Merge branch 'vendor/GMP'
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_polling.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99 #include <net/vlan/if_vlan_ether.h>
100
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 #include <dev/netif/mii_layer/brgphyreg.h>
104
105 #include <bus/pci/pcidevs.h>
106 #include <bus/pci/pcireg.h>
107 #include <bus/pci/pcivar.h>
108
109 #include <dev/netif/bge/if_bgereg.h>
110
111 /* "device miibus" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113
114 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
115 #define BGE_MIN_FRAME           60
116
117 static const struct bge_type bge_devs[] = {
118         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
119                 "3COM 3C996 Gigabit Ethernet" },
120
121         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
122                 "Alteon BCM5700 Gigabit Ethernet" },
123         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
124                 "Alteon BCM5701 Gigabit Ethernet" },
125
126         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
127                 "Altima AC1000 Gigabit Ethernet" },
128         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
129                 "Altima AC1002 Gigabit Ethernet" },
130         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
131                 "Altima AC9100 Gigabit Ethernet" },
132
133         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
134                 "Apple BCM5701 Gigabit Ethernet" },
135
136         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137                 "Broadcom BCM5700 Gigabit Ethernet" },
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139                 "Broadcom BCM5701 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
141                 "Broadcom BCM5702 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143                 "Broadcom BCM5702X Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145                 "Broadcom BCM5702 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
147                 "Broadcom BCM5703 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
149                 "Broadcom BCM5703X Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
151                 "Broadcom BCM5703 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
153                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
155                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
157                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
159                 "Broadcom BCM5705 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
161                 "Broadcom BCM5705F Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
163                 "Broadcom BCM5705K Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
165                 "Broadcom BCM5705M Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
167                 "Broadcom BCM5705M Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
169                 "Broadcom BCM5714C Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
171                 "Broadcom BCM5714S Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
173                 "Broadcom BCM5715 Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
175                 "Broadcom BCM5715S Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
177                 "Broadcom BCM5720 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
179                 "Broadcom BCM5721 Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
181                 "Broadcom BCM5722 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
183                 "Broadcom BCM5723 Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
185                 "Broadcom BCM5750 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
187                 "Broadcom BCM5750M Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
189                 "Broadcom BCM5751 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
191                 "Broadcom BCM5751F Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
193                 "Broadcom BCM5751M Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
195                 "Broadcom BCM5752 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
197                 "Broadcom BCM5752M Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
199                 "Broadcom BCM5753 Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
201                 "Broadcom BCM5753F Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
203                 "Broadcom BCM5753M Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
205                 "Broadcom BCM5754 Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
207                 "Broadcom BCM5754M Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
209                 "Broadcom BCM5755 Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
211                 "Broadcom BCM5755M Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
213                 "Broadcom BCM5756 Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
215                 "Broadcom BCM5761 Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
217                 "Broadcom BCM5761E Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
219                 "Broadcom BCM5761S Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
221                 "Broadcom BCM5761SE Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
223                 "Broadcom BCM5764 Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
225                 "Broadcom BCM5780 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
227                 "Broadcom BCM5780S Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
229                 "Broadcom BCM5781 Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
231                 "Broadcom BCM5782 Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
233                 "Broadcom BCM5784 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
235                 "Broadcom BCM5785F Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
237                 "Broadcom BCM5785G Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
239                 "Broadcom BCM5786 Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
241                 "Broadcom BCM5787 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
243                 "Broadcom BCM5787F Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
245                 "Broadcom BCM5787M Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
247                 "Broadcom BCM5788 Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
249                 "Broadcom BCM5789 Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
251                 "Broadcom BCM5901 Fast Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
253                 "Broadcom BCM5901A2 Fast Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
255                 "Broadcom BCM5903M Fast Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
257                 "Broadcom BCM5906 Fast Ethernet"},
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
259                 "Broadcom BCM5906M Fast Ethernet"},
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
261                 "Broadcom BCM57760 Gigabit Ethernet"},
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
263                 "Broadcom BCM57780 Gigabit Ethernet"},
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
265                 "Broadcom BCM57788 Gigabit Ethernet"},
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
267                 "Broadcom BCM57790 Gigabit Ethernet"},
268         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
269                 "SysKonnect Gigabit Ethernet" },
270
271         { 0, 0, NULL }
272 };
273
274 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
275 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
276 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
277 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
278 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
279 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
280
281 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
282
283 static int      bge_probe(device_t);
284 static int      bge_attach(device_t);
285 static int      bge_detach(device_t);
286 static void     bge_txeof(struct bge_softc *);
287 static void     bge_rxeof(struct bge_softc *);
288
289 static void     bge_tick(void *);
290 static void     bge_stats_update(struct bge_softc *);
291 static void     bge_stats_update_regs(struct bge_softc *);
292 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
293
294 #ifdef DEVICE_POLLING
295 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
296 #endif
297 static void     bge_intr(void *);
298 static void     bge_enable_intr(struct bge_softc *);
299 static void     bge_disable_intr(struct bge_softc *);
300 static void     bge_start(struct ifnet *);
301 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
302 static void     bge_init(void *);
303 static void     bge_stop(struct bge_softc *);
304 static void     bge_watchdog(struct ifnet *);
305 static void     bge_shutdown(device_t);
306 static int      bge_suspend(device_t);
307 static int      bge_resume(device_t);
308 static int      bge_ifmedia_upd(struct ifnet *);
309 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
310
311 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
312 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
313
314 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
315 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
316
317 static void     bge_setmulti(struct bge_softc *);
318 static void     bge_setpromisc(struct bge_softc *);
319
320 static int      bge_alloc_jumbo_mem(struct bge_softc *);
321 static void     bge_free_jumbo_mem(struct bge_softc *);
322 static struct bge_jslot
323                 *bge_jalloc(struct bge_softc *);
324 static void     bge_jfree(void *);
325 static void     bge_jref(void *);
326 static int      bge_newbuf_std(struct bge_softc *, int, int);
327 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
328 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
329 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
330 static int      bge_init_rx_ring_std(struct bge_softc *);
331 static void     bge_free_rx_ring_std(struct bge_softc *);
332 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
333 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
334 static void     bge_free_tx_ring(struct bge_softc *);
335 static int      bge_init_tx_ring(struct bge_softc *);
336
337 static int      bge_chipinit(struct bge_softc *);
338 static int      bge_blockinit(struct bge_softc *);
339
340 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
341 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
342 #ifdef notdef
343 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
344 #endif
345 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
346 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
347 static void     bge_writembx(struct bge_softc *, int, int);
348
349 static int      bge_miibus_readreg(device_t, int, int);
350 static int      bge_miibus_writereg(device_t, int, int, int);
351 static void     bge_miibus_statchg(device_t);
352 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
353 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
354 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
355
356 static void     bge_reset(struct bge_softc *);
357
358 static int      bge_dma_alloc(struct bge_softc *);
359 static void     bge_dma_free(struct bge_softc *);
360 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
361                                     bus_dma_tag_t *, bus_dmamap_t *,
362                                     void **, bus_addr_t *);
363 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
364
365 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
366 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
367 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
368 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
369
370 static void     bge_coal_change(struct bge_softc *);
371 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
372 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
373 static int      bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
374 static int      bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
375 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
376
377 /*
378  * Set following tunable to 1 for some IBM blade servers with the DNLK
379  * switch module. Auto negotiation is broken for those configurations.
380  */
381 static int      bge_fake_autoneg = 0;
382 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
383
384 /* Interrupt moderation control variables. */
385 static int      bge_rx_coal_ticks = 100;        /* usec */
386 static int      bge_tx_coal_ticks = 1023;       /* usec */
387 static int      bge_rx_max_coal_bds = 80;
388 static int      bge_tx_max_coal_bds = 128;
389
390 TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
391 TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
392 TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
393 TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
394
395 #if !defined(KTR_IF_BGE)
396 #define KTR_IF_BGE      KTR_ALL
397 #endif
398 KTR_INFO_MASTER(if_bge);
399 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
400 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
401 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
402 #define logif(name)     KTR_LOG(if_bge_ ## name)
403
404 static device_method_t bge_methods[] = {
405         /* Device interface */
406         DEVMETHOD(device_probe,         bge_probe),
407         DEVMETHOD(device_attach,        bge_attach),
408         DEVMETHOD(device_detach,        bge_detach),
409         DEVMETHOD(device_shutdown,      bge_shutdown),
410         DEVMETHOD(device_suspend,       bge_suspend),
411         DEVMETHOD(device_resume,        bge_resume),
412
413         /* bus interface */
414         DEVMETHOD(bus_print_child,      bus_generic_print_child),
415         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
416
417         /* MII interface */
418         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
419         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
420         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
421
422         { 0, 0 }
423 };
424
425 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
426 static devclass_t bge_devclass;
427
428 DECLARE_DUMMY_MODULE(if_bge);
429 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
430 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
431
432 static uint32_t
433 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
434 {
435         device_t dev = sc->bge_dev;
436         uint32_t val;
437
438         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
439         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
440         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
441         return (val);
442 }
443
444 static void
445 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
446 {
447         device_t dev = sc->bge_dev;
448
449         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
450         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
451         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
452 }
453
454 #ifdef notdef
455 static uint32_t
456 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
457 {
458         device_t dev = sc->bge_dev;
459
460         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
461         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
462 }
463 #endif
464
465 static void
466 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
467 {
468         device_t dev = sc->bge_dev;
469
470         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
471         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
472 }
473
474 static void
475 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
476 {
477         CSR_WRITE_4(sc, off, val);
478 }
479
480 static void
481 bge_writembx(struct bge_softc *sc, int off, int val)
482 {
483         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
484                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
485
486         CSR_WRITE_4(sc, off, val);
487 }
488
489 static uint8_t
490 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
491 {
492         uint32_t access, byte = 0;
493         int i;
494
495         /* Lock. */
496         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
497         for (i = 0; i < 8000; i++) {
498                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
499                         break;
500                 DELAY(20);
501         }
502         if (i == 8000)
503                 return (1);
504
505         /* Enable access. */
506         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
507         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
508
509         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
510         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
511         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
512                 DELAY(10);
513                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
514                         DELAY(10);
515                         break;
516                 }
517         }
518
519         if (i == BGE_TIMEOUT * 10) {
520                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
521                 return (1);
522         }
523
524         /* Get result. */
525         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
526
527         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
528
529         /* Disable access. */
530         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
531
532         /* Unlock. */
533         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
534         CSR_READ_4(sc, BGE_NVRAM_SWARB);
535
536         return (0);
537 }
538
539 /*
540  * Read a sequence of bytes from NVRAM.
541  */
542 static int
543 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
544 {
545         int err = 0, i;
546         uint8_t byte = 0;
547
548         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
549                 return (1);
550
551         for (i = 0; i < cnt; i++) {
552                 err = bge_nvram_getbyte(sc, off + i, &byte);
553                 if (err)
554                         break;
555                 *(dest + i) = byte;
556         }
557
558         return (err ? 1 : 0);
559 }
560
561 /*
562  * Read a byte of data stored in the EEPROM at address 'addr.' The
563  * BCM570x supports both the traditional bitbang interface and an
564  * auto access interface for reading the EEPROM. We use the auto
565  * access method.
566  */
567 static uint8_t
568 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
569 {
570         int i;
571         uint32_t byte = 0;
572
573         /*
574          * Enable use of auto EEPROM access so we can avoid
575          * having to use the bitbang method.
