Merge from vendor branch OPENSSL:
[dragonfly.git] / sys / dev / raid / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *      $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.16 2004/09/15 16:23:51 joerg Exp $
31  */
32
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36
37 #include "opt_aac.h"
38
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52
53 #include "aac_compat.h"
54
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72
73 static void     aac_startup(void *arg);
74 static void     aac_add_container(struct aac_softc *sc,
75                                   struct aac_mntinforesp *mir, int f);
76 static void     aac_get_bus_info(struct aac_softc *sc);
77
78 /* Command Processing */
79 static void     aac_timeout(void *ssc);
80 static int      aac_start(struct aac_command *cm);
81 static void     aac_complete(void *context, int pending);
82 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void     aac_bio_complete(struct aac_command *cm);
84 static int      aac_wait_command(struct aac_command *cm, int timeout);
85 static void     aac_host_command(struct aac_softc *sc);
86 static void     aac_host_response(struct aac_softc *sc);
87
88 /* Command Buffer Management */
89 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90                                        int nseg, int error);
91 static int      aac_alloc_commands(struct aac_softc *sc);
92 static void     aac_free_commands(struct aac_softc *sc);
93 static void     aac_map_command(struct aac_command *cm);
94 static void     aac_unmap_command(struct aac_command *cm);
95
96 /* Hardware Interface */
97 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98                                int error);
99 static int      aac_check_firmware(struct aac_softc *sc);
100 static int      aac_init(struct aac_softc *sc);
101 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
102                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103                                  u_int32_t arg3, u_int32_t *sp);
104 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
105                                 struct aac_command *cm);
106 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
107                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
109                                      struct aac_fib *fib);
110
111 /* Falcon/PPC interface */
112 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int      aac_fa_get_istatus(struct aac_softc *sc);
115 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117                                    u_int32_t arg0, u_int32_t arg1,
118                                    u_int32_t arg2, u_int32_t arg3);
119 static int      aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122 struct aac_interface aac_fa_interface = {
123         aac_fa_get_fwstatus,
124         aac_fa_qnotify,
125         aac_fa_get_istatus,
126         aac_fa_clear_istatus,
127         aac_fa_set_mailbox,
128         aac_fa_get_mailbox,
129         aac_fa_set_interrupts
130 };
131
132 /* StrongARM interface */
133 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int      aac_sa_get_istatus(struct aac_softc *sc);
136 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138                                    u_int32_t arg0, u_int32_t arg1,
139                                    u_int32_t arg2, u_int32_t arg3);
140 static int      aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143 struct aac_interface aac_sa_interface = {
144         aac_sa_get_fwstatus,
145         aac_sa_qnotify,
146         aac_sa_get_istatus,
147         aac_sa_clear_istatus,
148         aac_sa_set_mailbox,
149         aac_sa_get_mailbox,
150         aac_sa_set_interrupts
151 };
152
153 /* i960Rx interface */  
154 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int      aac_rx_get_istatus(struct aac_softc *sc);
157 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159                                    u_int32_t arg0, u_int32_t arg1,
160                                    u_int32_t arg2, u_int32_t arg3);
161 static int      aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164 struct aac_interface aac_rx_interface = {
165         aac_rx_get_fwstatus,
166         aac_rx_qnotify,
167         aac_rx_get_istatus,
168         aac_rx_clear_istatus,
169         aac_rx_set_mailbox,
170         aac_rx_get_mailbox,
171         aac_rx_set_interrupts
172 };
173
174 /* Debugging and Diagnostics */
175 static void     aac_describe_controller(struct aac_softc *sc);
176 static char     *aac_describe_code(struct aac_code_lookup *table,
177                                    u_int32_t code);
178
179 /* Management Interface */
180 static d_open_t         aac_open;
181 static d_close_t        aac_close;
182 static d_ioctl_t        aac_ioctl;
183 static d_poll_t         aac_poll;
184 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void             aac_handle_aif(struct aac_softc *sc,
186                                            struct aac_fib *fib);
187 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192 #define AAC_CDEV_MAJOR  150
193
194 static struct cdevsw aac_cdevsw = {
195         "aac",                  /* name */
196         AAC_CDEV_MAJOR,         /* major */
197         0,                      /* flags */
198         NULL,                   /* port */
199         NULL,                   /* clone */
200
201         aac_open,               /* open */
202         aac_close,              /* close */
203         noread,                 /* read */
204         nowrite,                /* write */
205         aac_ioctl,              /* ioctl */
206         aac_poll,               /* poll */
207         nommap,                 /* mmap */
208         nostrategy,             /* strategy */
209         nodump,                 /* dump */
210         nopsize                 /* psize */
211 };
212
213 DECLARE_DUMMY_MODULE(aac);
214
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220 /*
221  * Device Interface
222  */
223
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230         int error, unit;
231
232         debug_called(1);
233         callout_init(&sc->aac_watchdog);
234
235         /*
236          * Initialise per-controller queues.
237          */
238         aac_initq_free(sc);
239         aac_initq_ready(sc);
240         aac_initq_busy(sc);
241         aac_initq_complete(sc);
242         aac_initq_bio(sc);
243
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245         /*
246          * Initialise command-completion task.
247          */
248         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250
251         /* disable interrupts before we enable anything */
252         AAC_MASK_INTERRUPTS(sc);
253
254         /* mark controller as suspended until we get ourselves organised */
255         sc->aac_state |= AAC_STATE_SUSPEND;
256
257         /*
258          * Check that the firmware on the card is supported.
259          */
260         if ((error = aac_check_firmware(sc)) != 0)
261                 return(error);
262
263         /* Init the sync fib lock */
264         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265
266         /*
267          * Initialise the adapter.
268          */
269         if ((error = aac_init(sc)) != 0)
270                 return(error);
271
272         /* 
273          * Print a little information about the controller.
274          */
275         aac_describe_controller(sc);
276
277         /*
278          * Register to probe our containers later.
279          */
280         TAILQ_INIT(&sc->aac_container_tqh);
281         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282
283         /*
284          * Lock for the AIF queue
285          */
286         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287
288         sc->aac_ich.ich_func = aac_startup;
289         sc->aac_ich.ich_arg = sc;
290         if (config_intrhook_establish(&sc->aac_ich) != 0) {
291                 device_printf(sc->aac_dev,
292                               "can't establish configuration hook\n");
293                 return(ENXIO);
294         }
295
296         /*
297          * Make the control device.
298          */
299         unit = device_get_unit(sc->aac_dev);
300         cdevsw_add(&aac_cdevsw, -1, unit);
301         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
302                                  "aac%d", unit);
303 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
304         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
305         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
306 #endif
307         sc->aac_dev_t->si_drv1 = sc;
308         reference_dev(sc->aac_dev_t);
309
310         /* Create the AIF thread */
311 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
312         if (kthread_create((void(*)(void *))aac_host_command, sc,
313                            &sc->aifthread, 0, "aac%daif", unit))
314 #else
315         if (kthread_create((void(*)(void *))aac_host_command, sc,
316                            &sc->aifthread, "aac%daif", unit))
317 #endif
318                 panic("Could not create AIF thread\n");
319
320         /* Register the shutdown method to only be called post-dump */
321         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
322                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
323         device_printf(sc->aac_dev, "shutdown event registration failed\n");
324
325         /* Register with CAM for the non-DASD devices */
326         if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
327                 aac_get_bus_info(sc);
328
329         return(0);
330 }
331
332 /*
333  * Probe for containers, create disks.
334  */
335 static void
336 aac_startup(void *arg)
337 {
338         struct aac_softc *sc;
339         struct aac_fib *fib;
340         struct aac_mntinfo *mi;
341         struct aac_mntinforesp *mir = NULL;
342         int i = 0;
343
344         debug_called(1);
345
346         sc = (struct aac_softc *)arg;
347
348         /* disconnect ourselves from the intrhook chain */
349         config_intrhook_disestablish(&sc->aac_ich);
350
351         aac_alloc_sync_fib(sc, &fib, 0);
352         mi = (struct aac_mntinfo *)&fib->data[0];
353
354         /* loop over possible containers */
355         do {
356                 /* request information on this container */
357                 bzero(mi, sizeof(struct aac_mntinfo));
358                 mi->Command = VM_NameServe;
359                 mi->MntType = FT_FILESYS;
360                 mi->MntCount = i;
361                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
362                                  sizeof(struct aac_mntinfo))) {
363                         debug(2, "error probing container %d", i);
364                         continue;
365                 }
366
367                 mir = (struct aac_mntinforesp *)&fib->data[0];
368                 aac_add_container(sc, mir, 0);
369                 i++;
370         } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
371
372         aac_release_sync_fib(sc);
373
374         /* poke the bus to actually attach the child devices */
375         if (bus_generic_attach(sc->aac_dev))
376                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
377
378         /* mark the controller up */
379         sc->aac_state &= ~AAC_STATE_SUSPEND;
380
381         /* enable interrupts now */
382         AAC_UNMASK_INTERRUPTS(sc);
383
384         /* enable the timeout watchdog */
385         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
386                       aac_timeout, sc);
387 }
388
389 /*
390  * Create a device to respresent a new container
391  */
392 static void
393 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
394 {
395         struct aac_container *co;
396         device_t child;
397
398         /* 
399          * Check container volume type for validity.  Note that many of
400          * the possible types may never show up.
401          */
402         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
403                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
404                        M_INTWAIT);
405                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
406                       mir->MntTable[0].ObjectId,
407                       mir->MntTable[0].FileSystemName,
408                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
409         
410                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
411                         device_printf(sc->aac_dev, "device_add_child failed\n");
412                 else
413                         device_set_ivars(child, co);
414                 device_set_desc(child, aac_describe_code(aac_container_types,
415                                 mir->MntTable[0].VolType));
416                 co->co_disk = child;
417                 co->co_found = f;
418                 bcopy(&mir->MntTable[0], &co->co_mntobj,
419                       sizeof(struct aac_mntobj));
420                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
421                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
422                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
423         }
424 }
425
426 /*
427  * Free all of the resources associated with (sc)
428  *
429  * Should not be called if the controller is active.
