnx_intr_cpuid);
4910                 }
4911         }
4912 }
4913
4914 static void
4915 bnx_disable_intr(struct bnx_softc *sc)
4916 {
4917         int i;
4918
4919         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4920                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
4921
4922                 callout_stop(&intr->bnx_intr_timer);
4923                 intr->bnx_intr_maylose = FALSE;
4924                 intr->bnx_rx_check_considx = 0;
4925                 intr->bnx_tx_check_considx = 0;
4926         }
4927
4928         /*
4929          * Mask the interrupt when we start polling.
4930          */
4931         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4932             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4933
4934         /*
4935          * Acknowledge possible asserted interrupt.
4936          */
4937         for (i = 0; i < BNX_INTR_MAX; ++i)
4938                 bnx_writembx(sc, sc->bnx_intr_data[i].bnx_intr_mbx, 1);
4939
4940         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
4941                 lwkt_serialize_handler_disable(
4942                     sc->bnx_intr_data[i].bnx_intr_serialize);
4943         }
4944 }
4945
4946 static int
4947 bnx_get_eaddr_mem(struct bnx_softc *sc, uint8_t ether_addr[])
4948 {
4949         uint32_t mac_addr;
4950         int ret = 1;
4951
4952         mac_addr = bnx_readmem_ind(sc, 0x0c14);
4953         if ((mac_addr >> 16) == 0x484b) {
4954                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4955                 ether_addr[1] = (uint8_t)mac_addr;
4956                 mac_addr = bnx_readmem_ind(sc, 0x0c18);
4957                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4958                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4959                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4960                 ether_addr[5] = (uint8_t)mac_addr;
4961                 ret = 0;
4962         }
4963         return ret;
4964 }
4965
4966 static int
4967 bnx_get_eaddr_nvram(struct bnx_softc *sc, uint8_t ether_addr[])
4968 {
4969         int mac_offset = BGE_EE_MAC_OFFSET;
4970
4971         if (BNX_IS_5717_PLUS(sc)) {
4972                 int f;
4973
4974                 f = pci_get_function(sc->bnx_dev);
4975                 if (f & 1)
4976                         mac_offset = BGE_EE_MAC_OFFSET_5717;
4977                 if (f > 1)
4978                         mac_offset += BGE_EE_MAC_OFFSET_5717_OFF;
4979         }
4980
4981         return bnx_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4982 }
4983
4984 static int
4985 bnx_get_eaddr_eeprom(struct bnx_softc *sc, uint8_t ether_addr[])
4986 {
4987         if (sc->bnx_flags & BNX_FLAG_NO_EEPROM)
4988                 return 1;
4989
4990         return bnx_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4991                                ETHER_ADDR_LEN);
4992 }
4993
4994 static int
4995 bnx_get_eaddr(struct bnx_softc *sc, uint8_t eaddr[])
4996 {
4997         static const bnx_eaddr_fcn_t bnx_eaddr_funcs[] = {
4998                 /* NOTE: Order is critical */
4999                 bnx_get_eaddr_mem,
5000                 bnx_get_eaddr_nvram,
5001                 bnx_get_eaddr_eeprom,
5002                 NULL
5003         };
5004         const bnx_eaddr_fcn_t *func;
5005
5006         for (func = bnx_eaddr_funcs; *func != NULL; ++func) {
5007                 if ((*func)(sc, eaddr) == 0)
5008                         break;
5009         }
5010         return (*func == NULL ? ENXIO : 0);
5011 }
5012
5013 /*
5014  * NOTE: 'm' is not freed upon failure
5015  */
5016 struct mbuf *
5017 bnx_defrag_shortdma(struct mbuf *m)
5018 {
5019         struct mbuf *n;
5020         int found;
5021
5022         /*
5023          * If device receive two back-to-back send BDs with less than
5024          * or equal to 8 total bytes then the device may hang.  The two
5025          * back-to-back send BDs must in the same frame for this failure
5026          * to occur.  Scan mbuf chains and see whether two back-to-back
5027          * send BDs are there.  If this is the case, allocate new mbuf
5028          * and copy the frame to workaround the silicon bug.
5029          */
5030         for (n = m, found = 0; n != NULL; n = n->m_next) {
5031                 if (n->m_len < 8) {
5032                         found++;
5033                         if (found > 1)
5034                                 break;
5035                         continue;
5036                 }
5037                 found = 0;
5038         }
5039
5040         if (found > 1)
5041                 n = m_defrag(m, MB_DONTWAIT);
5042         else
5043                 n = m;
5044         return n;
5045 }
5046
5047 static void
5048 bnx_stop_block(struct bnx_softc *sc, bus_size_t reg, uint32_t bit)
5049 {
5050         int i;
5051
5052         BNX_CLRBIT(sc, reg, bit);
5053         for (i = 0; i < BNX_TIMEOUT; i++) {
5054                 if ((CSR_READ_4(sc, reg) & bit) == 0)
5055                         return;
5056                 DELAY(100);
5057         }
5058 }
5059
5060 static void
5061 bnx_link_poll(struct bnx_softc *sc)
5062 {
5063         uint32_t status;
5064
5065         status = CSR_READ_4(sc, BGE_MAC_STS);
5066         if ((status & sc->bnx_link_chg) || sc->bnx_link_evt) {
5067                 sc->bnx_link_evt = 0;
5068                 sc->bnx_link_upd(sc, status);
5069         }
5070 }
5071
5072 static void
5073 bnx_enable_msi(struct bnx_softc *sc, boolean_t is_msix)
5074 {
5075         uint32_t msi_mode;
5076
5077         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
5078         msi_mode |= BGE_MSIMODE_ENABLE;
5079         /*
5080          * NOTE:
5081          * 5718-PG105-R says that "one shot" mode does not work
5082          * if MSI is used, however, it obviously works.
5083          */
5084         msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
5085         if (is_msix)
5086                 msi_mode |= BGE_MSIMODE_MSIX_MULTIMODE;
5087         else
5088                 msi_mode &= ~BGE_MSIMODE_MSIX_MULTIMODE;
5089         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
5090 }
5091
5092 static uint32_t
5093 bnx_dma_swap_options(struct bnx_softc *sc)
5094 {
5095         uint32_t dma_options;
5096
5097         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
5098             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
5099 #if BYTE_ORDER == BIG_ENDIAN
5100         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
5101 #endif
5102         return dma_options;
5103 }
5104
5105 static int
5106 bnx_setup_tso(struct bnx_tx_ring *txr, struct mbuf **mp,
5107     uint16_t *mss0, uint16_t *flags0)
5108 {
5109         struct mbuf *m;
5110         struct ip *ip;
5111         struct tcphdr *th;
5112         int thoff, iphlen, hoff, hlen;
5113         uint16_t flags, mss;
5114
5115         m = *mp;
5116         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
5117
5118         hoff = m->m_pkthdr.csum_lhlen;
5119         iphlen = m->m_pkthdr.csum_iphlen;
5120         thoff = m->m_pkthdr.csum_thlen;
5121
5122         KASSERT(hoff > 0, ("invalid ether header len"));
5123         KASSERT(iphlen > 0, ("invalid ip header len"));
5124         KASSERT(thoff > 0, ("invalid tcp header len"));
5125
5126         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
5127                 m = m_pullup(m, hoff + iphlen + thoff);
5128                 if (m == NULL) {
5129                         *mp = NULL;
5130                         return ENOBUFS;
5131                 }
5132                 *mp = m;
5133         }
5134         ip = mtodoff(m, struct ip *, hoff);
5135         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
5136
5137         mss = m->m_pkthdr.tso_segsz;
5138         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
5139
5140         ip->ip_len = htons(mss + iphlen + thoff);
5141         th->th_sum = 0;
5142
5143         hlen = (iphlen + thoff) >> 2;
5144         mss |= ((hlen & 0x3) << 14);
5145         flags |= ((hlen & 0xf8) << 7) | ((hlen & 0x4) << 2);
5146
5147         *mss0 = mss;
5148         *flags0 = flags;
5149
5150         return 0;
5151 }
5152
5153 static int
5154 bnx_create_tx_ring(struct bnx_tx_ring *txr)
5155 {
5156         bus_size_t txmaxsz, txmaxsegsz;
5157         int i, error;
5158
5159         lwkt_serialize_init(&txr->bnx_tx_serialize);
5160
5161         /*
5162          * Create DMA tag and maps for TX mbufs.
