2f3a853431259355b345fc3e1251dbb58e19876c
[dragonfly.git] / sys / kern / kern_slaballoc.c
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
5  * 
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  * 
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  * 
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  * 
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *      Alloc Size      Chunking        Number of zones
68  *      0-127           8               16
69  *      128-255         16              8
70  *      256-511         32              8
71  *      512-1023        64              8
72  *      1024-2047       128             8
73  *      2048-4095       256             8
74  *      4096-8191       512             8
75  *      8192-16383      1024            8
76  *      16384-32767     2048            8
77  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *      Allocations >= ZoneLimit go directly to kmem.
80  *
81  *                      API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91
92 #include "opt_vm.h"
93
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115
116 #include <machine/cpu.h>
117
118 #include <sys/thread2.h>
119
120 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
121
122 #define MEMORY_STRING   "ptr=%p type=%p size=%lu flags=%04x"
123 #define MEMORY_ARGS     void *ptr, void *type, unsigned long size, int flags
124
125 #if !defined(KTR_MEMORY)
126 #define KTR_MEMORY      KTR_ALL
127 #endif
128 KTR_INFO_MASTER(memory);
129 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
130 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
131 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
135 #ifdef SMP
136 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
139 #endif
140 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
141 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
142
143 #define logmemory(name, ptr, type, size, flags)                         \
144         KTR_LOG(memory_ ## name, ptr, type, size, flags)
145 #define logmemory_quick(name)                                           \
146         KTR_LOG(memory_ ## name)
147
148 /*
149  * Fixed globals (not per-cpu)
150  */
151 static int ZoneSize;
152 static int ZoneLimit;
153 static int ZonePageCount;
154 static uintptr_t ZoneMask;
155 static int ZoneBigAlloc;                /* in KB */
156 static int ZoneGenAlloc;                /* in KB */
157 struct malloc_type *kmemstatistics;     /* exported to vmstat */
158 static int32_t weirdary[16];
159
160 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
161 static void kmem_slab_free(void *ptr, vm_size_t bytes);
162
163 #if defined(INVARIANTS)
164 static void chunk_mark_allocated(SLZone *z, void *chunk);
165 static void chunk_mark_free(SLZone *z, void *chunk);
166 #else
167 #define chunk_mark_allocated(z, chunk)
168 #define chunk_mark_free(z, chunk)
169 #endif
170
171 /*
172  * Misc constants.  Note that allocations that are exact multiples of 
173  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
174  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
175  */
176 #define MIN_CHUNK_SIZE          8               /* in bytes */
177 #define MIN_CHUNK_MASK          (MIN_CHUNK_SIZE - 1)
178 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
179 #define IN_SAME_PAGE_MASK       (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
180
181 /*
182  * The WEIRD_ADDR is used as known text to copy into free objects to
183  * try to create deterministic failure cases if the data is accessed after
184  * free.
185  */    
186 #define WEIRD_ADDR      0xdeadc0de
187 #define MAX_COPY        sizeof(weirdary)
188 #define ZERO_LENGTH_PTR ((void *)-8)
189
190 /*
191  * Misc global malloc buckets
192  */
193
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
197  
198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
200
201 /*
202  * Initialize the slab memory allocator.  We have to choose a zone size based
203  * on available physical memory.  We choose a zone side which is approximately
204  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
205  * 128K.  The zone size is limited to the bounds set in slaballoc.h
206  * (typically 32K min, 128K max). 
207  */
208 static void kmeminit(void *dummy);
209
210 char *ZeroPage;
211
212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
213
214 #ifdef INVARIANTS
215 /*
216  * If enabled any memory allocated without M_ZERO is initialized to -1.
217  */
218 static int  use_malloc_pattern;
219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
220     &use_malloc_pattern, 0,
221     "Initialize memory to -1 if M_ZERO not specified");
222 #endif
223
224 static int ZoneRelsThresh = ZONE_RELS_THRESH;
225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
228
229 /*
230  * Returns the kernel memory size limit for the purposes of initializing
231  * various subsystem caches.  The smaller of available memory and the KVM
232  * memory space is returned.
233  *
234  * The size in megabytes is returned.
235  */
236 size_t
237 kmem_lim_size(void)
238 {
239     size_t limsize;
240
241     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
242     if (limsize > KvaSize)
243         limsize = KvaSize;
244     return (limsize / (1024 * 1024));
245 }
246
247 static void
248 kmeminit(void *dummy)
249 {
250     size_t limsize;
251     int usesize;
252     int i;
253
254     limsize = kmem_lim_size();
255     usesize = (int)(limsize * 1024);    /* convert to KB */
256
257     /*
258      * If the machine has a large KVM space and more than 8G of ram,
259      * double the zone release threshold to reduce SMP invalidations.
260      * If more than 16G of ram, do it again.
261      *
262      * The BIOS eats a little ram so add some slop.  We want 8G worth of
263      * memory sticks to trigger the first adjustment.
264      */
265     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
266             if (limsize >= 7 * 1024)
267                     ZoneRelsThresh *= 2;
268             if (limsize >= 15 * 1024)
269                     ZoneRelsThresh *= 2;
270     }
271
272     /*
273      * Calculate the zone size.  This typically calculates to
274      * ZALLOC_MAX_ZONE_SIZE
275      */
276     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
277     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
278         ZoneSize <<= 1;
279     ZoneLimit = ZoneSize / 4;
280     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
281         ZoneLimit = ZALLOC_ZONE_LIMIT;
282     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
283     ZonePageCount = ZoneSize / PAGE_SIZE;
284
285     for (i = 0; i < NELEM(weirdary); ++i)
286         weirdary[i] = WEIRD_ADDR;
287
288     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
289
290     if (bootverbose)
291         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
292 }
293
294 /*
295  * Initialize a malloc type tracking structure.
