Merge remote-tracking branch 'origin/vendor/LIBEDIT'
[dragonfly.git] / sys / vm / swap_pager.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  * 
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  * 
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  * 
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  * 
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *      The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *                              New Swap System
70  *                              Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *      - The new swapper uses the new radix bitmap code.  This should scale
75  *        to arbitrarily small or arbitrarily large swap spaces and an almost
76  *        arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *      - on the fly reallocation of swap during putpages.  The new system
81  *        does not try to keep previously allocated swap blocks for dirty
82  *        pages.  
83  *
84  *      - on the fly deallocation of swap
85  *
86  *      - No more garbage collection required.  Unnecessarily allocated swap
87  *        blocks only exist for dirty vm_page_t's now and these are already
88  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *        removal of invalidated swap blocks when a page is destroyed
90  *        or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c     8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/kcollect.h>
110
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
122
123 #include <sys/buf2.h>
124 #include <vm/vm_page2.h>
125
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER     SWB_NPAGES
128 #endif
129
130 #define SWM_FREE        0x02    /* free, period                 */
131 #define SWM_POP         0x04    /* pop out                      */
132
133 #define SWBIO_READ      0x01
134 #define SWBIO_WRITE     0x02
135 #define SWBIO_SYNC      0x04
136 #define SWBIO_TTC       0x08    /* for VM_PAGER_TRY_TO_CACHE */
137
138 struct swfreeinfo {
139         vm_object_t     object;
140         vm_pindex_t     basei;
141         vm_pindex_t     begi;
142         vm_pindex_t     endi;   /* inclusive */
143 };
144
145 struct swswapoffinfo {
146         vm_object_t     object;
147         int             devidx;
148         int             shared;
149 };
150
151 /*
152  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
153  * in the old system.
154  */
155
156 int swap_pager_full;            /* swap space exhaustion (task killing) */
157 int swap_fail_ticks;            /* when we became exhausted */
158 int swap_pager_almost_full;     /* swap space exhaustion (w/ hysteresis)*/
159 swblk_t vm_swap_cache_use;
160 swblk_t vm_swap_anon_use;
161 static int vm_report_swap_allocs;
162
163 static struct krate kswaprate = { 1 };
164 static int nsw_rcount;          /* free read buffers                    */
165 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
166 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
167 static int nsw_wcount_async_max;/* assigned maximum                     */
168 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
169
170 struct blist *swapblist;
171 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
172 static int swap_burst_read = 0; /* allow burst reading */
173 static swblk_t swapiterator;    /* linearize allocations */
174 int swap_user_async = 0;        /* user swap pager operation can be async */
175
176 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
177
178 /* from vm_swap.c */
179 extern struct vnode *swapdev_vp;
180 extern struct swdevt *swdevt;
181 extern int nswdev;
182
183 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
184
185 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
186         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
187 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
188         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
189 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
190         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
191
192 #if SWBLK_BITS == 64
193 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
194         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
196         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
197 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
198         CTLFLAG_RD, &vm_swap_size, 0, "");
199 #else
200 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
201         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
203         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
204 SYSCTL_INT(_vm, OID_AUTO, swap_size,
205         CTLFLAG_RD, &vm_swap_size, 0, "");
206 #endif
207 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
208         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
209
210 vm_zone_t               swap_zone;
211
212 /*
213  * Red-Black tree for swblock entries
214  *
215  * The caller must hold vm_token
216  */
217 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
218              vm_pindex_t, swb_index);
219
220 int
221 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
222 {
223         if (swb1->swb_index < swb2->swb_index)
224                 return(-1);
225         if (swb1->swb_index > swb2->swb_index)
226                 return(1);
227         return(0);
228 }
229
230 static
231 int
232 rb_swblock_scancmp(struct swblock *swb, void *data)
233 {
234         struct swfreeinfo *info = data;
235
236         if (swb->swb_index < info->basei)
237                 return(-1);
238         if (swb->swb_index > info->endi)
239                 return(1);
240         return(0);
241 }
242
243 static
244 int
245 rb_swblock_condcmp(struct swblock *swb, void *data)
246 {
247         struct swfreeinfo *info = data;
248
249         if (swb->swb_index < info->basei)
250                 return(-1);
251         return(0);
252 }
253
254 /*
255  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
256  * calls hooked from other parts of the VM system and do not appear here.
257  * (see vm/swap_pager.h).
258  */
259
260 static void     swap_pager_dealloc (vm_object_t object);
261 static int      swap_pager_getpage (vm_object_t, vm_page_t *, int);
262 static void     swap_chain_iodone(struct bio *biox);
263
264 struct pagerops swappagerops = {
265         swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
266         swap_pager_getpage,     /* pagein                               */
267         swap_pager_putpages,    /* pageout                              */
268         swap_pager_haspage      /* get backing store status for page    */
269 };
270
271 /*
272  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
273  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
274  *
275  * swap_*() routines are externally accessible.  swp_*() routines are
276  * internal.
277  */
278
279 int nswap_lowat = 128;          /* in pages, swap_pager_almost_full warn */
280 int nswap_hiwat = 512;          /* in pages, swap_pager_almost_full warn */
281
282 static __inline void    swp_sizecheck (void);
283 static void     swp_pager_async_iodone (struct bio *bio);
284
285 /*
286  * Swap bitmap functions
287  */
288
289 static __inline void    swp_pager_freeswapspace(vm_object_t object,
290                                                 swblk_t blk, int npages);
291 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
292
293 /*
294  * Metadata functions
295  */
296
297 static void swp_pager_meta_convert(vm_object_t);
298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
300 static void swp_pager_meta_free_all(vm_object_t);
301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
302
303 /*
304  * SWP_SIZECHECK() -    update swap_pager_full indication
305  *      
306  *      update the swap_pager_almost_full indication and warn when we are
307  *      about to run out of swap space, using lowat/hiwat hysteresis.
308  *
309  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
310  *
311  * No restrictions on call
312  * This routine may not block.
313  * SMP races are ok.
314  */
315 static __inline void
316 swp_sizecheck(void)
317 {
318         if (vm_swap_size < nswap_lowat) {
319                 if (swap_pager_almost_full == 0) {
320                         kprintf("swap_pager: out of swap space\n");
321                         swap_pager_almost_full = 1;
322                         swap_fail_ticks = ticks;
323                 }
324         } else {
325                 swap_pager_full = 0;
326                 if (vm_swap_size > nswap_hiwat)
327                         swap_pager_almost_full = 0;
328         }
329 }
330
331 /*
332  * Long-term data collection on 10-second interval.  Return the value
333  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
334  *
335  * Return total swap in the scale field.  This can change if swap is
336  * regularly added or removed and may cause some historical confusion
337  * in that case, but SWAPPCT will always be historically accurate.
338  */
339
340 #define PTOB(value)     ((uint64_t)(value) << PAGE_SHIFT)
341
342 static uint64_t
343 collect_swap_callback(int n)
344 {
345         uint64_t total = vm_swap_max;
346         uint64_t anon = vm_swap_anon_use;
347         uint64_t cache = vm_swap_cache_use;
348
349         if (total == 0)         /* avoid divide by zero */
350                 total = 1;
351         kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
352         kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
353         kcollect_setscale(KCOLLECT_SWAPANO,
354                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
355         kcollect_setscale(KCOLLECT_SWAPCAC,
356                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
357         return (((anon + cache) * 10000 + (total >> 1)) / total);
358 }
359
360 /*
361  * SWAP_PAGER_INIT() -  initialize the swap pager!
362  *
363  *      Expected to be started from system init.  NOTE:  This code is run 
364  *      before much else so be careful what you depend on.  Most of the VM
365  *      system has yet to be initialized at this point.
366  *
367  * Called from the low level boot code only.
368  */
369 static void
370 swap_pager_init(void *arg __unused)
371 {
372         kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
373                           KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
374         kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
375                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
376         kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
377                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
378 }
379 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
380
381 /*
382  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
383  *
384  *      Expected to be started from pageout process once, prior to entering
385  *      its main loop.
386  *
387  * Called from the low level boot code only.
388  */
389 void
390 swap_pager_swap_init(void)
391 {
392         int n, n2;
393
394         /*
395          * Number of in-transit swap bp operations.  Don't
396          * exhaust the pbufs completely.  Make sure we
397          * initialize workable values (0 will work for hysteresis
398          * but it isn't very efficient).
399          *
400          * The nsw_cluster_max is constrained by the number of pages an XIO
401          * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
402          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
403          * constrained by the swap device interleave stripe size.
404          *
405          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
406          * designed to prevent other I/O from having high latencies due to
407          * our pageout I/O.  The value 4 works well for one or two active swap
408          * devices but is probably a little low if you have more.  Even so,
409          * a higher value would probably generate only a limited improvement
410          * with three or four active swap devices since the system does not
411          * typically have to pageout at extreme bandwidths.   We will want
412          * at least 2 per swap devices, and 4 is a pretty good value if you
413          * have one NFS swap device due to the command/ack latency over NFS.
414          * So it all works out pretty well.
415          */
416
417         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
418
419         nsw_rcount = (nswbuf_kva + 1) / 2;
420         nsw_wcount_sync = (nswbuf_kva + 3) / 4;
421         nsw_wcount_async = 4;
422         nsw_wcount_async_max = nsw_wcount_async;
423
424         /*
425          * The zone is dynamically allocated so generally size it to
426          * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
427          * on physical memory of around 8x (each swblock can hold 16 pages).
428          *
429          * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
430          * has increased dramatically.
431          */
432         n = vmstats.v_page_count / 2;
433         if (maxswzone && n < maxswzone / sizeof(struct swblock))
434                 n = maxswzone / sizeof(struct swblock);
435         n2 = n;
436
437         do {
438                 swap_zone = zinit(
439                         "SWAPMETA", 
440                         sizeof(struct swblock), 
441                         n,
442                         ZONE_INTERRUPT);
443                 if (swap_zone != NULL)
444                         break;
445                 /*
446                  * if the allocation failed, try a zone two thirds the
447                  * size of the previous attempt.