5163          */
5164         if (txr->bnx_sc->bnx_flags & BNX_FLAG_TSO)
5165                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
5166         else
5167                 txmaxsz = BNX_JUMBO_FRAMELEN;
5168         if (txr->bnx_sc->bnx_asicrev == BGE_ASICREV_BCM57766)
5169                 txmaxsegsz = MCLBYTES;
5170         else
5171                 txmaxsegsz = PAGE_SIZE;
5172         error = bus_dma_tag_create(txr->bnx_sc->bnx_cdata.bnx_parent_tag,
5173             1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
5174             txmaxsz, BNX_NSEG_NEW, txmaxsegsz,
5175             BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5176             &txr->bnx_tx_mtag);
5177         if (error) {
5178                 device_printf(txr->bnx_sc->bnx_dev,
5179                     "could not create TX mbuf DMA tag\n");
5180                 return error;
5181         }
5182
5183         for (i = 0; i < BGE_TX_RING_CNT; i++) {
5184                 error = bus_dmamap_create(txr->bnx_tx_mtag,
5185                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
5186                     &txr->bnx_tx_buf[i].bnx_tx_dmamap);
5187                 if (error) {
5188                         int j;
5189
5190                         for (j = 0; j < i; ++j) {
5191                                 bus_dmamap_destroy(txr->bnx_tx_mtag,
5192                                     txr->bnx_tx_buf[j].bnx_tx_dmamap);
5193                         }
5194                         bus_dma_tag_destroy(txr->bnx_tx_mtag);
5195                         txr->bnx_tx_mtag = NULL;
5196
5197                         device_printf(txr->bnx_sc->bnx_dev,
5198                             "could not create TX mbuf DMA map\n");
5199                         return error;
5200                 }
5201         }
5202
5203         /*
5204          * Create DMA stuffs for TX ring.
5205          */
5206         error = bnx_dma_block_alloc(txr->bnx_sc, BGE_TX_RING_SZ,
5207             &txr->bnx_tx_ring_tag,
5208             &txr->bnx_tx_ring_map,
5209             (void *)&txr->bnx_tx_ring,
5210             &txr->bnx_tx_ring_paddr);
5211         if (error) {
5212                 device_printf(txr->bnx_sc->bnx_dev,
5213                     "could not create TX ring\n");
5214                 return error;
5215         }
5216
5217         txr->bnx_tx_flags |= BNX_TX_FLAG_SHORTDMA;
5218         txr->bnx_tx_wreg = BNX_TX_WREG_NSEGS;
5219
5220         return 0;
5221 }
5222
5223 static void
5224 bnx_destroy_tx_ring(struct bnx_tx_ring *txr)
5225 {
5226         /* Destroy TX mbuf DMA stuffs. */
5227         if (txr->bnx_tx_mtag != NULL) {
5228                 int i;
5229
5230                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
5231                         KKASSERT(txr->bnx_tx_buf[i].bnx_tx_mbuf == NULL);
5232                         bus_dmamap_destroy(txr->bnx_tx_mtag,
5233                             txr->bnx_tx_buf[i].bnx_tx_dmamap);
5234                 }
5235                 bus_dma_tag_destroy(txr->bnx_tx_mtag);
5236         }
5237
5238         /* Destroy TX ring */
5239         bnx_dma_block_free(txr->bnx_tx_ring_tag,
5240             txr->bnx_tx_ring_map, txr->bnx_tx_ring);
5241 }
5242
5243 static int
5244 bnx_sysctl_force_defrag(SYSCTL_HANDLER_ARGS)
5245 {
5246         struct bnx_softc *sc = (void *)arg1;
5247         struct ifnet *ifp = &sc->arpcom.ac_if;
5248         struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5249         int error, defrag, i;
5250
5251         if (txr->bnx_tx_flags & BNX_TX_FLAG_FORCE_DEFRAG)
5252                 defrag = 1;
5253         else
5254                 defrag = 0;
5255
5256         error = sysctl_handle_int(oidp, &defrag, 0, req);
5257         if (error || req->newptr == NULL)
5258                 return error;
5259
5260         ifnet_serialize_all(ifp);
5261         for (i = 0; i < sc->bnx_tx_ringcnt; ++i) {
5262                 txr = &sc->bnx_tx_ring[i];
5263                 if (defrag)
5264                         txr->bnx_tx_flags |= BNX_TX_FLAG_FORCE_DEFRAG;
5265                 else
5266                         txr->bnx_tx_flags &= ~BNX_TX_FLAG_FORCE_DEFRAG;
5267         }
5268         ifnet_deserialize_all(ifp);
5269
5270         return 0;
5271 }
5272
5273 static int
5274 bnx_sysctl_tx_wreg(SYSCTL_HANDLER_ARGS)
5275 {
5276         struct bnx_softc *sc = (void *)arg1;
5277         struct ifnet *ifp = &sc->arpcom.ac_if;
5278         struct bnx_tx_ring *txr = &sc->bnx_tx_ring[0];
5279         int error, tx_wreg, i;
5280
5281         tx_wreg = txr->bnx_tx_wreg;
5282         error = sysctl_handle_int(oidp, &tx_wreg, 0, req);
5283         if (error || req->newptr == NULL)
5284                 return error;
5285
5286         ifnet_serialize_all(ifp);
5287         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5288                 sc->bnx_tx_ring[i].bnx_tx_wreg = tx_wreg;
5289         ifnet_deserialize_all(ifp);
5290
5291         return 0;
5292 }
5293
5294 static int
5295 bnx_create_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5296 {
5297         int error;
5298
5299         lwkt_serialize_init(&ret->bnx_rx_ret_serialize);
5300
5301         /*
5302          * Create DMA stuffs for RX return ring.
5303          */
5304         error = bnx_dma_block_alloc(ret->bnx_sc,
5305             BGE_RX_RTN_RING_SZ(BNX_RETURN_RING_CNT),
5306             &ret->bnx_rx_ret_ring_tag,
5307             &ret->bnx_rx_ret_ring_map,
5308             (void *)&ret->bnx_rx_ret_ring,
5309             &ret->bnx_rx_ret_ring_paddr);
5310         if (error) {
5311                 device_printf(ret->bnx_sc->bnx_dev,
5312                     "could not create RX ret ring\n");
5313                 return error;
5314         }
5315
5316         /* Shadow standard ring's RX mbuf DMA tag */
5317         ret->bnx_rx_mtag = ret->bnx_std->bnx_rx_mtag;
5318
5319         /*
5320          * Create tmp DMA map for RX mbufs.