296  */
297 void
298 malloc_init(void *data)
299 {
300     struct malloc_type *type = data;
301     size_t limsize;
302
303     if (type->ks_magic != M_MAGIC)
304         panic("malloc type lacks magic");
305                                            
306     if (type->ks_limit != 0)
307         return;
308
309     if (vmstats.v_page_count == 0)
310         panic("malloc_init not allowed before vm init");
311
312     limsize = kmem_lim_size() * (1024 * 1024);
313     type->ks_limit = limsize / 10;
314
315     type->ks_next = kmemstatistics;
316     kmemstatistics = type;
317 }
318
319 void
320 malloc_uninit(void *data)
321 {
322     struct malloc_type *type = data;
323     struct malloc_type *t;
324 #ifdef INVARIANTS
325     int i;
326     long ttl;
327 #endif
328
329     if (type->ks_magic != M_MAGIC)
330         panic("malloc type lacks magic");
331
332     if (vmstats.v_page_count == 0)
333         panic("malloc_uninit not allowed before vm init");
334
335     if (type->ks_limit == 0)
336         panic("malloc_uninit on uninitialized type");
337
338 #ifdef SMP
339     /* Make sure that all pending kfree()s are finished. */
340     lwkt_synchronize_ipiqs("muninit");
341 #endif
342
343 #ifdef INVARIANTS
344     /*
345      * memuse is only correct in aggregation.  Due to memory being allocated
346      * on one cpu and freed on another individual array entries may be 
347      * negative or positive (canceling each other out).
348      */
349     for (i = ttl = 0; i < ncpus; ++i)
350         ttl += type->ks_memuse[i];
351     if (ttl) {
352         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
353             ttl, type->ks_shortdesc, i);
354     }
355 #endif
356     if (type == kmemstatistics) {
357         kmemstatistics = type->ks_next;
358     } else {
359         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
360             if (t->ks_next == type) {
361                 t->ks_next = type->ks_next;
362                 break;
363             }
364         }
365     }
366     type->ks_next = NULL;
367     type->ks_limit = 0;
368 }
369
370 /*
371  * Increase the kmalloc pool limit for the specified pool.  No changes
372  * are the made if the pool would shrink.
373  */
374 void
375 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
376 {
377     if (type->ks_limit == 0)
378         malloc_init(type);
379     if (bytes == 0)
380         bytes = KvaSize;
381     if (type->ks_limit < bytes)
382         type->ks_limit = bytes;
383 }
384
385 /*
386  * Dynamically create a malloc pool.  This function is a NOP if *typep is
387  * already non-NULL.
388  */
389 void
390 kmalloc_create(struct malloc_type **typep, const char *descr)
391 {
392         struct malloc_type *type;
393
394         if (*typep == NULL) {
395                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
396                 type->ks_magic = M_MAGIC;
397                 type->ks_shortdesc = descr;
398                 malloc_init(type);
399                 *typep = type;
400         }
401 }
402
403 /*
404  * Destroy a dynamically created malloc pool.  This function is a NOP if
405  * the pool has already been destroyed.
406  */
407 void
408 kmalloc_destroy(struct malloc_type **typep)
409 {
410         if (*typep != NULL) {
411                 malloc_uninit(*typep);
412                 kfree(*typep, M_TEMP);
413                 *typep = NULL;
414         }
415 }
416
417 /*
418  * Calculate the zone index for the allocation request size and set the
419  * allocation request size to that particular zone's chunk size.
420  */
421 static __inline int
422 zoneindex(unsigned long *bytes)
423 {
424     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
425     if (n < 128) {
426         *bytes = n = (n + 7) & ~7;
427         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
428     }
429     if (n < 256) {
430         *bytes = n = (n + 15) & ~15;
431         return(n / 16 + 7);
432     }
433     if (n < 8192) {
434         if (n < 512) {
435             *bytes = n = (n + 31) & ~31;
436             return(n / 32 + 15);
437         }
438         if (n < 1024) {
439             *bytes = n = (n + 63) & ~63;
440             return(n / 64 + 23);
441         } 
442         if (n < 2048) {
443             *bytes = n = (n + 127) & ~127;
444             return(n / 128 + 31);
445         }
446         if (n < 4096) {
447             *bytes = n = (n + 255) & ~255;
448             return(n / 256 + 39);
449         }
450         *bytes = n = (n + 511) & ~511;
451         return(n / 512 + 47);
452     }
453 #if ZALLOC_ZONE_LIMIT > 8192
454     if (n < 16384) {
455         *bytes = n = (n + 1023) & ~1023;
456         return(n / 1024 + 55);
457     }
458 #endif
459 #if ZALLOC_ZONE_LIMIT > 16384
460     if (n < 32768) {
461         *bytes = n = (n + 2047) & ~2047;
462         return(n / 2048 + 63);
463     }
464 #endif
465     panic("Unexpected byte count %d", n);
466     return(0);
467 }
468
469 #ifdef SLAB_DEBUG
470 /*
471  * Used to debug memory corruption issues.  Record up to (typically 32)
472  * allocation sources for this zone (for a particular chunk size).
473  */
474
475 static void
476 slab_record_source(SLZone *z, const char *file, int line)
477 {
478     int i;
479     int b = line & (SLAB_DEBUG_ENTRIES - 1);
480
481     i = b;
482     do {
483         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
484                 return;
485         if (z->z_Sources[i].file == NULL)
486                 break;
487         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
488     } while (i != b);
489     z->z_Sources[i].file = file;
490     z->z_Sources[i].line = line;
491 }
492
493 #endif
494
495 /*
496  * kmalloc()    (SLAB ALLOCATOR)
497  *
498  *      Allocate memory via the slab allocator.  If the request is too large,
499  *      or if it page-aligned beyond a certain size, we fall back to the
500  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
501  *      &SlabMisc if you don't care.