448                  */
449                 n -= ((n + 2) / 3);
450         } while (n > 0);
451
452         if (swap_zone == NULL)
453                 panic("swap_pager_swap_init: swap_zone == NULL");
454         if (n2 != n)
455                 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
456 }
457
458 /*
459  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
460  *                      its metadata structures.
461  *
462  *      This routine is called from the mmap and fork code to create a new
463  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
464  *      and then converting it with swp_pager_meta_convert().
465  *
466  *      We only support unnamed objects.
467  *
468  * No restrictions.
469  */
470 vm_object_t
471 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
472 {
473         vm_object_t object;
474
475         KKASSERT(handle == NULL);
476         object = vm_object_allocate_hold(OBJT_DEFAULT,
477                                          OFF_TO_IDX(offset + PAGE_MASK + size));
478         swp_pager_meta_convert(object);
479         vm_object_drop(object);
480
481         return (object);
482 }
483
484 /*
485  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
486  *
487  *      The swap backing for the object is destroyed.  The code is 
488  *      designed such that we can reinstantiate it later, but this
489  *      routine is typically called only when the entire object is
490  *      about to be destroyed.
491  *
492  * The object must be locked or unreferenceable.
493  * No other requirements.
494  */
495 static void
496 swap_pager_dealloc(vm_object_t object)
497 {
498         vm_object_hold(object);
499         vm_object_pip_wait(object, "swpdea");
500
501         /*
502          * Free all remaining metadata.  We only bother to free it from 
503          * the swap meta data.  We do not attempt to free swapblk's still
504          * associated with vm_page_t's for this object.  We do not care
505          * if paging is still in progress on some objects.
506          */
507         swp_pager_meta_free_all(object);
508         vm_object_drop(object);
509 }
510
511 /************************************************************************
512  *                      SWAP PAGER BITMAP ROUTINES                      *
513  ************************************************************************/
514
515 /*
516  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
517  *
518  *      Allocate swap for the requested number of pages.  The starting
519  *      swap block number (a page index) is returned or SWAPBLK_NONE
520  *      if the allocation failed.
521  *
522  *      Also has the side effect of advising that somebody made a mistake
523  *      when they configured swap and didn't configure enough.
524  *
525  * The caller must hold the object.
526  * This routine may not block.
527  */
528 static __inline swblk_t
529 swp_pager_getswapspace(vm_object_t object, int npages)
530 {
531         swblk_t blk;
532
533         lwkt_gettoken(&vm_token);
534         blk = blist_allocat(swapblist, npages, swapiterator);
535         if (blk == SWAPBLK_NONE)
536                 blk = blist_allocat(swapblist, npages, 0);
537         if (blk == SWAPBLK_NONE) {
538                 if (swap_pager_full != 2) {
539                         if (vm_swap_max == 0) {
540                                 krateprintf(&kswaprate,
541                                         "Warning: The system would like to "
542                                         "page to swap but no swap space "
543                                         "is configured!\n");
544                         } else {
545                                 krateprintf(&kswaprate,
546                                         "swap_pager_getswapspace: "
547                                         "swap full allocating %d pages\n",
548                                         npages);
549                         }
550                         swap_pager_full = 2;
551                         if (swap_pager_almost_full == 0)
552                                 swap_fail_ticks = ticks;
553                         swap_pager_almost_full = 1;
554                 }
555         } else {
556                 /* swapiterator = blk; disable for now, doesn't work well */
557                 swapacctspace(blk, -npages);
558                 if (object->type == OBJT_SWAP)
559                         vm_swap_anon_use += npages;
560                 else
561                         vm_swap_cache_use += npages;
562                 swp_sizecheck();
563         }
564         lwkt_reltoken(&vm_token);
565         return(blk);
566 }
567
568 /*
569  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
570  *
571  *      This routine returns the specified swap blocks back to the bitmap.
572  *
573  *      Note:  This routine may not block (it could in the old swap code),
574  *      and through the use of the new blist routines it does not block.
575  *
576  * This routine may not block.
577  */
578
579 static __inline void
580 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
581 {
582         struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
583
584         lwkt_gettoken(&vm_token);
585         sp->sw_nused -= npages;
586         if (object->type == OBJT_SWAP)
587                 vm_swap_anon_use -= npages;
588         else
589                 vm_swap_cache_use -= npages;
590
591         if (sp->sw_flags & SW_CLOSING) {
592                 lwkt_reltoken(&vm_token);
593                 return;
594         }
595
596         blist_free(swapblist, blk, npages);
597         vm_swap_size += npages;
598         swp_sizecheck();
599         lwkt_reltoken(&vm_token);
600 }
601
602 /*
603  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
604  *                              range within an object.
605  *
606  *      This is a globally accessible routine.
607  *
608  *      This routine removes swapblk assignments from swap metadata.
609  *
610  *      The external callers of this routine typically have already destroyed 
611  *      or renamed vm_page_t's associated with this range in the object so 
612  *      we should be ok.
613  *
614  * No requirements.
615  */
616 void
617 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
618 {
619         vm_object_hold(object);
620         swp_pager_meta_free(object, start, size);
621         vm_object_drop(object);
622 }
623
624 /*
625  * No requirements.
626  */
627 void
628 swap_pager_freespace_all(vm_object_t object)
629 {
630         vm_object_hold(object);
631         swp_pager_meta_free_all(object);
632         vm_object_drop(object);
633 }
634
635 /*
636  * This function conditionally frees swap cache swap starting at
637  * (*basei) in the object.  (count) swap blocks will be nominally freed.
638  * The actual number of blocks freed can be more or less than the
639  * requested number.
640  *
641  * This function nominally returns the number of blocks freed.  However,
642  * the actual number of blocks freed may be less then the returned value.
643  * If the function is unable to exhaust the object or if it is able to
644  * free (approximately) the requested number of blocks it returns
645  * a value n > count.
646  *
647  * If we exhaust the object we will return a value n <= count.
648  *
649  * The caller must hold the object.
650  *
651  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
652  *           callers should always pass a count value > 0.
653  */
654 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
655
656 int
657 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
658 {
659         struct swfreeinfo info;
660         int n;
661         int t;
662
663         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
664
665         info.object = object;
666         info.basei = *basei;    /* skip up to this page index */
667         info.begi = count;      /* max swap pages to destroy */
668         info.endi = count * 8;  /* max swblocks to scan */
669
670         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
671                                 swap_pager_condfree_callback, &info);
672         *basei = info.basei;
673
674         /*
675          * Take the higher difference swblocks vs pages
676          */
677         n = count - (int)info.begi;
678         t = count * 8 - (int)info.endi;
679         if (n < t)
680                 n = t;
681         if (n < 1)
682                 n = 1;
683         return(n);
684 }
685
686 /*
687  * The idea is to free whole meta-block to avoid fragmenting
688  * the swap space or disk I/O.  We only do this if NO VM pages
689  * are present.
690  *
691  * We do not have to deal with clearing PG_SWAPPED in related VM
692  * pages because there are no related VM pages.
693  *
694  * The caller must hold the object.
695  */
696 static int
697 swap_pager_condfree_callback(struct swblock *swap, void *data)
698 {
699         struct swfreeinfo *info = data;
700         vm_object_t object = info->object;
701         int i;
702
703         for (i = 0; i < SWAP_META_PAGES; ++i) {
704                 if (vm_page_lookup(object, swap->swb_index + i))
705                         break;
706         }
707         info->basei = swap->swb_index + SWAP_META_PAGES;
708         if (i == SWAP_META_PAGES) {
709                 info->begi -= swap->swb_count;
710                 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
711         }
712         --info->endi;
713         if ((int)info->begi < 0 || (int)info->endi < 0)
714                 return(-1);
715         lwkt_yield();
716         return(0);
717 }
718
719 /*
720  * Called by vm_page_alloc() when a new VM page is inserted
721  * into a VM object.  Checks whether swap has been assigned to
722  * the page and sets PG_SWAPPED as necessary.
723  *
724  * (m) must be busied by caller and remains busied on return.
725  */
726 void
727 swap_pager_page_inserted(vm_page_t m)
728 {
729         if (m->object->swblock_count) {
730                 vm_object_hold(m->object);
731                 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
732                         vm_page_flag_set(m, PG_SWAPPED);
733                 vm_object_drop(m->object);
734         }
735 }
736
737 /*
738  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
739  *
740  *      Assigns swap blocks to the specified range within the object.  The 
741  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
742  *
743  *      Returns 0 on success, -1 on failure.
744  *
745  * The caller is responsible for avoiding races in the specified range.
746  * No other requirements.
747  */
748 int
749 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
750 {
751         int n = 0;
752         swblk_t blk = SWAPBLK_NONE;
753         vm_pindex_t beg = start;        /* save start index */
754
755         vm_object_hold(object);
756
757         while (size) {
758                 if (n == 0) {
759                         n = BLIST_MAX_ALLOC;
760                         while ((blk = swp_pager_getswapspace(object, n)) ==
761                                SWAPBLK_NONE)
762                         {
763                                 n >>= 1;
764                                 if (n == 0) {
765                                         swp_pager_meta_free(object, beg,
766                                                             start - beg);
767                                         vm_object_drop(object);
768                                         return(-1);
769                                 }
770                         }
771                 }
772                 swp_pager_meta_build(object, start, blk);
773                 --size;
774                 ++start;
775                 ++blk;
776                 --n;
777         }
778         swp_pager_meta_free(object, start, n);
779         vm_object_drop(object);
780         return(0);
781 }
782
783 /*
784  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
785  *                      and destroy the source.
786  *
787  *      Copy any valid swapblks from the source to the destination.  In
788  *      cases where both the source and destination have a valid swapblk,
789  *      we keep the destination's.