5321          */
5322         error = bus_dmamap_create(ret->bnx_rx_mtag, BUS_DMA_WAITOK,
5323             &ret->bnx_rx_tmpmap);
5324         if (error) {
5325                 device_printf(ret->bnx_sc->bnx_dev,
5326                     "could not create tmp RX mbuf DMA map\n");
5327                 ret->bnx_rx_mtag = NULL;
5328                 return error;
5329         }
5330         return 0;
5331 }
5332
5333 static void
5334 bnx_destroy_rx_ret_ring(struct bnx_rx_ret_ring *ret)
5335 {
5336         /* Destroy tmp RX mbuf DMA map */
5337         if (ret->bnx_rx_mtag != NULL)
5338                 bus_dmamap_destroy(ret->bnx_rx_mtag, ret->bnx_rx_tmpmap);
5339
5340         /* Destroy RX return ring */
5341         bnx_dma_block_free(ret->bnx_rx_ret_ring_tag,
5342             ret->bnx_rx_ret_ring_map, ret->bnx_rx_ret_ring);
5343 }
5344
5345 static int
5346 bnx_alloc_intr(struct bnx_softc *sc)
5347 {
5348         struct bnx_intr_data *intr;
5349         u_int intr_flags;
5350         int error;
5351
5352         if (sc->bnx_intr_cnt > 1) {
5353                 error = bnx_alloc_msix(sc);
5354                 if (error)
5355                         return error;
5356                 KKASSERT(sc->bnx_intr_type == PCI_INTR_TYPE_MSIX);
5357                 return 0;
5358         }
5359
5360         KKASSERT(sc->bnx_intr_cnt == 1);
5361
5362         intr = &sc->bnx_intr_data[0];
5363         intr->bnx_ret = &sc->bnx_rx_ret_ring[0];
5364         intr->bnx_txr = &sc->bnx_tx_ring[0];
5365         intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5366         intr->bnx_intr_check = bnx_check_intr_rxtx;
5367         intr->bnx_saved_status_tag = &intr->bnx_ret->bnx_saved_status_tag;
5368
5369         sc->bnx_intr_type = pci_alloc_1intr(sc->bnx_dev, bnx_msi_enable,
5370             &intr->bnx_intr_rid, &intr_flags);
5371
5372         intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev, SYS_RES_IRQ,
5373             &intr->bnx_intr_rid, intr_flags);
5374         if (intr->bnx_intr_res == NULL) {
5375                 device_printf(sc->bnx_dev, "could not alloc interrupt\n");
5376                 return ENXIO;
5377         }
5378
5379         if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI) {
5380                 bnx_enable_msi(sc, FALSE);
5381                 intr->bnx_intr_func = bnx_msi;
5382                 if (bootverbose)
5383                         device_printf(sc->bnx_dev, "oneshot MSI\n");
5384         } else {
5385                 intr->bnx_intr_func = bnx_intr_legacy;
5386         }
5387         intr->bnx_intr_arg = sc;
5388         intr->bnx_intr_cpuid = rman_get_cpuid(intr->bnx_intr_res);
5389
5390         intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5391
5392         return 0;
5393 }
5394
5395 static int
5396 bnx_setup_intr(struct bnx_softc *sc)
5397 {
5398         int error, i;
5399
5400         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
5401                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5402
5403                 error = bus_setup_intr_descr(sc->bnx_dev, intr->bnx_intr_res,
5404                     INTR_MPSAFE, intr->bnx_intr_func, intr->bnx_intr_arg,
5405                     &intr->bnx_intr_hand, intr->bnx_intr_serialize,
5406                     intr->bnx_intr_desc);
5407                 if (error) {
5408                         device_printf(sc->bnx_dev,
5409                             "could not set up %dth intr\n", i);
5410                         bnx_teardown_intr(sc, i);
5411                         return error;
5412                 }
5413         }
5414         return 0;
5415 }
5416
5417 static void
5418 bnx_teardown_intr(struct bnx_softc *sc, int cnt)
5419 {
5420         int i;
5421
5422         for (i = 0; i < cnt; ++i) {
5423                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
5424
5425                 bus_teardown_intr(sc->bnx_dev, intr->bnx_intr_res,
5426                     intr->bnx_intr_hand);
5427         }
5428 }
5429
5430 static void
5431 bnx_free_intr(struct bnx_softc *sc)
5432 {
5433         if (sc->bnx_intr_type != PCI_INTR_TYPE_MSIX) {
5434                 struct bnx_intr_data *intr;
5435
5436                 KKASSERT(sc->bnx_intr_cnt <= 1);
5437                 intr = &sc->bnx_intr_data[0];
5438
5439                 if (intr->bnx_intr_res != NULL) {
5440                         bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
5441                             intr->bnx_intr_rid, intr->bnx_intr_res);
5442                 }
5443                 if (sc->bnx_intr_type == PCI_INTR_TYPE_MSI)
5444                         pci_release_msi(sc->bnx_dev);
5445         } else {
5446                 bnx_free_msix(sc, TRUE);
5447         }
5448 }
5449
5450 static void
5451 bnx_setup_serialize(struct bnx_softc *sc)
5452 {
5453         int i, j;
5454
5455         /*
5456          * Allocate serializer array
5457          */
5458
5459         /* Main + RX STD + TX + RX RET */
5460         sc->bnx_serialize_cnt = 1 + 1 + sc->bnx_tx_ringcnt + sc->bnx_rx_retcnt;
5461
5462         sc->bnx_serialize =
5463             kmalloc(sc->bnx_serialize_cnt * sizeof(struct lwkt_serialize *),
5464                 M_DEVBUF, M_WAITOK | M_ZERO);
5465
5466         /*
5467          * Setup serializers
5468          *
5469          * NOTE: Order is critical
5470          */
5471
5472         i = 0;
5473
5474         KKASSERT(i < sc->bnx_serialize_cnt);
5475         sc->bnx_serialize[i++] = &sc->bnx_main_serialize;
5476
5477         KKASSERT(i < sc->bnx_serialize_cnt);
5478         sc->bnx_serialize[i++] = &sc->bnx_rx_std_ring.bnx_rx_std_serialize;
5479
5480         for (j = 0; j < sc->bnx_rx_retcnt; ++j) {
5481                 KKASSERT(i < sc->bnx_serialize_cnt);
5482                 sc->bnx_serialize[i++] =
5483                     &sc->bnx_rx_ret_ring[j].bnx_rx_ret_serialize;
5484         }
5485
5486         for (j = 0; j < sc->bnx_tx_ringcnt; ++j) {
5487                 KKASSERT(i < sc->bnx_serialize_cnt);
5488                 sc->bnx_serialize[i++] =
5489                     &sc->bnx_tx_ring[j].bnx_tx_serialize;
5490         }
5491
5492         KKASSERT(i == sc->bnx_serialize_cnt);
5493 }
5494
5495 static void
5496 bnx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
5497 {
5498         struct bnx_softc *sc = ifp->if_softc;
5499
5500         ifnet_serialize_array_enter(sc->bnx_serialize,
5501             sc->bnx_serialize_cnt, slz);
5502 }
5503
5504 static void
5505 bnx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5506 {
5507         struct bnx_softc *sc = ifp->if_softc;
5508
5509         ifnet_serialize_array_exit(sc->bnx_serialize,
5510             sc->bnx_serialize_cnt, slz);
5511 }
5512
5513 static int
5514 bnx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
5515 {
5516         struct bnx_softc *sc = ifp->if_softc;
5517
5518         return ifnet_serialize_array_try(sc->bnx_serialize,
5519             sc->bnx_serialize_cnt, slz);
5520 }
5521
5522 #ifdef INVARIANTS
5523
5524 static void
5525 bnx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
5526     boolean_t serialized)
5527 {
5528         struct bnx_softc *sc = ifp->if_softc;