502  *
503  *      M_RNOWAIT       - don't block.
504  *      M_NULLOK        - return NULL instead of blocking.
505  *      M_ZERO          - zero the returned memory.
506  *      M_USE_RESERVE   - allow greater drawdown of the free list
507  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
508  *
509  * MPSAFE
510  */
511
512 #ifdef SLAB_DEBUG
513 void *
514 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
515               const char *file, int line)
516 #else
517 void *
518 kmalloc(unsigned long size, struct malloc_type *type, int flags)
519 #endif
520 {
521     SLZone *z;
522     SLChunk *chunk;
523 #ifdef SMP
524     SLChunk *bchunk;
525 #endif
526     SLGlobalData *slgd;
527     struct globaldata *gd;
528     int zi;
529 #ifdef INVARIANTS
530     int i;
531 #endif
532
533     logmemory_quick(malloc_beg);
534     gd = mycpu;
535     slgd = &gd->gd_slab;
536
537     /*
538      * XXX silly to have this in the critical path.
539      */
540     if (type->ks_limit == 0) {
541         crit_enter();
542         if (type->ks_limit == 0)
543             malloc_init(type);
544         crit_exit();
545     }
546     ++type->ks_calls;
547
548     /*
549      * Handle the case where the limit is reached.  Panic if we can't return
550      * NULL.  The original malloc code looped, but this tended to
551      * simply deadlock the computer.
552      *
553      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
554      * to determine if a more complete limit check should be done.  The
555      * actual memory use is tracked via ks_memuse[cpu].
556      */
557     while (type->ks_loosememuse >= type->ks_limit) {
558         int i;
559         long ttl;
560
561         for (i = ttl = 0; i < ncpus; ++i)
562             ttl += type->ks_memuse[i];
563         type->ks_loosememuse = ttl;     /* not MP synchronized */
564         if ((ssize_t)ttl < 0)           /* deal with occassional race */
565                 ttl = 0;
566         if (ttl >= type->ks_limit) {
567             if (flags & M_NULLOK) {
568                 logmemory(malloc_end, NULL, type, size, flags);
569                 return(NULL);
570             }
571             panic("%s: malloc limit exceeded", type->ks_shortdesc);
572         }
573     }
574
575     /*
576      * Handle the degenerate size == 0 case.  Yes, this does happen.
577      * Return a special pointer.  This is to maintain compatibility with
578      * the original malloc implementation.  Certain devices, such as the
579      * adaptec driver, not only allocate 0 bytes, they check for NULL and
580      * also realloc() later on.  Joy.
581      */
582     if (size == 0) {
583         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
584         return(ZERO_LENGTH_PTR);
585     }
586
587     /*
588      * Handle hysteresis from prior frees here in malloc().  We cannot
589      * safely manipulate the kernel_map in free() due to free() possibly
590      * being called via an IPI message or from sensitive interrupt code.
591      *
592      * NOTE: ku_pagecnt must be cleared before we free the slab or we
593      *       might race another cpu allocating the kva and setting
594      *       ku_pagecnt.
595      */
596     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
597         crit_enter();
598         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
599             int *kup;
600
601             z = slgd->FreeZones;
602             slgd->FreeZones = z->z_Next;
603             --slgd->NFreeZones;
604             kup = btokup(z);
605             *kup = 0;
606             kmem_slab_free(z, ZoneSize);        /* may block */
607             atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
608         }
609         crit_exit();
610     }
611
612     /*
613      * XXX handle oversized frees that were queued from kfree().
614      */
615     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
616         crit_enter();
617         if ((z = slgd->FreeOvZones) != NULL) {
618             vm_size_t tsize;
619
620             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
621             slgd->FreeOvZones = z->z_Next;
622             tsize = z->z_ChunkSize;
623             kmem_slab_free(z, tsize);   /* may block */
624             atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
625         }
626         crit_exit();
627     }
628
629     /*
630      * Handle large allocations directly.  There should not be very many of
631      * these so performance is not a big issue.
632      *
633      * The backend allocator is pretty nasty on a SMP system.   Use the
634      * slab allocator for one and two page-sized chunks even though we lose
635      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
636      */
637     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
638         int *kup;
639
640         size = round_page(size);
641         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
642         if (chunk == NULL) {
643             logmemory(malloc_end, NULL, type, size, flags);
644             return(NULL);
645         }
646         atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
647         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
648         flags |= M_PASSIVE_ZERO;
649         kup = btokup(chunk);
650         *kup = size / PAGE_SIZE;
651         crit_enter();
652         goto done;
653     }
654
655     /*
656      * Attempt to allocate out of an existing zone.  First try the free list,
657      * then allocate out of unallocated space.  If we find a good zone move
658      * it to the head of the list so later allocations find it quickly
659      * (we might have thousands of zones in the list).
660      *
661      * Note: zoneindex() will panic of size is too large.
662      */
663     zi = zoneindex(&size);
664     KKASSERT(zi < NZONES);
665     crit_enter();
666
667     if ((z = slgd->ZoneAry[zi]) != NULL) {
668         /*
669          * Locate a chunk - we have to have at least one.  If this is the
670          * last chunk go ahead and do the work to retrieve chunks freed
671          * from remote cpus, and if the zone is still empty move it off
672          * the ZoneAry.