790  *
791  *      This routine is allowed to block.  It may block allocating metadata
792  *      indirectly through swp_pager_meta_build() or if paging is still in
793  *      progress on the source. 
794  *
795  *      XXX vm_page_collapse() kinda expects us not to block because we 
796  *      supposedly do not need to allocate memory, but for the moment we
797  *      *may* have to get a little memory from the zone allocator, but
798  *      it is taken from the interrupt memory.  We should be ok. 
799  *
800  *      The source object contains no vm_page_t's (which is just as well)
801  *      The source object is of type OBJT_SWAP.
802  *
803  *      The source and destination objects must be held by the caller.
804  */
805 void
806 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
807                 vm_pindex_t base_index, int destroysource)
808 {
809         vm_pindex_t i;
810
811         ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
812         ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
813
814         /*
815          * transfer source to destination.
816          */
817         for (i = 0; i < dstobject->size; ++i) {
818                 swblk_t dstaddr;
819
820                 /*
821                  * Locate (without changing) the swapblk on the destination,
822                  * unless it is invalid in which case free it silently, or
823                  * if the destination is a resident page, in which case the
824                  * source is thrown away.
825                  */
826                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
827
828                 if (dstaddr == SWAPBLK_NONE) {
829                         /*
830                          * Destination has no swapblk and is not resident,
831                          * copy source.
832                          */
833                         swblk_t srcaddr;
834
835                         srcaddr = swp_pager_meta_ctl(srcobject,
836                                                      base_index + i, SWM_POP);
837
838                         if (srcaddr != SWAPBLK_NONE)
839                                 swp_pager_meta_build(dstobject, i, srcaddr);
840                 } else {
841                         /*
842                          * Destination has valid swapblk or it is represented
843                          * by a resident page.  We destroy the sourceblock.
844                          */
845                         swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
846                 }
847         }
848
849         /*
850          * Free left over swap blocks in source.
851          *
852          * We have to revert the type to OBJT_DEFAULT so we do not accidently
853          * double-remove the object from the swap queues.
854          */
855         if (destroysource) {
856                 /*
857                  * Reverting the type is not necessary, the caller is going
858                  * to destroy srcobject directly, but I'm doing it here
859                  * for consistency since we've removed the object from its
860                  * queues.
861                  */
862                 swp_pager_meta_free_all(srcobject);
863                 if (srcobject->type == OBJT_SWAP)
864                         srcobject->type = OBJT_DEFAULT;
865         }
866 }
867
868 /*
869  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
870  *                              the requested page.
871  *
872  *      We determine whether good backing store exists for the requested
873  *      page and return TRUE if it does, FALSE if it doesn't.
874  *
875  *      If TRUE, we also try to determine how much valid, contiguous backing
876  *      store exists before and after the requested page within a reasonable
877  *      distance.  We do not try to restrict it to the swap device stripe
878  *      (that is handled in getpages/putpages).  It probably isn't worth
879  *      doing here.
880  *
881  * No requirements.
882  */
883 boolean_t
884 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
885 {
886         swblk_t blk0;
887
888         /*
889          * do we have good backing store at the requested index ?
890          */
891         vm_object_hold(object);
892         blk0 = swp_pager_meta_ctl(object, pindex, 0);
893
894         if (blk0 == SWAPBLK_NONE) {
895                 vm_object_drop(object);
896                 return (FALSE);
897         }
898         vm_object_drop(object);
899         return (TRUE);
900 }
901
902 /*
903  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
904  *
905  * This removes any associated swap backing store, whether valid or
906  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
907  * objects.
908  *
909  * This routine is typically called when a page is made dirty, at
910  * which point any associated swap can be freed.  MADV_FREE also
911  * calls us in a special-case situation
912  *
913  * NOTE!!!  If the page is clean and the swap was valid, the caller
914  *          should make the page dirty before calling this routine.
915  *          This routine does NOT change the m->dirty status of the page.
916  *          Also: MADV_FREE depends on it.
917  *
918  * The page must be busied.
919  * The caller can hold the object to avoid blocking, else we might block.
920  * No other requirements.
921  */
922 void
923 swap_pager_unswapped(vm_page_t m)
924 {
925         if (m->flags & PG_SWAPPED) {
926                 vm_object_hold(m->object);
927                 KKASSERT(m->flags & PG_SWAPPED);
928                 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
929                 vm_page_flag_clear(m, PG_SWAPPED);
930                 vm_object_drop(m->object);
931         }
932 }
933
934 /*
935  * SWAP_PAGER_STRATEGY() - read, write, free blocks
936  *
937  * This implements a VM OBJECT strategy function using swap backing store.
938  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
939  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
940  * requests will return EINVAL.
941  *
942  * This is intended to be a cacheless interface (i.e. caching occurs at
943  * higher levels), and is also used as a swap-based SSD cache for vnode
944  * and device objects.
945  *
946  * All I/O goes directly to and from the swap device.
947  *      
948  * We currently attempt to run I/O synchronously or asynchronously as
949  * the caller requests.  This isn't perfect because we loose error
950  * sequencing when we run multiple ops in parallel to satisfy a request.
951  * But this is swap, so we let it all hang out.
952  *
953  * NOTE: This function supports the KVABIO API wherein bp->b_data might
954  *       not be synchronized to the current cpu.
955  *
956  * No requirements.
957  */
958 void
959 swap_pager_strategy(vm_object_t object, struct bio *bio)
960 {
961         struct buf *bp = bio->bio_buf;
962         struct bio *nbio;
963         vm_pindex_t start;
964         vm_pindex_t biox_blkno = 0;
965         int count;
966         char *data;
967         struct bio *biox;
968         struct buf *bufx;
969 #if 0
970         struct bio_track *track;
971 #endif
972
973 #if 0
974         /*
975          * tracking for swapdev vnode I/Os
976          */
977         if (bp->b_cmd == BUF_CMD_READ)
978                 track = &swapdev_vp->v_track_read;
979         else
980                 track = &swapdev_vp->v_track_write;
981 #endif
982
983         /*
984          * Only supported commands
985          */
986         if (bp->b_cmd != BUF_CMD_FREEBLKS &&
987             bp->b_cmd != BUF_CMD_READ &&
988             bp->b_cmd != BUF_CMD_WRITE) {
989                 bp->b_error = EINVAL;
990                 bp->b_flags |= B_ERROR | B_INVAL;
991                 biodone(bio);
992                 return;
993         }
994
995         /*
996          * bcount must be an integral number of pages.
997          */
998         if (bp->b_bcount & PAGE_MASK) {
999                 bp->b_error = EINVAL;
1000                 bp->b_flags |= B_ERROR | B_INVAL;
1001                 biodone(bio);
1002                 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1003                         "not page bounded\n",
1004                         bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1005                 return;
1006         }
1007
1008         /*
1009          * Clear error indication, initialize page index, count, data pointer.
1010          */
1011         bp->b_error = 0;
1012         bp->b_flags &= ~B_ERROR;
1013         bp->b_resid = bp->b_bcount;
1014
1015         start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1016         count = howmany(bp->b_bcount, PAGE_SIZE);
1017
1018         /*
1019          * WARNING!  Do not dereference *data without issuing a bkvasync()
1020          */
1021         data = bp->b_data;
1022
1023         /*
1024          * Deal with BUF_CMD_FREEBLKS
1025          */
1026         if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1027                 /*
1028                  * FREE PAGE(s) - destroy underlying swap that is no longer
1029                  *                needed.
1030                  */
1031                 vm_object_hold(object);
1032                 swp_pager_meta_free(object, start, count);
1033                 vm_object_drop(object);
1034                 bp->b_resid = 0;
1035                 biodone(bio);
1036                 return;
1037         }
1038
1039         /*
1040          * We need to be able to create a new cluster of I/O's.  We cannot
1041          * use the caller fields of the passed bio so push a new one.
1042          *
1043          * Because nbio is just a placeholder for the cluster links,
1044          * we can biodone() the original bio instead of nbio to make
1045          * things a bit more efficient.
1046          */
1047         nbio = push_bio(bio);
1048         nbio->bio_offset = bio->bio_offset;
1049         nbio->bio_caller_info1.cluster_head = NULL;
1050         nbio->bio_caller_info2.cluster_tail = NULL;
1051
1052         biox = NULL;
1053         bufx = NULL;
1054
1055         /*
1056          * Execute read or write
1057          */
1058         vm_object_hold(object);
1059
1060         while (count > 0) {
1061                 swblk_t blk;
1062
1063                 /*
1064                  * Obtain block.  If block not found and writing, allocate a
1065                  * new block and build it into the object.
1066                  */
1067                 blk = swp_pager_meta_ctl(object, start, 0);
1068                 if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1069                         blk = swp_pager_getswapspace(object, 1);
1070                         if (blk == SWAPBLK_NONE) {
1071                                 bp->b_error = ENOMEM;
1072                                 bp->b_flags |= B_ERROR;
1073                                 break;
1074                         }
1075                         swp_pager_meta_build(object, start, blk);
1076                 }
1077                         
1078                 /*
1079                  * Do we have to flush our current collection?  Yes if:
1080                  *
1081                  *      - no swap block at this index
1082                  *      - swap block is not contiguous
1083                  *      - we cross a physical disk boundry in the
1084                  *        stripe.
1085                  */
1086                 if (biox &&
1087                     (biox_blkno + btoc(bufx->b_bcount) != blk ||
1088                      ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1089                         switch(bp->b_cmd) {
1090                         case BUF_CMD_READ:
1091                                 ++mycpu->gd_cnt.v_swapin;
1092                                 mycpu->gd_cnt.v_swappgsin +=
1093                                         btoc(bufx->b_bcount);
1094                                 break;
1095                         case BUF_CMD_WRITE:
1096                                 ++mycpu->gd_cnt.v_swapout;
1097                                 mycpu->gd_cnt.v_swappgsout +=
1098                                         btoc(bufx->b_bcount);
1099                                 bufx->b_dirtyend = bufx->b_bcount;
1100                                 break;
1101                         default:
1102                                 /* NOT REACHED */
1103                                 break;
1104                         }
1105
1106                         /*
1107                          * Finished with this buf.