576          */
577         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
578
579         /* Reset the EEPROM, load the clock period. */
580         CSR_WRITE_4(sc, BGE_EE_ADDR,
581             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
582         DELAY(20);
583
584         /* Issue the read EEPROM command. */
585         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
586
587         /* Wait for completion */
588         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
589                 DELAY(10);
590                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
591                         break;
592         }
593
594         if (i == BGE_TIMEOUT) {
595                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
596                 return(1);
597         }
598
599         /* Get result. */
600         byte = CSR_READ_4(sc, BGE_EE_DATA);
601
602         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
603
604         return(0);
605 }
606
607 /*
608  * Read a sequence of bytes from the EEPROM.
609  */
610 static int
611 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
612 {
613         size_t i;
614         int err;
615         uint8_t byte;
616
617         for (byte = 0, err = 0, i = 0; i < len; i++) {
618                 err = bge_eeprom_getbyte(sc, off + i, &byte);
619                 if (err)
620                         break;
621                 *(dest + i) = byte;
622         }
623
624         return(err ? 1 : 0);
625 }
626
627 static int
628 bge_miibus_readreg(device_t dev, int phy, int reg)
629 {
630         struct bge_softc *sc = device_get_softc(dev);
631         struct ifnet *ifp = &sc->arpcom.ac_if;
632         uint32_t val, autopoll;
633         int i;
634
635         /*
636          * Broadcom's own driver always assumes the internal
637          * PHY is at GMII address 1. On some chips, the PHY responds
638          * to accesses at all addresses, which could cause us to
639          * bogusly attach the PHY 32 times at probe type. Always
640          * restricting the lookup to address 1 is simpler than
641          * trying to figure out which chips revisions should be
642          * special-cased.
643          */
644         if (phy != 1)
645                 return(0);
646
647         /* Reading with autopolling on may trigger PCI errors */
648         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
649         if (autopoll & BGE_MIMODE_AUTOPOLL) {
650                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
651                 DELAY(40);
652         }
653
654         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
655             BGE_MIPHY(phy)|BGE_MIREG(reg));
656
657         for (i = 0; i < BGE_TIMEOUT; i++) {
658                 DELAY(10);
659                 val = CSR_READ_4(sc, BGE_MI_COMM);
660                 if (!(val & BGE_MICOMM_BUSY))
661                         break;
662         }
663
664         if (i == BGE_TIMEOUT) {
665                 if_printf(ifp, "PHY read timed out "
666                           "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
667                 val = 0;
668                 goto done;
669         }
670
671         DELAY(5);
672         val = CSR_READ_4(sc, BGE_MI_COMM);
673
674 done:
675         if (autopoll & BGE_MIMODE_AUTOPOLL) {
676                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
677                 DELAY(40);
678         }
679
680         if (val & BGE_MICOMM_READFAIL)
681                 return(0);
682
683         return(val & 0xFFFF);
684 }
685
686 static int
687 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
688 {
689         struct bge_softc *sc = device_get_softc(dev);
690         uint32_t autopoll;
691         int i;
692
693         /*
694          * See the related comment in bge_miibus_readreg()
695          */
696         if (phy != 1)
697                 return(0);
698
699         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
700             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
701                return(0);
702
703         /* Reading with autopolling on may trigger PCI errors */
704         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
705         if (autopoll & BGE_MIMODE_AUTOPOLL) {
706                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
707                 DELAY(40);
708         }
709
710         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
711             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
712
713         for (i = 0; i < BGE_TIMEOUT; i++) {
714                 DELAY(10);
715                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
716                         DELAY(5);
717                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
718                         break;
719                 }
720         }
721
722         if (autopoll & BGE_MIMODE_AUTOPOLL) {
723                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
724                 DELAY(40);
725         }
726
727         if (i == BGE_TIMEOUT) {
728                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
729                           "(phy %d, reg %d, val %d)\n", phy, reg, val);
730                 return(0);
731         }
732
733         return(0);
734 }
735
736 static void
737 bge_miibus_statchg(device_t dev)
738 {
739         struct bge_softc *sc;
740         struct mii_data *mii;
741
742         sc = device_get_softc(dev);
743         mii = device_get_softc(sc->bge_miibus);
744
745         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
746         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
747                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
748         } else {
749                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
750         }
751
752         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
753                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
754         } else {
755                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
756         }
757 }
758
759 /*
760  * Memory management for jumbo frames.
761  */
762 static int
763 bge_alloc_jumbo_mem(struct bge_softc *sc)
764 {
765         struct ifnet *ifp = &sc->arpcom.ac_if;
766         struct bge_jslot *entry;
767         uint8_t *ptr;
768         bus_addr_t paddr;
769         int i, error;
770
771         /*
772          * Create tag for jumbo mbufs.
773          * This is really a bit of a kludge. We allocate a special
774          * jumbo buffer pool which (thanks to the way our DMA
775          * memory allocation works) will consist of contiguous
776          * pages. This means that even though a jumbo buffer might
777          * be larger than a page size, we don't really need to
778          * map it into more than one DMA segment. However, the
779          * default mbuf tag will result in multi-segment mappings,
780          * so we have to create a special jumbo mbuf tag that
781          * lets us get away with mapping the jumbo buffers as
782          * a single segment. I think eventually the driver should
783          * be changed so that it uses ordinary mbufs and cluster
784          * buffers, i.e. jumbo frames can span multiple DMA
785          * descriptors. But that's a project for another day.
786          */
787
788         /*
789          * Create DMA stuffs for jumbo RX ring.
790          */
791         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
792                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
793                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
794                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
795                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
796         if (error) {
797                 if_printf(ifp, "could not create jumbo RX ring\n");
798                 return error;
799         }
800
801         /*
802          * Create DMA stuffs for jumbo buffer block.
803          */
804         error = bge_dma_block_alloc(sc, BGE_JMEM,
805                                     &sc->bge_cdata.bge_jumbo_tag,
806                                     &sc->bge_cdata.bge_jumbo_map,
807                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
808                                     &paddr);
809         if (error) {
810                 if_printf(ifp, "could not create jumbo buffer\n");
811                 return error;
812         }
813
814         SLIST_INIT(&sc->bge_jfree_listhead);
815
816         /*
817          * Now divide it up into 9K pieces and save the addresses
818          * in an array. Note that we play an evil trick here by using
819          * the first few bytes in the buffer to hold the the address
820          * of the softc structure for this interface. This is because
821          * bge_jfree() needs it, but it is called by the mbuf management
822          * code which will not pass it to us explicitly.
823          */
824         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
825                 entry = &sc->bge_cdata.bge_jslots[i];
826                 entry->bge_sc = sc;
827                 entry->bge_buf = ptr;
828                 entry->bge_paddr = paddr;
829                 entry->bge_inuse = 0;
830                 entry->bge_slot = i;
831                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
832
833                 ptr += BGE_JLEN;
834                 paddr += BGE_JLEN;
835         }
836         return 0;
837 }
838
839 static void
840 bge_free_jumbo_mem(struct bge_softc *sc)
841 {
842         /* Destroy jumbo RX ring. */
843         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
844                            sc->bge_cdata.bge_rx_jumbo_ring_map,
845                            sc->bge_ldata.bge_rx_jumbo_ring);
846
847         /* Destroy jumbo buffer block. */
848         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
849                            sc->bge_cdata.bge_jumbo_map,
850                            sc->bge_ldata.bge_jumbo_buf);
851 }
852
853 /*
854  * Allocate a jumbo buffer.
855  */
856 static struct bge_jslot *
857 bge_jalloc(struct bge_softc *sc)
858 {
859         struct bge_jslot *entry;
860
861         lwkt_serialize_enter(&sc->bge_jslot_serializer);
862         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
863         if (entry) {
864                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
865                 entry->bge_inuse = 1;
866         } else {
867                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
868         }
869         lwkt_serialize_exit(&sc->bge_jslot_serializer);
870         return(entry);
871 }
872
873 /*
874  * Adjust usage count on a jumbo buffer.
875  */
876 static void
877 bge_jref(void *arg)
878 {
879         struct bge_jslot *entry = (struct bge_jslot *)arg;
880         struct bge_softc *sc = entry->bge_sc;
881
882         if (sc == NULL)
883                 panic("bge_jref: can't find softc pointer!");
884
885         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
886                 panic("bge_jref: asked to reference buffer "
887                     "that we don't manage!");
888         } else if (entry->bge_inuse == 0) {
889                 panic("bge_jref: buffer already free!");
890         } else {
891                 atomic_add_int(&entry->bge_inuse, 1);
892         }
893 }
894
895 /*
896  * Release a jumbo buffer.
897  */
898 static void
899 bge_jfree(void *arg)
900 {
901         struct bge_jslot *entry = (struct bge_jslot *)arg;
902         struct bge_softc *sc = entry->bge_sc;
903
904         if (sc == NULL)
905                 panic("bge_jfree: can't find softc pointer!");
906
907         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
908                 panic("bge_jfree: asked to free buffer that we don't manage!");
909         } else if (entry->bge_inuse == 0) {
910                 panic("bge_jfree: buffer already free!");
911         } else {
912                 /*
913                  * Possible MP race to 0, use the serializer.  The atomic insn
914                  * is still needed for races against bge_jref().
915                  */
916                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
917                 atomic_subtract_int(&entry->bge_inuse, 1);
918                 if (entry->bge_inuse == 0) {
919                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
920                                           entry, jslot_link);
921                 }
922                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
923         }
924 }
925
926
927 /*
928  * Intialize a standard receive ring descriptor.
929  */
930 static int
931 bge_newbuf_std(struct bge_softc *sc, int i, int init)
932 {
933         struct mbuf *m_new = NULL;
934         bus_dma_segment_t seg;
935         bus_dmamap_t map;
936         int error, nsegs;
937
938         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
939         if (m_new == NULL)
940                 return ENOBUFS;
941         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
942
943         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
944                 m_adj(m_new, ETHER_ALIGN);
945
946         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
947                         sc->bge_cdata.bge_rx_tmpmap, m_new,
948                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
949         if (error) {
950                 m_freem(m_new);
951                 return error;
952         }
953
954         if (!init) {
955                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
956                                 sc->bge_cdata.bge_rx_std_dmamap[i],
957                                 BUS_DMASYNC_POSTREAD);
958                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
959                         sc->bge_cdata.bge_rx_std_dmamap[i]);
960         }
961
962         map = sc->bge_cdata.bge_rx_tmpmap;
963         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
964         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
965
966         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
967         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
968
969         bge_setup_rxdesc_std(sc, i);
970         return 0;
971 }
972
973 static void
974 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
975 {
976         struct bge_rxchain *rc;
977         struct bge_rx_bd *r;
978
979         rc = &sc->bge_cdata.bge_rx_std_chain[i];
980         r = &sc->bge_ldata.bge_rx_std_ring[i];
981
982         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
983         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
984         r->bge_len = rc->bge_mbuf->m_len;
985         r->bge_idx = i;
986         r->bge_flags = BGE_RXBDFLAG_END;
987 }
988
989 /*
990  * Initialize a jumbo receive ring descriptor. This allocates
991  * a jumbo buffer from the pool managed internally by the driver.