430  */
431 void
432 aac_free(struct aac_softc *sc)
433 {
434         debug_called(1);
435
436         /* remove the control device */
437         if (sc->aac_dev_t != NULL)
438                 destroy_dev(sc->aac_dev_t);
439
440         /* throw away any FIB buffers, discard the FIB DMA tag */
441         if (sc->aac_fibs != NULL)
442                 aac_free_commands(sc);
443         if (sc->aac_fib_dmat)
444                 bus_dma_tag_destroy(sc->aac_fib_dmat);
445
446         /* destroy the common area */
447         if (sc->aac_common) {
448                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
449                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
450                                 sc->aac_common_dmamap);
451         }
452         if (sc->aac_common_dmat)
453                 bus_dma_tag_destroy(sc->aac_common_dmat);
454
455         /* disconnect the interrupt handler */
456         if (sc->aac_intr)
457                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
458         if (sc->aac_irq != NULL)
459                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
460                                      sc->aac_irq);
461
462         /* destroy data-transfer DMA tag */
463         if (sc->aac_buffer_dmat)
464                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
465
466         /* destroy the parent DMA tag */
467         if (sc->aac_parent_dmat)
468                 bus_dma_tag_destroy(sc->aac_parent_dmat);
469
470         /* release the register window mapping */
471         if (sc->aac_regs_resource != NULL) {
472                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
473                                      sc->aac_regs_rid, sc->aac_regs_resource);
474         }
475         cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
476 }
477
478 /*
479  * Disconnect from the controller completely, in preparation for unload.
480  */
481 int
482 aac_detach(device_t dev)
483 {
484         struct aac_softc *sc;
485 #if AAC_BROKEN
486         int error;
487 #endif
488
489         debug_called(1);
490
491         sc = device_get_softc(dev);
492
493         callout_stop(&sc->aac_watchdog);
494
495         if (sc->aac_state & AAC_STATE_OPEN)
496         return(EBUSY);
497
498 #if AAC_BROKEN
499         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
500                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
501                 wakeup(sc->aifthread);
502                 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
503         }
504
505         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
506                 panic("Cannot shutdown AIF thread\n");
507
508         if ((error = aac_shutdown(dev)))
509                 return(error);
510
511         aac_free(sc);
512
513         return(0);
514 #else
515         return (EBUSY);
516 #endif
517 }
518
519 /*
520  * Bring the controller down to a dormant state and detach all child devices.
521  *
522  * This function is called before detach or system shutdown.
523  *
524  * Note that we can assume that the bioq on the controller is empty, as we won't
525  * allow shutdown if any device is open.
526  */
527 int
528 aac_shutdown(device_t dev)
529 {
530         struct aac_softc *sc;
531         struct aac_fib *fib;
532         struct aac_close_command *cc;
533         int s;
534
535         debug_called(1);
536
537         sc = device_get_softc(dev);
538
539         s = splbio();
540
541         sc->aac_state |= AAC_STATE_SUSPEND;
542
543         /* 
544          * Send a Container shutdown followed by a HostShutdown FIB to the
545          * controller to convince it that we don't want to talk to it anymore.
546          * We've been closed and all I/O completed already
547          */
548         device_printf(sc->aac_dev, "shutting down controller...");
549
550         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551         cc = (struct aac_close_command *)&fib->data[0];
552
553         bzero(cc, sizeof(struct aac_close_command));
554         cc->Command = VM_CloseAll;
555         cc->ContainerId = 0xffffffff;
556         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
557             sizeof(struct aac_close_command)))
558                 printf("FAILED.\n");
559         else {
560                 fib->data[0] = 0;
561                 /*
562                  * XXX Issuing this command to the controller makes it shut down
563                  * but also keeps it from coming back up without a reset of the
564                  * PCI bus.  This is not desirable if you are just unloading the
565                  * driver module with the intent to reload it later.
566                  */
567                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
568                     fib, 1)) {
569                         printf("FAILED.\n");
570                 } else {
571                         printf("done.\n");
572                 }
573         }
574
575         AAC_MASK_INTERRUPTS(sc);
576
577         splx(s);
578         return(0);
579 }
580
581 /*
582  * Bring the controller to a quiescent state, ready for system suspend.
583  */
584 int
585 aac_suspend(device_t dev)
586 {
587         struct aac_softc *sc;
588         int s;
589
590         debug_called(1);
591
592         sc = device_get_softc(dev);
593
594         s = splbio();
595
596         sc->aac_state |= AAC_STATE_SUSPEND;
597         
598         AAC_MASK_INTERRUPTS(sc);
599         splx(s);
600         return(0);
601 }
602
603 /*
604  * Bring the controller back to a state ready for operation.
605  */
606 int
607 aac_resume(device_t dev)
608 {
609         struct aac_softc *sc;
610
611         debug_called(1);
612
613         sc = device_get_softc(dev);
614
615         sc->aac_state &= ~AAC_STATE_SUSPEND;
616         AAC_UNMASK_INTERRUPTS(sc);
617         return(0);
618 }
619
620 /*
621  * Take an interrupt.
622  */
623 void
624 aac_intr(void *arg)
625 {
626         struct aac_softc *sc;
627         u_int16_t reason;
628         u_int32_t *resp_queue;
629
630         debug_called(2);
631
632         sc = (struct aac_softc *)arg;
633
634         /*
635          * Optimize the common case of adapter response interrupts.
636          * We must read from the card prior to processing the responses
637          * to ensure the clear is flushed prior to accessing the queues.
638          * Reading the queues from local memory might save us a PCI read.
639          */
640         resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
641         if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
642                 reason = AAC_DB_RESPONSE_READY;
643         else 
644                 reason = AAC_GET_ISTATUS(sc);
645         AAC_CLEAR_ISTATUS(sc, reason);
646         (void)AAC_GET_ISTATUS(sc);
647
648         /* It's not ok to return here because of races with the previous step */
649         if (reason & AAC_DB_RESPONSE_READY)
650                 aac_host_response(sc);
651
652         /* controller wants to talk to the log */
653         if (reason & AAC_DB_PRINTF)
654                 aac_print_printf(sc);
655
656         /* controller has a message for us? */
657         if (reason & AAC_DB_COMMAND_READY) {
658                 /* XXX What happens if the thread is already awake? */
659                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
660                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
661                         wakeup(sc->aifthread);
662                 }
663         }
664 }
665
666 /*
667  * Command Processing
668  */
669
670 /*
671  * Start as much queued I/O as possible on the controller
672  */
673 void
674 aac_startio(struct aac_softc *sc)
675 {
676         struct aac_command *cm;
677
678         debug_called(2);
679
680         for (;;) {
681                 /*
682                  * Try to get a command that's been put off for lack of 
683                  * resources
684                  */
685                 cm = aac_dequeue_ready(sc);
686
687                 /*
688                  * Try to build a command off the bio queue (ignore error 
689                  * return)
690                  */
691                 if (cm == NULL)
692                         aac_bio_command(sc, &cm);
693
694                 /* nothing to do? */
695                 if (cm == NULL)
696                         break;
697
698                 /* try to give the command to the controller */
699                 if (aac_start(cm) == EBUSY) {
700                         /* put it on the ready queue for later */
701                         aac_requeue_ready(cm);
702                         break;
703                 }
704         }
705 }
706
707 /*
708  * Deliver a command to the controller; allocate controller resources at the
709  * last moment when possible.
710  */
711 static int
712 aac_start(struct aac_command *cm)
713 {
714         struct aac_softc *sc;
715         int error;
716
717         debug_called(2);
718
719         sc = cm->cm_sc;
720
721         /* get the command mapped */
722         aac_map_command(cm);
723
724         /* fix up the address values in the FIB */
725         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
726         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
727
728         /* save a pointer to the command for speedy reverse-lookup */
729         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
730                                                          * address issue */
731         /* put the FIB on the outbound queue */
732         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
733         return(error);
734 }
735
736 /*
737  * Handle notification of one or more FIBs coming from the controller.
738  */
739 static void
740 aac_host_command(struct aac_softc *sc)
741 {
742         struct aac_fib *fib;
743         u_int32_t fib_size;
744         int size;
745
746         debug_called(2);
747
748         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
749
750         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
751                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
752                         tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
753
754                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
755                 for (;;) {
756                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
757                                             &fib_size, &fib))
758                                 break;  /* nothing to do */
759         
760                         AAC_PRINT_FIB(sc, fib);
761         
762                         switch (fib->Header.Command) {
763                         case AifRequest:
764                                 aac_handle_aif(sc, fib);
765                                 break;
766                         default:
767                                 device_printf(sc->aac_dev, "unknown command "
768                                               "from controller\n");
769                                 break;
770                         }
771
772                         /* Return the AIF to the controller. */
773                         if ((fib->Header.XferState == 0) ||
774                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
775                                 break;
776
777                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
778                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
779                                 *(AAC_FSAStatus*)fib->data = ST_OK;
780
781                                 /* XXX Compute the Size field? */
782                                 size = fib->Header.Size;
783                                 if (size > sizeof(struct aac_fib)) {
784                                         size = sizeof(struct aac_fib);
785                                         fib->Header.Size = size;
786                                 }
787                                 /*
788                                  * Since we did not generate this command, it
789                                  * cannot go through the normal
790                                  * enqueue->startio chain.