1108                          */
1109                         KKASSERT(bufx->b_bcount != 0);
1110                         if (bufx->b_cmd != BUF_CMD_READ)
1111                                 bufx->b_dirtyend = bufx->b_bcount;
1112                         biox = NULL;
1113                         bufx = NULL;
1114                 }
1115
1116                 /*
1117                  * Add new swapblk to biox, instantiating biox if necessary.
1118                  * Zero-fill reads are able to take a shortcut.
1119                  */
1120                 if (blk == SWAPBLK_NONE) {
1121                         /*
1122                          * We can only get here if we are reading.
1123                          */
1124                         bkvasync(bp);
1125                         bzero(data, PAGE_SIZE);
1126                         bp->b_resid -= PAGE_SIZE;
1127                 } else {
1128                         if (biox == NULL) {
1129                                 /* XXX chain count > 4, wait to <= 4 */
1130
1131                                 bufx = getpbuf(NULL);
1132                                 bufx->b_flags |= B_KVABIO;
1133                                 biox = &bufx->b_bio1;
1134                                 cluster_append(nbio, bufx);
1135                                 bufx->b_cmd = bp->b_cmd;
1136                                 biox->bio_done = swap_chain_iodone;
1137                                 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1138                                 biox->bio_caller_info1.cluster_parent = nbio;
1139                                 biox_blkno = blk;
1140                                 bufx->b_bcount = 0;
1141                                 bufx->b_data = data;
1142                         }
1143                         bufx->b_bcount += PAGE_SIZE;
1144                 }
1145                 --count;
1146                 ++start;
1147                 data += PAGE_SIZE;
1148         }
1149
1150         vm_object_drop(object);
1151
1152         /*
1153          *  Flush out last buffer
1154          */
1155         if (biox) {
1156                 if (bufx->b_cmd == BUF_CMD_READ) {
1157                         ++mycpu->gd_cnt.v_swapin;
1158                         mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1159                 } else {
1160                         ++mycpu->gd_cnt.v_swapout;
1161                         mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1162                         bufx->b_dirtyend = bufx->b_bcount;
1163                 }
1164                 KKASSERT(bufx->b_bcount);
1165                 if (bufx->b_cmd != BUF_CMD_READ)
1166                         bufx->b_dirtyend = bufx->b_bcount;
1167                 /* biox, bufx = NULL */
1168         }
1169
1170         /*
1171          * Now initiate all the I/O.  Be careful looping on our chain as
1172          * I/O's may complete while we are still initiating them.
1173          *
1174          * If the request is a 100% sparse read no bios will be present
1175          * and we just biodone() the buffer.
1176          */
1177         nbio->bio_caller_info2.cluster_tail = NULL;
1178         bufx = nbio->bio_caller_info1.cluster_head;
1179
1180         if (bufx) {
1181                 while (bufx) {
1182                         biox = &bufx->b_bio1;
1183                         BUF_KERNPROC(bufx);
1184                         bufx = bufx->b_cluster_next;
1185                         vn_strategy(swapdev_vp, biox);
1186                 }
1187         } else {
1188                 biodone(bio);
1189         }
1190
1191         /*
1192          * Completion of the cluster will also call biodone_chain(nbio).
1193          * We never call biodone(nbio) so we don't have to worry about
1194          * setting up a bio_done callback.  It's handled in the sub-IO.
1195          */
1196         /**/
1197 }
1198
1199 /*
1200  * biodone callback
1201  *
1202  * No requirements.
1203  */
1204 static void
1205 swap_chain_iodone(struct bio *biox)
1206 {
1207         struct buf **nextp;
1208         struct buf *bufx;       /* chained sub-buffer */
1209         struct bio *nbio;       /* parent nbio with chain glue */
1210         struct buf *bp;         /* original bp associated with nbio */
1211         int chain_empty;
1212
1213         bufx = biox->bio_buf;
1214         nbio = biox->bio_caller_info1.cluster_parent;
1215         bp = nbio->bio_buf;
1216
1217         /*
1218          * Update the original buffer
1219          */
1220         KKASSERT(bp != NULL);
1221         if (bufx->b_flags & B_ERROR) {
1222                 atomic_set_int(&bufx->b_flags, B_ERROR);
1223                 bp->b_error = bufx->b_error;    /* race ok */
1224         } else if (bufx->b_resid != 0) {
1225                 atomic_set_int(&bufx->b_flags, B_ERROR);
1226                 bp->b_error = EINVAL;           /* race ok */
1227         } else {
1228                 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1229         }
1230
1231         /*
1232          * Remove us from the chain.
1233          */
1234         spin_lock(&swapbp_spin);
1235         nextp = &nbio->bio_caller_info1.cluster_head;
1236         while (*nextp != bufx) {
1237                 KKASSERT(*nextp != NULL);
1238                 nextp = &(*nextp)->b_cluster_next;
1239         }
1240         *nextp = bufx->b_cluster_next;
1241         chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1242         spin_unlock(&swapbp_spin);
1243
1244         /*
1245          * Clean up bufx.  If the chain is now empty we finish out
1246          * the parent.  Note that we may be racing other completions
1247          * so we must use the chain_empty status from above.
1248          */
1249         if (chain_empty) {
1250                 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1251                         atomic_set_int(&bp->b_flags, B_ERROR);
1252                         bp->b_error = EINVAL;
1253                 }
1254                 biodone_chain(nbio);
1255         }
1256         relpbuf(bufx, NULL);
1257 }
1258
1259 /*
1260  * SWAP_PAGER_GETPAGES() - bring page in from swap
1261  *
1262  * The requested page may have to be brought in from swap.  Calculate the
1263  * swap block and bring in additional pages if possible.  All pages must
1264  * have contiguous swap block assignments and reside in the same object.
1265  *
1266  * The caller has a single vm_object_pip_add() reference prior to
1267  * calling us and we should return with the same.
1268  *
1269  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1270  * and any additinal pages unbusied.
1271  *
1272  * If the caller encounters a PG_RAM page it will pass it to us even though
1273  * it may be valid and dirty.  We cannot overwrite the page in this case!
1274  * The case is used to allow us to issue pure read-aheads.
1275  *
1276  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1277  *       the PG_RAM page is validated at the same time as mreq.  What we
1278  *       really need to do is issue a separate read-ahead pbuf.
1279  *
1280  * No requirements.
1281  */
1282 static int
1283 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1284 {
1285         struct buf *bp;
1286         struct bio *bio;
1287         vm_page_t mreq;
1288         vm_page_t m;
1289         vm_offset_t kva;
1290         swblk_t blk;
1291         int i;
1292         int j;
1293         int raonly;
1294         int error;
1295         u_int32_t busy_count;
1296         vm_page_t marray[XIO_INTERNAL_PAGES];
1297
1298         mreq = *mpp;
1299
1300         vm_object_hold(object);
1301         if (mreq->object != object) {
1302                 panic("swap_pager_getpages: object mismatch %p/%p", 
1303                     object, 
1304                     mreq->object
1305                 );
1306         }
1307
1308         /*
1309          * We don't want to overwrite a fully valid page as it might be
1310          * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1311          * valid page with PG_RAM set.
1312          *
1313          * In this case we see if the next page is a suitable page-in
1314          * candidate and if it is we issue read-ahead.  PG_RAM will be
1315          * set on the last page of the read-ahead to continue the pipeline.
1316          */
1317         if (mreq->valid == VM_PAGE_BITS_ALL) {
1318                 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1319                         vm_object_drop(object);
1320                         return(VM_PAGER_OK);
1321                 }
1322                 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1323                 if (blk == SWAPBLK_NONE) {
1324                         vm_object_drop(object);
1325                         return(VM_PAGER_OK);
1326                 }
1327                 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1328                                             TRUE, &error);
1329                 if (error) {
1330                         vm_object_drop(object);
1331                         return(VM_PAGER_OK);
1332                 } else if (m == NULL) {
1333                         /*
1334                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1335                          * page reuse.
1336                          */
1337                         m = vm_page_alloc(object, mreq->pindex + 1,
1338                                           VM_ALLOC_QUICK);
1339                         if (m == NULL) {
1340                                 vm_object_drop(object);
1341                                 return(VM_PAGER_OK);
1342                         }
1343                 } else {
1344                         if (m->valid) {
1345                                 vm_page_wakeup(m);
1346                                 vm_object_drop(object);
1347                                 return(VM_PAGER_OK);
1348                         }
1349                         vm_page_unqueue_nowakeup(m);
1350                 }
1351                 /* page is busy */
1352                 mreq = m;
1353                 raonly = 1;
1354         } else {
1355                 raonly = 0;
1356         }
1357
1358         /*
1359          * Try to block-read contiguous pages from swap if sequential,
1360          * otherwise just read one page.  Contiguous pages from swap must
1361          * reside within a single device stripe because the I/O cannot be
1362          * broken up across multiple stripes.
1363          *
1364          * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1365          * set up such that the case(s) are handled implicitly.
1366          */
1367         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1368         marray[0] = mreq;
1369
1370         for (i = 1; i <= swap_burst_read &&
1371                     i < XIO_INTERNAL_PAGES &&
1372                     mreq->pindex + i < object->size; ++i) {
1373                 swblk_t iblk;
1374
1375                 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1376                 if (iblk != blk + i)
1377                         break;
1378                 if ((blk ^ iblk) & ~SWB_DMMASK)
1379                         break;
1380                 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1381                                             TRUE, &error);
1382                 if (error) {
1383                         break;
1384                 } else if (m == NULL) {
1385                         /*
1386                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1387                          * page reuse.