5529
5530         ifnet_serialize_array_assert(sc->bnx_serialize, sc->bnx_serialize_cnt,
5531             slz, serialized);
5532 }
5533
5534 #endif  /* INVARIANTS */
5535
5536 #ifdef IFPOLL_ENABLE
5537
5538 static int
5539 bnx_sysctl_npoll_offset(SYSCTL_HANDLER_ARGS)
5540 {
5541         struct bnx_softc *sc = (void *)arg1;
5542         struct ifnet *ifp = &sc->arpcom.ac_if;
5543         int error, off;
5544
5545         off = sc->bnx_npoll_rxoff;
5546         error = sysctl_handle_int(oidp, &off, 0, req);
5547         if (error || req->newptr == NULL)
5548                 return error;
5549         if (off < 0)
5550                 return EINVAL;
5551
5552         ifnet_serialize_all(ifp);
5553         if (off >= ncpus2 || off % sc->bnx_rx_retcnt != 0) {
5554                 error = EINVAL;
5555         } else {
5556                 error = 0;
5557                 sc->bnx_npoll_txoff = off;
5558                 sc->bnx_npoll_rxoff = off;
5559         }
5560         ifnet_deserialize_all(ifp);
5561
5562         return error;
5563 }
5564
5565 static int
5566 bnx_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
5567 {
5568         struct bnx_softc *sc = (void *)arg1;
5569         struct ifnet *ifp = &sc->arpcom.ac_if;
5570         int error, off;
5571
5572         off = sc->bnx_npoll_rxoff;
5573         error = sysctl_handle_int(oidp, &off, 0, req);
5574         if (error || req->newptr == NULL)
5575                 return error;
5576         if (off < 0)
5577                 return EINVAL;
5578
5579         ifnet_serialize_all(ifp);
5580         if (off >= ncpus2 || off % sc->bnx_rx_retcnt != 0) {
5581                 error = EINVAL;
5582         } else {
5583                 error = 0;
5584                 sc->bnx_npoll_rxoff = off;
5585         }
5586         ifnet_deserialize_all(ifp);
5587
5588         return error;
5589 }
5590
5591 static int
5592 bnx_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
5593 {
5594         struct bnx_softc *sc = (void *)arg1;
5595         struct ifnet *ifp = &sc->arpcom.ac_if;
5596         int error, off;
5597
5598         off = sc->bnx_npoll_txoff;
5599         error = sysctl_handle_int(oidp, &off, 0, req);
5600         if (error || req->newptr == NULL)
5601                 return error;
5602         if (off < 0)
5603                 return EINVAL;
5604
5605         ifnet_serialize_all(ifp);
5606         if (off >= ncpus2) {
5607                 error = EINVAL;
5608         } else {
5609                 error = 0;
5610                 sc->bnx_npoll_txoff = off;
5611         }
5612         ifnet_deserialize_all(ifp);
5613
5614         return error;
5615 }
5616
5617 #endif  /* IFPOLL_ENABLE */
5618
5619 static void
5620 bnx_set_tick_cpuid(struct bnx_softc *sc, boolean_t polling)
5621 {
5622         if (polling)
5623                 sc->bnx_tick_cpuid = 0; /* XXX */
5624         else
5625                 sc->bnx_tick_cpuid = sc->bnx_intr_data[0].bnx_intr_cpuid;
5626 }
5627
5628 static void
5629 bnx_rx_std_refill_ithread(void *xstd)
5630 {
5631         struct bnx_rx_std_ring *std = xstd;
5632         struct globaldata *gd = mycpu;
5633
5634         crit_enter_gd(gd);
5635
5636         while (!std->bnx_rx_std_stop) {
5637                 if (std->bnx_rx_std_refill) {
5638                         lwkt_serialize_handler_call(
5639                             &std->bnx_rx_std_serialize,
5640                             bnx_rx_std_refill, std, NULL);
5641                 }
5642
5643                 crit_exit_gd(gd);
5644                 crit_enter_gd(gd);
5645
5646                 atomic_poll_release_int(&std->bnx_rx_std_running);
5647                 cpu_mfence();
5648
5649                 if (!std->bnx_rx_std_refill && !std->bnx_rx_std_stop) {
5650                         lwkt_deschedule_self(gd->gd_curthread);
5651                         lwkt_switch();
5652                 }
5653         }
5654
5655         crit_exit_gd(gd);
5656
5657         wakeup(std);
5658
5659         lwkt_exit();
5660 }
5661
5662 static void
5663 bnx_rx_std_refill(void *xstd, void *frame __unused)
5664 {
5665         struct bnx_rx_std_ring *std = xstd;
5666         int cnt, refill_mask;
5667
5668 again:
5669         cnt = 0;
5670
5671         cpu_lfence();
5672         refill_mask = std->bnx_rx_std_refill;
5673         atomic_clear_int(&std->bnx_rx_std_refill, refill_mask);
5674
5675         while (refill_mask) {
5676                 uint16_t check_idx = std->bnx_rx_std;
5677                 int ret_idx;
5678
5679                 ret_idx = bsfl(refill_mask);
5680                 for (;;) {
5681                         struct bnx_rx_buf *rb;
5682                         int refilled;
5683
5684                         BNX_INC(check_idx, BGE_STD_RX_RING_CNT);
5685                         rb = &std->bnx_rx_std_buf[check_idx];
5686                         refilled = rb->bnx_rx_refilled;
5687                         cpu_lfence();
5688                         if (refilled) {
5689                                 bnx_setup_rxdesc_std(std, check_idx);
5690                                 std->bnx_rx_std = check_idx;
5691                                 ++cnt;
5692                                 if (cnt >= 8) {
5693                                         atomic_subtract_int(
5694                                             &std->bnx_rx_std_used, cnt);
5695                                         bnx_writembx(std->bnx_sc,
5696                                             BGE_MBX_RX_STD_PROD_LO,
5697                                             std->bnx_rx_std);
5698                                         cnt = 0;
5699                                 }
5700                         } else {
5701                                 break;
5702                         }
5703                 }
5704                 refill_mask &= ~(1 << ret_idx);
5705         }
5706
5707         if (cnt) {
5708                 atomic_subtract_int(&std->bnx_rx_std_used, cnt);
5709                 bnx_writembx(std->bnx_sc, BGE_MBX_RX_STD_PROD_LO,
5710                     std->bnx_rx_std);
5711         }
5712
5713         if (std->bnx_rx_std_refill)
5714                 goto again;
5715
5716         atomic_poll_release_int(&std->bnx_rx_std_running);
5717         cpu_mfence();
5718
5719         if (std->bnx_rx_std_refill)
5720                 goto again;
5721 }
5722
5723 static int
5724 bnx_sysctl_std_refill(SYSCTL_HANDLER_ARGS)
5725 {
5726         struct bnx_softc *sc = (void *)arg1;
5727         struct ifnet *ifp = &sc->arpcom.ac_if;
5728         struct bnx_rx_ret_ring *ret = &sc->bnx_rx_ret_ring[0];
5729         int error, cntmax, i;
5730
5731         cntmax = ret->bnx_rx_cntmax;
5732         error = sysctl_handle_int(oidp, &cntmax, 0, req);
5733         if (error || req->newptr == NULL)
5734                 return error;
5735
5736         ifnet_serialize_all(ifp);
5737
5738         if ((cntmax * sc->bnx_rx_retcnt) >= BGE_STD_RX_RING_CNT / 2) {
5739                 error = EINVAL;
5740                 goto back;
5741         }
5742
5743         for (i = 0; i < sc->bnx_tx_ringcnt; ++i)
5744                 sc->bnx_rx_ret_ring[i].bnx_rx_cntmax = cntmax;