992  */
993 static int
994 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
995 {
996         struct mbuf *m_new = NULL;
997         struct bge_jslot *buf;
998         bus_addr_t paddr;
999
1000         /* Allocate the mbuf. */
1001         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1002         if (m_new == NULL)
1003                 return ENOBUFS;
1004
1005         /* Allocate the jumbo buffer */
1006         buf = bge_jalloc(sc);
1007         if (buf == NULL) {
1008                 m_freem(m_new);
1009                 return ENOBUFS;
1010         }
1011
1012         /* Attach the buffer to the mbuf. */
1013         m_new->m_ext.ext_arg = buf;
1014         m_new->m_ext.ext_buf = buf->bge_buf;
1015         m_new->m_ext.ext_free = bge_jfree;
1016         m_new->m_ext.ext_ref = bge_jref;
1017         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1018
1019         m_new->m_flags |= M_EXT;
1020
1021         m_new->m_data = m_new->m_ext.ext_buf;
1022         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1023
1024         paddr = buf->bge_paddr;
1025         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1026                 m_adj(m_new, ETHER_ALIGN);
1027                 paddr += ETHER_ALIGN;
1028         }
1029
1030         /* Save necessary information */
1031         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1032         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1033
1034         /* Set up the descriptor. */
1035         bge_setup_rxdesc_jumbo(sc, i);
1036         return 0;
1037 }
1038
1039 static void
1040 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1041 {
1042         struct bge_rx_bd *r;
1043         struct bge_rxchain *rc;
1044
1045         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1046         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1047
1048         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1049         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1050         r->bge_len = rc->bge_mbuf->m_len;
1051         r->bge_idx = i;
1052         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1053 }
1054
1055 static int
1056 bge_init_rx_ring_std(struct bge_softc *sc)
1057 {
1058         int i, error;
1059
1060         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1061                 error = bge_newbuf_std(sc, i, 1);
1062                 if (error)
1063                         return error;
1064         };
1065
1066         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1067         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1068
1069         return(0);
1070 }
1071
1072 static void
1073 bge_free_rx_ring_std(struct bge_softc *sc)
1074 {
1075         int i;
1076
1077         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1078                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1079
1080                 if (rc->bge_mbuf != NULL) {
1081                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1082                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1083                         m_freem(rc->bge_mbuf);
1084                         rc->bge_mbuf = NULL;
1085                 }
1086                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1087                     sizeof(struct bge_rx_bd));
1088         }
1089 }
1090
1091 static int
1092 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1093 {
1094         struct bge_rcb *rcb;
1095         int i, error;
1096
1097         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1098                 error = bge_newbuf_jumbo(sc, i, 1);
1099                 if (error)
1100                         return error;
1101         };
1102
1103         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1104
1105         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1106         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1107         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1108
1109         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1110
1111         return(0);
1112 }
1113
1114 static void
1115 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1116 {
1117         int i;
1118
1119         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1120                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1121
1122                 if (rc->bge_mbuf != NULL) {
1123                         m_freem(rc->bge_mbuf);
1124                         rc->bge_mbuf = NULL;
1125                 }
1126                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1127                     sizeof(struct bge_rx_bd));
1128         }
1129 }
1130
1131 static void
1132 bge_free_tx_ring(struct bge_softc *sc)
1133 {
1134         int i;
1135
1136         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1137                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1138                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1139                                           sc->bge_cdata.bge_tx_dmamap[i]);
1140                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1141                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1142                 }
1143                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1144                     sizeof(struct bge_tx_bd));
1145         }
1146 }
1147
1148 static int
1149 bge_init_tx_ring(struct bge_softc *sc)
1150 {
1151         sc->bge_txcnt = 0;
1152         sc->bge_tx_saved_considx = 0;
1153         sc->bge_tx_prodidx = 0;
1154
1155         /* Initialize transmit producer index for host-memory send ring. */
1156         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1157
1158         /* 5700 b2 errata */
1159         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1160                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1161
1162         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1163         /* 5700 b2 errata */
1164         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1165                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1166
1167         return(0);
1168 }
1169
1170 static void
1171 bge_setmulti(struct bge_softc *sc)
1172 {
1173         struct ifnet *ifp;
1174         struct ifmultiaddr *ifma;
1175         uint32_t hashes[4] = { 0, 0, 0, 0 };
1176         int h, i;
1177
1178         ifp = &sc->arpcom.ac_if;
1179
1180         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1181                 for (i = 0; i < 4; i++)
1182                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1183                 return;
1184         }
1185
1186         /* First, zot all the existing filters. */
1187         for (i = 0; i < 4; i++)
1188                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1189
1190         /* Now program new ones. */
1191         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1192                 if (ifma->ifma_addr->sa_family != AF_LINK)
1193                         continue;
1194                 h = ether_crc32_le(
1195                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1196                     ETHER_ADDR_LEN) & 0x7f;
1197                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1198         }
1199
1200         for (i = 0; i < 4; i++)
1201                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1202 }
1203
1204 /*
1205  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1206  * self-test results.
1207  */
1208 static int
1209 bge_chipinit(struct bge_softc *sc)
1210 {
1211         int i;
1212         uint32_t dma_rw_ctl;
1213
1214         /* Set endian type before we access any non-PCI registers. */
1215         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1216
1217         /* Clear the MAC control register */
1218         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1219
1220         /*
1221          * Clear the MAC statistics block in the NIC's
1222          * internal memory.
1223          */
1224         for (i = BGE_STATS_BLOCK;
1225             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1226                 BGE_MEMWIN_WRITE(sc, i, 0);
1227
1228         for (i = BGE_STATUS_BLOCK;
1229             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1230                 BGE_MEMWIN_WRITE(sc, i, 0);
1231
1232         /* Set up the PCI DMA control register. */
1233         if (sc->bge_flags & BGE_FLAG_PCIE) {
1234                 /* PCI Express */
1235                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1236                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1237                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1238         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1239                 /* PCI-X bus */
1240                 if (BGE_IS_5714_FAMILY(sc)) {
1241                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1242                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1243                         /* XXX magic values, Broadcom-supplied Linux driver */
1244                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1245                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1246                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1247                         } else {
1248                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1249                         }
1250                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1251                         /*
1252                          * The 5704 uses a different encoding of read/write
1253                          * watermarks.
1254                          */
1255                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1256                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1257                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1258                 } else {
1259                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1260                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1261                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1262                             (0x0F);
1263                 }
1264
1265                 /*
1266                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1267                  * for hardware bugs.
1268                  */
1269                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1270                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1271                         uint32_t tmp;
1272
1273                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1274                         if (tmp == 0x6 || tmp == 0x7)
1275                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1276                 }
1277         } else {
1278                 /* Conventional PCI bus */
1279                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1280                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1281                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1282                     (0x0F);
1283         }
1284
1285         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1286             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1287             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1288                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1289         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1290
1291         /*
1292          * Set up general mode register.
1293          */
1294         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1295             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1296             BGE_MODECTL_TX_NO_PHDR_CSUM);
1297
1298         /*
1299          * Disable memory write invalidate.  Apparently it is not supported
1300          * properly by these devices.
1301          */
1302         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1303
1304         /* Set the timer prescaler (always 66Mhz) */
1305         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1306
1307         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1308                 DELAY(40);      /* XXX */
1309
1310                 /* Put PHY into ready state */
1311                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1312                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1313                 DELAY(40);
1314         }
1315
1316         return(0);
1317 }
1318
1319 static int
1320 bge_blockinit(struct bge_softc *sc)
1321 {
1322         struct bge_rcb *rcb;
1323         bus_size_t vrcb;
1324         bge_hostaddr taddr;
1325         uint32_t val;
1326         int i;
1327
1328         /*
1329          * Initialize the memory window pointer register so that
1330          * we can access the first 32K of internal NIC RAM. This will
1331          * allow us to set up the TX send ring RCBs and the RX return
1332          * ring RCBs, plus other things which live in NIC memory.
1333          */
1334         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1335
1336         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1337
1338         if (!BGE_IS_5705_PLUS(sc)) {
1339                 /* Configure mbuf memory pool */
1340                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1341                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1342                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1343                 else
1344                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1345
1346                 /* Configure DMA resource pool */
1347                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1348                     BGE_DMA_DESCRIPTORS);
1349                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1350         }
1351
1352         /* Configure mbuf pool watermarks */
1353         if (!BGE_IS_5705_PLUS(sc)) {
1354                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1355                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1356                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1357         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1358                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1359                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1360                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1361         } else {
1362                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1363                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1364                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1365         }
1366
1367         /* Configure DMA resource watermarks */
1368         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1369         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1370
1371         /* Enable buffer manager */
1372         if (!BGE_IS_5705_PLUS(sc)) {
1373                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1374                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1375
1376                 /* Poll for buffer manager start indication */
1377                 for (i = 0; i < BGE_TIMEOUT; i++) {
1378                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1379                                 break;
1380                         DELAY(10);
1381                 }
1382
1383                 if (i == BGE_TIMEOUT) {
1384                         if_printf(&sc->arpcom.ac_if,
1385                                   "buffer manager failed to start\n");
1386                         return(ENXIO);
1387                 }
1388         }
1389
1390         /* Enable flow-through queues */
1391         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1392         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1393
1394         /* Wait until queue initialization is complete */
1395         for (i = 0; i < BGE_TIMEOUT; i++) {
1396                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1397                         break;
1398                 DELAY(10);
1399         }
1400
1401         if (i == BGE_TIMEOUT) {
1402                 if_printf(&sc->arpcom.ac_if,
1403                           "flow-through queue init failed\n");
1404                 return(ENXIO);
1405         }
1406
1407         /* Initialize the standard RX ring control block */
1408         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1409         rcb->bge_hostaddr.bge_addr_lo =
1410             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1411         rcb->bge_hostaddr.bge_addr_hi =
1412             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1413         if (BGE_IS_5705_PLUS(sc))
1414                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1415         else
1416                 rcb->bge_maxlen_flags =
1417                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1418         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1419         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1420         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1421         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1422         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1423
1424         /*
1425          * Initialize the jumbo RX ring control block
1426          * We set the 'ring disabled' bit in the flags
1427          * field until we're actually ready to start
1428          * using this ring (i.e. once we set the MTU
1429          * high enough to require it).
1430          */
1431         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1432                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1433
1434                 rcb->bge_hostaddr.bge_addr_lo =
1435                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1436                 rcb->bge_hostaddr.bge_addr_hi =
1437                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1438                 rcb->bge_maxlen_flags =
1439                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1440                     BGE_RCB_FLAG_RING_DISABLED);
1441                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1442                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1443                     rcb->bge_hostaddr.bge_addr_hi);
1444                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1445                     rcb->bge_hostaddr.bge_addr_lo);
1446                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1447                     rcb->bge_maxlen_flags);
1448                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1449
1450                 /* Set up dummy disabled mini ring RCB */
1451                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1452                 rcb->bge_maxlen_flags =
1453                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1454                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1455                     rcb->bge_maxlen_flags);
1456         }
1457
1458         /*
1459          * Set the BD ring replentish thresholds. The recommended
1460          * values are 1/8th the number of descriptors allocated to
1461          * each ring.
1462          */
1463         if (BGE_IS_5705_PLUS(sc))
1464                 val = 8;
1465         else
1466                 val = BGE_STD_RX_RING_CNT / 8;
1467         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1468         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1469
1470         /*
1471          * Disable all unused send rings by setting the 'ring disabled'
1472          * bit in the flags field of all the TX send ring control blocks.
1473          * These are located in NIC memory.