1388                          */
1389                         m = vm_page_alloc(object, mreq->pindex + i,
1390                                           VM_ALLOC_QUICK);
1391                         if (m == NULL)
1392                                 break;
1393                 } else {
1394                         if (m->valid) {
1395                                 vm_page_wakeup(m);
1396                                 break;
1397                         }
1398                         vm_page_unqueue_nowakeup(m);
1399                 }
1400                 /* page is busy */
1401                 marray[i] = m;
1402         }
1403         if (i > 1)
1404                 vm_page_flag_set(marray[i - 1], PG_RAM);
1405
1406         /*
1407          * If mreq is the requested page and we have nothing to do return
1408          * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1409          * page and must be cleaned up.
1410          */
1411         if (blk == SWAPBLK_NONE) {
1412                 KKASSERT(i == 1);
1413                 if (raonly) {
1414                         vnode_pager_freepage(mreq);
1415                         vm_object_drop(object);
1416                         return(VM_PAGER_OK);
1417                 } else {
1418                         vm_object_drop(object);
1419                         return(VM_PAGER_FAIL);
1420                 }
1421         }
1422
1423         /*
1424          * Map our page(s) into kva for input
1425          *
1426          * Use the KVABIO API to avoid synchronizing the pmap.
1427          */
1428         bp = getpbuf_kva(&nsw_rcount);
1429         bio = &bp->b_bio1;
1430         kva = (vm_offset_t) bp->b_kvabase;
1431         bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1432         pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1433
1434         bp->b_data = (caddr_t)kva;
1435         bp->b_bcount = PAGE_SIZE * i;
1436         bp->b_xio.xio_npages = i;
1437         bp->b_flags |= B_KVABIO;
1438         bio->bio_done = swp_pager_async_iodone;
1439         bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1440         bio->bio_caller_info1.index = SWBIO_READ;
1441
1442         /*
1443          * Set index.  If raonly set the index beyond the array so all
1444          * the pages are treated the same, otherwise the original mreq is
1445          * at index 0.
1446          */
1447         if (raonly)
1448                 bio->bio_driver_info = (void *)(intptr_t)i;
1449         else
1450                 bio->bio_driver_info = (void *)(intptr_t)0;
1451
1452         for (j = 0; j < i; ++j) {
1453                 atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1454                                PBUSY_SWAPINPROG);
1455         }
1456
1457         mycpu->gd_cnt.v_swapin++;
1458         mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1459
1460         /*
1461          * We still hold the lock on mreq, and our automatic completion routine
1462          * does not remove it.
1463          */
1464         vm_object_pip_add(object, bp->b_xio.xio_npages);
1465
1466         /*
1467          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1468          * this point because we automatically release it on completion.
1469          * Instead, we look at the one page we are interested in which we
1470          * still hold a lock on even through the I/O completion.
1471          *
1472          * The other pages in our m[] array are also released on completion,
1473          * so we cannot assume they are valid anymore either.
1474          */
1475         bp->b_cmd = BUF_CMD_READ;
1476         BUF_KERNPROC(bp);
1477         vn_strategy(swapdev_vp, bio);
1478
1479         /*
1480          * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1481          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1482          * is set in the meta-data.
1483          *
1484          * If this is a read-ahead only we return immediately without
1485          * waiting for I/O.
1486          */
1487         if (raonly) {
1488                 vm_object_drop(object);
1489                 return(VM_PAGER_OK);
1490         }
1491
1492         /*
1493          * Read-ahead includes originally requested page case.
1494          */
1495         for (;;) {
1496                 busy_count = mreq->busy_count;
1497                 cpu_ccfence();
1498                 if ((busy_count & PBUSY_SWAPINPROG) == 0)
1499                         break;
1500                 tsleep_interlock(mreq, 0);
1501                 if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1502                                        busy_count |
1503                                         PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1504                         continue;
1505                 }
1506                 atomic_set_int(&mreq->flags, PG_REFERENCED);
1507                 mycpu->gd_cnt.v_intrans++;
1508                 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1509                         kprintf(
1510                             "swap_pager: indefinite wait buffer: "
1511                                 " bp %p offset: %lld, size: %ld\n",
1512                             bp,
1513                             (long long)bio->bio_offset,
1514                             (long)bp->b_bcount
1515                         );
1516                 }
1517         }
1518
1519         /*
1520          * Disallow speculative reads prior to the SWAPINPROG test.
1521          */
1522         cpu_lfence();
1523
1524         /*
1525          * mreq is left busied after completion, but all the other pages
1526          * are freed.  If we had an unrecoverable read error the page will
1527          * not be valid.
1528          */
1529         vm_object_drop(object);
1530         if (mreq->valid != VM_PAGE_BITS_ALL)
1531                 return(VM_PAGER_ERROR);
1532         else
1533                 return(VM_PAGER_OK);
1534
1535         /*
1536          * A final note: in a low swap situation, we cannot deallocate swap
1537          * and mark a page dirty here because the caller is likely to mark
1538          * the page clean when we return, causing the page to possibly revert 
1539          * to all-zero's later.
1540          */
1541 }
1542
1543 /*
1544  *      swap_pager_putpages: 
1545  *
1546  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1547  *
1548  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1549  *      are automatically converted to SWAP objects.
1550  *
1551  *      In a low memory situation we may block in vn_strategy(), but the new 
1552  *      vm_page reservation system coupled with properly written VFS devices 
1553  *      should ensure that no low-memory deadlock occurs.  This is an area
1554  *      which needs work.
1555  *
1556  *      The parent has N vm_object_pip_add() references prior to
1557  *      calling us and will remove references for rtvals[] that are
1558  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1559  *      completion.
1560  *
1561  *      The parent has soft-busy'd the pages it passes us and will unbusy
1562  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1563  *      We need to unbusy the rest on I/O completion.
1564  *
1565  * No requirements.
1566  */
1567 void
1568 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1569                     int flags, int *rtvals)
1570 {
1571         int i;
1572         int n = 0;
1573
1574         vm_object_hold(object);
1575
1576         if (count && m[0]->object != object) {
1577                 panic("swap_pager_getpages: object mismatch %p/%p", 
1578                     object, 
1579                     m[0]->object
1580                 );
1581         }
1582
1583         /*
1584          * Step 1
1585          *
1586          * Turn object into OBJT_SWAP
1587          * Check for bogus sysops
1588          *
1589          * Force sync if not pageout process, we don't want any single
1590          * non-pageout process to be able to hog the I/O subsystem!  This
1591          * can be overridden by setting.
1592          */
1593         if (object->type == OBJT_DEFAULT) {
1594                 if (object->type == OBJT_DEFAULT)
1595                         swp_pager_meta_convert(object);
1596         }
1597
1598         /*
1599          * Normally we force synchronous swap I/O if this is not the
1600          * pageout daemon to prevent any single user process limited
1601          * via RLIMIT_RSS from hogging swap write bandwidth.
1602          */
1603         if (curthread != pagethread &&
1604             curthread != emergpager &&
1605             swap_user_async == 0) {
1606                 flags |= VM_PAGER_PUT_SYNC;
1607         }
1608
1609         /*
1610          * Step 2
1611          *
1612          * Update nsw parameters from swap_async_max sysctl values.  
1613          * Do not let the sysop crash the machine with bogus numbers.
1614          */
1615         if (swap_async_max != nsw_wcount_async_max) {
1616                 int n;
1617
1618                 /*
1619                  * limit range
1620                  */
1621                 if ((n = swap_async_max) > nswbuf_kva / 2)
1622                         n = nswbuf_kva / 2;
1623                 if (n < 1)
1624                         n = 1;
1625                 swap_async_max = n;
1626
1627                 /*
1628                  * Adjust difference ( if possible ).  If the current async
1629                  * count is too low, we may not be able to make the adjustment
1630                  * at this time.
1631                  *
1632                  * vm_token needed for nsw_wcount sleep interlock
1633                  */
1634                 lwkt_gettoken(&vm_token);
1635                 n -= nsw_wcount_async_max;
1636                 if (nsw_wcount_async + n >= 0) {
1637                         nsw_wcount_async_max += n;
1638                         pbuf_adjcount(&nsw_wcount_async, n);
1639                 }
1640                 lwkt_reltoken(&vm_token);
1641         }
1642
1643         /*
1644          * Step 3
1645          *
1646          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1647          * The page is left dirty until the pageout operation completes
1648          * successfully.
1649          */
1650
1651         for (i = 0; i < count; i += n) {
1652                 struct buf *bp;
1653                 struct bio *bio;
1654                 swblk_t blk;
1655                 int j;
1656
1657                 /*
1658                  * Maximum I/O size is limited by a number of factors.
1659                  */
1660
1661                 n = min(BLIST_MAX_ALLOC, count - i);
1662                 n = min(n, nsw_cluster_max);
1663
1664                 lwkt_gettoken(&vm_token);
1665
1666                 /*
1667                  * Get biggest block of swap we can.  If we fail, fall
1668                  * back and try to allocate a smaller block.  Don't go
1669                  * overboard trying to allocate space if it would overly
1670                  * fragment swap.
1671                  */
1672                 while (
1673                     (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1674                     n > 4
1675                 ) {
1676                         n >>= 1;
1677                 }
1678                 if (blk == SWAPBLK_NONE) {
1679                         for (j = 0; j < n; ++j)
1680                                 rtvals[i+j] = VM_PAGER_FAIL;
1681                         lwkt_reltoken(&vm_token);
1682                         continue;
1683                 }
1684                 if (vm_report_swap_allocs > 0) {
1685                         kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1686                         --vm_report_swap_allocs;
1687                 }
1688
1689                 /*
1690                  * The I/O we are constructing cannot cross a physical
1691                  * disk boundry in the swap stripe.
1692                  */
1693                 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1694                         j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1695                         swp_pager_freeswapspace(object, blk + j, n - j);
1696                         n = j;
1697                 }
1698
1699                 /*
1700                  * All I/O parameters have been satisfied, build the I/O
1701                  * request and assign the swap space.