5745         error = 0;
5746
5747 back:
5748         ifnet_deserialize_all(ifp);
5749
5750         return error;
5751 }
5752
5753 static void
5754 bnx_init_rss(struct bnx_softc *sc)
5755 {
5756         uint8_t key[BGE_RSS_KEYREG_CNT * BGE_RSS_KEYREG_SIZE];
5757         int i, j, r;
5758
5759         KKASSERT(BNX_RSS_ENABLED(sc));
5760
5761         /*
5762          * Configure RSS redirect table in following fashion:
5763          * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
5764          */
5765         r = 0;
5766         for (j = 0; j < BGE_RSS_INDIR_TBL_CNT; ++j) {
5767                 uint32_t tbl = 0;
5768
5769                 for (i = 0; i < BGE_RSS_INDIR_TBLENT_CNT; ++i) {
5770                         uint32_t q;
5771
5772                         q = r % sc->bnx_rx_retcnt;
5773                         tbl |= q << (BGE_RSS_INDIR_TBLENT_SHIFT *
5774                             (BGE_RSS_INDIR_TBLENT_CNT - i - 1));
5775                         ++r;
5776                 }
5777
5778                 BNX_RSS_DPRINTF(sc, 1, "tbl%d %08x\n", j, tbl);
5779                 CSR_WRITE_4(sc, BGE_RSS_INDIR_TBL(j), tbl);
5780         }
5781
5782         toeplitz_get_key(key, sizeof(key));
5783         for (i = 0; i < BGE_RSS_KEYREG_CNT; ++i) {
5784                 uint32_t keyreg;
5785
5786                 keyreg = BGE_RSS_KEYREG_VAL(key, i);
5787
5788                 BNX_RSS_DPRINTF(sc, 1, "key%d %08x\n", i, keyreg);
5789                 CSR_WRITE_4(sc, BGE_RSS_KEYREG(i), keyreg);
5790         }
5791 }
5792
5793 static void
5794 bnx_setup_ring_cnt(struct bnx_softc *sc)
5795 {
5796         int msix_enable, i, msix_cnt, msix_cnt2, ring_max;
5797
5798         sc->bnx_tx_ringcnt = 1;
5799         sc->bnx_rx_retcnt = 1;
5800         sc->bnx_intr_cnt = 1;
5801
5802         msix_enable = device_getenv_int(sc->bnx_dev, "msix.enable",
5803             bnx_msix_enable);
5804         if (!msix_enable)
5805                 return;
5806
5807         if (ncpus2 == 1)
5808                 return;
5809
5810         msix_cnt = pci_msix_count(sc->bnx_dev);
5811         if (msix_cnt <= 1)
5812                 return;
5813
5814         i = 0;
5815         while ((1 << (i + 1)) <= msix_cnt)
5816                 ++i;
5817         msix_cnt2 = 1 << i;
5818
5819         /*
5820          * One MSI-X vector is dedicated to status or single TX queue,
5821          * so make sure that there are enough MSI-X vectors.
5822          */
5823         if (msix_cnt == msix_cnt2) {
5824                 /*
5825                  * XXX
5826                  * This probably will not happen; 57785/5718 families
5827                  * come with at least 5 MSI-X vectors.
5828                  */
5829                 msix_cnt2 >>= 1;
5830                 if (msix_cnt2 <= 1) {
5831                         device_printf(sc->bnx_dev,
5832                             "MSI-X count %d could not be used\n", msix_cnt);
5833                         return;
5834                 }
5835                 device_printf(sc->bnx_dev, "MSI-X count %d is power of 2\n",
5836                     msix_cnt);
5837         }
5838
5839         /*
5840          * Setup RX ring count
5841          */
5842         ring_max = BNX_RX_RING_MAX;
5843         if (ring_max > msix_cnt2)
5844                 ring_max = msix_cnt2;
5845         sc->bnx_rx_retcnt = device_getenv_int(sc->bnx_dev, "rx_rings",
5846             bnx_rx_rings);
5847         sc->bnx_rx_retcnt = if_ring_count2(sc->bnx_rx_retcnt, ring_max);
5848
5849         if (sc->bnx_rx_retcnt == 1)
5850                 return;
5851
5852         /*
5853          * We need one extra MSI-X vector for link status or
5854          * TX ring (if only one TX ring is enabled).
5855          */
5856         sc->bnx_intr_cnt = sc->bnx_rx_retcnt + 1;
5857
5858         /*
5859          * Setup TX ring count
5860          *
5861          * Currently only BCM5719 and BCM5720 support multiple TX rings
5862          * and the TX ring count must be less than the RX ring count.
5863          */
5864         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
5865             sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
5866                 ring_max = BNX_TX_RING_MAX;
5867                 if (ring_max > msix_cnt2)
5868                         ring_max = msix_cnt2;
5869                 if (ring_max > sc->bnx_rx_retcnt)
5870                         ring_max = sc->bnx_rx_retcnt;
5871                 sc->bnx_tx_ringcnt = device_getenv_int(sc->bnx_dev, "tx_rings",
5872                     bnx_tx_rings);
5873                 sc->bnx_tx_ringcnt = if_ring_count2(sc->bnx_tx_ringcnt,
5874                     ring_max);
5875         }
5876 }
5877
5878 static int
5879 bnx_alloc_msix(struct bnx_softc *sc)
5880 {
5881         struct bnx_intr_data *intr;
5882         boolean_t setup = FALSE;
5883         int error, i, offset, offset_def;
5884
5885         KKASSERT(sc->bnx_intr_cnt > 1);
5886         KKASSERT(sc->bnx_intr_cnt == sc->bnx_rx_retcnt + 1);
5887
5888         if (sc->bnx_flags & BNX_FLAG_RXTX_BUNDLE) {
5889                 /*
5890                  * Link status
5891                  */
5892                 intr = &sc->bnx_intr_data[0];
5893
5894                 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5895                 intr->bnx_saved_status_tag = &sc->bnx_saved_status_tag;
5896
5897                 intr->bnx_intr_func = bnx_msix_status;
5898                 intr->bnx_intr_arg = sc;
5899                 intr->bnx_intr_cpuid = 0; /* XXX */
5900
5901                 ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5902                     "%s sts", device_get_nameunit(sc->bnx_dev));
5903                 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5904
5905                 /*
5906                  * RX/TX rings
5907                  */
5908                 if (sc->bnx_rx_retcnt == ncpus2) {
5909                         offset = 0;
5910                 } else {
5911                         offset_def = (sc->bnx_rx_retcnt *
5912                             device_get_unit(sc->bnx_dev)) % ncpus2;
5913
5914                         offset = device_getenv_int(sc->bnx_dev,
5915                             "msix.offset", offset_def);
5916                         if (offset >= ncpus2 ||
5917                             offset % sc->bnx_rx_retcnt != 0) {
5918                                 device_printf(sc->bnx_dev,
5919                                     "invalid msix.offset %d, use %d\n",
5920                                     offset, offset_def);
5921                                 offset = offset_def;
5922                         }
5923                 }
5924
5925                 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
5926                         int idx = i - 1;
5927
5928                         intr = &sc->bnx_intr_data[i];
5929
5930                         KKASSERT(idx < sc->bnx_rx_retcnt);
5931                         intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
5932                         if (idx < sc->bnx_tx_ringcnt) {
5933                                 intr->bnx_txr = &sc->bnx_tx_ring[idx];