1474          */
1475         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1476         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1477                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1478                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1479                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1480                 vrcb += sizeof(struct bge_rcb);
1481         }
1482
1483         /* Configure TX RCB 0 (we use only the first ring) */
1484         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1485         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1486         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1487         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1488         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1489             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1490         if (!BGE_IS_5705_PLUS(sc)) {
1491                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1492                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1493         }
1494
1495         /* Disable all unused RX return rings */
1496         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1497         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1498                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1499                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1500                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1501                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1502                     BGE_RCB_FLAG_RING_DISABLED));
1503                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1504                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1505                     (i * (sizeof(uint64_t))), 0);
1506                 vrcb += sizeof(struct bge_rcb);
1507         }
1508
1509         /* Initialize RX ring indexes */
1510         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1511         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1512         bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1513
1514         /*
1515          * Set up RX return ring 0
1516          * Note that the NIC address for RX return rings is 0x00000000.
1517          * The return rings live entirely within the host, so the
1518          * nicaddr field in the RCB isn't used.
1519          */
1520         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1521         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1522         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1523         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1524         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1525         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1526             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1527
1528         /* Set random backoff seed for TX */
1529         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1530             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1531             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1532             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1533             BGE_TX_BACKOFF_SEED_MASK);
1534
1535         /* Set inter-packet gap */
1536         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1537
1538         /*
1539          * Specify which ring to use for packets that don't match
1540          * any RX rules.
1541          */
1542         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1543
1544         /*
1545          * Configure number of RX lists. One interrupt distribution
1546          * list, sixteen active lists, one bad frames class.
1547          */
1548         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1549
1550         /* Inialize RX list placement stats mask. */
1551         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1552         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1553
1554         /* Disable host coalescing until we get it set up */
1555         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1556
1557         /* Poll to make sure it's shut down. */
1558         for (i = 0; i < BGE_TIMEOUT; i++) {
1559                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1560                         break;
1561                 DELAY(10);
1562         }
1563
1564         if (i == BGE_TIMEOUT) {
1565                 if_printf(&sc->arpcom.ac_if,
1566                           "host coalescing engine failed to idle\n");
1567                 return(ENXIO);
1568         }
1569
1570         /* Set up host coalescing defaults */
1571         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1572         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1573         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1574         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1575         if (!BGE_IS_5705_PLUS(sc)) {
1576                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1577                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1578         }
1579         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1580         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1581
1582         /* Set up address of statistics block */
1583         if (!BGE_IS_5705_PLUS(sc)) {
1584                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1585                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1586                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1587                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1588
1589                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1590                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1591                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1592         }
1593
1594         /* Set up address of status block */
1595         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1596             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1597         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1598             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1599         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1600         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1601
1602         /* Turn on host coalescing state machine */
1603         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1604
1605         /* Turn on RX BD completion state machine and enable attentions */
1606         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1607             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1608
1609         /* Turn on RX list placement state machine */
1610         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1611
1612         /* Turn on RX list selector state machine. */
1613         if (!BGE_IS_5705_PLUS(sc))
1614                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1615
1616         /* Turn on DMA, clear stats */
1617         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1618             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1619             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1620             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1621             ((sc->bge_flags & BGE_FLAG_TBI) ?
1622              BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1623
1624         /* Set misc. local control, enable interrupts on attentions */
1625         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1626
1627 #ifdef notdef
1628         /* Assert GPIO pins for PHY reset */
1629         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1630             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1631         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1632             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1633 #endif
1634
1635         /* Turn on DMA completion state machine */
1636         if (!BGE_IS_5705_PLUS(sc))
1637                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1638
1639         /* Turn on write DMA state machine */
1640         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1641         if (BGE_IS_5755_PLUS(sc))
1642                 val |= (1 << 29);       /* Enable host coalescing bug fix. */
1643         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1644         DELAY(40);
1645
1646         /* Turn on read DMA state machine */
1647         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1648         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1649             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1650             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1651                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1652                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1653                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1654         if (sc->bge_flags & BGE_FLAG_PCIE)
1655                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1656         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1657         DELAY(40);
1658
1659         /* Turn on RX data completion state machine */
1660         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1661
1662         /* Turn on RX BD initiator state machine */
1663         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1664
1665         /* Turn on RX data and RX BD initiator state machine */
1666         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1667
1668         /* Turn on Mbuf cluster free state machine */
1669         if (!BGE_IS_5705_PLUS(sc))
1670                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1671
1672         /* Turn on send BD completion state machine */
1673         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1674
1675         /* Turn on send data completion state machine */
1676         val = BGE_SDCMODE_ENABLE;
1677         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1678                 val |= BGE_SDCMODE_CDELAY; 
1679         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1680
1681         /* Turn on send data initiator state machine */
1682         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1683
1684         /* Turn on send BD initiator state machine */
1685         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1686
1687         /* Turn on send BD selector state machine */
1688         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1689
1690         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1691         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1692             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1693
1694         /* ack/clear link change events */
1695         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1696             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1697             BGE_MACSTAT_LINK_CHANGED);
1698         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1699
1700         /* Enable PHY auto polling (for MII/GMII only) */
1701         if (sc->bge_flags & BGE_FLAG_TBI) {
1702                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1703         } else {
1704                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1705                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1706                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1707                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1708                             BGE_EVTENB_MI_INTERRUPT);
1709                 }
1710         }
1711
1712         /*
1713          * Clear any pending link state attention.
1714          * Otherwise some link state change events may be lost until attention
1715          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1716          * It's not necessary on newer BCM chips - perhaps enabling link
1717          * state change attentions implies clearing pending attention.
1718          */
1719         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1720             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1721             BGE_MACSTAT_LINK_CHANGED);
1722
1723         /* Enable link state change attentions. */
1724         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1725
1726         return(0);
1727 }
1728
1729 /*
1730  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1731  * against our list and return its name if we find a match. Note
1732  * that since the Broadcom controller contains VPD support, we
1733  * can get the device name string from the controller itself instead
1734  * of the compiled-in string. This is a little slow, but it guarantees
1735  * we'll always announce the right product name.
1736  */
1737 static int
1738 bge_probe(device_t dev)
1739 {
1740         const struct bge_type *t;
1741         uint16_t product, vendor;
1742
1743         product = pci_get_device(dev);
1744         vendor = pci_get_vendor(dev);
1745
1746         for (t = bge_devs; t->bge_name != NULL; t++) {
1747                 if (vendor == t->bge_vid && product == t->bge_did)
1748                         break;
1749         }
1750         if (t->bge_name == NULL)
1751                 return(ENXIO);
1752
1753         device_set_desc(dev, t->bge_name);
1754         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) {
1755                 struct bge_softc *sc = device_get_softc(dev);
1756                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1757         }
1758         return(0);
1759 }
1760
1761 static int
1762 bge_attach(device_t dev)
1763 {
1764         struct ifnet *ifp;
1765         struct bge_softc *sc;
1766         uint32_t hwcfg = 0;
1767         int error = 0, rid;
1768         uint8_t ether_addr[ETHER_ADDR_LEN];
1769
1770         sc = device_get_softc(dev);
1771         sc->bge_dev = dev;
1772         callout_init(&sc->bge_stat_timer);
1773         lwkt_serialize_init(&sc->bge_jslot_serializer);
1774
1775 #ifndef BURN_BRIDGES
1776         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1777                 uint32_t irq, mem;
1778
1779                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1780                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1781
1782                 device_printf(dev, "chip is in D%d power mode "
1783                     "-- setting to D0\n", pci_get_powerstate(dev));
1784
1785                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1786
1787                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1788                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1789         }
1790 #endif  /* !BURN_BRIDGE */
1791
1792         /*
1793          * Map control/status registers.
1794          */
1795         pci_enable_busmaster(dev);
1796
1797         rid = BGE_PCI_BAR0;
1798         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1799             RF_ACTIVE);
1800
1801         if (sc->bge_res == NULL) {
1802                 device_printf(dev, "couldn't map memory\n");
1803                 return ENXIO;
1804         }
1805
1806         sc->bge_btag = rman_get_bustag(sc->bge_res);
1807         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1808
1809         /* Save various chip information */
1810         sc->bge_chipid =
1811             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1812             BGE_PCIMISCCTL_ASICREV_SHIFT;
1813         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
1814                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
1815         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1816         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1817
1818         /* Save chipset family. */
1819         switch (sc->bge_asicrev) {
1820         case BGE_ASICREV_BCM5755:
1821         case BGE_ASICREV_BCM5761:
1822         case BGE_ASICREV_BCM5784:
1823         case BGE_ASICREV_BCM5785:
1824         case BGE_ASICREV_BCM5787:
1825         case BGE_ASICREV_BCM57780:
1826             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
1827                 BGE_FLAG_5705_PLUS;
1828             break;
1829
1830         case BGE_ASICREV_BCM5700:
1831         case BGE_ASICREV_BCM5701:
1832         case BGE_ASICREV_BCM5703:
1833         case BGE_ASICREV_BCM5704:
1834                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1835                 break;
1836
1837         case BGE_ASICREV_BCM5714_A0:
1838         case BGE_ASICREV_BCM5780:
1839         case BGE_ASICREV_BCM5714:
1840                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1841                 /* Fall through */
1842
1843         case BGE_ASICREV_BCM5750:
1844         case BGE_ASICREV_BCM5752:
1845         case BGE_ASICREV_BCM5906:
1846                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1847                 /* Fall through */
1848
1849         case BGE_ASICREV_BCM5705:
1850                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1851                 break;
1852         }
1853
1854         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
1855                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
1856
1857         /*
1858          * Set various quirk flags.
1859          */
1860
1861         sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1862         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1863             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1864              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1865               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1866             sc->bge_asicrev == BGE_ASICREV_BCM5906)
1867                 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1868
1869         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1870             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1871                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1872
1873         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1874             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1875                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1876
1877         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1878                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1879
1880         if (BGE_IS_5705_PLUS(sc) &&
1881                 !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
1882                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1883                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1884                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1885                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1886                         if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
1887                             sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1888                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1889                         sc->bge_flags |= BGE_FLAG_BER_BUG;
1890                 }
1891         }
1892
1893         /* Allocate interrupt */
1894         rid = 0;
1895
1896         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1897             RF_SHAREABLE | RF_ACTIVE);
1898
1899         if (sc->bge_irq == NULL) {
1900                 device_printf(dev, "couldn't map interrupt\n");
1901                 error = ENXIO;
1902                 goto fail;
1903         }
1904
1905         /*
1906          * Check if this is a PCI-X or PCI Express device.
1907          */
1908         if (BGE_IS_5705_PLUS(sc)) {
1909                 if (pci_is_pcie(dev)) {
1910                         sc->bge_flags |= BGE_FLAG_PCIE;
1911                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1912                 }
1913         } else {
1914                 /*
1915                  * Check if the device is in PCI-X Mode.
1916                  * (This bit is not valid on PCI Express controllers.)