791                                  */
792                                 aac_enqueue_response(sc,
793                                                      AAC_ADAP_NORM_RESP_QUEUE,
794                                                      fib);
795                         }
796                 }
797         }
798         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
799         wakeup(sc->aac_dev);
800
801 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
802         mtx_lock(&Giant);
803 #endif
804         kthread_exit();
805 }
806
807 /*
808  * Handle notification of one or more FIBs completed by the controller
809  */
810 static void
811 aac_host_response(struct aac_softc *sc)
812 {
813         struct aac_command *cm;
814         struct aac_fib *fib;
815         u_int32_t fib_size;
816
817         debug_called(2);
818
819         for (;;) {
820                 /* look for completed FIBs on our queue */
821                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
822                                     &fib))
823                         break;  /* nothing to do */
824         
825                 /* get the command, unmap and queue for later processing */
826                 cm = (struct aac_command *)fib->Header.SenderData;
827                 if (cm == NULL) {
828                         AAC_PRINT_FIB(sc, fib);
829                 } else {
830                         aac_remove_busy(cm);
831                         aac_unmap_command(cm);          /* XXX defer? */
832                         aac_enqueue_complete(cm);
833                 }
834         }
835
836         /* handle completion processing */
837 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
838         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
839 #else
840         aac_complete(sc, 0);
841 #endif
842 }
843
844 /*
845  * Process completed commands.
846  */
847 static void
848 aac_complete(void *context, int pending)
849 {
850         struct aac_softc *sc;
851         struct aac_command *cm;
852         
853         debug_called(2);
854
855         sc = (struct aac_softc *)context;
856
857         /* pull completed commands off the queue */
858         for (;;) {
859                 cm = aac_dequeue_complete(sc);
860                 if (cm == NULL)
861                         break;
862                 cm->cm_flags |= AAC_CMD_COMPLETED;
863
864                 /* is there a completion handler? */
865                 if (cm->cm_complete != NULL) {
866                         cm->cm_complete(cm);
867                 } else {
868                         /* assume that someone is sleeping on this command */
869                         wakeup(cm);
870                 }
871         }
872
873         /* see if we can start some more I/O */
874         aac_startio(sc);
875 }
876
877 /*
878  * Handle a bio submitted from a disk device.
879  */
880 void
881 aac_submit_bio(struct bio *bp)
882 {
883         struct aac_disk *ad;
884         struct aac_softc *sc;
885
886         debug_called(2);
887
888         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
889         sc = ad->ad_controller;
890
891         /* queue the BIO and try to get some work done */
892         aac_enqueue_bio(sc, bp);
893         aac_startio(sc);
894 }
895
896 /*
897  * Get a bio and build a command to go with it.
898  */
899 static int
900 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
901 {
902         struct aac_command *cm;
903         struct aac_fib *fib;
904         struct aac_blockread *br;
905         struct aac_blockwrite *bw;
906         struct aac_disk *ad;
907         struct bio *bp;
908
909         debug_called(2);
910
911         /* get the resources we will need */
912         cm = NULL;
913         if ((bp = aac_dequeue_bio(sc)) == NULL)
914                 goto fail;
915         if (aac_alloc_command(sc, &cm)) /* get a command */
916                 goto fail;
917
918         /* fill out the command */
919         cm->cm_data = (void *)bp->bio_data;
920         cm->cm_datalen = bp->bio_bcount;
921         cm->cm_complete = aac_bio_complete;
922         cm->cm_private = bp;
923         cm->cm_timestamp = time_second;
924         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
925
926         /* build the FIB */
927         fib = cm->cm_fib;
928         fib->Header.XferState =  
929                 AAC_FIBSTATE_HOSTOWNED   | 
930                 AAC_FIBSTATE_INITIALISED | 
931                 AAC_FIBSTATE_EMPTY       | 
932                 AAC_FIBSTATE_FROMHOST    |
933                 AAC_FIBSTATE_REXPECTED   |
934                 AAC_FIBSTATE_NORM        |
935                 AAC_FIBSTATE_ASYNC       |
936                 AAC_FIBSTATE_FAST_RESPONSE;
937         fib->Header.Command = ContainerCommand;
938         fib->Header.Size = sizeof(struct aac_fib_header);
939
940         /* build the read/write request */
941         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
942         if (BIO_IS_READ(bp)) {
943                 br = (struct aac_blockread *)&fib->data[0];
944                 br->Command = VM_CtBlockRead;
945                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946                 br->BlockNumber = bp->bio_pblkno;
947                 br->ByteCount = bp->bio_bcount;
948                 fib->Header.Size += sizeof(struct aac_blockread);
949                 cm->cm_sgtable = &br->SgMap;
950                 cm->cm_flags |= AAC_CMD_DATAIN;
951         } else {
952                 bw = (struct aac_blockwrite *)&fib->data[0];
953                 bw->Command = VM_CtBlockWrite;
954                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955                 bw->BlockNumber = bp->bio_pblkno;
956                 bw->ByteCount = bp->bio_bcount;
957                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
958                 fib->Header.Size += sizeof(struct aac_blockwrite);
959                 cm->cm_flags |= AAC_CMD_DATAOUT;
960                 cm->cm_sgtable = &bw->SgMap;
961         }
962
963         *cmp = cm;
964         return(0);
965
966 fail:
967         if (bp != NULL)
968                 aac_enqueue_bio(sc, bp);
969         if (cm != NULL)
970                 aac_release_command(cm);
971         return(ENOMEM);
972 }
973
974 /*
975  * Handle a bio-instigated command that has been completed.
976  */
977 static void
978 aac_bio_complete(struct aac_command *cm)
979 {
980         struct aac_blockread_response *brr;
981         struct aac_blockwrite_response *bwr;
982         struct bio *bp;
983         AAC_FSAStatus status;
984
985         /* fetch relevant status and then release the command */
986         bp = (struct bio *)cm->cm_private;
987         if (BIO_IS_READ(bp)) {
988                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
989                 status = brr->Status;
990         } else {
991                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
992                 status = bwr->Status;
993         }
994         aac_release_command(cm);
995
996         /* fix up the bio based on status */
997         if (status == ST_OK) {
998                 bp->bio_resid = 0;
999         } else {
1000                 bp->bio_error = EIO;
1001                 bp->bio_flags |= BIO_ERROR;
1002                 /* pass an error string out to the disk layer */
1003                 bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1004                                                     status);
1005         }
1006         aac_biodone(bp);
1007 }
1008
1009 /*
1010  * Dump a block of data to the controller.  If the queue is full, tell the
1011  * caller to hold off and wait for the queue to drain.
1012  */
1013 int
1014 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1015 {
1016         struct aac_softc *sc;
1017         struct aac_command *cm;
1018         struct aac_fib *fib;
1019         struct aac_blockwrite *bw;
1020
1021         sc = ad->ad_controller;
1022         cm = NULL;
1023
1024         if (aac_alloc_command(sc, &cm))
1025                 return (EBUSY);
1026
1027         /* fill out the command */
1028         cm->cm_data = data;
1029         cm->cm_datalen = dumppages * PAGE_SIZE;
1030         cm->cm_complete = NULL;
1031         cm->cm_private = NULL;
1032         cm->cm_timestamp = time_second;
1033         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1034
1035         /* build the FIB */
1036         fib = cm->cm_fib;
1037         fib->Header.XferState =  
1038         AAC_FIBSTATE_HOSTOWNED   | 
1039         AAC_FIBSTATE_INITIALISED | 
1040         AAC_FIBSTATE_FROMHOST    |
1041         AAC_FIBSTATE_REXPECTED   |
1042         AAC_FIBSTATE_NORM;
1043         fib->Header.Command = ContainerCommand;
1044         fib->Header.Size = sizeof(struct aac_fib_header);
1045
1046         bw = (struct aac_blockwrite *)&fib->data[0];
1047         bw->Command = VM_CtBlockWrite;
1048         bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1049         bw->BlockNumber = lba;
1050         bw->ByteCount = dumppages * PAGE_SIZE;
1051         bw->Stable = CUNSTABLE;         /* XXX what's appropriate here? */
1052         fib->Header.Size += sizeof(struct aac_blockwrite);
1053         cm->cm_flags |= AAC_CMD_DATAOUT;
1054         cm->cm_sgtable = &bw->SgMap;
1055
1056         return (aac_start(cm));
1057 }
1058
1059 /*
1060  * Wait for the card's queue to drain when dumping.  Also check for monitor
1061  * printf's
1062  */
1063 void
1064 aac_dump_complete(struct aac_softc *sc)
1065 {
1066         struct aac_fib *fib;
1067         struct aac_command *cm;
1068         u_int16_t reason;
1069         u_int32_t pi, ci, fib_size;
1070
1071         do {
1072                 reason = AAC_GET_ISTATUS(sc);
1073                 if (reason & AAC_DB_RESPONSE_READY) {
1074                         AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1075                         for (;;) {
1076                                 if (aac_dequeue_fib(sc,
1077                                                     AAC_HOST_NORM_RESP_QUEUE,
1078                                                     &fib_size, &fib))
1079                                         break;
1080                                 cm = (struct aac_command *)
1081                                         fib->Header.SenderData;
1082                                 if (cm == NULL)
1083                                         AAC_PRINT_FIB(sc, fib);
1084                                 else {
1085                                         aac_remove_busy(cm);
1086                                         aac_unmap_command(cm);
1087                                         aac_enqueue_complete(cm);
1088                                         aac_release_command(cm);
1089                                 }
1090                         }
1091                 }
1092                 if (reason & AAC_DB_PRINTF) {
1093                         AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1094                         aac_print_printf(sc);
1095                 }
1096                 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1097                         AAC_PRODUCER_INDEX];
1098                 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][        
1099                         AAC_CONSUMER_INDEX];
1100         } while (ci != pi);
1101
1102         return;
1103 }
1104
1105 /*
1106  * Submit a command to the controller, return when it completes.
1107  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1108  *     be stuck here forever.  At the same time, signals are not caught
1109  *     because there is a risk that a signal could wakeup the tsleep before
1110  *     the card has a chance to complete the command.  The passed in timeout
1111  *     is ignored for the same reason.  Since there is no way to cancel a
1112  *     command in progress, we should probably create a 'dead' queue where
1113  *     commands go that have been interrupted/timed-out/etc, that keeps them
1114  *     out of the free pool.  That way, if the card is just slow, it won't
1115  *     spam the memory of a command that has been recycled.