1702                  *
1703                  * Use the KVABIO API to avoid synchronizing the pmap.
1704                  */
1705                 if ((flags & VM_PAGER_PUT_SYNC))
1706                         bp = getpbuf_kva(&nsw_wcount_sync);
1707                 else
1708                         bp = getpbuf_kva(&nsw_wcount_async);
1709                 bio = &bp->b_bio1;
1710
1711                 lwkt_reltoken(&vm_token);
1712
1713                 pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1714
1715                 bp->b_flags |= B_KVABIO;
1716                 bp->b_bcount = PAGE_SIZE * n;
1717                 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1718
1719                 for (j = 0; j < n; ++j) {
1720                         vm_page_t mreq = m[i+j];
1721
1722                         swp_pager_meta_build(mreq->object, mreq->pindex,
1723                                              blk + j);
1724                         if (object->type == OBJT_SWAP)
1725                                 vm_page_dirty(mreq);
1726                         rtvals[i+j] = VM_PAGER_OK;
1727
1728                         atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1729                         bp->b_xio.xio_pages[j] = mreq;
1730                 }
1731                 bp->b_xio.xio_npages = n;
1732
1733                 mycpu->gd_cnt.v_swapout++;
1734                 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1735
1736                 bp->b_dirtyoff = 0;             /* req'd for NFS */
1737                 bp->b_dirtyend = bp->b_bcount;  /* req'd for NFS */
1738                 bp->b_cmd = BUF_CMD_WRITE;
1739                 bio->bio_caller_info1.index = SWBIO_WRITE;
1740
1741                 /*
1742                  * asynchronous
1743                  */
1744                 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1745                         bio->bio_done = swp_pager_async_iodone;
1746                         BUF_KERNPROC(bp);
1747                         vn_strategy(swapdev_vp, bio);
1748
1749                         for (j = 0; j < n; ++j)
1750                                 rtvals[i+j] = VM_PAGER_PEND;
1751                         continue;
1752                 }
1753
1754                 /*
1755                  * Issue synchrnously.
1756                  *
1757                  * Wait for the sync I/O to complete, then update rtvals.
1758                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
1759                  * our async completion routine at the end, thus avoiding a
1760                  * double-free.
1761                  */
1762                 bio->bio_caller_info1.index |= SWBIO_SYNC;
1763                 if (flags & VM_PAGER_TRY_TO_CACHE)
1764                         bio->bio_caller_info1.index |= SWBIO_TTC;
1765                 bio->bio_done = biodone_sync;
1766                 bio->bio_flags |= BIO_SYNC;
1767                 vn_strategy(swapdev_vp, bio);
1768                 biowait(bio, "swwrt");
1769
1770                 for (j = 0; j < n; ++j)
1771                         rtvals[i+j] = VM_PAGER_PEND;
1772
1773                 /*
1774                  * Now that we are through with the bp, we can call the
1775                  * normal async completion, which frees everything up.
1776                  */
1777                 swp_pager_async_iodone(bio);
1778         }
1779         vm_object_drop(object);
1780 }
1781
1782 /*
1783  * No requirements.
1784  *
1785  * Recalculate the low and high-water marks.
1786  */
1787 void
1788 swap_pager_newswap(void)
1789 {
1790         /*
1791          * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1792          *       limitation imposed by the blist code.  Remember that this
1793          *       will be divided by NSWAP_MAX (4), so each swap device is
1794          *       limited to around a terrabyte.
1795          */
1796         if (vm_swap_max) {
1797                 nswap_lowat = (int64_t)vm_swap_max * 4 / 100;   /* 4% left */
1798                 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;   /* 6% left */
1799                 kprintf("swap low/high-water marks set to %d/%d\n",
1800                         nswap_lowat, nswap_hiwat);
1801         } else {
1802                 nswap_lowat = 128;
1803                 nswap_hiwat = 512;
1804         }
1805         swp_sizecheck();
1806 }
1807
1808 /*
1809  *      swp_pager_async_iodone:
1810  *
1811  *      Completion routine for asynchronous reads and writes from/to swap.
1812  *      Also called manually by synchronous code to finish up a bp.
1813  *
1814  *      For READ operations, the pages are BUSY'd.  For WRITE operations,
1815  *      the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1816  *      unbusy all pages except the 'main' request page.  For WRITE 
1817  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
1818  *      because we marked them all VM_PAGER_PEND on return from putpages ).
1819  *
1820  *      This routine may not block.
1821  *
1822  * No requirements.
1823  */
1824 static void
1825 swp_pager_async_iodone(struct bio *bio)
1826 {
1827         struct buf *bp = bio->bio_buf;
1828         vm_object_t object = NULL;
1829         int i;
1830         int *nswptr;
1831
1832         /*
1833          * report error
1834          */
1835         if (bp->b_flags & B_ERROR) {
1836                 kprintf(
1837                     "swap_pager: I/O error - %s failed; offset %lld,"
1838                         "size %ld, error %d\n",
1839                     ((bio->bio_caller_info1.index & SWBIO_READ) ?
1840                         "pagein" : "pageout"),
1841                     (long long)bio->bio_offset,
1842                     (long)bp->b_bcount,
1843                     bp->b_error
1844                 );
1845         }
1846
1847         /*
1848          * set object.
1849          */
1850         if (bp->b_xio.xio_npages)
1851                 object = bp->b_xio.xio_pages[0]->object;
1852
1853 #if 0
1854         /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1855         if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1856                 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1857                         kprintf("SWAPOUT: BADCRC %08x %08x\n",
1858                                 bio->bio_crc,
1859                                 iscsi_crc32(bp->b_data, bp->b_bcount));
1860                         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1861                                 vm_page_t m = bp->b_xio.xio_pages[i];
1862                                 if (m->flags & PG_WRITEABLE)
1863                                         kprintf("SWAPOUT: "
1864                                                 "%d/%d %p writable\n",
1865                                                 i, bp->b_xio.xio_npages, m);
1866                         }
1867                 }
1868         }
1869 #endif
1870
1871         /*
1872          * remove the mapping for kernel virtual
1873          */
1874         pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1875
1876         /*
1877          * cleanup pages.  If an error occurs writing to swap, we are in
1878          * very serious trouble.  If it happens to be a disk error, though,
1879          * we may be able to recover by reassigning the swap later on.  So
1880          * in this case we remove the m->swapblk assignment for the page 
1881          * but do not free it in the rlist.  The errornous block(s) are thus
1882          * never reallocated as swap.  Redirty the page and continue.
1883          */
1884         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1885                 vm_page_t m = bp->b_xio.xio_pages[i];
1886
1887                 if (bp->b_flags & B_ERROR) {
1888                         /*
1889                          * If an error occurs I'd love to throw the swapblk
1890                          * away without freeing it back to swapspace, so it
1891                          * can never be used again.  But I can't from an 
1892                          * interrupt.
1893                          */
1894
1895                         if (bio->bio_caller_info1.index & SWBIO_READ) {
1896                                 /*
1897                                  * When reading, reqpage needs to stay
1898                                  * locked for the parent, but all other
1899                                  * pages can be freed.  We still want to
1900                                  * wakeup the parent waiting on the page,
1901                                  * though.  ( also: pg_reqpage can be -1 and 
1902                                  * not match anything ).
1903                                  *
1904                                  * We have to wake specifically requested pages
1905                                  * up too because we cleared SWAPINPROG and
1906                                  * someone may be waiting for that.
1907                                  *
1908                                  * NOTE: For reads, m->dirty will probably
1909                                  *       be overridden by the original caller
1910                                  *       of getpages so don't play cute tricks
1911                                  *       here.
1912                                  *
1913                                  * NOTE: We can't actually free the page from
1914                                  *       here, because this is an interrupt.
1915                                  *       It is not legal to mess with
1916                                  *       object->memq from an interrupt.
1917                                  *       Deactivate the page instead.
1918                                  *
1919                                  * WARNING! The instant SWAPINPROG is
1920                                  *          cleared another cpu may start
1921                                  *          using the mreq page (it will
1922                                  *          check m->valid immediately).
1923                                  */
1924
1925                                 m->valid = 0;
1926                                 atomic_clear_int(&m->busy_count,
1927                                                  PBUSY_SWAPINPROG);
1928
1929                                 /*
1930                                  * bio_driver_info holds the requested page
1931                                  * index.
1932                                  */
1933                                 if (i != (int)(intptr_t)bio->bio_driver_info) {
1934                                         vm_page_deactivate(m);
1935                                         vm_page_wakeup(m);
1936                                 } else {
1937                                         vm_page_flash(m);
1938                                 }
1939                                 /*
1940                                  * If i == bp->b_pager.pg_reqpage, do not wake 
1941                                  * the page up.  The caller needs to.
1942                                  */
1943                         } else {
1944                                 /*
1945                                  * If a write error occurs remove the swap
1946                                  * assignment (note that PG_SWAPPED may or
1947                                  * may not be set depending on prior activity).
1948                                  *
1949                                  * Re-dirty OBJT_SWAP pages as there is no
1950                                  * other backing store, we can't throw the
1951                                  * page away.
1952                                  *
1953                                  * Non-OBJT_SWAP pages (aka swapcache) must
1954                                  * not be dirtied since they may not have
1955                                  * been dirty in the first place, and they
1956                                  * do have backing store (the vnode).