5934                                 intr->bnx_ret->bnx_txr = intr->bnx_txr;
5935                         }
5936
5937                         intr->bnx_intr_serialize =
5938                             &intr->bnx_ret->bnx_rx_ret_serialize;
5939                         intr->bnx_saved_status_tag =
5940                             &intr->bnx_ret->bnx_saved_status_tag;
5941
5942                         intr->bnx_intr_arg = intr->bnx_ret;
5943                         KKASSERT(idx + offset < ncpus2);
5944                         intr->bnx_intr_cpuid = idx + offset;
5945
5946                         if (intr->bnx_txr == NULL) {
5947                                 intr->bnx_intr_check = bnx_check_intr_rx;
5948                                 intr->bnx_intr_func = bnx_msix_rx;
5949                                 ksnprintf(intr->bnx_intr_desc0,
5950                                     sizeof(intr->bnx_intr_desc0), "%s rx%d",
5951                                     device_get_nameunit(sc->bnx_dev), idx);
5952                         } else {
5953                                 intr->bnx_intr_check = bnx_check_intr_rxtx;
5954                                 intr->bnx_intr_func = bnx_msix_rxtx;
5955                                 ksnprintf(intr->bnx_intr_desc0,
5956                                     sizeof(intr->bnx_intr_desc0), "%s rxtx%d",
5957                                     device_get_nameunit(sc->bnx_dev), idx);
5958
5959                                 intr->bnx_txr->bnx_tx_cpuid =
5960                                     intr->bnx_intr_cpuid;
5961                         }
5962                         intr->bnx_intr_desc = intr->bnx_intr_desc0;
5963
5964                         intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
5965                 }
5966         } else {
5967                 /*
5968                  * TX ring and link status
5969                  */
5970                 offset_def = device_get_unit(sc->bnx_dev) % ncpus2;
5971                 offset = device_getenv_int(sc->bnx_dev, "msix.txoff",
5972                     offset_def);
5973                 if (offset >= ncpus2) {
5974                         device_printf(sc->bnx_dev,
5975                             "invalid msix.txoff %d, use %d\n",
5976                             offset, offset_def);
5977                         offset = offset_def;
5978                 }
5979
5980                 intr = &sc->bnx_intr_data[0];
5981
5982                 intr->bnx_txr = &sc->bnx_tx_ring[0];
5983                 intr->bnx_intr_serialize = &sc->bnx_main_serialize;
5984                 intr->bnx_intr_check = bnx_check_intr_tx;
5985                 intr->bnx_saved_status_tag =
5986                     &intr->bnx_txr->bnx_saved_status_tag;
5987
5988                 intr->bnx_intr_func = bnx_msix_tx_status;
5989                 intr->bnx_intr_arg = intr->bnx_txr;
5990                 intr->bnx_intr_cpuid = offset;
5991
5992                 ksnprintf(intr->bnx_intr_desc0, sizeof(intr->bnx_intr_desc0),
5993                     "%s ststx", device_get_nameunit(sc->bnx_dev));
5994                 intr->bnx_intr_desc = intr->bnx_intr_desc0;
5995
5996                 intr->bnx_txr->bnx_tx_cpuid = intr->bnx_intr_cpuid;
5997
5998                 /*
5999                  * RX rings
6000                  */
6001                 if (sc->bnx_rx_retcnt == ncpus2) {
6002                         offset = 0;
6003                 } else {
6004                         offset_def = (sc->bnx_rx_retcnt *
6005                             device_get_unit(sc->bnx_dev)) % ncpus2;
6006
6007                         offset = device_getenv_int(sc->bnx_dev,
6008                             "msix.rxoff", offset_def);
6009                         if (offset >= ncpus2 ||
6010                             offset % sc->bnx_rx_retcnt != 0) {
6011                                 device_printf(sc->bnx_dev,
6012                                     "invalid msix.rxoff %d, use %d\n",
6013                                     offset, offset_def);
6014                                 offset = offset_def;
6015                         }
6016                 }
6017
6018                 for (i = 1; i < sc->bnx_intr_cnt; ++i) {
6019                         int idx = i - 1;
6020
6021                         intr = &sc->bnx_intr_data[i];
6022
6023                         KKASSERT(idx < sc->bnx_rx_retcnt);
6024                         intr->bnx_ret = &sc->bnx_rx_ret_ring[idx];
6025                         intr->bnx_intr_serialize =
6026                             &intr->bnx_ret->bnx_rx_ret_serialize;
6027                         intr->bnx_intr_check = bnx_check_intr_rx;
6028                         intr->bnx_saved_status_tag =
6029                             &intr->bnx_ret->bnx_saved_status_tag;
6030
6031                         intr->bnx_intr_func = bnx_msix_rx;
6032                         intr->bnx_intr_arg = intr->bnx_ret;
6033                         KKASSERT(idx + offset < ncpus2);
6034                         intr->bnx_intr_cpuid = idx + offset;
6035
6036                         ksnprintf(intr->bnx_intr_desc0,
6037                             sizeof(intr->bnx_intr_desc0), "%s rx%d",
6038                             device_get_nameunit(sc->bnx_dev), idx);
6039                         intr->bnx_intr_desc = intr->bnx_intr_desc0;
6040
6041                         intr->bnx_ret->bnx_msix_mbx = intr->bnx_intr_mbx;
6042                 }
6043         }
6044
6045         if (BNX_IS_5717_PLUS(sc)) {
6046                 sc->bnx_msix_mem_rid = PCIR_BAR(4);
6047         } else {
6048                 if (sc->bnx_res2 == NULL)
6049                         sc->bnx_msix_mem_rid = PCIR_BAR(2);
6050         }
6051         if (sc->bnx_msix_mem_rid != 0) {
6052                 sc->bnx_msix_mem_res = bus_alloc_resource_any(sc->bnx_dev,
6053                     SYS_RES_MEMORY, &sc->bnx_msix_mem_rid, RF_ACTIVE);
6054                 if (sc->bnx_msix_mem_res == NULL) {
6055                         device_printf(sc->bnx_dev,
6056                             "could not alloc MSI-X table\n");
6057                         return ENXIO;
6058                 }
6059         }
6060
6061         bnx_enable_msi(sc, TRUE);
6062
6063         error = pci_setup_msix(sc->bnx_dev);
6064         if (error) {
6065                 device_printf(sc->bnx_dev, "could not setup MSI-X\n");
6066                 goto back;
6067         }
6068         setup = TRUE;
6069
6070         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
6071                 intr = &sc->bnx_intr_data[i];
6072
6073                 error = pci_alloc_msix_vector(sc->bnx_dev, i,
6074                     &intr->bnx_intr_rid, intr->bnx_intr_cpuid);
6075                 if (error) {
6076                         device_printf(sc->bnx_dev,
6077                             "could not alloc MSI-X %d on cpu%d\n",
6078                             i, intr->bnx_intr_cpuid);
6079                         goto back;
6080                 }
6081
6082                 intr->bnx_intr_res = bus_alloc_resource_any(sc->bnx_dev,
6083                     SYS_RES_IRQ, &intr->bnx_intr_rid, RF_ACTIVE);