673          */
674         if (--z->z_NFree <= 0) {
675             KKASSERT(z->z_NFree == 0);
676
677 #ifdef SMP
678             /*
679              * WARNING! This code competes with other cpus.  It is ok
680              * for us to not drain RChunks here but we might as well, and
681              * it is ok if more accumulate after we're done.
682              *
683              * Set RSignal before pulling rchunks off, indicating that we
684              * will be moving ourselves off of the ZoneAry.  Remote ends will
685              * read RSignal before putting rchunks on thus interlocking
686              * their IPI signaling.
687              */
688             if (z->z_RChunks == NULL)
689                 atomic_swap_int(&z->z_RSignal, 1);
690
691             while ((bchunk = z->z_RChunks) != NULL) {
692                 cpu_ccfence();
693                 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
694                     *z->z_LChunksp = bchunk;
695                     while (bchunk) {
696                         chunk_mark_free(z, bchunk);
697                         z->z_LChunksp = &bchunk->c_Next;
698                         bchunk = bchunk->c_Next;
699                         ++z->z_NFree;
700                     }
701                     break;
702                 }
703             }
704 #endif
705             /*
706              * Remove from the zone list if no free chunks remain.
707              * Clear RSignal
708              */
709             if (z->z_NFree == 0) {
710                 slgd->ZoneAry[zi] = z->z_Next;
711                 z->z_Next = NULL;
712             } else {
713                 z->z_RSignal = 0;
714             }
715         }
716
717         /*
718          * Fast path, we have chunks available in z_LChunks.
719          */
720         chunk = z->z_LChunks;
721         if (chunk) {
722                 chunk_mark_allocated(z, chunk);
723                 z->z_LChunks = chunk->c_Next;
724                 if (z->z_LChunks == NULL)
725                         z->z_LChunksp = &z->z_LChunks;
726 #ifdef SLAB_DEBUG
727                 slab_record_source(z, file, line);
728 #endif
729                 goto done;
730         }
731
732         /*
733          * No chunks are available in LChunks, the free chunk MUST be
734          * in the never-before-used memory area, controlled by UIndex.
735          *
736          * The consequences are very serious if our zone got corrupted so
737          * we use an explicit panic rather than a KASSERT.
738          */
739         if (z->z_UIndex + 1 != z->z_NMax)
740             ++z->z_UIndex;
741         else
742             z->z_UIndex = 0;
743
744         if (z->z_UIndex == z->z_UEndIndex)
745             panic("slaballoc: corrupted zone");
746
747         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
748         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
749             flags &= ~M_ZERO;
750             flags |= M_PASSIVE_ZERO;
751         }
752         chunk_mark_allocated(z, chunk);
753 #ifdef SLAB_DEBUG
754         slab_record_source(z, file, line);
755 #endif
756         goto done;
757     }
758
759     /*
760      * If all zones are exhausted we need to allocate a new zone for this
761      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
762      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
763      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
764      * we do not pre-zero it because we do not want to mess up the L1 cache.
765      *
766      * At least one subsystem, the tty code (see CROUND) expects power-of-2
767      * allocations to be power-of-2 aligned.  We maintain compatibility by
768      * adjusting the base offset below.
769      */
770     {
771         int off;
772         int *kup;
773
774         if ((z = slgd->FreeZones) != NULL) {
775             slgd->FreeZones = z->z_Next;
776             --slgd->NFreeZones;
777             bzero(z, sizeof(SLZone));
778             z->z_Flags |= SLZF_UNOTZEROD;
779         } else {
780             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
781             if (z == NULL)
782                 goto fail;
783             atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
784         }
785
786         /*
787          * How big is the base structure?
788          */
789 #if defined(INVARIANTS)
790         /*
791          * Make room for z_Bitmap.  An exact calculation is somewhat more
792          * complicated so don't make an exact calculation.
793          */
794         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
795         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
796 #else
797         off = sizeof(SLZone);
798 #endif
799
800         /*
801          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
802          * Otherwise just 8-byte align the data.
803          */
804         if ((size | (size - 1)) + 1 == (size << 1))
805             off = (off + size - 1) & ~(size - 1);
806         else
807             off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
808         z->z_Magic = ZALLOC_SLAB_MAGIC;
809         z->z_ZoneIndex = zi;
810         z->z_NMax = (ZoneSize - off) / size;
811         z->z_NFree = z->z_NMax - 1;
812         z->z_BasePtr = (char *)z + off;
813         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
814         z->z_ChunkSize = size;
815         z->z_CpuGd = gd;
816         z->z_Cpu = gd->gd_cpuid;
817         z->z_LChunksp = &z->z_LChunks;
818 #ifdef SLAB_DEBUG
819         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
820         bzero(z->z_Sources, sizeof(z->z_Sources));
821 #endif
822         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
823         z->z_Next = slgd->ZoneAry[zi];
824         slgd->ZoneAry[zi] = z;
825         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
826             flags &= ~M_ZERO;   /* already zero'd */
827             flags |= M_PASSIVE_ZERO;
828         }
829         kup = btokup(z);
830         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
831         chunk_mark_allocated(z, chunk);
832 #ifdef SLAB_DEBUG
833         slab_record_source(z, file, line);
834 #endif
835
836         /*
837          * Slide the base index for initial allocations out of the next
838          * zone we create so we do not over-weight the lower part of the
839          * cpu memory caches.