1917                  */
1918                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1919                     BGE_PCISTATE_PCI_BUSMODE) == 0)
1920                         sc->bge_flags |= BGE_FLAG_PCIX;
1921         }
1922
1923         device_printf(dev, "CHIP ID 0x%08x; "
1924                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
1925                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
1926                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
1927                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
1928                         "PCI-E" : "PCI"));
1929
1930         ifp = &sc->arpcom.ac_if;
1931         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1932
1933         /* Try to reset the chip. */
1934         bge_reset(sc);
1935
1936         if (bge_chipinit(sc)) {
1937                 device_printf(dev, "chip initialization failed\n");
1938                 error = ENXIO;
1939                 goto fail;
1940         }
1941
1942         /*
1943          * Get station address
1944          */
1945         error = bge_get_eaddr(sc, ether_addr);
1946         if (error) {
1947                 device_printf(dev, "failed to read station address\n");
1948                 goto fail;
1949         }
1950
1951         /* 5705/5750 limits RX return ring to 512 entries. */
1952         if (BGE_IS_5705_PLUS(sc))
1953                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1954         else
1955                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1956
1957         error = bge_dma_alloc(sc);
1958         if (error)
1959                 goto fail;
1960
1961         /* Set default tuneable values. */
1962         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1963         sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1964         sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1965         sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1966         sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1967
1968         /* Set up ifnet structure */
1969         ifp->if_softc = sc;
1970         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1971         ifp->if_ioctl = bge_ioctl;
1972         ifp->if_start = bge_start;
1973 #ifdef DEVICE_POLLING
1974         ifp->if_poll = bge_poll;
1975 #endif
1976         ifp->if_watchdog = bge_watchdog;
1977         ifp->if_init = bge_init;
1978         ifp->if_mtu = ETHERMTU;
1979         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1980         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1981         ifq_set_ready(&ifp->if_snd);
1982
1983         /*
1984          * 5700 B0 chips do not support checksumming correctly due
1985          * to hardware bugs.
1986          */
1987         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
1988                 ifp->if_capabilities |= IFCAP_HWCSUM;
1989                 ifp->if_hwassist = BGE_CSUM_FEATURES;
1990         }
1991         ifp->if_capenable = ifp->if_capabilities;
1992
1993         /*
1994          * Figure out what sort of media we have by checking the
1995          * hardware config word in the first 32k of NIC internal memory,
1996          * or fall back to examining the EEPROM if necessary.
1997          * Note: on some BCM5700 cards, this value appears to be unset.
1998          * If that's the case, we have to rely on identifying the NIC
1999          * by its PCI subsystem ID, as we do below for the SysKonnect
2000          * SK-9D41.
2001          */
2002         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2003                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2004         else {
2005                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2006                                     sizeof(hwcfg))) {
2007                         device_printf(dev, "failed to read EEPROM\n");
2008                         error = ENXIO;
2009                         goto fail;
2010                 }
2011                 hwcfg = ntohl(hwcfg);
2012         }
2013
2014         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2015                 sc->bge_flags |= BGE_FLAG_TBI;
2016
2017         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2018         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
2019                 sc->bge_flags |= BGE_FLAG_TBI;
2020
2021         if (sc->bge_flags & BGE_FLAG_TBI) {
2022                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2023                     bge_ifmedia_upd, bge_ifmedia_sts);
2024                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2025                 ifmedia_add(&sc->bge_ifmedia,
2026                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2027                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2028                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2029                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2030         } else {
2031                 /*
2032                  * Do transceiver setup.
2033                  */
2034                 if (mii_phy_probe(dev, &sc->bge_miibus,
2035                     bge_ifmedia_upd, bge_ifmedia_sts)) {
2036                         device_printf(dev, "MII without any PHY!\n");
2037                         error = ENXIO;
2038                         goto fail;
2039                 }
2040         }
2041
2042         /*
2043          * When using the BCM5701 in PCI-X mode, data corruption has
2044          * been observed in the first few bytes of some received packets.
2045          * Aligning the packet buffer in memory eliminates the corruption.
2046          * Unfortunately, this misaligns the packet payloads.  On platforms
2047          * which do not support unaligned accesses, we will realign the
2048          * payloads by copying the received packets.
2049          */
2050         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2051             (sc->bge_flags & BGE_FLAG_PCIX))
2052                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2053
2054         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2055             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2056                 sc->bge_link_upd = bge_bcm5700_link_upd;
2057                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2058         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2059                 sc->bge_link_upd = bge_tbi_link_upd;
2060                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2061         } else {
2062                 sc->bge_link_upd = bge_copper_link_upd;
2063                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2064         }
2065
2066         /*
2067          * Create sysctl nodes.
2068          */
2069         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2070         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2071                                               SYSCTL_STATIC_CHILDREN(_hw),
2072                                               OID_AUTO,
2073                                               device_get_nameunit(dev),
2074                                               CTLFLAG_RD, 0, "");
2075         if (sc->bge_sysctl_tree == NULL) {
2076                 device_printf(dev, "can't add sysctl node\n");
2077                 error = ENXIO;
2078                 goto fail;
2079         }
2080
2081         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2082                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2083                         OID_AUTO, "rx_coal_ticks",
2084                         CTLTYPE_INT | CTLFLAG_RW,
2085                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2086                         "Receive coalescing ticks (usec).");
2087         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2088                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2089                         OID_AUTO, "tx_coal_ticks",
2090                         CTLTYPE_INT | CTLFLAG_RW,
2091                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2092                         "Transmit coalescing ticks (usec).");
2093         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2094                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2095                         OID_AUTO, "rx_max_coal_bds",
2096                         CTLTYPE_INT | CTLFLAG_RW,
2097                         sc, 0, bge_sysctl_rx_max_coal_bds, "I",
2098                         "Receive max coalesced BD count.");
2099         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2100                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2101                         OID_AUTO, "tx_max_coal_bds",
2102                         CTLTYPE_INT | CTLFLAG_RW,
2103                         sc, 0, bge_sysctl_tx_max_coal_bds, "I",
2104                         "Transmit max coalesced BD count.");
2105
2106         /*
2107          * Call MI attach routine.
2108          */
2109         ether_ifattach(ifp, ether_addr, NULL);
2110
2111         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE,
2112                                bge_intr, sc, &sc->bge_intrhand, 
2113                                ifp->if_serializer);
2114         if (error) {
2115                 ether_ifdetach(ifp);
2116                 device_printf(dev, "couldn't set up irq\n");
2117                 goto fail;
2118         }
2119
2120         ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2121         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2122
2123         return(0);
2124 fail:
2125         bge_detach(dev);
2126         return(error);
2127 }
2128
2129 static int
2130 bge_detach(device_t dev)
2131 {
2132         struct bge_softc *sc = device_get_softc(dev);
2133
2134         if (device_is_attached(dev)) {
2135                 struct ifnet *ifp = &sc->arpcom.ac_if;
2136
2137                 lwkt_serialize_enter(ifp->if_serializer);
2138                 bge_stop(sc);
2139                 bge_reset(sc);
2140                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2141                 lwkt_serialize_exit(ifp->if_serializer);
2142
2143                 ether_ifdetach(ifp);
2144         }
2145
2146         if (sc->bge_flags & BGE_FLAG_TBI)
2147                 ifmedia_removeall(&sc->bge_ifmedia);
2148         if (sc->bge_miibus)
2149                 device_delete_child(dev, sc->bge_miibus);
2150         bus_generic_detach(dev);
2151
2152         if (sc->bge_irq != NULL)
2153                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2154
2155         if (sc->bge_res != NULL)
2156                 bus_release_resource(dev, SYS_RES_MEMORY,
2157                     BGE_PCI_BAR0, sc->bge_res);
2158
2159         if (sc->bge_sysctl_tree != NULL)
2160                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2161
2162         bge_dma_free(sc);
2163
2164         return 0;
2165 }
2166
2167 static void
2168 bge_reset(struct bge_softc *sc)
2169 {
2170         device_t dev;
2171         uint32_t cachesize, command, pcistate, reset;
2172         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2173         int i, val = 0;
2174
2175         dev = sc->bge_dev;
2176
2177         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2178             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2179                 if (sc->bge_flags & BGE_FLAG_PCIE)
2180                         write_op = bge_writemem_direct;
2181                 else
2182                         write_op = bge_writemem_ind;
2183         } else {
2184                 write_op = bge_writereg_ind;
2185         }
2186
2187         /* Save some important PCI state. */
2188         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2189         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2190         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2191
2192         pci_write_config(dev, BGE_PCI_MISC_CTL,
2193             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2194             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2195
2196         /* Disable fastboot on controllers that support it. */
2197         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2198             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2199             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2200                 if (bootverbose)
2201                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2202                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2203         }
2204
2205         /*
2206          * Write the magic number to SRAM at offset 0xB50.
2207          * When firmware finishes its initialization it will
2208          * write ~BGE_MAGIC_NUMBER to the same location.
2209          */
2210         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2211
2212         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2213
2214         /* XXX: Broadcom Linux driver. */
2215         if (sc->bge_flags & BGE_FLAG_PCIE) {
2216                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2217                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2218                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2219                         /* Prevent PCIE link training during global reset */
2220                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2221                         reset |= (1<<29);
2222                 }
2223         }
2224
2225         /* 
2226          * Set GPHY Power Down Override to leave GPHY
2227          * powered up in D0 uninitialized.
2228          */
2229         if (BGE_IS_5705_PLUS(sc))
2230                 reset |= 0x04000000;
2231
2232         /* Issue global reset */
2233         write_op(sc, BGE_MISC_CFG, reset);
2234
2235         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2236                 uint32_t status, ctrl;
2237
2238                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2239                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2240                     status | BGE_VCPU_STATUS_DRV_RESET);
2241                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2242                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2243                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2244         }
2245
2246         DELAY(1000);
2247
2248         /* XXX: Broadcom Linux driver. */
2249         if (sc->bge_flags & BGE_FLAG_PCIE) {
2250                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2251                         uint32_t v;
2252
2253                         DELAY(500000); /* wait for link training to complete */
2254                         v = pci_read_config(dev, 0xc4, 4);
2255                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2256                 }
2257                 /*
2258                  * Set PCIE max payload size to 128 bytes and
2259                  * clear error status.
2260                  */
2261                 pci_write_config(dev, 0xd8, 0xf5000, 4);
2262         }
2263
2264         /* Reset some of the PCI state that got zapped by reset */
2265         pci_write_config(dev, BGE_PCI_MISC_CTL,
2266             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2267             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2268         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2269         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2270         write_op(sc, BGE_MISC_CFG, (65 << 1));
2271
2272         /* Enable memory arbiter. */
2273         if (BGE_IS_5714_FAMILY(sc)) {
2274                 uint32_t val;
2275
2276                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2277                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2278         } else {
2279                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2280         }
2281
2282         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2283                 for (i = 0; i < BGE_TIMEOUT; i++) {
2284                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2285                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2286                                 break;
2287                         DELAY(100);
2288                 }
2289                 if (i == BGE_TIMEOUT) {
2290                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2291                         return;
2292                 }
2293         } else {
2294                 /*
2295                  * Poll until we see the 1's complement of the magic number.
2296                  * This indicates that the firmware initialization
2297                  * is complete.
2298                  */
2299                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2300                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2301                         if (val == ~BGE_MAGIC_NUMBER)
2302                                 break;
2303                         DELAY(10);
2304                 }
2305                 if (i == BGE_FIRMWARE_TIMEOUT) {
2306                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2307                                   "timed out, found 0x%08x\n", val);
2308                         return;
2309                 }
2310         }
2311
2312         /*
2313          * XXX Wait for the value of the PCISTATE register to
2314          * return to its original pre-reset state. This is a
2315          * fairly good indicator of reset completion. If we don't
2316          * wait for the reset to fully complete, trying to read
2317          * from the device's non-PCI registers may yield garbage
2318          * results.