1116  */
1117 static int
1118 aac_wait_command(struct aac_command *cm, int timeout)
1119 {
1120         int s, error = 0;
1121
1122         debug_called(2);
1123
1124         /* Put the command on the ready queue and get things going */
1125         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1126         aac_enqueue_ready(cm);
1127         aac_startio(cm->cm_sc);
1128         s = splbio();
1129         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1130                 error = tsleep(cm, 0, "aacwait", 0);
1131         }
1132         splx(s);
1133         return(error);
1134 }
1135
1136 /*
1137  *Command Buffer Management
1138  */
1139
1140 /*
1141  * Allocate a command.
1142  */
1143 int
1144 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1145 {
1146         struct aac_command *cm;
1147
1148         debug_called(3);
1149
1150         if ((cm = aac_dequeue_free(sc)) == NULL)
1151                 return(ENOMEM);
1152
1153         *cmp = cm;
1154         return(0);
1155 }
1156
1157 /*
1158  * Release a command back to the freelist.
1159  */
1160 void
1161 aac_release_command(struct aac_command *cm)
1162 {
1163         debug_called(3);
1164
1165         /* (re)initialise the command/FIB */
1166         cm->cm_sgtable = NULL;
1167         cm->cm_flags = 0;
1168         cm->cm_complete = NULL;
1169         cm->cm_private = NULL;
1170         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1171         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1172         cm->cm_fib->Header.Flags = 0;
1173         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1174
1175         /* 
1176          * These are duplicated in aac_start to cover the case where an
1177          * intermediate stage may have destroyed them.  They're left
1178          * initialised here for debugging purposes only.
1179          */
1180         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1181         cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1182         cm->cm_fib->Header.SenderData = 0;
1183
1184         aac_enqueue_free(cm);
1185 }
1186
1187 /*
1188  * Map helper for command/FIB allocation.
1189  */
1190 static void
1191 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1192 {
1193         struct aac_softc *sc;
1194
1195         sc = (struct aac_softc *)arg;
1196
1197         debug_called(3);
1198
1199         sc->aac_fibphys = segs[0].ds_addr;
1200 }
1201
1202 /*
1203  * Allocate and initialise commands/FIBs for this adapter.
1204  */
1205 static int
1206 aac_alloc_commands(struct aac_softc *sc)
1207 {
1208         struct aac_command *cm;
1209         int i;
1210  
1211         debug_called(1);
1212
1213         /* allocate the FIBs in DMAable memory and load them */
1214         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1215                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1216                 return(ENOMEM);
1217         }
1218
1219         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1220                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1221                         aac_map_command_helper, sc, 0);
1222
1223         /* initialise constant fields in the command structure */
1224         bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1225         for (i = 0; i < AAC_FIB_COUNT; i++) {
1226                 cm = &sc->aac_command[i];
1227                 cm->cm_sc = sc;
1228                 cm->cm_fib = sc->aac_fibs + i;
1229                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1230
1231                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1232                         aac_release_command(cm);
1233         }
1234         return(0);
1235 }
1236
1237 /*
1238  * Free FIBs owned by this adapter.
1239  */
1240 static void
1241 aac_free_commands(struct aac_softc *sc)
1242 {
1243         int i;
1244
1245         debug_called(1);
1246
1247         for (i = 0; i < AAC_FIB_COUNT; i++)
1248                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1249                                    sc->aac_command[i].cm_datamap);
1250
1251         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1252         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1253 }
1254
1255 /*
1256  * Command-mapping helper function - populate this command's s/g table.
1257  */
1258 static void
1259 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1260 {
1261         struct aac_command *cm;
1262         struct aac_fib *fib;
1263         struct aac_sg_table *sg;
1264         int i;
1265
1266         debug_called(3);
1267
1268         cm = (struct aac_command *)arg;
1269         fib = cm->cm_fib;
1270
1271         /* find the s/g table */
1272         sg = cm->cm_sgtable;
1273
1274         /* copy into the FIB */
1275         if (sg != NULL) {
1276                 sg->SgCount = nseg;
1277                 for (i = 0; i < nseg; i++) {
1278                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1279                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1280                 }
1281                 /* update the FIB size for the s/g count */
1282                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1283         }
1284
1285 }
1286
1287 /*
1288  * Map a command into controller-visible space.
1289  */
1290 static void
1291 aac_map_command(struct aac_command *cm)
1292 {
1293         struct aac_softc *sc;
1294
1295         debug_called(2);
1296
1297         sc = cm->cm_sc;
1298
1299         /* don't map more than once */
1300         if (cm->cm_flags & AAC_CMD_MAPPED)
1301                 return;
1302
1303         if (cm->cm_datalen != 0) {
1304                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1305                                 cm->cm_data, cm->cm_datalen,
1306                                 aac_map_command_sg, cm, 0);
1307
1308                 if (cm->cm_flags & AAC_CMD_DATAIN)
1309                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1310                                         BUS_DMASYNC_PREREAD);
1311                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1312                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1313                                         BUS_DMASYNC_PREWRITE);
1314         }
1315         cm->cm_flags |= AAC_CMD_MAPPED;
1316 }
1317
1318 /*
1319  * Unmap a command from controller-visible space.
1320  */
1321 static void
1322 aac_unmap_command(struct aac_command *cm)
1323 {
1324         struct aac_softc *sc;
1325
1326         debug_called(2);
1327
1328         sc = cm->cm_sc;
1329
1330         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1331                 return;
1332
1333         if (cm->cm_datalen != 0) {
1334                 if (cm->cm_flags & AAC_CMD_DATAIN)
1335                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1336                                         BUS_DMASYNC_POSTREAD);
1337                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1338                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1339                                         BUS_DMASYNC_POSTWRITE);
1340
1341                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1342         }
1343         cm->cm_flags &= ~AAC_CMD_MAPPED;
1344 }
1345
1346 /*
1347  * Hardware Interface
1348  */
1349
1350 /*
1351  * Initialise the adapter.
1352  */
1353 static void
1354 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1355 {
1356         struct aac_softc *sc;
1357
1358         debug_called(1);
1359
1360         sc = (struct aac_softc *)arg;
1361
1362         sc->aac_common_busaddr = segs[0].ds_addr;
1363 }
1364
1365 static int
1366 aac_check_firmware(struct aac_softc *sc)
1367 {
1368         u_int32_t major, minor, options;
1369
1370         debug_called(1);
1371
1372         /*
1373          * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1374          * firmware version 1.x are not compatible with this driver.
1375          */
1376         if (sc->flags & AAC_FLAGS_PERC2QC) {
1377                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1378                                      NULL)) {
1379                         device_printf(sc->aac_dev,
1380                                       "Error reading firmware version\n");
1381                         return (EIO);
1382                 }
1383
1384                 /* These numbers are stored as ASCII! */
1385                 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1386                 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1387                 if (major == 1) {
1388                         device_printf(sc->aac_dev,
1389                             "Firmware version %d.%d is not supported.\n",
1390                             major, minor);
1391                         return (EINVAL);
1392                 }
1393         }
1394
1395         /*
1396          * Retrieve the capabilities/supported options word so we know what
1397          * work-arounds to enable.
1398          */
1399         if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1400                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1401                 return (EIO);
1402         }
1403         options = AAC_GET_MAILBOX(sc, 1);
1404         sc->supported_options = options;
1405
1406         if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1407             (sc->flags & AAC_FLAGS_NO4GB) == 0)
1408                 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1409         if (options & AAC_SUPPORTED_NONDASD)
1410                 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1411
1412         return (0);
1413 }
1414
1415 static int
1416 aac_init(struct aac_softc *sc)
1417 {
1418         struct aac_adapter_init *ip;
1419         time_t then;
1420         u_int32_t code;
1421         u_int8_t *qaddr;
1422         int error;
1423
1424         debug_called(1);
1425
1426         /*
1427          * First wait for the adapter to come ready.
1428          */
1429         then = time_second;
1430         do {
1431                 code = AAC_GET_FWSTATUS(sc);
1432                 if (code & AAC_SELF_TEST_FAILED) {
1433                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1434                         return(ENXIO);
1435                 }
1436                 if (code & AAC_KERNEL_PANIC) {
1437                         device_printf(sc->aac_dev,
1438                                       "FATAL: controller kernel panic\n");
1439                         return(ENXIO);
1440                 }
1441                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1442                         device_printf(sc->aac_dev,
1443                                       "FATAL: controller not coming ready, "
1444                                            "status %x\n", code);
1445                         return(ENXIO);
1446                 }
1447         } while (!(code & AAC_UP_AND_RUNNING));
1448
1449         error = ENOMEM;
1450         /*
1451          * Create DMA tag for mapping buffers into controller-addressable space.
1452          */
1453         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1454                                1, 0,                    /* algnmnt, boundary */
1455                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1456                                BUS_SPACE_MAXADDR,       /* highaddr */
1457                                NULL, NULL,              /* filter, filterarg */
1458                                MAXBSIZE,                /* maxsize */
1459                                AAC_MAXSGENTRIES,        /* nsegments */
1460                                MAXBSIZE,                /* maxsegsize */
1461                                BUS_DMA_ALLOCNOW,        /* flags */
1462                                &sc->aac_buffer_dmat)) {
1463                 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1464                 goto out;
1465         }
1466  
1467         /*
1468          * Create DMA tag for mapping FIBs into controller-addressable space..
1469          */
1470         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1471                                1, 0,                    /* algnmnt, boundary */
1472                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1473                                BUS_SPACE_MAXADDR_32BIT :
1474                                0x7fffffff,              /* lowaddr */
1475                                BUS_SPACE_MAXADDR,       /* highaddr */
1476                                NULL, NULL,              /* filter, filterarg */
1477                                AAC_FIB_COUNT *
1478                                sizeof(struct aac_fib),  /* maxsize */
1479                                1,                       /* nsegments */
1480                                AAC_FIB_COUNT *
1481                                sizeof(struct aac_fib),  /* maxsegsize */
1482                                BUS_DMA_ALLOCNOW,        /* flags */
1483                                &sc->aac_fib_dmat)) {
1484                 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1485                 goto out;
1486         }
1487  
1488         /*
1489          * Create DMA tag for the common structure and allocate it.