840          */
841         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
842                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
843     }
844
845 done:
846     ++type->ks_inuse[gd->gd_cpuid];
847     type->ks_memuse[gd->gd_cpuid] += size;
848     type->ks_loosememuse += size;       /* not MP synchronized */
849     crit_exit();
850
851     if (flags & M_ZERO)
852         bzero(chunk, size);
853 #ifdef INVARIANTS
854     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
855         if (use_malloc_pattern) {
856             for (i = 0; i < size; i += sizeof(int)) {
857                 *(int *)((char *)chunk + i) = -1;
858             }
859         }
860         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
861     }
862 #endif
863     logmemory(malloc_end, chunk, type, size, flags);
864     return(chunk);
865 fail:
866     crit_exit();
867     logmemory(malloc_end, NULL, type, size, flags);
868     return(NULL);
869 }
870
871 /*
872  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
873  *
874  * Generally speaking this routine is not called very often and we do
875  * not attempt to optimize it beyond reusing the same pointer if the
876  * new size fits within the chunking of the old pointer's zone.
877  */
878 #ifdef SLAB_DEBUG
879 void *
880 krealloc_debug(void *ptr, unsigned long size,
881                struct malloc_type *type, int flags,
882                const char *file, int line)
883 #else
884 void *
885 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
886 #endif
887 {
888     unsigned long osize;
889     SLZone *z;
890     void *nptr;
891     int *kup;
892
893     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
894
895     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
896         return(kmalloc_debug(size, type, flags, file, line));
897     if (size == 0) {
898         kfree(ptr, type);
899         return(NULL);
900     }
901
902     /*
903      * Handle oversized allocations.  XXX we really should require that a
904      * size be passed to free() instead of this nonsense.
905      */
906     kup = btokup(ptr);
907     if (*kup > 0) {
908         osize = *kup << PAGE_SHIFT;
909         if (osize == round_page(size))
910             return(ptr);
911         if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
912             return(NULL);
913         bcopy(ptr, nptr, min(size, osize));
914         kfree(ptr, type);
915         return(nptr);
916     }
917
918     /*
919      * Get the original allocation's zone.  If the new request winds up
920      * using the same chunk size we do not have to do anything.
921      */
922     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
923     kup = btokup(z);
924     KKASSERT(*kup < 0);
925     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
926
927     /*
928      * Allocate memory for the new request size.  Note that zoneindex has
929      * already adjusted the request size to the appropriate chunk size, which
930      * should optimize our bcopy().  Then copy and return the new pointer.
931      *
932      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
933      * necessary align the result.
934      *
935      * We can only zoneindex (to align size to the chunk size) if the new
936      * size is not too large.
937      */
938     if (size < ZoneLimit) {
939         zoneindex(&size);
940         if (z->z_ChunkSize == size)
941             return(ptr);
942     }
943     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
944         return(NULL);
945     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
946     kfree(ptr, type);
947     return(nptr);
948 }
949
950 /*
951  * Return the kmalloc limit for this type, in bytes.
952  */
953 long
954 kmalloc_limit(struct malloc_type *type)
955 {
956     if (type->ks_limit == 0) {
957         crit_enter();
958         if (type->ks_limit == 0)
959             malloc_init(type);
960         crit_exit();
961     }
962     return(type->ks_limit);
963 }
964
965 /*
966  * Allocate a copy of the specified string.
967  *
968  * (MP SAFE) (MAY BLOCK)
969  */
970 #ifdef SLAB_DEBUG
971 char *
972 kstrdup_debug(const char *str, struct malloc_type *type,
973               const char *file, int line)
974 #else
975 char *
976 kstrdup(const char *str, struct malloc_type *type)
977 #endif
978 {
979     int zlen;   /* length inclusive of terminating NUL */
980     char *nstr;
981
982     if (str == NULL)
983         return(NULL);
984     zlen = strlen(str) + 1;
985     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
986     bcopy(str, nstr, zlen);
987     return(nstr);
988 }
989
990 #ifdef SMP
991 /*
992  * Notify our cpu that a remote cpu has freed some chunks in a zone that
993  * we own.  RCount will be bumped so the memory should be good, but validate
994  * that it really is.
995  */
996 static
997 void
998 kfree_remote(void *ptr)
999 {
1000     SLGlobalData *slgd;
1001     SLChunk *bchunk;
1002     SLZone *z;
1003     int nfree;
1004     int *kup;
1005
1006     slgd = &mycpu->gd_slab;
1007     z = ptr;
1008     kup = btokup(z);
1009     KKASSERT(*kup == -((int)mycpuid + 1));
1010     KKASSERT(z->z_RCount > 0);
1011     atomic_subtract_int(&z->z_RCount, 1);
1012
1013     logmemory(free_rem_beg, z, NULL, 0L, 0);
1014     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1015     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1016     nfree = z->z_NFree;
1017
1018     /*
1019      * Indicate that we will no longer be off of the ZoneAry by
1020      * clearing RSignal.
1021      */
1022     if (z->z_RChunks)
1023         z->z_RSignal = 0;
1024
1025     /*
1026      * Atomically extract the bchunks list and then process it back
1027      * into the lchunks list.  We want to append our bchunks to the
1028      * lchunks list and not prepend since we likely do not have
1029      * cache mastership of the related data (not that it helps since
1030      * we are using c_Next).
1031      */
1032     while ((bchunk = z->z_RChunks) != NULL) {
1033         cpu_ccfence();
1034         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1035             *z->z_LChunksp = bchunk;
1036             while (bchunk) {
1037                     chunk_mark_free(z, bchunk);
1038                     z->z_LChunksp = &bchunk->c_Next;
1039                     bchunk = bchunk->c_Next;
1040                     ++z->z_NFree;
1041             }
1042             break;
1043         }
1044     }
1045     if (z->z_NFree && nfree == 0) {
1046         z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1047         slgd->ZoneAry[z->z_ZoneIndex] = z;
1048     }
1049
1050     /*
1051      * If the zone becomes totally free, and there are other zones we
1052      * can allocate from, move this zone to the FreeZones list.  Since
1053      * this code can be called from an IPI callback, do *NOT* try to mess
1054      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1055      *
1056      * Do not move the zone if there is an IPI inflight, otherwise MP
1057      * races can result in our free_remote code accessing a destroyed
1058      * zone.