2319          */
2320         for (i = 0; i < BGE_TIMEOUT; i++) {
2321                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2322                         break;
2323                 DELAY(10);
2324         }
2325
2326         if (sc->bge_flags & BGE_FLAG_PCIE) {
2327                 reset = bge_readmem_ind(sc, 0x7c00);
2328                 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2329         }
2330
2331         /* Fix up byte swapping */
2332         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2333             BGE_MODECTL_BYTESWAP_DATA);
2334
2335         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2336
2337         /*
2338          * The 5704 in TBI mode apparently needs some special
2339          * adjustment to insure the SERDES drive level is set
2340          * to 1.2V.
2341          */
2342         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2343             (sc->bge_flags & BGE_FLAG_TBI)) {
2344                 uint32_t serdescfg;
2345
2346                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2347                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2348                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2349         }
2350
2351         /* XXX: Broadcom Linux driver. */
2352         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2353             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2354                 uint32_t v;
2355
2356                 v = CSR_READ_4(sc, 0x7c00);
2357                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2358         }
2359
2360         DELAY(10000);
2361 }
2362
2363 /*
2364  * Frame reception handling. This is called if there's a frame
2365  * on the receive return list.
2366  *
2367  * Note: we have to be able to handle two possibilities here:
2368  * 1) the frame is from the jumbo recieve ring
2369  * 2) the frame is from the standard receive ring
2370  */
2371
2372 static void
2373 bge_rxeof(struct bge_softc *sc)
2374 {
2375         struct ifnet *ifp;
2376         int stdcnt = 0, jumbocnt = 0;
2377
2378         if (sc->bge_rx_saved_considx ==
2379             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2380                 return;
2381
2382         ifp = &sc->arpcom.ac_if;
2383
2384         while (sc->bge_rx_saved_considx !=
2385                sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2386                 struct bge_rx_bd        *cur_rx;
2387                 uint32_t                rxidx;
2388                 struct mbuf             *m = NULL;
2389                 uint16_t                vlan_tag = 0;
2390                 int                     have_tag = 0;
2391
2392                 cur_rx =
2393             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2394
2395                 rxidx = cur_rx->bge_idx;
2396                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2397                 logif(rx_pkt);
2398
2399                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2400                         have_tag = 1;
2401                         vlan_tag = cur_rx->bge_vlan_tag;
2402                 }
2403
2404                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2405                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2406                         jumbocnt++;
2407
2408                         if (rxidx != sc->bge_jumbo) {
2409                                 ifp->if_ierrors++;
2410                                 if_printf(ifp, "sw jumbo index(%d) "
2411                                     "and hw jumbo index(%d) mismatch, drop!\n",
2412                                     sc->bge_jumbo, rxidx);
2413                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2414                                 continue;
2415                         }
2416
2417                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2418                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2419                                 ifp->if_ierrors++;
2420                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2421                                 continue;
2422                         }
2423                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2424                                 ifp->if_ierrors++;
2425                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2426                                 continue;
2427                         }
2428                 } else {
2429                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2430                         stdcnt++;
2431
2432                         if (rxidx != sc->bge_std) {
2433                                 ifp->if_ierrors++;
2434                                 if_printf(ifp, "sw std index(%d) "
2435                                     "and hw std index(%d) mismatch, drop!\n",
2436                                     sc->bge_std, rxidx);
2437                                 bge_setup_rxdesc_std(sc, rxidx);
2438                                 continue;
2439                         }
2440
2441                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2442                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2443                                 ifp->if_ierrors++;
2444                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2445                                 continue;
2446                         }
2447                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2448                                 ifp->if_ierrors++;
2449                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2450                                 continue;
2451                         }
2452                 }
2453
2454                 ifp->if_ipackets++;
2455 #ifndef __i386__
2456                 /*
2457                  * The i386 allows unaligned accesses, but for other
2458                  * platforms we must make sure the payload is aligned.
2459                  */
2460                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2461                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2462                             cur_rx->bge_len);
2463                         m->m_data += ETHER_ALIGN;
2464                 }
2465 #endif
2466                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2467                 m->m_pkthdr.rcvif = ifp;
2468
2469                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2470                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2471                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2472                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2473                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2474                         }
2475                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2476                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2477                                 m->m_pkthdr.csum_data =
2478                                         cur_rx->bge_tcp_udp_csum;
2479                                 m->m_pkthdr.csum_flags |=
2480                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2481                         }
2482                 }
2483
2484                 /*
2485                  * If we received a packet with a vlan tag, pass it
2486                  * to vlan_input() instead of ether_input().
2487                  */
2488                 if (have_tag) {
2489                         m->m_flags |= M_VLANTAG;
2490                         m->m_pkthdr.ether_vlantag = vlan_tag;
2491                         have_tag = vlan_tag = 0;
2492                 }
2493                 ifp->if_input(ifp, m);
2494         }
2495
2496         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2497         if (stdcnt)
2498                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2499         if (jumbocnt)
2500                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2501 }
2502
2503 static void
2504 bge_txeof(struct bge_softc *sc)
2505 {
2506         struct bge_tx_bd *cur_tx = NULL;
2507         struct ifnet *ifp;
2508
2509         if (sc->bge_tx_saved_considx ==
2510             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2511                 return;
2512
2513         ifp = &sc->arpcom.ac_if;
2514
2515         /*
2516          * Go through our tx ring and free mbufs for those
2517          * frames that have been sent.
2518          */
2519         while (sc->bge_tx_saved_considx !=
2520                sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2521                 uint32_t idx = 0;
2522
2523                 idx = sc->bge_tx_saved_considx;
2524                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2525                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2526                         ifp->if_opackets++;
2527                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2528                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2529                             sc->bge_cdata.bge_tx_dmamap[idx]);
2530                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2531                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2532                 }
2533                 sc->bge_txcnt--;
2534                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2535                 logif(tx_pkt);
2536         }
2537
2538         if (cur_tx != NULL &&
2539             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2540             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2541                 ifp->if_flags &= ~IFF_OACTIVE;
2542
2543         if (sc->bge_txcnt == 0)
2544                 ifp->if_timer = 0;
2545
2546         if (!ifq_is_empty(&ifp->if_snd))
2547                 if_devstart(ifp);
2548 }
2549
2550 #ifdef DEVICE_POLLING
2551
2552 static void
2553 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2554 {
2555         struct bge_softc *sc = ifp->if_softc;
2556         uint32_t status;
2557
2558         switch(cmd) {
2559         case POLL_REGISTER:
2560                 bge_disable_intr(sc);
2561                 break;
2562         case POLL_DEREGISTER:
2563                 bge_enable_intr(sc);
2564                 break;
2565         case POLL_AND_CHECK_STATUS:
2566                 /*
2567                  * Process link state changes.
2568                  */
2569                 status = CSR_READ_4(sc, BGE_MAC_STS);
2570                 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2571                         sc->bge_link_evt = 0;
2572                         sc->bge_link_upd(sc, status);
2573                 }
2574                 /* fall through */
2575         case POLL_ONLY:
2576                 if (ifp->if_flags & IFF_RUNNING) {
2577                         bge_rxeof(sc);
2578                         bge_txeof(sc);
2579                 }
2580                 break;
2581         }
2582 }
2583
2584 #endif
2585
2586 static void
2587 bge_intr(void *xsc)
2588 {
2589         struct bge_softc *sc = xsc;
2590         struct ifnet *ifp = &sc->arpcom.ac_if;
2591         uint32_t status;
2592
2593         logif(intr);
2594
2595         /*
2596          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2597          * disable interrupts by writing nonzero like we used to, since with
2598          * our current organization this just gives complications and
2599          * pessimizations for re-enabling interrupts.  We used to have races
2600          * instead of the necessary complications.  Disabling interrupts
2601          * would just reduce the chance of a status update while we are
2602          * running (by switching to the interrupt-mode coalescence
2603          * parameters), but this chance is already very low so it is more
2604          * efficient to get another interrupt than prevent it.
2605          *
2606          * We do the ack first to ensure another interrupt if there is a
2607          * status update after the ack.  We don't check for the status
2608          * changing later because it is more efficient to get another
2609          * interrupt than prevent it, not quite as above (not checking is
2610          * a smaller optimization than not toggling the interrupt enable,
2611          * since checking doesn't involve PCI accesses and toggling require
2612          * the status check).  So toggling would probably be a pessimization
2613          * even with MSI.  It would only be needed for using a task queue.
2614          */
2615         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
2616
2617         /*
2618          * Process link state changes.
2619          */
2620         status = CSR_READ_4(sc, BGE_MAC_STS);
2621         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2622                 sc->bge_link_evt = 0;
2623                 sc->bge_link_upd(sc, status);
2624         }
2625
2626         if (ifp->if_flags & IFF_RUNNING) {
2627                 /* Check RX return ring producer/consumer */
2628                 bge_rxeof(sc);
2629
2630                 /* Check TX ring producer/consumer */
2631                 bge_txeof(sc);
2632         }
2633
2634         if (sc->bge_coal_chg)
2635                 bge_coal_change(sc);
2636 }
2637
2638 static void
2639 bge_tick(void *xsc)
2640 {
2641         struct bge_softc *sc = xsc;
2642         struct ifnet *ifp = &sc->arpcom.ac_if;
2643
2644         lwkt_serialize_enter(ifp->if_serializer);
2645
2646         if (BGE_IS_5705_PLUS(sc))
2647                 bge_stats_update_regs(sc);
2648         else
2649                 bge_stats_update(sc);
2650
2651         if (sc->bge_flags & BGE_FLAG_TBI) {
2652                 /*
2653                  * Since in TBI mode auto-polling can't be used we should poll
2654                  * link status manually. Here we register pending link event
2655                  * and trigger interrupt.
2656                  */
2657                 sc->bge_link_evt++;
2658                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2659         } else if (!sc->bge_link) {
2660                 mii_tick(device_get_softc(sc->bge_miibus));
2661         }
2662
2663         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2664
2665         lwkt_serialize_exit(ifp->if_serializer);
2666 }
2667
2668 static void
2669 bge_stats_update_regs(struct bge_softc *sc)
2670 {
2671         struct ifnet *ifp = &sc->arpcom.ac_if;
2672         struct bge_mac_stats_regs stats;
2673         uint32_t *s;
2674         int i;
2675
2676         s = (uint32_t *)&stats;
2677         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2678                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2679                 s++;
2680         }
2681
2682         ifp->if_collisions +=
2683            (stats.dot3StatsSingleCollisionFrames +
2684            stats.dot3StatsMultipleCollisionFrames +
2685            stats.dot3StatsExcessiveCollisions +
2686            stats.dot3StatsLateCollisions) -
2687            ifp->if_collisions;
2688 }
2689
2690 static void
2691 bge_stats_update(struct bge_softc *sc)
2692 {
2693         struct ifnet *ifp = &sc->arpcom.ac_if;
2694         bus_size_t stats;
2695
2696         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2697
2698 #define READ_STAT(sc, stats, stat)      \
2699         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2700
2701         ifp->if_collisions +=
2702            (READ_STAT(sc, stats,
2703                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2704             READ_STAT(sc, stats,
2705                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2706             READ_STAT(sc, stats,
2707                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2708             READ_STAT(sc, stats,
2709                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2710            ifp->if_collisions;
2711
2712 #undef READ_STAT
2713
2714 #ifdef notdef
2715         ifp->if_collisions +=
2716            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2717            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2718            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2719            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2720            ifp->if_collisions;
2721 #endif
2722 }
2723
2724 /*
2725  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2726  * pointers to descriptors.