1490          */
1491         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1492                                1, 0,                    /* algnmnt, boundary */
1493                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1494                                BUS_SPACE_MAXADDR_32BIT :
1495                                0x7fffffff,              /* lowaddr */
1496                                BUS_SPACE_MAXADDR,       /* highaddr */
1497                                NULL, NULL,              /* filter, filterarg */
1498                                8192 + sizeof(struct aac_common), /* maxsize */
1499                                1,                       /* nsegments */
1500                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1501                                BUS_DMA_ALLOCNOW,        /* flags */
1502                                &sc->aac_common_dmat)) {
1503                 device_printf(sc->aac_dev,
1504                               "can't allocate common structure DMA tag\n");
1505                 goto out;
1506         }
1507         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1508                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1509                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1510                 goto out;
1511         }
1512         /*
1513          * Work around a bug in the 2120 and 2200 that cannot DMA commands
1514          * below address 8192 in physical memory.
1515          * XXX If the padding is not needed, can it be put to use instead
1516          * of ignored?
1517          */
1518         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1519                         sc->aac_common, 8192 + sizeof(*sc->aac_common),
1520                         aac_common_map, sc, 0);
1521
1522         if (sc->aac_common_busaddr < 8192) {
1523                 sc->aac_common =
1524                     (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1525                 sc->aac_common_busaddr += 8192;
1526         }
1527         bzero(sc->aac_common, sizeof(*sc->aac_common));
1528
1529         /* Allocate some FIBs and associated command structs */
1530         if (aac_alloc_commands(sc) != 0)
1531                 goto out;
1532
1533         /*
1534          * Fill in the init structure.  This tells the adapter about the
1535          * physical location of various important shared data structures.
1536          */
1537         ip = &sc->aac_common->ac_init;
1538         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1539         ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1540
1541         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1542                                          offsetof(struct aac_common, ac_fibs);
1543         ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1544         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1545         ip->AdapterFibAlign = sizeof(struct aac_fib);
1546
1547         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1548                                   offsetof(struct aac_common, ac_printf);
1549         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1550
1551         /* The adapter assumes that pages are 4K in size */
1552         ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1553         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1554
1555         /*
1556          * Initialise FIB queues.  Note that it appears that the layout of the
1557          * indexes and the segmentation of the entries may be mandated by the
1558          * adapter, which is only told about the base of the queue index fields.
1559          *
1560          * The initial values of the indices are assumed to inform the adapter
1561          * of the sizes of the respective queues, and theoretically it could 
1562          * work out the entire layout of the queue structures from this.  We
1563          * take the easy route and just lay this area out like everyone else
1564          * does.
1565          *
1566          * The Linux driver uses a much more complex scheme whereby several 
1567          * header records are kept for each queue.  We use a couple of generic 
1568          * list manipulation functions which 'know' the size of each list by
1569          * virtue of a table.
1570          */
1571         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1572         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1573         sc->aac_queues = (struct aac_queue_table *)qaddr;
1574         ip->CommHeaderAddress = sc->aac_common_busaddr +
1575                                 ((u_int32_t)sc->aac_queues -
1576                                 (u_int32_t)sc->aac_common);
1577         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1578
1579         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580                 AAC_HOST_NORM_CMD_ENTRIES;
1581         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582                 AAC_HOST_NORM_CMD_ENTRIES;
1583         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584                 AAC_HOST_HIGH_CMD_ENTRIES;
1585         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586                 AAC_HOST_HIGH_CMD_ENTRIES;
1587         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588                 AAC_ADAP_NORM_CMD_ENTRIES;
1589         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590                 AAC_ADAP_NORM_CMD_ENTRIES;
1591         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592                 AAC_ADAP_HIGH_CMD_ENTRIES;
1593         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594                 AAC_ADAP_HIGH_CMD_ENTRIES;
1595         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596                 AAC_HOST_NORM_RESP_ENTRIES;
1597         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598                 AAC_HOST_NORM_RESP_ENTRIES;
1599         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600                 AAC_HOST_HIGH_RESP_ENTRIES;
1601         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602                 AAC_HOST_HIGH_RESP_ENTRIES;
1603         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604                 AAC_ADAP_NORM_RESP_ENTRIES;
1605         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606                 AAC_ADAP_NORM_RESP_ENTRIES;
1607         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608                 AAC_ADAP_HIGH_RESP_ENTRIES;
1609         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610                 AAC_ADAP_HIGH_RESP_ENTRIES;
1611         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1612                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1613         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1614                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1615         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1616                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1617         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1618                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1619         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1620                 &sc->aac_queues->qt_HostNormRespQueue[0];
1621         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1622                 &sc->aac_queues->qt_HostHighRespQueue[0];
1623         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1624                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1625         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1626                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1627
1628         /*
1629          * Do controller-type-specific initialisation
1630          */
1631         switch (sc->aac_hwif) {
1632         case AAC_HWIF_I960RX:
1633                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1634                 break;
1635         }
1636
1637         /*
1638          * Give the init structure to the controller.
1639          */
1640         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1641                              sc->aac_common_busaddr +
1642                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1643                              NULL)) {
1644                 device_printf(sc->aac_dev,
1645                               "error establishing init structure\n");
1646                 error = EIO;
1647                 goto out;
1648         }
1649
1650         error = 0;
1651 out:
1652         return(error);
1653 }
1654
1655 /*
1656  * Send a synchronous command to the controller and wait for a result.
1657  */
1658 static int
1659 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1660                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1661                  u_int32_t *sp)
1662 {
1663         time_t then;
1664         u_int32_t status;
1665
1666         debug_called(3);
1667
1668         /* populate the mailbox */
1669         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1670
1671         /* ensure the sync command doorbell flag is cleared */
1672         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1673
1674         /* then set it to signal the adapter */
1675         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1676
1677         /* spin waiting for the command to complete */
1678         then = time_second;
1679         do {
1680                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1681                         debug(1, "timed out");
1682                         return(EIO);
1683                 }
1684         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1685
1686         /* clear the completion flag */
1687         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1688
1689         /* get the command status */
1690         status = AAC_GET_MAILBOX(sc, 0);
1691         if (sp != NULL)
1692                 *sp = status;
1693         return(0);
1694 }
1695
1696 /*
1697  * Grab the sync fib area.
1698  */
1699 int
1700 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1701 {
1702
1703         /*
1704          * If the force flag is set, the system is shutting down, or in
1705          * trouble.  Ignore the mutex.
1706          */
1707         if (!(flags & AAC_SYNC_LOCK_FORCE))
1708                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1709
1710         *fib = &sc->aac_common->ac_sync_fib;
1711
1712         return (1);
1713 }
1714
1715 /*
1716  * Release the sync fib area.
1717  */
1718 void
1719 aac_release_sync_fib(struct aac_softc *sc)
1720 {
1721
1722         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1723 }
1724
1725 /*
1726  * Send a synchronous FIB to the controller and wait for a result.
1727  */
1728 int
1729 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1730                  struct aac_fib *fib, u_int16_t datasize)
1731 {
1732         debug_called(3);
1733
1734         if (datasize > AAC_FIB_DATASIZE)
1735                 return(EINVAL);
1736
1737         /*
1738          * Set up the sync FIB
1739          */
1740         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1741                                 AAC_FIBSTATE_INITIALISED |
1742                                 AAC_FIBSTATE_EMPTY;
1743         fib->Header.XferState |= xferstate;
1744         fib->Header.Command = command;
1745         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1746         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1747         fib->Header.SenderSize = sizeof(struct aac_fib);
1748         fib->Header.SenderFibAddress = (u_int32_t)fib;
1749         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1750                                          offsetof(struct aac_common,
1751                                                   ac_sync_fib);
1752
1753         /*
1754          * Give the FIB to the controller, wait for a response.
1755          */
1756         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1757                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1758                 debug(2, "IO error");
1759                 return(EIO);
1760         }
1761
1762         return (0);
1763 }
1764
1765 /*
1766  * Adapter-space FIB queue manipulation
1767  *
1768  * Note that the queue implementation here is a little funky; neither the PI or
1769  * CI will ever be zero.  This behaviour is a controller feature.
1770  */
1771 static struct {
1772         int             size;
1773         int             notify;
1774 } aac_qinfo[] = {
1775         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1776         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1777         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1778         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1779         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1780         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1781         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1782         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1783 };
1784
1785 /*
1786  * Atomically insert an entry into the nominated queue, returns 0 on success or
1787  * EBUSY if the queue is full.
1788  *
1789  * Note: it would be more efficient to defer notifying the controller in
1790  *       the case where we may be inserting several entries in rapid succession,
1791  *       but implementing this usefully may be difficult (it would involve a
1792  *       separate queue/notify interface).
1793  */
1794 static int
1795 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1796 {
1797         u_int32_t pi, ci;
1798         int s, error;
1799         u_int32_t fib_size;
1800         u_int32_t fib_addr;
1801
1802         debug_called(3);
1803
1804         fib_size = cm->cm_fib->Header.Size; 
1805         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1806
1807         s = splbio();
1808
1809         /* get the producer/consumer indices */
1810         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1811         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1812
1813         /* wrap the queue? */
1814         if (pi >= aac_qinfo[queue].size)
1815                 pi = 0;
1816
1817         /* check for queue full */
1818         if ((pi + 1) == ci) {
1819                 error = EBUSY;
1820                 goto out;
1821         }
1822
1823         /* populate queue entry */
1824         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1825         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1826
1827         /* update producer index */
1828         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1829
1830         /*
1831          * To avoid a race with its completion interrupt, place this command on
1832          * the busy queue prior to advertising it to the controller.