1059      */
1060     if (z->z_NFree == z->z_NMax &&
1061         (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1062         z->z_RCount == 0
1063     ) {
1064         SLZone **pz;
1065         int *kup;
1066
1067         for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1068              z != *pz;
1069              pz = &(*pz)->z_Next) {
1070             ;
1071         }
1072         *pz = z->z_Next;
1073         z->z_Magic = -1;
1074         z->z_Next = slgd->FreeZones;
1075         slgd->FreeZones = z;
1076         ++slgd->NFreeZones;
1077         kup = btokup(z);
1078         *kup = 0;
1079     }
1080     logmemory(free_rem_end, z, bchunk, 0L, 0);
1081 }
1082
1083 #endif
1084
1085 /*
1086  * free (SLAB ALLOCATOR)
1087  *
1088  * Free a memory block previously allocated by malloc.  Note that we do not
1089  * attempt to update ks_loosememuse as MP races could prevent us from
1090  * checking memory limits in malloc.
1091  *
1092  * MPSAFE
1093  */
1094 void
1095 kfree(void *ptr, struct malloc_type *type)
1096 {
1097     SLZone *z;
1098     SLChunk *chunk;
1099     SLGlobalData *slgd;
1100     struct globaldata *gd;
1101     int *kup;
1102     unsigned long size;
1103 #ifdef SMP
1104     SLChunk *bchunk;
1105     int rsignal;
1106 #endif
1107
1108     logmemory_quick(free_beg);
1109     gd = mycpu;
1110     slgd = &gd->gd_slab;
1111
1112     if (ptr == NULL)
1113         panic("trying to free NULL pointer");
1114
1115     /*
1116      * Handle special 0-byte allocations
1117      */
1118     if (ptr == ZERO_LENGTH_PTR) {
1119         logmemory(free_zero, ptr, type, -1UL, 0);
1120         logmemory_quick(free_end);
1121         return;
1122     }
1123
1124     /*
1125      * Panic on bad malloc type
1126      */
1127     if (type->ks_magic != M_MAGIC)
1128         panic("free: malloc type lacks magic");
1129
1130     /*
1131      * Handle oversized allocations.  XXX we really should require that a
1132      * size be passed to free() instead of this nonsense.
1133      *
1134      * This code is never called via an ipi.
1135      */
1136     kup = btokup(ptr);
1137     if (*kup > 0) {
1138         size = *kup << PAGE_SHIFT;
1139         *kup = 0;
1140 #ifdef INVARIANTS
1141         KKASSERT(sizeof(weirdary) <= size);
1142         bcopy(weirdary, ptr, sizeof(weirdary));
1143 #endif
1144         /*
1145          * NOTE: For oversized allocations we do not record the
1146          *           originating cpu.  It gets freed on the cpu calling
1147          *           kfree().  The statistics are in aggregate.
1148          *
1149          * note: XXX we have still inherited the interrupts-can't-block
1150          * assumption.  An interrupt thread does not bump
1151          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1152          * primarily until we can fix softupdate's assumptions about free().
1153          */
1154         crit_enter();
1155         --type->ks_inuse[gd->gd_cpuid];
1156         type->ks_memuse[gd->gd_cpuid] -= size;
1157         if (mycpu->gd_intr_nesting_level ||
1158             (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1159         {
1160             logmemory(free_ovsz_delayed, ptr, type, size, 0);
1161             z = (SLZone *)ptr;
1162             z->z_Magic = ZALLOC_OVSZ_MAGIC;
1163             z->z_Next = slgd->FreeOvZones;
1164             z->z_ChunkSize = size;
1165             slgd->FreeOvZones = z;
1166             crit_exit();
1167         } else {
1168             crit_exit();
1169             logmemory(free_ovsz, ptr, type, size, 0);
1170             kmem_slab_free(ptr, size);  /* may block */
1171             atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1172         }
1173         logmemory_quick(free_end);
1174         return;
1175     }
1176
1177     /*
1178      * Zone case.  Figure out the zone based on the fact that it is
1179      * ZoneSize aligned. 
1180      */
1181     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1182     kup = btokup(z);
1183     KKASSERT(*kup < 0);
1184     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1185
1186     /*
1187      * If we do not own the zone then use atomic ops to free to the
1188      * remote cpu linked list and notify the target zone using a
1189      * passive message.
1190      *
1191      * The target zone cannot be deallocated while we own a chunk of it,
1192      * so the zone header's storage is stable until the very moment
1193      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1194      *
1195      * (no critical section needed)
1196      */
1197     if (z->z_CpuGd != gd) {
1198 #ifdef SMP
1199         /*
1200          * Making these adjustments now allow us to avoid passing (type)
1201          * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1202          * adjusted on OUR cpu, not the zone cpu, but it should all still
1203          * sum up properly and cancel out.
1204          */
1205         crit_enter();
1206         --type->ks_inuse[gd->gd_cpuid];
1207         type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1208         crit_exit();
1209
1210         /*
1211          * WARNING! This code competes with other cpus.  Once we
1212          *          successfully link the chunk to RChunks the remote
1213          *          cpu can rip z's storage out from under us.
1214          *
1215          *          Bumping RCount prevents z's storage from getting
1216          *          ripped out.