6084                 if (intr->bnx_intr_res == NULL) {
6085                         device_printf(sc->bnx_dev,
6086                             "could not alloc MSI-X %d resource\n", i);
6087                         error = ENXIO;
6088                         goto back;
6089                 }
6090         }
6091
6092         pci_enable_msix(sc->bnx_dev);
6093         sc->bnx_intr_type = PCI_INTR_TYPE_MSIX;
6094 back:
6095         if (error)
6096                 bnx_free_msix(sc, setup);
6097         return error;
6098 }
6099
6100 static void
6101 bnx_free_msix(struct bnx_softc *sc, boolean_t setup)
6102 {
6103         int i;
6104
6105         KKASSERT(sc->bnx_intr_cnt > 1);
6106
6107         for (i = 0; i < sc->bnx_intr_cnt; ++i) {
6108                 struct bnx_intr_data *intr = &sc->bnx_intr_data[i];
6109
6110                 if (intr->bnx_intr_res != NULL) {
6111                         bus_release_resource(sc->bnx_dev, SYS_RES_IRQ,
6112                             intr->bnx_intr_rid, intr->bnx_intr_res);
6113                 }
6114                 if (intr->bnx_intr_rid >= 0) {
6115                         pci_release_msix_vector(sc->bnx_dev,
6116                             intr->bnx_intr_rid);
6117                 }
6118         }
6119         if (setup)
6120                 pci_teardown_msix(sc->bnx_dev);
6121 }
6122
6123 static void
6124 bnx_rx_std_refill_sched_ipi(void *xret)
6125 {
6126         struct bnx_rx_ret_ring *ret = xret;
6127         struct bnx_rx_std_ring *std = ret->bnx_std;
6128         struct globaldata *gd = mycpu;
6129
6130         crit_enter_gd(gd);
6131
6132         atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6133         cpu_sfence();
6134
6135         KKASSERT(std->bnx_rx_std_ithread.td_gd == gd);
6136         lwkt_schedule(&std->bnx_rx_std_ithread);
6137
6138         crit_exit_gd(gd);
6139 }
6140
6141 static void
6142 bnx_rx_std_refill_stop(void *xstd)
6143 {
6144         struct bnx_rx_std_ring *std = xstd;
6145         struct globaldata *gd = mycpu;
6146
6147         crit_enter_gd(gd);
6148
6149         std->bnx_rx_std_stop = 1;
6150         cpu_sfence();
6151
6152         KKASSERT(std->bnx_rx_std_ithread.td_gd == gd);
6153         lwkt_schedule(&std->bnx_rx_std_ithread);
6154
6155         crit_exit_gd(gd);
6156 }
6157
6158 static void
6159 bnx_serialize_skipmain(struct bnx_softc *sc)
6160 {
6161         lwkt_serialize_array_enter(sc->bnx_serialize,
6162             sc->bnx_serialize_cnt, 1);
6163 }
6164
6165 static void
6166 bnx_deserialize_skipmain(struct bnx_softc *sc)
6167 {
6168         lwkt_serialize_array_exit(sc->bnx_serialize,
6169             sc->bnx_serialize_cnt, 1);
6170 }
6171
6172 static void
6173 bnx_rx_std_refill_sched(struct bnx_rx_ret_ring *ret,
6174     struct bnx_rx_std_ring *std)
6175 {
6176         struct globaldata *gd = mycpu;
6177
6178         ret->bnx_rx_cnt = 0;
6179         cpu_sfence();
6180
6181         crit_enter_gd(gd);
6182
6183         atomic_set_int(&std->bnx_rx_std_refill, ret->bnx_rx_mask);
6184         cpu_sfence();
6185         if (atomic_poll_acquire_int(&std->bnx_rx_std_running)) {
6186                 if (std->bnx_rx_std_ithread.td_gd == gd) {
6187                         lwkt_schedule(&std->bnx_rx_std_ithread);
6188                 } else {
6189                         lwkt_send_ipiq(
6190                             std->bnx_rx_std_ithread.td_gd,
6191                             bnx_rx_std_refill_sched_ipi, ret);
6192                 }
6193         }
6194
6195         crit_exit_gd(gd);
6196 }
6197
6198 static struct pktinfo *
6199 bnx_rss_info(struct pktinfo *pi, const struct bge_rx_bd *cur_rx)
6200 {
6201         /* Don't pick up IPv6 packet */
6202         if (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6)
6203                 return NULL;
6204
6205         /* Don't pick up IP packet w/o IP checksum */
6206         if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) == 0 ||
6207             (cur_rx->bge_error_flag & BGE_RXERRFLAG_IP_CSUM_NOK))
6208                 return NULL;
6209
6210         /* Don't pick up IP packet w/o TCP/UDP checksum */
6211         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) == 0)
6212                 return NULL;
6213
6214         /* May be IP fragment */
6215         if (cur_rx->bge_tcp_udp_csum != 0xffff)
6216                 return NULL;
6217
6218         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_IS_TCP)
6219                 pi->pi_l3proto = IPPROTO_TCP;
6220         else
6221                 pi->pi_l3proto = IPPROTO_UDP;
6222         pi->pi_netisr = NETISR_IP;
6223         pi->pi_flags = 0;
6224
6225         return pi;
6226 }
6227
6228 static void
6229 bnx_sig_pre_reset(struct bnx_softc *sc, int type)
6230 {
6231         if (type == BNX_RESET_START || type == BNX_RESET_SUSPEND)
6232                 bnx_ape_driver_state_change(sc, type);
6233 }
6234
6235 static void
6236 bnx_sig_post_reset(struct bnx_softc *sc, int type)
6237 {
6238         if (type == BNX_RESET_SHUTDOWN)
6239                 bnx_ape_driver_state_change(sc, type);
6240 }
6241
6242 /*
6243  * Clear all stale locks and select the lock for this driver instance.
6244  */
6245 static void
6246 bnx_ape_lock_init(struct bnx_softc *sc)
6247 {
6248         uint32_t bit, regbase;
6249         int i;
6250
6251         regbase = BGE_APE_PER_LOCK_GRANT;
6252
6253         /* Clear any stale locks. */
6254         for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
6255                 switch (i) {
6256                 case BGE_APE_LOCK_PHY0:
6257                 case BGE_APE_LOCK_PHY1:
6258                 case BGE_APE_LOCK_PHY2:
6259                 case BGE_APE_LOCK_PHY3:
6260                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6261                         break;
6262
6263                 default:
6264                         if (sc->bnx_func_addr == 0)
6265                                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6266                         else
6267                                 bit = 1 << sc->bnx_func_addr;
6268                         break;
6269                 }
6270                 APE_WRITE_4(sc, regbase + 4 * i, bit);
6271         }
6272
6273         /* Select the PHY lock based on the device's function number. */
6274         switch (sc->bnx_func_addr) {
6275         case 0:
6276                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY0;
6277                 break;
6278
6279         case 1:
6280                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY1;
6281                 break;
6282
6283         case 2:
6284                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY2;
6285                 break;
6286
6287         case 3:
6288                 sc->bnx_phy_ape_lock = BGE_APE_LOCK_PHY3;
6289                 break;
6290
6291         default:
6292                 device_printf(sc->bnx_dev,
6293                     "PHY lock not supported on this function\n");
6294                 break;
6295         }
6296 }
6297
6298 /*
6299  * Check for APE firmware, set flags, and print version info.