1833          */
1834         aac_enqueue_busy(cm);
1835
1836         /* notify the adapter if we know how */
1837         if (aac_qinfo[queue].notify != 0)
1838                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1839
1840         error = 0;
1841
1842 out:
1843         splx(s);
1844         return(error);
1845 }
1846
1847 /*
1848  * Atomically remove one entry from the nominated queue, returns 0 on
1849  * success or ENOENT if the queue is empty.
1850  */
1851 static int
1852 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1853                 struct aac_fib **fib_addr)
1854 {
1855         u_int32_t pi, ci;
1856         int s, error;
1857         int notify;
1858
1859         debug_called(3);
1860
1861         s = splbio();
1862
1863         /* get the producer/consumer indices */
1864         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1865         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1866
1867         /* check for queue empty */
1868         if (ci == pi) {
1869                 error = ENOENT;
1870                 goto out;
1871         }
1872         
1873         notify = 0;
1874         if (ci == pi + 1)
1875                 notify++;
1876
1877         /* wrap the queue? */
1878         if (ci >= aac_qinfo[queue].size)
1879                 ci = 0;
1880
1881         /* fetch the entry */
1882         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1883         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1884                                        ci)->aq_fib_addr;
1885
1886         /*
1887          * Is this a fast response? If it is, update the fib fields in
1888          * local memory so the whole fib doesn't have to be DMA'd back up.
1889          */
1890         if (*(uintptr_t *)fib_addr & 0x01) {
1891                 *(uintptr_t *)fib_addr &= ~0x01;
1892                 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1893                 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1894         }
1895         /* update consumer index */
1896         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1897
1898         /* if we have made the queue un-full, notify the adapter */
1899         if (notify && (aac_qinfo[queue].notify != 0))
1900                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1901         error = 0;
1902
1903 out:
1904         splx(s);
1905         return(error);
1906 }
1907
1908 /*
1909  * Put our response to an Adapter Initialed Fib on the response queue
1910  */
1911 static int
1912 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1913 {
1914         u_int32_t pi, ci;
1915         int s, error;
1916         u_int32_t fib_size;
1917         u_int32_t fib_addr;
1918
1919         debug_called(1);
1920
1921         /* Tell the adapter where the FIB is */
1922         fib_size = fib->Header.Size; 
1923         fib_addr = fib->Header.SenderFibAddress;
1924         fib->Header.ReceiverFibAddress = fib_addr;
1925
1926         s = splbio();
1927
1928         /* get the producer/consumer indices */
1929         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1930         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1931
1932         /* wrap the queue? */
1933         if (pi >= aac_qinfo[queue].size)
1934                 pi = 0;
1935
1936         /* check for queue full */
1937         if ((pi + 1) == ci) {
1938                 error = EBUSY;
1939                 goto out;
1940         }
1941
1942         /* populate queue entry */
1943         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1944         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1945
1946         /* update producer index */
1947         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1948
1949         /* notify the adapter if we know how */
1950         if (aac_qinfo[queue].notify != 0)
1951                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1952
1953         error = 0;
1954
1955 out:
1956         splx(s);
1957         return(error);
1958 }
1959
1960 /*
1961  * Check for commands that have been outstanding for a suspiciously long time,
1962  * and complain about them.
1963  */
1964 static void
1965 aac_timeout(void *xsc)
1966 {
1967         struct aac_softc *sc = xsc;
1968         int s;
1969         struct aac_command *cm;
1970         time_t deadline;
1971
1972 #if 0
1973         /* simulate an interrupt to handle possibly-missed interrupts */
1974         /*
1975          * XXX This was done to work around another bug which has since been
1976          * fixed.  It is dangerous anyways because you don't want multiple
1977          * threads in the interrupt handler at the same time!  If calling
1978          * is deamed neccesary in the future, proper mutexes must be used.
1979          */
1980         s = splbio();
1981         aac_intr(sc);
1982         splx(s);
1983
1984         /* kick the I/O queue to restart it in the case of deadlock */
1985         aac_startio(sc);
1986 #endif
1987
1988         /*
1989          * traverse the busy command list, bitch about late commands once
1990          * only.
1991          */
1992         deadline = time_second - AAC_CMD_TIMEOUT;
1993         s = splbio();
1994         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1995                 if ((cm->cm_timestamp  < deadline)
1996                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1997                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1998                         device_printf(sc->aac_dev,
1999                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2000                                       cm, (int)(time_second-cm->cm_timestamp));
2001                         AAC_PRINT_FIB(sc, cm->cm_fib);
2002                 }
2003         }
2004         splx(s);
2005
2006         /* reset the timer for next time */
2007         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2008                       aac_timeout, sc);
2009 }
2010
2011 /*
2012  * Interface Function Vectors
2013  */
2014
2015 /*
2016  * Read the current firmware status word.
2017  */
2018 static int
2019 aac_sa_get_fwstatus(struct aac_softc *sc)
2020 {
2021         debug_called(3);
2022
2023         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2024 }
2025
2026 static int
2027 aac_rx_get_fwstatus(struct aac_softc *sc)
2028 {
2029         debug_called(3);
2030
2031         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2032 }
2033
2034 static int
2035 aac_fa_get_fwstatus(struct aac_softc *sc)
2036 {
2037         int val;
2038
2039         debug_called(3);
2040
2041         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2042         return (val);
2043 }
2044
2045 /*
2046  * Notify the controller of a change in a given queue
2047  */
2048
2049 static void
2050 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2051 {
2052         debug_called(3);
2053
2054         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2055 }
2056
2057 static void
2058 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2059 {
2060         debug_called(3);
2061
2062         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2063 }
2064
2065 static void
2066 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2067 {
2068         debug_called(3);
2069
2070         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2071         AAC_FA_HACK(sc);
2072 }
2073
2074 /*
2075  * Get the interrupt reason bits
2076  */
2077 static int
2078 aac_sa_get_istatus(struct aac_softc *sc)
2079 {
2080         debug_called(3);
2081
2082         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2083 }
2084
2085 static int
2086 aac_rx_get_istatus(struct aac_softc *sc)
2087 {
2088         debug_called(3);
2089
2090         return(AAC_GETREG4(sc, AAC_RX_ODBR));
2091 }
2092
2093 static int
2094 aac_fa_get_istatus(struct aac_softc *sc)
2095 {
2096         int val;
2097
2098         debug_called(3);
2099
2100         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2101         return (val);
2102 }
2103
2104 /*
2105  * Clear some interrupt reason bits
2106  */
2107 static void
2108 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2109 {
2110         debug_called(3);
2111
2112         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2113 }
2114
2115 static void
2116 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2117 {
2118         debug_called(3);
2119
2120         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2121 }
2122
2123 static void
2124 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2125 {
2126         debug_called(3);
2127
2128         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2129         AAC_FA_HACK(sc);
2130 }
2131
2132 /*
2133  * Populate the mailbox and set the command word
2134  */
2135 static void
2136 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2137                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2138 {
2139         debug_called(4);
2140
2141         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2142         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2143         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2144         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2145         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2146 }
2147
2148 static void
2149 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2150                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2151 {
2152         debug_called(4);
2153
2154         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2155         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2156         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2157         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2158         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2159 }
2160
2161 static void
2162 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2163                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2164 {
2165         debug_called(4);
2166
2167         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2168         AAC_FA_HACK(sc);
2169         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2170         AAC_FA_HACK(sc);
2171         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2172         AAC_FA_HACK(sc);
2173         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2174         AAC_FA_HACK(sc);
2175         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2176         AAC_FA_HACK(sc);
2177 }
2178
2179 /*
2180  * Fetch the immediate command status word
2181  */
2182 static int
2183 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2184 {
2185         debug_called(4);
2186
2187         return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2188 }
2189
2190 static int
2191 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2192 {
2193         debug_called(4);
2194
2195         return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2196 }
2197
2198 static int
2199 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2200 {
2201         int val;
2202
2203         debug_called(4);
2204
2205         val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2206         return (val);
2207 }
2208
2209 /*
2210  * Set/clear interrupt masks
2211  */
2212 static void
2213 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2214 {
2215         debug(2, "%sable interrupts", enable ? "en" : "dis");
2216
2217         if (enable) {
2218                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2219         } else {
2220                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2221         }
2222 }
2223
2224 static void
2225 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2226 {
2227         debug(2, "%sable interrupts", enable ? "en" : "dis");
2228
2229         if (enable) {
2230                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2231         } else {
2232                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2233         }
2234 }
2235
2236 static void
2237 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2238 {
2239         debug(2, "%sable interrupts", enable ? "en" : "dis");
2240
2241         if (enable) {
2242                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2243                 AAC_FA_HACK(sc);
2244         } else {
2245                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2246                 AAC_FA_HACK(sc);
2247         }
2248 }
2249
2250 /*
2251  * Debugging and Diagnostics
2252  */
2253
2254 /*
2255  * Print some information about the controller.
2256  */
2257 static void
2258 aac_describe_controller(struct aac_softc *sc)
2259 {
2260         struct aac_fib *fib;
2261         struct aac_adapter_info *info;
2262
2263         debug_called(2);
2264
2265         aac_alloc_sync_fib(sc, &fib, 0);
2266
2267         fib->data[0] = 0;
2268         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2269                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2270                 aac_release_sync_fib(sc);
2271                 return;
2272         }
2273         info = (struct aac_adapter_info *)&fib->data[0];   
2274
2275         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2276                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2277                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2278                       aac_describe_code(aac_battery_platform,
2279                                         info->batteryPlatform));
2280
2281         /* save the kernel revision structure for later use */
2282         sc->aac_revision = info->KernelRevision;
2283         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2284                       info->KernelRevision.external.comp.major,
2285                       info->KernelRevision.external.comp.minor,
2286                       info->KernelRevision.external.comp.dash,
2287                       info->KernelRevision.buildNumber,
2288                       (u_int32_t)(info->SerialNumber & 0xffffff));
2289
2290         aac_release_sync_fib(sc);
2291
2292         if (1 || bootverbose) {
2293                 device_printf(sc->aac_dev, "Supported Options=%b\n",
2294                               sc->supported_options,
2295                               "\20"
2296                               "\1SNAPSHOT"
2297                               "\2CLUSTERS"
2298                               "\3WCACHE"
2299                               "\4DATA64"
2300                               "\5HOSTTIME"
2301                               "\6RAID50"
2302                               "\7WINDOW4GB"
2303                               "\10SCSIUPGD"
2304                               "\11SOFTERR"
2305                               "\12NORECOND"
2306                               "\13SGMAP64"
2307                               "\14ALARM"
2308                               "\15NONDASD");
2309         }
2310 }
2311
2312 /*
2313  * Look up a text description of a numeric error code and return a pointer to
2314  * same.