1217          */
1218         rsignal = z->z_RSignal;
1219         cpu_lfence();
1220         if (rsignal)
1221                 atomic_add_int(&z->z_RCount, 1);
1222
1223         chunk = ptr;
1224         for (;;) {
1225             bchunk = z->z_RChunks;
1226             cpu_ccfence();
1227             chunk->c_Next = bchunk;
1228             cpu_sfence();
1229
1230             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1231                 break;
1232         }
1233
1234         /*
1235          * We have to signal the remote cpu if our actions will cause
1236          * the remote zone to be placed back on ZoneAry so it can
1237          * move the zone back on.
1238          *
1239          * We only need to deal with NULL->non-NULL RChunk transitions
1240          * and only if z_RSignal is set.  We interlock by reading rsignal
1241          * before adding our chunk to RChunks.  This should result in
1242          * virtually no IPI traffic.
1243          *
1244          * We can use a passive IPI to reduce overhead even further.
1245          */
1246         if (bchunk == NULL && rsignal) {
1247                 logmemory(free_request, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1248             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1249             /* z can get ripped out from under us from this point on */
1250         } else if (rsignal) {
1251             atomic_subtract_int(&z->z_RCount, 1);
1252             /* z can get ripped out from under us from this point on */
1253         }
1254 #else
1255         panic("Corrupt SLZone");
1256 #endif
1257         logmemory_quick(free_end);
1258         return;
1259     }
1260
1261     /*
1262      * kfree locally
1263      */
1264     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1265
1266     crit_enter();
1267     chunk = ptr;
1268     chunk_mark_free(z, chunk);
1269
1270     /*
1271      * Put weird data into the memory to detect modifications after freeing,
1272      * illegal pointer use after freeing (we should fault on the odd address),
1273      * and so forth.  XXX needs more work, see the old malloc code.
1274      */
1275 #ifdef INVARIANTS
1276     if (z->z_ChunkSize < sizeof(weirdary))
1277         bcopy(weirdary, chunk, z->z_ChunkSize);
1278     else
1279         bcopy(weirdary, chunk, sizeof(weirdary));
1280 #endif
1281
1282     /*
1283      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1284      * to the front of the linked list so it is more likely to be
1285      * reallocated, since it is already in our L1 cache.
1286      */
1287 #ifdef INVARIANTS
1288     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1289         panic("BADFREE %p", chunk);
1290 #endif
1291     chunk->c_Next = z->z_LChunks;
1292     z->z_LChunks = chunk;
1293     if (chunk->c_Next == NULL)
1294             z->z_LChunksp = &chunk->c_Next;
1295
1296 #ifdef INVARIANTS
1297     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1298         panic("BADFREE2");
1299 #endif
1300
1301     /*
1302      * Bump the number of free chunks.  If it becomes non-zero the zone
1303      * must be added back onto the appropriate list.
1304      */
1305     if (z->z_NFree++ == 0) {
1306         z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1307         slgd->ZoneAry[z->z_ZoneIndex] = z;
1308     }
1309
1310     --type->ks_inuse[z->z_Cpu];
1311     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1312
1313     /*
1314      * If the zone becomes totally free, and there are other zones we
1315      * can allocate from, move this zone to the FreeZones list.  Since
1316      * this code can be called from an IPI callback, do *NOT* try to mess
1317      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1318      */
1319     if (z->z_NFree == z->z_NMax && 
1320         (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1321         z->z_RCount == 0
1322     ) {
1323         SLZone **pz;
1324         int *kup;
1325
1326         for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1327             ;
1328         *pz = z->z_Next;
1329         z->z_Magic = -1;
1330         z->z_Next = slgd->FreeZones;
1331         slgd->FreeZones = z;
1332         ++slgd->NFreeZones;
1333         kup = btokup(z);
1334         *kup = 0;
1335     }
1336     logmemory_quick(free_end);
1337     crit_exit();
1338 }
1339
1340 #if defined(INVARIANTS)
1341
1342 /*
1343  * Helper routines for sanity checks
1344  */
1345 static
1346 void
1347 chunk_mark_allocated(SLZone *z, void *chunk)
1348 {
1349     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1350     __uint32_t *bitptr;
1351
1352     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1353     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1354             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1355     bitptr = &z->z_Bitmap[bitdex >> 5];
1356     bitdex &= 31;
1357     KASSERT((*bitptr & (1 << bitdex)) == 0,
1358             ("memory chunk %p is already allocated!", chunk));
1359     *bitptr |= 1 << bitdex;
1360 }
1361
1362 static
1363 void
1364 chunk_mark_free(SLZone *z, void *chunk)
1365 {
1366     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1367     __uint32_t *bitptr;
1368
1369     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1370     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1371             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1372     bitptr = &z->z_Bitmap[bitdex >> 5];
1373     bitdex &= 31;
1374     KASSERT((*bitptr & (1 << bitdex)) != 0,
1375             ("memory chunk %p is already free!", chunk));
1376     *bitptr &= ~(1 << bitdex);
1377 }
1378
1379 #endif
1380
1381 /*
1382  * kmem_slab_alloc()
1383  *
1384  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1385  *      specified alignment.  M_* flags are expected in the flags field.
1386  *
1387  *      Alignment must be a multiple of PAGE_SIZE.
1388  *
1389  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1390  *      but when we move zalloc() over to use this function as its backend
1391  *      we will have to switch to kreserve/krelease and call reserve(0)
1392  *      after the new space is made available.