2727  */
2728 static int
2729 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2730 {
2731         struct bge_tx_bd *d = NULL;
2732         uint16_t csum_flags = 0;
2733         bus_dma_segment_t segs[BGE_NSEG_NEW];
2734         bus_dmamap_t map;
2735         int error, maxsegs, nsegs, idx, i;
2736         struct mbuf *m_head = *m_head0;
2737
2738         if (m_head->m_pkthdr.csum_flags) {
2739                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2740                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2741                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2742                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2743                 if (m_head->m_flags & M_LASTFRAG)
2744                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2745                 else if (m_head->m_flags & M_FRAG)
2746                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2747         }
2748
2749         idx = *txidx;
2750         map = sc->bge_cdata.bge_tx_dmamap[idx];
2751
2752         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2753         KASSERT(maxsegs >= BGE_NSEG_SPARE,
2754                 ("not enough segments %d", maxsegs));
2755
2756         if (maxsegs > BGE_NSEG_NEW)
2757                 maxsegs = BGE_NSEG_NEW;
2758
2759         /*
2760          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2761          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2762          * but when such padded frames employ the bge IP/TCP checksum
2763          * offload, the hardware checksum assist gives incorrect results
2764          * (possibly from incorporating its own padding into the UDP/TCP
2765          * checksum; who knows).  If we pad such runts with zeros, the
2766          * onboard checksum comes out correct.
2767          */
2768         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2769             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2770                 error = m_devpad(m_head, BGE_MIN_FRAME);
2771                 if (error)
2772                         goto back;
2773         }
2774
2775         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
2776                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2777         if (error)
2778                 goto back;
2779
2780         m_head = *m_head0;
2781         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2782
2783         for (i = 0; ; i++) {
2784                 d = &sc->bge_ldata.bge_tx_ring[idx];
2785
2786                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
2787                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
2788                 d->bge_len = segs[i].ds_len;
2789                 d->bge_flags = csum_flags;
2790
2791                 if (i == nsegs - 1)
2792                         break;
2793                 BGE_INC(idx, BGE_TX_RING_CNT);
2794         }
2795         /* Mark the last segment as end of packet... */
2796         d->bge_flags |= BGE_TXBDFLAG_END;
2797
2798         /* Set vlan tag to the first segment of the packet. */
2799         d = &sc->bge_ldata.bge_tx_ring[*txidx];
2800         if (m_head->m_flags & M_VLANTAG) {
2801                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2802                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2803         } else {
2804                 d->bge_vlan_tag = 0;
2805         }
2806
2807         /*
2808          * Insure that the map for this transmission is placed at
2809          * the array index of the last descriptor in this chain.
2810          */
2811         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2812         sc->bge_cdata.bge_tx_dmamap[idx] = map;
2813         sc->bge_cdata.bge_tx_chain[idx] = m_head;
2814         sc->bge_txcnt += nsegs;
2815
2816         BGE_INC(idx, BGE_TX_RING_CNT);
2817         *txidx = idx;
2818 back:
2819         if (error) {
2820                 m_freem(*m_head0);
2821                 *m_head0 = NULL;
2822         }
2823         return error;
2824 }
2825
2826 /*
2827  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2828  * to the mbuf data regions directly in the transmit descriptors.
2829  */
2830 static void
2831 bge_start(struct ifnet *ifp)
2832 {
2833         struct bge_softc *sc = ifp->if_softc;
2834         struct mbuf *m_head = NULL;
2835         uint32_t prodidx;
2836         int need_trans;
2837
2838         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2839                 return;
2840
2841         prodidx = sc->bge_tx_prodidx;
2842
2843         need_trans = 0;
2844         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2845                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2846                 if (m_head == NULL)
2847                         break;
2848
2849                 /*
2850                  * XXX
2851                  * The code inside the if() block is never reached since we
2852                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2853                  * requests to checksum TCP/UDP in a fragmented packet.
2854                  * 
2855                  * XXX
2856                  * safety overkill.  If this is a fragmented packet chain
2857                  * with delayed TCP/UDP checksums, then only encapsulate
2858                  * it if we have enough descriptors to handle the entire
2859                  * chain at once.
2860                  * (paranoia -- may not actually be needed)
2861                  */
2862                 if ((m_head->m_flags & M_FIRSTFRAG) &&
2863                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2864                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2865                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2866                                 ifp->if_flags |= IFF_OACTIVE;
2867                                 ifq_prepend(&ifp->if_snd, m_head);
2868                                 break;
2869                         }
2870                 }
2871
2872                 /*
2873                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2874                  * descriptors of the end of the ring.  Also make
2875                  * sure there are BGE_NSEG_SPARE descriptors for
2876                  * jumbo buffers' defragmentation.
2877                  */
2878                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2879                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2880                         ifp->if_flags |= IFF_OACTIVE;
2881                         ifq_prepend(&ifp->if_snd, m_head);
2882                         break;
2883                 }
2884
2885                 /*
2886                  * Pack the data into the transmit ring. If we
2887                  * don't have room, set the OACTIVE flag and wait
2888                  * for the NIC to drain the ring.
2889                  */
2890                 if (bge_encap(sc, &m_head, &prodidx)) {
2891                         ifp->if_flags |= IFF_OACTIVE;
2892                         ifp->if_oerrors++;
2893                         break;
2894                 }
2895                 need_trans = 1;
2896
2897                 ETHER_BPF_MTAP(ifp, m_head);
2898         }
2899
2900         if (!need_trans)
2901                 return;
2902
2903         /* Transmit */
2904         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2905         /* 5700 b2 errata */
2906         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2907                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2908
2909         sc->bge_tx_prodidx = prodidx;
2910
2911         /*
2912          * Set a timeout in case the chip goes out to lunch.
2913          */
2914         ifp->if_timer = 5;
2915 }
2916
2917 static void
2918 bge_init(void *xsc)
2919 {
2920         struct bge_softc *sc = xsc;
2921         struct ifnet *ifp = &sc->arpcom.ac_if;
2922         uint16_t *m;
2923
2924         ASSERT_SERIALIZED(ifp->if_serializer);
2925
2926         if (ifp->if_flags & IFF_RUNNING)
2927                 return;
2928
2929         /* Cancel pending I/O and flush buffers. */
2930         bge_stop(sc);
2931         bge_reset(sc);
2932         bge_chipinit(sc);
2933
2934         /*
2935          * Init the various state machines, ring
2936          * control blocks and firmware.
2937          */
2938         if (bge_blockinit(sc)) {
2939                 if_printf(ifp, "initialization failure\n");
2940                 bge_stop(sc);
2941                 return;
2942         }
2943
2944         /* Specify MTU. */
2945         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2946             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2947
2948         /* Load our MAC address. */
2949         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2950         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2951         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2952
2953         /* Enable or disable promiscuous mode as needed. */
2954         bge_setpromisc(sc);
2955
2956         /* Program multicast filter. */
2957         bge_setmulti(sc);
2958
2959         /* Init RX ring. */
2960         if (bge_init_rx_ring_std(sc)) {
2961                 if_printf(ifp, "RX ring initialization failed\n");
2962                 bge_stop(sc);
2963                 return;
2964         }
2965
2966         /*
2967          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2968          * memory to insure that the chip has in fact read the first
2969          * entry of the ring.
2970          */
2971         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2972                 uint32_t                v, i;
2973                 for (i = 0; i < 10; i++) {
2974                         DELAY(20);
2975                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2976                         if (v == (MCLBYTES - ETHER_ALIGN))
2977                                 break;
2978                 }
2979                 if (i == 10)
2980                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2981         }
2982
2983         /* Init jumbo RX ring. */
2984         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
2985                 if (bge_init_rx_ring_jumbo(sc)) {
2986                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
2987                         bge_stop(sc);
2988                         return;
2989                 }
2990         }
2991
2992         /* Init our RX return ring index */
2993         sc->bge_rx_saved_considx = 0;
2994
2995         /* Init TX ring. */
2996         bge_init_tx_ring(sc);
2997
2998         /* Turn on transmitter */
2999         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3000
3001         /* Turn on receiver */
3002         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3003
3004         /* Tell firmware we're alive. */
3005         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3006
3007         /* Enable host interrupts if polling(4) is not enabled. */
3008         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3009 #ifdef DEVICE_POLLING
3010         if (ifp->if_flags & IFF_POLLING)
3011                 bge_disable_intr(sc);
3012         else
3013 #endif
3014         bge_enable_intr(sc);
3015
3016         bge_ifmedia_upd(ifp);
3017
3018         ifp->if_flags |= IFF_RUNNING;
3019         ifp->if_flags &= ~IFF_OACTIVE;
3020
3021         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3022 }
3023
3024 /*
3025  * Set media options.
3026  */
3027 static int
3028 bge_ifmedia_upd(struct ifnet *ifp)
3029 {
3030         struct bge_softc *sc = ifp->if_softc;
3031
3032         /* If this is a 1000baseX NIC, enable the TBI port. */
3033         if (sc->bge_flags & BGE_FLAG_TBI) {
3034                 struct ifmedia *ifm = &sc->bge_ifmedia;
3035
3036                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3037                         return(EINVAL);
3038
3039                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3040                 case IFM_AUTO:
3041                         /*
3042                          * The BCM5704 ASIC appears to have a special
3043                          * mechanism for programming the autoneg
3044                          * advertisement registers in TBI mode.
3045                          */
3046                         if (!bge_fake_autoneg &&
3047                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3048                                 uint32_t sgdig;
3049
3050                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3051                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3052                                 sgdig |= BGE_SGDIGCFG_AUTO |
3053                                          BGE_SGDIGCFG_PAUSE_CAP |
3054                                          BGE_SGDIGCFG_ASYM_PAUSE;
3055                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3056                                             sgdig | BGE_SGDIGCFG_SEND);
3057                                 DELAY(5);
3058                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3059                         }
3060                         break;
3061                 case IFM_1000_SX:
3062                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3063                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3064                                     BGE_MACMODE_HALF_DUPLEX);
3065                         } else {
3066                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3067                                     BGE_MACMODE_HALF_DUPLEX);
3068                         }
3069                         break;
3070                 default:
3071                         return(EINVAL);
3072                 }
3073         } else {
3074                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3075
3076                 sc->bge_link_evt++;
3077                 sc->bge_link = 0;
3078                 if (mii->mii_instance) {
3079                         struct mii_softc *miisc;
3080
3081                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3082                                 mii_phy_reset(miisc);
3083                 }
3084                 mii_mediachg(mii);
3085         }
3086         return(0);
3087 }
3088
3089 /*
3090  * Report current media status.