2315  */
2316 static char *
2317 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2318 {
2319         int i;
2320
2321         for (i = 0; table[i].string != NULL; i++)
2322                 if (table[i].code == code)
2323                         return(table[i].string);
2324         return(table[i + 1].string);
2325 }
2326
2327 /*
2328  * Management Interface
2329  */
2330
2331 static int
2332 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2333 {
2334         struct aac_softc *sc;
2335
2336         debug_called(2);
2337
2338         sc = dev->si_drv1;
2339
2340         /* Check to make sure the device isn't already open */
2341         if (sc->aac_state & AAC_STATE_OPEN) {
2342                 return EBUSY;
2343         }
2344         sc->aac_state |= AAC_STATE_OPEN;
2345
2346         return 0;
2347 }
2348
2349 static int
2350 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2351 {
2352         struct aac_softc *sc;
2353
2354         debug_called(2);
2355
2356         sc = dev->si_drv1;
2357
2358         /* Mark this unit as no longer open  */
2359         sc->aac_state &= ~AAC_STATE_OPEN;
2360
2361         return 0;
2362 }
2363
2364 static int
2365 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2366 {
2367         struct aac_softc *sc = dev->si_drv1;
2368         int error = 0;
2369         int i;
2370
2371         debug_called(2);
2372
2373         if (cmd == AACIO_STATS) {
2374                 union aac_statrequest *as = (union aac_statrequest *)arg;
2375
2376                 switch (as->as_item) {
2377                 case AACQ_FREE:
2378                 case AACQ_BIO:
2379                 case AACQ_READY:
2380                 case AACQ_BUSY:
2381                 case AACQ_COMPLETE:
2382                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2383                               sizeof(struct aac_qstat));
2384                         break;
2385                 default:
2386                         error = ENOENT;
2387                         break;
2388                 }
2389                 return(error);
2390         }
2391
2392         arg = *(caddr_t *)arg;
2393
2394         switch (cmd) {
2395         /* AACIO_STATS already handled above */
2396         case FSACTL_SENDFIB:
2397                 debug(1, "FSACTL_SENDFIB");
2398                 error = aac_ioctl_sendfib(sc, arg);
2399                 break;
2400         case FSACTL_AIF_THREAD:
2401                 debug(1, "FSACTL_AIF_THREAD");
2402                 error = EINVAL;
2403                 break;
2404         case FSACTL_OPEN_GET_ADAPTER_FIB:
2405                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2406                 /*
2407                  * Pass the caller out an AdapterFibContext.
2408                  *
2409                  * Note that because we only support one opener, we
2410                  * basically ignore this.  Set the caller's context to a magic
2411                  * number just in case.
2412                  *
2413                  * The Linux code hands the driver a pointer into kernel space,
2414                  * and then trusts it when the caller hands it back.  Aiee!
2415                  * Here, we give it the proc pointer of the per-adapter aif 
2416                  * thread. It's only used as a sanity check in other calls.
2417                  */
2418                 i = (int)sc->aifthread;
2419                 error = copyout(&i, arg, sizeof(i));
2420                 break;
2421         case FSACTL_GET_NEXT_ADAPTER_FIB:
2422                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2423                 error = aac_getnext_aif(sc, arg);
2424                 break;
2425         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2426                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2427                 /* don't do anything here */
2428                 break;
2429         case FSACTL_MINIPORT_REV_CHECK:
2430                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2431                 error = aac_rev_check(sc, arg);
2432                 break;
2433         case FSACTL_QUERY_DISK:
2434                 debug(1, "FSACTL_QUERY_DISK");
2435                 error = aac_query_disk(sc, arg);
2436                         break;
2437         case FSACTL_DELETE_DISK:
2438                 /*
2439                  * We don't trust the underland to tell us when to delete a
2440                  * container, rather we rely on an AIF coming from the 
2441                  * controller
2442                  */
2443                 error = 0;
2444                 break;
2445         default:
2446                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2447                 error = EINVAL;
2448                 break;
2449         }
2450         return(error);
2451 }
2452
2453 static int
2454 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2455 {
2456         struct aac_softc *sc;
2457         int revents;
2458
2459         sc = dev->si_drv1;
2460         revents = 0;
2461
2462         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2463         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2464                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2465                         revents |= poll_events & (POLLIN | POLLRDNORM);
2466         }
2467         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2468
2469         if (revents == 0) {
2470                 if (poll_events & (POLLIN | POLLRDNORM))
2471                         selrecord(td, &sc->rcv_select);
2472         }
2473
2474         return (revents);
2475 }
2476
2477 /*
2478  * Send a FIB supplied from userspace
2479  */
2480 static int
2481 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2482 {
2483         struct aac_command *cm;
2484         int size, error;
2485
2486         debug_called(2);
2487
2488         cm = NULL;
2489
2490         /*
2491          * Get a command
2492          */
2493         if (aac_alloc_command(sc, &cm)) {
2494                 error = EBUSY;
2495                 goto out;
2496         }
2497
2498         /*
2499          * Fetch the FIB header, then re-copy to get data as well.
2500          */
2501         if ((error = copyin(ufib, cm->cm_fib,
2502                             sizeof(struct aac_fib_header))) != 0)
2503                 goto out;
2504         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2505         if (size > sizeof(struct aac_fib)) {
2506                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2507                               size, sizeof(struct aac_fib));
2508                 size = sizeof(struct aac_fib);
2509         }
2510         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2511                 goto out;
2512         cm->cm_fib->Header.Size = size;
2513         cm->cm_timestamp = time_second;
2514
2515         /*
2516          * Pass the FIB to the controller, wait for it to complete.
2517          */
2518         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2519                 printf("aac_wait_command return %d\n", error);
2520                 goto out;
2521         }
2522
2523         /*
2524          * Copy the FIB and data back out to the caller.
2525          */
2526         size = cm->cm_fib->Header.Size;
2527         if (size > sizeof(struct aac_fib)) {
2528                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2529                               size, sizeof(struct aac_fib));
2530                 size = sizeof(struct aac_fib);
2531         }
2532         error = copyout(cm->cm_fib, ufib, size);
2533
2534 out:
2535         if (cm != NULL) {
2536                 aac_release_command(cm);
2537         }
2538         return(error);
2539 }
2540
2541 /*
2542  * Handle an AIF sent to us by the controller; queue it for later reference.
2543  * If the queue fills up, then drop the older entries.
2544  */
2545 static void
2546 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2547 {
2548         struct aac_aif_command *aif;
2549         struct aac_container *co, *co_next;
2550         struct aac_mntinfo *mi;
2551         struct aac_mntinforesp *mir = NULL;
2552         u_int16_t rsize;
2553         int next, found;
2554         int added = 0, i = 0;
2555
2556         debug_called(2);
2557
2558         aif = (struct aac_aif_command*)&fib->data[0];
2559         aac_print_aif(sc, aif);
2560
2561         /* Is it an event that we should care about? */
2562         switch (aif->command) {
2563         case AifCmdEventNotify:
2564                 switch (aif->data.EN.type) {
2565                 case AifEnAddContainer:
2566                 case AifEnDeleteContainer:
2567                         /*
2568                          * A container was added or deleted, but the message 
2569                          * doesn't tell us anything else!  Re-enumerate the
2570                          * containers and sort things out.
2571                          */
2572                         aac_alloc_sync_fib(sc, &fib, 0);
2573                         mi = (struct aac_mntinfo *)&fib->data[0];
2574                         do {
2575                                 /*
2576                                  * Ask the controller for its containers one at
2577                                  * a time.
2578                                  * XXX What if the controller's list changes
2579                                  * midway through this enumaration?
2580                                  * XXX This should be done async.
2581                                  */
2582                                 bzero(mi, sizeof(struct aac_mntinfo));
2583                                 mi->Command = VM_NameServe;
2584                                 mi->MntType = FT_FILESYS;
2585                                 mi->MntCount = i;
2586                                 rsize = sizeof(mir);
2587                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2588                                                  sizeof(struct aac_mntinfo))) {
2589                                         debug(2, "Error probing container %d\n",
2590                                               i);
2591                                         continue;
2592                                 }
2593                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2594                                 /*
2595                                  * Check the container against our list.
2596                                  * co->co_found was already set to 0 in a
2597                                  * previous run.
2598                                  */
2599                                 if ((mir->Status == ST_OK) &&
2600                                     (mir->MntTable[0].VolType != CT_NONE)) {
2601                                         found = 0;
2602                                         TAILQ_FOREACH(co,
2603                                                       &sc->aac_container_tqh, 
2604                                                       co_link) {
2605                                                 if (co->co_mntobj.ObjectId ==
2606                                                     mir->MntTable[0].ObjectId) {
2607                                                         co->co_found = 1;
2608                                                         found = 1;
2609                                                         break;
2610                                                 }
2611                                         }
2612                                         /*
2613                                          * If the container matched, continue
2614                                          * in the list.