1393  *
1394  *      Interrupt code which has preempted other code is not allowed to
1395  *      use PQ_CACHE pages.  However, if an interrupt thread is run
1396  *      non-preemptively or blocks and then runs non-preemptively, then
1397  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1398  */
1399 static void *
1400 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1401 {
1402     vm_size_t i;
1403     vm_offset_t addr;
1404     int count, vmflags, base_vmflags;
1405     vm_page_t mbase = NULL;
1406     vm_page_t m;
1407     thread_t td;
1408
1409     size = round_page(size);
1410     addr = vm_map_min(&kernel_map);
1411
1412     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1413     crit_enter();
1414     vm_map_lock(&kernel_map);
1415     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1416         vm_map_unlock(&kernel_map);
1417         if ((flags & M_NULLOK) == 0)
1418             panic("kmem_slab_alloc(): kernel_map ran out of space!");
1419         vm_map_entry_release(count);
1420         crit_exit();
1421         return(NULL);
1422     }
1423
1424     /*
1425      * kernel_object maps 1:1 to kernel_map.
1426      */
1427     vm_object_hold(&kernel_object);
1428     vm_object_reference_locked(&kernel_object);
1429     vm_map_insert(&kernel_map, &count, 
1430                     &kernel_object, addr, addr, addr + size,
1431                     VM_MAPTYPE_NORMAL,
1432                     VM_PROT_ALL, VM_PROT_ALL,
1433                     0);
1434     vm_object_drop(&kernel_object);
1435     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1436     vm_map_unlock(&kernel_map);
1437
1438     td = curthread;
1439
1440     base_vmflags = 0;
1441     if (flags & M_ZERO)
1442         base_vmflags |= VM_ALLOC_ZERO;
1443     if (flags & M_USE_RESERVE)
1444         base_vmflags |= VM_ALLOC_SYSTEM;
1445     if (flags & M_USE_INTERRUPT_RESERVE)
1446         base_vmflags |= VM_ALLOC_INTERRUPT;
1447     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1448         panic("kmem_slab_alloc: bad flags %08x (%p)",
1449               flags, ((int **)&size)[-1]);
1450     }
1451
1452     /*
1453      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1454      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1455      *
1456      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1457      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1458      * implied in this case), though I'm not sure if we really need to
1459      * do that.
1460      */
1461     vmflags = base_vmflags;
1462     if (flags & M_WAITOK) {
1463         if (td->td_preempted)
1464             vmflags |= VM_ALLOC_SYSTEM;
1465         else
1466             vmflags |= VM_ALLOC_NORMAL;
1467     }
1468
1469     vm_object_hold(&kernel_object);
1470     for (i = 0; i < size; i += PAGE_SIZE) {
1471         m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1472         if (i == 0)
1473                 mbase = m;
1474
1475         /*
1476          * If the allocation failed we either return NULL or we retry.
1477          *
1478          * If M_WAITOK is specified we wait for more memory and retry.
1479          * If M_WAITOK is specified from a preemption we yield instead of
1480          * wait.  Livelock will not occur because the interrupt thread
1481          * will not be preempting anyone the second time around after the
1482          * yield.
1483          */
1484         if (m == NULL) {
1485             if (flags & M_WAITOK) {
1486                 if (td->td_preempted) {
1487                     lwkt_switch();
1488                 } else {
1489                     vm_wait(0);
1490                 }
1491                 i -= PAGE_SIZE; /* retry */
1492                 continue;
1493             }
1494             break;
1495         }
1496     }
1497
1498     /*
1499      * Check and deal with an allocation failure
1500      */
1501     if (i != size) {
1502         while (i != 0) {
1503             i -= PAGE_SIZE;
1504             m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1505             /* page should already be busy */
1506             vm_page_free(m);
1507         }
1508         vm_map_lock(&kernel_map);
1509         vm_map_delete(&kernel_map, addr, addr + size, &count);
1510         vm_map_unlock(&kernel_map);
1511         vm_object_drop(&kernel_object);
1512
1513         vm_map_entry_release(count);
1514         crit_exit();
1515         return(NULL);
1516     }
1517
1518     /*
1519      * Success!
1520      *
1521      * NOTE: The VM pages are still busied.  mbase points to the first one
1522      *       but we have to iterate via vm_page_next()
1523      */
1524     vm_object_drop(&kernel_object);
1525     crit_exit();
1526
1527     /*
1528      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1529      */
1530     m = mbase;
1531     i = 0;
1532
1533     while (i < size) {
1534         /*
1535          * page should already be busy
1536          */
1537         m->valid = VM_PAGE_BITS_ALL;
1538         vm_page_wire(m);
1539         pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1540                    1, NULL);
1541         if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1542             bzero((char *)addr + i, PAGE_SIZE);
1543         vm_page_flag_clear(m, PG_ZERO);
1544         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1545         vm_page_flag_set(m, PG_REFERENCED);
1546         vm_page_wakeup(m);
1547
1548         i += PAGE_SIZE;
1549         vm_object_hold(&kernel_object);
1550         m = vm_page_next(m);
1551         vm_object_drop(&kernel_object);
1552     }
1553     smp_invltlb();
1554     vm_map_entry_release(count);
1555     return((void *)addr);
1556 }
1557
1558 /*
1559  * kmem_slab_free()
1560  */
1561 static void
1562 kmem_slab_free(void *ptr, vm_size_t size)
1563 {
1564     crit_enter();
1565     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1566     crit_exit();
1567 }
1568
1569 void *
1570 kmalloc_powerof2(unsigned long size_alloc, struct malloc_type *type, int flags)
1571 {
1572         unsigned long size;
1573
1574         for (size = 1; size < size_alloc; size <<= 1)
1575                 ; /* EMPTY */
1576         return kmalloc(size, type, flags);
1577 }
1578
1579 void *
1580 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1581     int flags)
1582 {
1583         if (size_alloc < __VM_CACHELINE_SIZE)
1584                 size_alloc = __VM_CACHELINE_SIZE;
1585         return kmalloc_powerof2(size_alloc, type, flags);
1586 }