1957                                  */
1958                                 vm_page_busy_wait(m, FALSE, "swadpg");
1959                                 vm_object_hold(m->object);
1960                                 swp_pager_meta_ctl(m->object, m->pindex,
1961                                                    SWM_FREE);
1962                                 vm_page_flag_clear(m, PG_SWAPPED);
1963                                 vm_object_drop(m->object);
1964                                 if (m->object->type == OBJT_SWAP) {
1965                                         vm_page_dirty(m);
1966                                         vm_page_activate(m);
1967                                 }
1968                                 vm_page_io_finish(m);
1969                                 atomic_clear_int(&m->busy_count,
1970                                                  PBUSY_SWAPINPROG);
1971                                 vm_page_wakeup(m);
1972                         }
1973                 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1974                         /*
1975                          * NOTE: for reads, m->dirty will probably be 
1976                          * overridden by the original caller of getpages so
1977                          * we cannot set them in order to free the underlying
1978                          * swap in a low-swap situation.  I don't think we'd
1979                          * want to do that anyway, but it was an optimization
1980                          * that existed in the old swapper for a time before
1981                          * it got ripped out due to precisely this problem.
1982                          *
1983                          * If not the requested page then deactivate it.
1984                          *
1985                          * Note that the requested page, reqpage, is left
1986                          * busied, but we still have to wake it up.  The
1987                          * other pages are released (unbusied) by 
1988                          * vm_page_wakeup().  We do not set reqpage's
1989                          * valid bits here, it is up to the caller.
1990                          */
1991
1992                         /* 
1993                          * NOTE: Can't call pmap_clear_modify(m) from an
1994                          *       interrupt thread, the pmap code may have to
1995                          *       map non-kernel pmaps and currently asserts
1996                          *       the case.
1997                          *
1998                          * WARNING! The instant SWAPINPROG is
1999                          *          cleared another cpu may start
2000                          *          using the mreq page (it will
2001                          *          check m->valid immediately).
2002                          */
2003                         /*pmap_clear_modify(m);*/
2004                         m->valid = VM_PAGE_BITS_ALL;
2005                         vm_page_undirty(m);
2006                         vm_page_flag_set(m, PG_SWAPPED);
2007                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2008
2009                         /*
2010                          * We have to wake specifically requested pages
2011                          * up too because we cleared SWAPINPROG and
2012                          * could be waiting for it in getpages.  However,
2013                          * be sure to not unbusy getpages specifically
2014                          * requested page - getpages expects it to be 
2015                          * left busy.
2016                          *
2017                          * bio_driver_info holds the requested page
2018                          */
2019                         if (i != (int)(intptr_t)bio->bio_driver_info) {
2020                                 vm_page_deactivate(m);
2021                                 vm_page_wakeup(m);
2022                         } else {
2023                                 vm_page_flash(m);
2024                         }
2025                 } else {
2026                         /*
2027                          * Mark the page clean but do not mess with the
2028                          * pmap-layer's modified state.  That state should
2029                          * also be clear since the caller protected the
2030                          * page VM_PROT_READ, but allow the case.
2031                          *
2032                          * We are in an interrupt, avoid pmap operations.
2033                          *
2034                          * If we have a severe page deficit, deactivate the
2035                          * page.  Do not try to cache it (which would also
2036                          * involve a pmap op), because the page might still
2037                          * be read-heavy.
2038                          *
2039                          * When using the swap to cache clean vnode pages
2040                          * we do not mess with the page dirty bits.
2041                          *
2042                          * NOTE! Nobody is waiting for the key mreq page
2043                          *       on write completion.
2044                          */
2045                         vm_page_busy_wait(m, FALSE, "swadpg");
2046                         if (m->object->type == OBJT_SWAP)
2047                                 vm_page_undirty(m);
2048                         vm_page_flag_set(m, PG_SWAPPED);
2049                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2050                         if (vm_page_count_severe())
2051                                 vm_page_deactivate(m);
2052                         vm_page_io_finish(m);
2053                         if (bio->bio_caller_info1.index & SWBIO_TTC)
2054                                 vm_page_try_to_cache(m);
2055                         else
2056                                 vm_page_wakeup(m);
2057                 }
2058         }
2059
2060         /*
2061          * adjust pip.  NOTE: the original parent may still have its own
2062          * pip refs on the object.
2063          */
2064
2065         if (object)
2066                 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2067
2068         /*
2069          * Release the physical I/O buffer.
2070          *
2071          * NOTE: Due to synchronous operations in the write case b_cmd may
2072          *       already be set to BUF_CMD_DONE and BIO_SYNC may have already
2073          *       been cleared.
2074          *
2075          * Use vm_token to interlock nsw_rcount/wcount wakeup?
2076          */
2077         lwkt_gettoken(&vm_token);
2078         if (bio->bio_caller_info1.index & SWBIO_READ)
2079                 nswptr = &nsw_rcount;
2080         else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2081                 nswptr = &nsw_wcount_sync;
2082         else
2083                 nswptr = &nsw_wcount_async;
2084         bp->b_cmd = BUF_CMD_DONE;
2085         relpbuf(bp, nswptr);
2086         lwkt_reltoken(&vm_token);
2087 }
2088
2089 /*
2090  * Fault-in a potentially swapped page and remove the swap reference.
2091  * (used by swapoff code)
2092  *
2093  * object must be held.
2094  */
2095 static __inline void
2096 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2097 {
2098         struct vnode *vp;
2099         vm_page_t m;
2100         int error;
2101
2102         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2103
2104         if (object->type == OBJT_VNODE) {
2105                 /*
2106                  * Any swap related to a vnode is due to swapcache.  We must
2107                  * vget() the vnode in case it is not active (otherwise
2108                  * vref() will panic).  Calling vm_object_page_remove() will
2109                  * ensure that any swap ref is removed interlocked with the
2110                  * page.  clean_only is set to TRUE so we don't throw away
2111                  * dirty pages.
2112                  */
2113                 vp = object->handle;
2114                 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2115                 if (error == 0) {
2116                         vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2117                         vput(vp);
2118                 }
2119         } else {
2120                 /*
2121                  * Otherwise it is a normal OBJT_SWAP object and we can
2122                  * fault the page in and remove the swap.
2123                  */
2124                 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2125                                          VM_PROT_NONE,
2126                                          VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2127                                          sharedp, &error);
2128                 if (m)
2129                         vm_page_unhold(m);
2130         }
2131 }
2132
2133 /*
2134  * This removes all swap blocks related to a particular device.  We have
2135  * to be careful of ripups during the scan.
2136  */
2137 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2138
2139 int
2140 swap_pager_swapoff(int devidx)
2141 {
2142         struct vm_object_hash *hash;
2143         struct swswapoffinfo info;
2144         struct vm_object marker;
2145         vm_object_t object;
2146         int n;
2147
2148         bzero(&marker, sizeof(marker));
2149         marker.type = OBJT_MARKER;
2150
2151         for (n = 0; n < VMOBJ_HSIZE; ++n) {
2152                 hash = &vm_object_hash[n];
2153
2154                 lwkt_gettoken(&hash->token);
2155                 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2156
2157                 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2158                         if (object->type == OBJT_MARKER)
2159                                 goto skip;
2160                         if (object->type != OBJT_SWAP &&
2161                             object->type != OBJT_VNODE)
2162                                 goto skip;
2163                         vm_object_hold(object);
2164                         if (object->type != OBJT_SWAP &&
2165                             object->type != OBJT_VNODE) {
2166                                 vm_object_drop(object);
2167                                 goto skip;
2168                         }
2169
2170                         /*
2171                          * Object is special in that we can't just pagein
2172                          * into vm_page's in it (tmpfs, vn).
2173                          */
2174                         if ((object->flags & OBJ_NOPAGEIN) &&
2175                             RB_ROOT(&object->swblock_root)) {
2176                                 vm_object_drop(object);
2177                                 goto skip;
2178                         }
2179
2180                         info.object = object;
2181                         info.shared = 0;
2182                         info.devidx = devidx;
2183                         swblock_rb_tree_RB_SCAN(&object->swblock_root,
2184                                             NULL, swp_pager_swapoff_callback,
2185                                             &info);
2186                         vm_object_drop(object);
2187 skip:
2188                         if (object == TAILQ_NEXT(&marker, object_list)) {
2189                                 TAILQ_REMOVE(&hash->list, &marker, object_list);
2190                                 TAILQ_INSERT_AFTER(&hash->list, object,
2191                                                    &marker, object_list);
2192                         }
2193                 }
2194                 TAILQ_REMOVE(&hash->list, &marker, object_list);
2195                 lwkt_reltoken(&hash->token);
2196         }
2197
2198         /*
2199          * If we fail to locate all swblocks we just fail gracefully and
2200          * do not bother to restore paging on the swap device.  If the
2201          * user wants to retry the user can retry.
2202          */
2203         if (swdevt[devidx].sw_nused)
2204                 return (1);
2205         else
2206                 return (0);
2207 }
2208
2209 static
2210 int
2211 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2212 {
2213         struct swswapoffinfo *info = data;
2214         vm_object_t object = info->object;
2215         vm_pindex_t index;
2216         swblk_t v;
2217         int i;
2218
2219         index = swap->swb_index;
2220         for (i = 0; i < SWAP_META_PAGES; ++i) {
2221                 /*
2222                  * Make sure we don't race a dying object.  This will
2223                  * kill the scan of the object's swap blocks entirely.
2224                  */
2225                 if (object->flags & OBJ_DEAD)
2226                         return(-1);
2227
2228                 /*
2229                  * Fault the page, which can obviously block.  If the swap
2230                  * structure disappears break out.
2231                  */
2232                 v = swap->swb_pages[i];
2233                 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2234                         swp_pager_fault_page(object, &info->shared,
2235                                              swap->swb_index + i);
2236                         /* swap ptr might go away */
2237                         if (RB_LOOKUP(swblock_rb_tree,
2238                                       &object->swblock_root, index) != swap) {
2239                                 break;
2240                         }
2241                 }
2242         }
2243         return(0);
2244 }
2245
2246 /************************************************************************
2247  *                              SWAP META DATA                          *
2248  ************************************************************************
2249  *
2250  *      These routines manipulate the swap metadata stored in the 
2251  *      OBJT_SWAP object.