6300  */
6301 static void
6302 bnx_ape_read_fw_ver(struct bnx_softc *sc)
6303 {
6304         const char *fwtype;
6305         uint32_t apedata, features;
6306
6307         /* Check for a valid APE signature in shared memory. */
6308         apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
6309         if (apedata != BGE_APE_SEG_SIG_MAGIC) {
6310                 device_printf(sc->bnx_dev, "no APE signature\n");
6311                 sc->bnx_mfw_flags &= ~BNX_MFW_ON_APE;
6312                 return;
6313         }
6314
6315         /* Check if APE firmware is running. */
6316         apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
6317         if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
6318                 device_printf(sc->bnx_dev, "APE signature found "
6319                     "but FW status not ready! 0x%08x\n", apedata);
6320                 return;
6321         }
6322
6323         sc->bnx_mfw_flags |= BNX_MFW_ON_APE;
6324
6325         /* Fetch the APE firwmare type and version. */
6326         apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
6327         features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
6328         if (features & BGE_APE_FW_FEATURE_NCSI) {
6329                 sc->bnx_mfw_flags |= BNX_MFW_TYPE_NCSI;
6330                 fwtype = "NCSI";
6331         } else if (features & BGE_APE_FW_FEATURE_DASH) {
6332                 sc->bnx_mfw_flags |= BNX_MFW_TYPE_DASH;
6333                 fwtype = "DASH";
6334         } else {
6335                 fwtype = "UNKN";
6336         }
6337
6338         /* Print the APE firmware version. */
6339         device_printf(sc->bnx_dev, "APE FW version: %s v%d.%d.%d.%d\n",
6340             fwtype,
6341             (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
6342             (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
6343             (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
6344             (apedata & BGE_APE_FW_VERSION_BLDMSK));
6345 }
6346
6347 static int
6348 bnx_ape_lock(struct bnx_softc *sc, int locknum)
6349 {
6350         uint32_t bit, gnt, req, status;
6351         int i, off;
6352
6353         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6354                 return 0;
6355
6356         /* Lock request/grant registers have different bases. */
6357         req = BGE_APE_PER_LOCK_REQ;
6358         gnt = BGE_APE_PER_LOCK_GRANT;
6359
6360         off = 4 * locknum;
6361
6362         switch (locknum) {
6363         case BGE_APE_LOCK_GPIO:
6364                 /* Lock required when using GPIO. */
6365                 if (sc->bnx_func_addr == 0)
6366                         bit = BGE_APE_LOCK_REQ_DRIVER0;
6367                 else
6368                         bit = 1 << sc->bnx_func_addr;
6369                 break;
6370
6371         case BGE_APE_LOCK_GRC:
6372                 /* Lock required to reset the device. */
6373                 if (sc->bnx_func_addr == 0)
6374                         bit = BGE_APE_LOCK_REQ_DRIVER0;
6375                 else
6376                         bit = 1 << sc->bnx_func_addr;
6377                 break;
6378
6379         case BGE_APE_LOCK_MEM:
6380                 /* Lock required when accessing certain APE memory. */
6381                 if (sc->bnx_func_addr == 0)
6382                         bit = BGE_APE_LOCK_REQ_DRIVER0;
6383                 else
6384                         bit = 1 << sc->bnx_func_addr;
6385                 break;
6386
6387         case BGE_APE_LOCK_PHY0:
6388         case BGE_APE_LOCK_PHY1:
6389         case BGE_APE_LOCK_PHY2:
6390         case BGE_APE_LOCK_PHY3:
6391                 /* Lock required when accessing PHYs. */
6392                 bit = BGE_APE_LOCK_REQ_DRIVER0;
6393                 break;
6394
6395         default:
6396                 return EINVAL;
6397         }
6398
6399         /* Request a lock. */
6400         APE_WRITE_4(sc, req + off, bit);
6401
6402         /* Wait up to 1 second to acquire lock. */
6403         for (i = 0; i < 20000; i++) {
6404                 status = APE_READ_4(sc, gnt + off);
6405                 if (status == bit)
6406                         break;
6407                 DELAY(50);
6408         }
6409
6410         /* Handle any errors. */
6411         if (status != bit) {
6412                 if_printf(&sc->arpcom.ac_if, "APE lock %d request failed! "
6413                     "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
6414                     locknum, req + off, bit & 0xFFFF, gnt + off,
6415                     status & 0xFFFF);
6416                 /* Revoke the lock request. */
6417                 APE_WRITE_4(sc, gnt + off, bit);
6418                 return EBUSY;
6419         }
6420
6421         return 0;
6422 }
6423
6424 static void
6425 bnx_ape_unlock(struct bnx_softc *sc, int locknum)
6426 {
6427         uint32_t bit, gnt;
6428         int off;
6429
6430         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6431                 return;
6432
6433         gnt = BGE_APE_PER_LOCK_GRANT;
6434
6435         off = 4 * locknum;
6436
6437         switch (locknum) {
6438         case BGE_APE_LOCK_GPIO:
6439                 if (sc->bnx_func_addr == 0)
6440                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6441                 else
6442                         bit = 1 << sc->bnx_func_addr;
6443                 break;
6444
6445         case BGE_APE_LOCK_GRC:
6446                 if (sc->bnx_func_addr == 0)
6447                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6448                 else
6449                         bit = 1 << sc->bnx_func_addr;
6450                 break;
6451
6452         case BGE_APE_LOCK_MEM:
6453                 if (sc->bnx_func_addr == 0)
6454                         bit = BGE_APE_LOCK_GRANT_DRIVER0;
6455                 else
6456                         bit = 1 << sc->bnx_func_addr;
6457                 break;
6458
6459         case BGE_APE_LOCK_PHY0:
6460         case BGE_APE_LOCK_PHY1:
6461         case BGE_APE_LOCK_PHY2:
6462         case BGE_APE_LOCK_PHY3:
6463                 bit = BGE_APE_LOCK_GRANT_DRIVER0;
6464                 break;
6465
6466         default:
6467                 return;
6468         }
6469
6470         APE_WRITE_4(sc, gnt + off, bit);
6471 }
6472
6473 /*
6474  * Send an event to the APE firmware.
6475  */
6476 static void
6477 bnx_ape_send_event(struct bnx_softc *sc, uint32_t event)
6478 {
6479         uint32_t apedata;
6480         int i;
6481
6482         /* NCSI does not support APE events. */
6483         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6484                 return;
6485
6486         /* Wait up to 1ms for APE to service previous event. */
6487         for (i = 10; i > 0; i--) {
6488                 if (bnx_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
6489                         break;
6490                 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
6491                 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
6492                         APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
6493                             BGE_APE_EVENT_STATUS_EVENT_PENDING);
6494                         bnx_ape_unlock(sc, BGE_APE_LOCK_MEM);
6495                         APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
6496                         break;
6497                 }
6498                 bnx_ape_unlock(sc, BGE_APE_LOCK_MEM);
6499                 DELAY(100);
6500         }
6501         if (i == 0) {
6502                 if_printf(&sc->arpcom.ac_if,
6503                     "APE event 0x%08x send timed out\n", event);
6504         }
6505 }
6506
6507 static void
6508 bnx_ape_driver_state_change(struct bnx_softc *sc, int kind)
6509 {
6510         uint32_t apedata, event;
6511
6512         if ((sc->bnx_mfw_flags & BNX_MFW_ON_APE) == 0)
6513                 return;
6514
6515         switch (kind) {
6516         case BNX_RESET_START:
6517                 /* If this is the first load, clear the load counter. */
6518                 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
6519                 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) {
6520                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
6521                 } else {
6522                         apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
6523                         APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
6524                 }
6525                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
6526                     BGE_APE_HOST_SEG_SIG_MAGIC);
6527                 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
6528                     BGE_APE_HOST_SEG_LEN_MAGIC);
6529
6530                 /* Add some version info if bnx(4) supports it. */
6531                 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
6532                     BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
6533                 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
6534                     BGE_APE_HOST_BEHAV_NO_PHYLOCK);
6535                 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
6536                     BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
6537                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
6538                     BGE_APE_HOST_DRVR_STATE_START);
6539                 event = BGE_APE_EVENT_STATUS_STATE_START;
6540                 break;
6541
6542         case BNX_RESET_SHUTDOWN:
6543                 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
6544                     BGE_APE_HOST_DRVR_STATE_UNLOAD);
6545                 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
6546                 break;
6547
6548         case BNX_RESET_SUSPEND:
6549                 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
6550                 break;
6551
6552         default:
6553                 return;
6554         }
6555
6556         bnx_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
6557             BGE_APE_EVENT_STATUS_STATE_CHNGE);
6558 }