2615                                          */
2616                                         if (found) {
2617                                                 i++;
2618                                                 continue;
2619                                         }
2620
2621                                         /*
2622                                          * This is a new container.  Do all the
2623                                          * appropriate things to set it up.                                              */
2624                                         aac_add_container(sc, mir, 1);
2625                                         added = 1;
2626                                 }
2627                                 i++;
2628                         } while ((i < mir->MntRespCount) &&
2629                                  (i < AAC_MAX_CONTAINERS));
2630                         aac_release_sync_fib(sc);
2631
2632                         /*
2633                          * Go through our list of containers and see which ones
2634                          * were not marked 'found'.  Since the controller didn't
2635                          * list them they must have been deleted.  Do the
2636                          * appropriate steps to destroy the device.  Also reset
2637                          * the co->co_found field.
2638                          */
2639                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2640                         while (co != NULL) {
2641                                 if (co->co_found == 0) {
2642                                         device_delete_child(sc->aac_dev,
2643                                                             co->co_disk);
2644                                         co_next = TAILQ_NEXT(co, co_link);
2645                                         AAC_LOCK_ACQUIRE(&sc->
2646                                                         aac_container_lock);
2647                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2648                                                      co_link);
2649                                         AAC_LOCK_RELEASE(&sc->
2650                                                          aac_container_lock);
2651                                         FREE(co, M_AACBUF);
2652                                         co = co_next;
2653                                 } else {
2654                                         co->co_found = 0;
2655                                         co = TAILQ_NEXT(co, co_link);
2656                                 }
2657                         }
2658
2659                         /* Attach the newly created containers */
2660                         if (added)
2661                                 bus_generic_attach(sc->aac_dev);
2662         
2663                                 break;
2664
2665                 default:
2666                         break;
2667                 }
2668
2669         default:
2670                 break;
2671         }
2672
2673         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2674         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2675         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2676         if (next != sc->aac_aifq_tail) {
2677                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2678                 sc->aac_aifq_head = next;
2679
2680                 /* On the off chance that someone is sleeping for an aif... */
2681                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2682                         wakeup(sc->aac_aifq);
2683                 /* token may have been lost */
2684                 /* Wakeup any poll()ers */
2685                 selwakeup(&sc->rcv_select);
2686                 /* token may have been lost */
2687         }
2688         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2689
2690         return;
2691 }
2692
2693 /*
2694  * Return the Revision of the driver to userspace and check to see if the
2695  * userspace app is possibly compatible.  This is extremely bogus since
2696  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2697  * returning what the card reported.
2698  */
2699 static int
2700 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2701 {
2702         struct aac_rev_check rev_check;
2703         struct aac_rev_check_resp rev_check_resp;
2704         int error = 0;
2705
2706         debug_called(2);
2707
2708         /*
2709          * Copyin the revision struct from userspace
2710          */
2711         if ((error = copyin(udata, (caddr_t)&rev_check,
2712                         sizeof(struct aac_rev_check))) != 0) {
2713                 return error;
2714         }
2715
2716         debug(2, "Userland revision= %d\n",
2717               rev_check.callingRevision.buildNumber);
2718
2719         /*
2720          * Doctor up the response struct.
2721          */
2722         rev_check_resp.possiblyCompatible = 1;
2723         rev_check_resp.adapterSWRevision.external.ul =
2724             sc->aac_revision.external.ul;
2725         rev_check_resp.adapterSWRevision.buildNumber =
2726             sc->aac_revision.buildNumber;
2727
2728         return(copyout((caddr_t)&rev_check_resp, udata,
2729                         sizeof(struct aac_rev_check_resp)));
2730 }
2731
2732 /*
2733  * Pass the caller the next AIF in their queue
2734  */
2735 static int
2736 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2737 {
2738         struct get_adapter_fib_ioctl agf;
2739         int error, s;
2740
2741         debug_called(2);
2742
2743         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2744
2745                 /*
2746                  * Check the magic number that we gave the caller.
2747                  */
2748                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2749                         error = EFAULT;
2750                 } else {
2751         
2752                         s = splbio();
2753                         error = aac_return_aif(sc, agf.AifFib);
2754         
2755                         if ((error == EAGAIN) && (agf.Wait)) {
2756                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2757                                 while (error == EAGAIN) {
2758                                         error = tsleep(sc->aac_aifq,
2759                                                        PCATCH, "aacaif", 0);
2760                                         if (error == 0)
2761                                                 error = aac_return_aif(sc,
2762                                                     agf.AifFib);
2763                                 }
2764                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2765                         }
2766                 splx(s);
2767                 }
2768         }
2769         return(error);
2770 }
2771
2772 /*
2773  * Hand the next AIF off the top of the queue out to userspace.
2774  *
2775  * YYY token could be lost during copyout
2776  */
2777 static int
2778 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2779 {
2780         int error;
2781
2782         debug_called(2);
2783
2784         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2785         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2786                 error = EAGAIN;
2787         } else {
2788                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2789                                 sizeof(struct aac_aif_command));
2790                 if (error)
2791                         printf("aac_return_aif: copyout returned %d\n", error);
2792                 if (!error)
2793                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2794                                             AAC_AIFQ_LENGTH;
2795         }
2796         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2797         return(error);
2798 }
2799
2800 /*
2801  * Give the userland some information about the container.  The AAC arch
2802  * expects the driver to be a SCSI passthrough type driver, so it expects
2803  * the containers to have b:t:l numbers.  Fake it.
2804  */
2805 static int
2806 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2807 {
2808         struct aac_query_disk query_disk;
2809         struct aac_container *co;
2810         struct aac_disk *disk;
2811         int error, id;
2812
2813         debug_called(2);
2814
2815         disk = NULL;
2816
2817         error = copyin(uptr, (caddr_t)&query_disk,
2818                        sizeof(struct aac_query_disk));
2819         if (error)
2820                 return (error);
2821
2822         id = query_disk.ContainerNumber;
2823         if (id == -1)
2824                 return (EINVAL);
2825
2826         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2827         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2828                 if (co->co_mntobj.ObjectId == id)
2829                         break;
2830                 }
2831
2832                 if (co == NULL) {
2833                         query_disk.Valid = 0;
2834                         query_disk.Locked = 0;
2835                         query_disk.Deleted = 1;         /* XXX is this right? */
2836                 } else {
2837                         disk = device_get_softc(co->co_disk);
2838                         query_disk.Valid = 1;
2839                         query_disk.Locked =
2840                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2841                         query_disk.Deleted = 0;
2842                         query_disk.Bus = device_get_unit(sc->aac_dev);
2843                         query_disk.Target = disk->unit;
2844                         query_disk.Lun = 0;
2845                         query_disk.UnMapped = 0;
2846                         bcopy(disk->ad_dev_t->si_name,
2847                               &query_disk.diskDeviceName[0], 10);
2848                 }
2849         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2850
2851         error = copyout((caddr_t)&query_disk, uptr,
2852                         sizeof(struct aac_query_disk));
2853
2854         return (error);
2855 }
2856
2857 static void
2858 aac_get_bus_info(struct aac_softc *sc)
2859 {
2860         struct aac_fib *fib;
2861         struct aac_ctcfg *c_cmd;
2862         struct aac_ctcfg_resp *c_resp;
2863         struct aac_vmioctl *vmi;
2864         struct aac_vmi_businf_resp *vmi_resp;
2865         struct aac_getbusinf businfo;
2866         struct aac_cam_inf *caminf;
2867         device_t child;
2868         int i, found, error;
2869
2870         aac_alloc_sync_fib(sc, &fib, 0);
2871         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2872         bzero(c_cmd, sizeof(struct aac_ctcfg));
2873
2874         c_cmd->Command = VM_ContainerConfig;
2875         c_cmd->cmd = CT_GET_SCSI_METHOD;
2876         c_cmd->param = 0;
2877
2878         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2879             sizeof(struct aac_ctcfg));
2880         if (error) {
2881                 device_printf(sc->aac_dev, "Error %d sending "
2882                     "VM_ContainerConfig command\n", error);
2883                 aac_release_sync_fib(sc);
2884                 return;
2885         }
2886
2887         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2888         if (c_resp->Status != ST_OK) {
2889                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2890                     c_resp->Status);
2891                 aac_release_sync_fib(sc);
2892                 return;
2893         }
2894
2895         sc->scsi_method_id = c_resp->param;
2896
2897         vmi = (struct aac_vmioctl *)&fib->data[0];
2898         bzero(vmi, sizeof(struct aac_vmioctl));
2899
2900         vmi->Command = VM_Ioctl;
2901         vmi->ObjType = FT_DRIVE;
2902         vmi->MethId = sc->scsi_method_id;
2903         vmi->ObjId = 0;
2904         vmi->IoctlCmd = GetBusInfo;
2905
2906         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2907             sizeof(struct aac_vmioctl));
2908         if (error) {
2909                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2910                     error);
2911                 aac_release_sync_fib(sc);
2912                 return;
2913         }
2914
2915         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2916         if (vmi_resp->Status != ST_OK) {
2917                 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2918                 aac_release_sync_fib(sc);
2919                 return;
2920         }
2921
2922         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2923         aac_release_sync_fib(sc);
2924
2925         found = 0;
2926         for (i = 0; i < businfo.BusCount; i++) {
2927                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2928                         continue;
2929
2930                 MALLOC(caminf, struct aac_cam_inf *,
2931                     sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2932
2933                 child = device_add_child(sc->aac_dev, "aacp", -1);
2934                 if (child == NULL) {
2935                         device_printf(sc->aac_dev, "device_add_child failed\n");
2936                         continue;
2937                 }
2938
2939                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2940                 caminf->BusNumber = i;
2941                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2942                 caminf->aac_sc = sc;
2943
2944                 device_set_ivars(child, caminf);
2945                 device_set_desc(child, "SCSI Passthrough Bus");
2946
2947                 found = 1;
2948         }
2949
2950         if (found)
2951                 bus_generic_attach(sc->aac_dev);
2952
2953         return;
2954 }