2252  *
2253  *      Swap metadata is implemented with a global hash and not directly
2254  *      linked into the object.  Instead the object simply contains
2255  *      appropriate tracking counters.
2256  */
2257
2258 /*
2259  * Lookup the swblock containing the specified swap block index.
2260  *
2261  * The caller must hold the object.
2262  */
2263 static __inline
2264 struct swblock *
2265 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2266 {
2267         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2268         index &= ~(vm_pindex_t)SWAP_META_MASK;
2269         return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2270 }
2271
2272 /*
2273  * Remove a swblock from the RB tree.
2274  *
2275  * The caller must hold the object.
2276  */
2277 static __inline
2278 void
2279 swp_pager_remove(vm_object_t object, struct swblock *swap)
2280 {
2281         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2282         RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2283 }
2284
2285 /*
2286  * Convert default object to swap object if necessary
2287  *
2288  * The caller must hold the object.
2289  */
2290 static void
2291 swp_pager_meta_convert(vm_object_t object)
2292 {
2293         if (object->type == OBJT_DEFAULT) {
2294                 object->type = OBJT_SWAP;
2295                 KKASSERT(object->swblock_count == 0);
2296         }
2297 }
2298
2299 /*
2300  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
2301  *
2302  *      We first convert the object to a swap object if it is a default
2303  *      object.  Vnode objects do not need to be converted.
2304  *
2305  *      The specified swapblk is added to the object's swap metadata.  If
2306  *      the swapblk is not valid, it is freed instead.  Any previously
2307  *      assigned swapblk is freed.
2308  *
2309  * The caller must hold the object.
2310  */
2311 static void
2312 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2313 {
2314         struct swblock *swap;
2315         struct swblock *oswap;
2316         vm_pindex_t v;
2317
2318         KKASSERT(swapblk != SWAPBLK_NONE);
2319         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2320
2321         /*
2322          * Convert object if necessary
2323          */
2324         if (object->type == OBJT_DEFAULT)
2325                 swp_pager_meta_convert(object);
2326         
2327         /*
2328          * Locate swblock.  If not found create, but if we aren't adding
2329          * anything just return.  If we run out of space in the map we wait
2330          * and, since the hash table may have changed, retry.
2331          */
2332 retry:
2333         swap = swp_pager_lookup(object, index);
2334
2335         if (swap == NULL) {
2336                 int i;
2337
2338                 swap = zalloc(swap_zone);
2339                 if (swap == NULL) {
2340                         vm_wait(0);
2341                         goto retry;
2342                 }
2343                 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2344                 swap->swb_count = 0;
2345
2346                 ++object->swblock_count;
2347
2348                 for (i = 0; i < SWAP_META_PAGES; ++i)
2349                         swap->swb_pages[i] = SWAPBLK_NONE;
2350                 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2351                 KKASSERT(oswap == NULL);
2352         }
2353
2354         /*
2355          * Delete prior contents of metadata.
2356          *
2357          * NOTE: Decrement swb_count after the freeing operation (which
2358          *       might block) to prevent racing destruction of the swblock.
2359          */
2360         index &= SWAP_META_MASK;
2361
2362         while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2363                 swap->swb_pages[index] = SWAPBLK_NONE;
2364                 /* can block */
2365                 swp_pager_freeswapspace(object, v, 1);
2366                 --swap->swb_count;
2367                 --mycpu->gd_vmtotal.t_vm;
2368         }
2369
2370         /*
2371          * Enter block into metadata
2372          */
2373         swap->swb_pages[index] = swapblk;
2374         if (swapblk != SWAPBLK_NONE) {
2375                 ++swap->swb_count;
2376                 ++mycpu->gd_vmtotal.t_vm;
2377         }
2378 }
2379
2380 /*
2381  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2382  *
2383  *      The requested range of blocks is freed, with any associated swap 
2384  *      returned to the swap bitmap.
2385  *
2386  *      This routine will free swap metadata structures as they are cleaned 
2387  *      out.  This routine does *NOT* operate on swap metadata associated
2388  *      with resident pages.
2389  *
2390  * The caller must hold the object.
2391  */
2392 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2393
2394 static void
2395 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2396 {
2397         struct swfreeinfo info;
2398
2399         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2400
2401         /*
2402          * Nothing to do
2403          */
2404         if (object->swblock_count == 0) {
2405                 KKASSERT(RB_EMPTY(&object->swblock_root));
2406                 return;
2407         }
2408         if (count == 0)
2409                 return;
2410
2411         /*
2412          * Setup for RB tree scan.  Note that the pindex range can be huge
2413          * due to the 64 bit page index space so we cannot safely iterate.
2414          */
2415         info.object = object;
2416         info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2417         info.begi = index;
2418         info.endi = index + count - 1;
2419         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2420                                 swp_pager_meta_free_callback, &info);
2421 }
2422
2423 /*
2424  * The caller must hold the object.
2425  */
2426 static
2427 int
2428 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2429 {
2430         struct swfreeinfo *info = data;
2431         vm_object_t object = info->object;
2432         int index;
2433         int eindex;
2434
2435         /*
2436          * Figure out the range within the swblock.  The wider scan may
2437          * return edge-case swap blocks when the start and/or end points
2438          * are in the middle of a block.
2439          */
2440         if (swap->swb_index < info->begi)
2441                 index = (int)info->begi & SWAP_META_MASK;
2442         else
2443                 index = 0;
2444
2445         if (swap->swb_index + SWAP_META_PAGES > info->endi)
2446                 eindex = (int)info->endi & SWAP_META_MASK;
2447         else
2448                 eindex = SWAP_META_MASK;
2449
2450         /*
2451          * Scan and free the blocks.  The loop terminates early
2452          * if (swap) runs out of blocks and could be freed.
2453          *
2454          * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2455          *       to deal with a zfree race.
2456          */
2457         while (index <= eindex) {
2458                 swblk_t v = swap->swb_pages[index];
2459
2460                 if (v != SWAPBLK_NONE) {
2461                         swap->swb_pages[index] = SWAPBLK_NONE;
2462                         /* can block */
2463                         swp_pager_freeswapspace(object, v, 1);
2464                         --mycpu->gd_vmtotal.t_vm;
2465                         if (--swap->swb_count == 0) {
2466                                 swp_pager_remove(object, swap);
2467                                 zfree(swap_zone, swap);
2468                                 --object->swblock_count;
2469                                 break;
2470                         }
2471                 }
2472                 ++index;
2473         }
2474
2475         /* swap may be invalid here due to zfree above */
2476         lwkt_yield();
2477
2478         return(0);
2479 }
2480
2481 /*
2482  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2483  *
2484  *      This routine locates and destroys all swap metadata associated with
2485  *      an object.
2486  *
2487  * NOTE: Decrement swb_count after the freeing operation (which
2488  *       might block) to prevent racing destruction of the swblock.
2489  *
2490  * The caller must hold the object.
2491  */
2492 static void
2493 swp_pager_meta_free_all(vm_object_t object)
2494 {
2495         struct swblock *swap;
2496         int i;
2497
2498         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2499
2500         while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2501                 swp_pager_remove(object, swap);
2502                 for (i = 0; i < SWAP_META_PAGES; ++i) {
2503                         swblk_t v = swap->swb_pages[i];
2504                         if (v != SWAPBLK_NONE) {
2505                                 /* can block */
2506                                 swp_pager_freeswapspace(object, v, 1);
2507                                 --swap->swb_count;
2508                                 --mycpu->gd_vmtotal.t_vm;
2509                         }
2510                 }
2511                 if (swap->swb_count != 0)
2512                         panic("swap_pager_meta_free_all: swb_count != 0");
2513                 zfree(swap_zone, swap);
2514                 --object->swblock_count;
2515                 lwkt_yield();
2516         }
2517         KKASSERT(object->swblock_count == 0);
2518 }
2519
2520 /*
2521  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2522  *
2523  *      This routine is capable of looking up, popping, or freeing
2524  *      swapblk assignments in the swap meta data or in the vm_page_t.
2525  *      The routine typically returns the swapblk being looked-up, or popped,
2526  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2527  *      was invalid.  This routine will automatically free any invalid 
2528  *      meta-data swapblks.
2529  *
2530  *      It is not possible to store invalid swapblks in the swap meta data
2531  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2532  *
2533  *      When acting on a busy resident page and paging is in progress, we 
2534  *      have to wait until paging is complete but otherwise can act on the 
2535  *      busy page.
2536  *
2537  *      SWM_FREE        remove and free swap block from metadata
2538  *      SWM_POP         remove from meta data but do not free.. pop it out
2539  *
2540  * The caller must hold the object.
2541  */
2542 static swblk_t
2543 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2544 {
2545         struct swblock *swap;
2546         swblk_t r1;
2547
2548         if (object->swblock_count == 0)
2549                 return(SWAPBLK_NONE);
2550
2551         r1 = SWAPBLK_NONE;
2552         swap = swp_pager_lookup(object, index);
2553
2554         if (swap != NULL) {
2555                 index &= SWAP_META_MASK;
2556                 r1 = swap->swb_pages[index];
2557
2558                 if (r1 != SWAPBLK_NONE) {
2559                         if (flags & (SWM_FREE|SWM_POP)) {
2560                                 swap->swb_pages[index] = SWAPBLK_NONE;
2561                                 --mycpu->gd_vmtotal.t_vm;
2562                                 if (--swap->swb_count == 0) {
2563                                         swp_pager_remove(object, swap);
2564                                         zfree(swap_zone, swap);
2565                                         --object->swblock_count;
2566                                 }
2567                         } 
2568                         /* swap ptr may be invalid */
2569                         if (flags & SWM_FREE) {
2570                                 swp_pager_freeswapspace(object, r1, 1);
2571                                 r1 = SWAPBLK_NONE;
2572                         }
2573                 }
2574                 /* swap ptr may be invalid */
2575         }
2576         return(r1);
2577 }