3091  */
3092 static void
3093 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3094 {
3095         struct bge_softc *sc = ifp->if_softc;
3096
3097         if (sc->bge_flags & BGE_FLAG_TBI) {
3098                 ifmr->ifm_status = IFM_AVALID;
3099                 ifmr->ifm_active = IFM_ETHER;
3100                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3101                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3102                         ifmr->ifm_status |= IFM_ACTIVE;
3103                 } else {
3104                         ifmr->ifm_active |= IFM_NONE;
3105                         return;
3106                 }
3107
3108                 ifmr->ifm_active |= IFM_1000_SX;
3109                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3110                         ifmr->ifm_active |= IFM_HDX;    
3111                 else
3112                         ifmr->ifm_active |= IFM_FDX;
3113         } else {
3114                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3115
3116                 mii_pollstat(mii);
3117                 ifmr->ifm_active = mii->mii_media_active;
3118                 ifmr->ifm_status = mii->mii_media_status;
3119         }
3120 }
3121
3122 static int
3123 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3124 {
3125         struct bge_softc *sc = ifp->if_softc;
3126         struct ifreq *ifr = (struct ifreq *)data;
3127         int mask, error = 0;
3128
3129         ASSERT_SERIALIZED(ifp->if_serializer);
3130
3131         switch (command) {
3132         case SIOCSIFMTU:
3133                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3134                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3135                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3136                         error = EINVAL;
3137                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3138                         ifp->if_mtu = ifr->ifr_mtu;
3139                         ifp->if_flags &= ~IFF_RUNNING;
3140                         bge_init(sc);
3141                 }
3142                 break;
3143         case SIOCSIFFLAGS:
3144                 if (ifp->if_flags & IFF_UP) {
3145                         if (ifp->if_flags & IFF_RUNNING) {
3146                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3147
3148                                 /*
3149                                  * If only the state of the PROMISC flag
3150                                  * changed, then just use the 'set promisc
3151                                  * mode' command instead of reinitializing
3152                                  * the entire NIC. Doing a full re-init
3153                                  * means reloading the firmware and waiting
3154                                  * for it to start up, which may take a
3155                                  * second or two.  Similarly for ALLMULTI.
3156                                  */
3157                                 if (mask & IFF_PROMISC)
3158                                         bge_setpromisc(sc);
3159                                 if (mask & IFF_ALLMULTI)
3160                                         bge_setmulti(sc);
3161                         } else {
3162                                 bge_init(sc);
3163                         }
3164                 } else {
3165                         if (ifp->if_flags & IFF_RUNNING)
3166                                 bge_stop(sc);
3167                 }
3168                 sc->bge_if_flags = ifp->if_flags;
3169                 break;
3170         case SIOCADDMULTI:
3171         case SIOCDELMULTI:
3172                 if (ifp->if_flags & IFF_RUNNING)
3173                         bge_setmulti(sc);
3174                 break;
3175         case SIOCSIFMEDIA:
3176         case SIOCGIFMEDIA:
3177                 if (sc->bge_flags & BGE_FLAG_TBI) {
3178                         error = ifmedia_ioctl(ifp, ifr,
3179                             &sc->bge_ifmedia, command);
3180                 } else {
3181                         struct mii_data *mii;
3182
3183                         mii = device_get_softc(sc->bge_miibus);
3184                         error = ifmedia_ioctl(ifp, ifr,
3185                                               &mii->mii_media, command);
3186                 }
3187                 break;
3188         case SIOCSIFCAP:
3189                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3190                 if (mask & IFCAP_HWCSUM) {
3191                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3192                         if (IFCAP_HWCSUM & ifp->if_capenable)
3193                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3194                         else
3195                                 ifp->if_hwassist = 0;
3196                 }
3197                 break;
3198         default:
3199                 error = ether_ioctl(ifp, command, data);
3200                 break;
3201         }
3202         return error;
3203 }
3204
3205 static void
3206 bge_watchdog(struct ifnet *ifp)
3207 {
3208         struct bge_softc *sc = ifp->if_softc;
3209
3210         if_printf(ifp, "watchdog timeout -- resetting\n");
3211
3212         ifp->if_flags &= ~IFF_RUNNING;
3213         bge_init(sc);
3214
3215         ifp->if_oerrors++;
3216
3217         if (!ifq_is_empty(&ifp->if_snd))
3218                 if_devstart(ifp);
3219 }
3220
3221 /*
3222  * Stop the adapter and free any mbufs allocated to the
3223  * RX and TX lists.
3224  */
3225 static void
3226 bge_stop(struct bge_softc *sc)
3227 {
3228         struct ifnet *ifp = &sc->arpcom.ac_if;
3229         struct ifmedia_entry *ifm;
3230         struct mii_data *mii = NULL;
3231         int mtmp, itmp;
3232
3233         ASSERT_SERIALIZED(ifp->if_serializer);
3234
3235         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3236                 mii = device_get_softc(sc->bge_miibus);
3237
3238         callout_stop(&sc->bge_stat_timer);
3239
3240         /*
3241          * Disable all of the receiver blocks
3242          */
3243         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3244         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3245         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3246         if (!BGE_IS_5705_PLUS(sc))
3247                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3248         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3249         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3250         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3251
3252         /*
3253          * Disable all of the transmit blocks
3254          */
3255         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3256         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3257         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3258         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3259         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3260         if (!BGE_IS_5705_PLUS(sc))
3261                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3262         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3263
3264         /*
3265          * Shut down all of the memory managers and related
3266          * state machines.
3267          */
3268         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3269         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3270         if (!BGE_IS_5705_PLUS(sc))
3271                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3272         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3273         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3274         if (!BGE_IS_5705_PLUS(sc)) {
3275                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3276                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3277         }
3278
3279         /* Disable host interrupts. */
3280         bge_disable_intr(sc);
3281
3282         /*
3283          * Tell firmware we're shutting down.
3284          */
3285         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3286
3287         /* Free the RX lists. */
3288         bge_free_rx_ring_std(sc);
3289
3290         /* Free jumbo RX list. */
3291         if (BGE_IS_JUMBO_CAPABLE(sc))
3292                 bge_free_rx_ring_jumbo(sc);
3293
3294         /* Free TX buffers. */
3295         bge_free_tx_ring(sc);
3296
3297         /*
3298          * Isolate/power down the PHY, but leave the media selection
3299          * unchanged so that things will be put back to normal when
3300          * we bring the interface back up.
3301          *
3302          * 'mii' may be NULL in the following cases:
3303          * - The device uses TBI.
3304          * - bge_stop() is called by bge_detach().
3305          */
3306         if (mii != NULL) {
3307                 itmp = ifp->if_flags;
3308                 ifp->if_flags |= IFF_UP;
3309                 ifm = mii->mii_media.ifm_cur;
3310                 mtmp = ifm->ifm_media;
3311                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3312                 mii_mediachg(mii);
3313                 ifm->ifm_media = mtmp;
3314                 ifp->if_flags = itmp;
3315         }
3316
3317         sc->bge_link = 0;
3318         sc->bge_coal_chg = 0;
3319
3320         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3321
3322         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3323         ifp->if_timer = 0;
3324 }
3325
3326 /*
3327  * Stop all chip I/O so that the kernel's probe routines don't
3328  * get confused by errant DMAs when rebooting.
3329  */
3330 static void
3331 bge_shutdown(device_t dev)
3332 {
3333         struct bge_softc *sc = device_get_softc(dev);
3334         struct ifnet *ifp = &sc->arpcom.ac_if;
3335
3336         lwkt_serialize_enter(ifp->if_serializer);
3337         bge_stop(sc);
3338         bge_reset(sc);
3339         lwkt_serialize_exit(ifp->if_serializer);
3340 }
3341
3342 static int
3343 bge_suspend(device_t dev)
3344 {
3345         struct bge_softc *sc = device_get_softc(dev);
3346         struct ifnet *ifp = &sc->arpcom.ac_if;
3347
3348         lwkt_serialize_enter(ifp->if_serializer);
3349         bge_stop(sc);
3350         lwkt_serialize_exit(ifp->if_serializer);
3351
3352         return 0;
3353 }
3354
3355 static int
3356 bge_resume(device_t dev)
3357 {
3358         struct bge_softc *sc = device_get_softc(dev);
3359         struct ifnet *ifp = &sc->arpcom.ac_if;
3360
3361         lwkt_serialize_enter(ifp->if_serializer);
3362
3363         if (ifp->if_flags & IFF_UP) {
3364                 bge_init(sc);
3365
3366                 if (!ifq_is_empty(&ifp->if_snd))
3367                         if_devstart(ifp);
3368         }
3369
3370         lwkt_serialize_exit(ifp->if_serializer);
3371
3372         return 0;
3373 }
3374
3375 static void
3376 bge_setpromisc(struct bge_softc *sc)
3377 {
3378         struct ifnet *ifp = &sc->arpcom.ac_if;
3379
3380         if (ifp->if_flags & IFF_PROMISC)
3381                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3382         else
3383                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3384 }
3385
3386 static void
3387 bge_dma_free(struct bge_softc *sc)
3388 {
3389         int i;
3390
3391         /* Destroy RX mbuf DMA stuffs. */
3392         if (sc->bge_cdata.bge_rx_mtag != NULL) {
3393                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3394                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3395                             sc->bge_cdata.bge_rx_std_dmamap[i]);
3396                 }
3397                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3398                                    sc->bge_cdata.bge_rx_tmpmap);
3399                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3400         }
3401
3402         /* Destroy TX mbuf DMA stuffs. */
3403         if (sc->bge_cdata.bge_tx_mtag != NULL) {
3404                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3405                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3406                             sc->bge_cdata.bge_tx_dmamap[i]);
3407                 }
3408                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3409         }
3410
3411         /* Destroy standard RX ring */
3412         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3413                            sc->bge_cdata.bge_rx_std_ring_map,
3414                            sc->bge_ldata.bge_rx_std_ring);
3415
3416         if (BGE_IS_JUMBO_CAPABLE(sc))
3417                 bge_free_jumbo_mem(sc);
3418
3419         /* Destroy RX return ring */
3420         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3421                            sc->bge_cdata.bge_rx_return_ring_map,
3422                            sc->bge_ldata.bge_rx_return_ring);
3423
3424         /* Destroy TX ring */
3425         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3426                            sc->bge_cdata.bge_tx_ring_map,
3427                            sc->bge_ldata.bge_tx_ring);
3428
3429         /* Destroy status block */
3430         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3431                            sc->bge_cdata.bge_status_map,
3432                            sc->bge_ldata.bge_status_block);
3433
3434         /* Destroy statistics block */
3435         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3436                            sc->bge_cdata.bge_stats_map,
3437                            sc->bge_ldata.bge_stats);
3438
3439         /* Destroy the parent tag */
3440         if (sc->bge_cdata.bge_parent_tag != NULL)
3441                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3442 }
3443
3444 static int
3445 bge_dma_alloc(struct bge_softc *sc)
3446 {
3447         struct ifnet *ifp = &sc->arpcom.ac_if;
3448         int i, error;
3449
3450         /*
3451          * Allocate the parent bus DMA tag appropriate for PCI.
3452          */
3453         error = bus_dma_tag_create(NULL, 1, 0,
3454                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3455                                    NULL, NULL,
3456                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3457                                    BUS_SPACE_MAXSIZE_32BIT,
3458                                    0, &sc->bge_cdata.bge_parent_tag);
3459         if (error) {
3460                 if_printf(ifp, "could not allocate parent dma tag\n");
3461                 return error;
3462         }
3463
3464         /*
3465          * Create DMA tag and maps for RX mbufs.
3466          */
3467         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3468                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3469                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
3470                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3471                                    &sc->bge_cdata.bge_rx_mtag);
3472         if (error) {
3473                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3474                 return error;
3475         }
3476
3477         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3478                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
3479         if (error) {
3480                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3481                 sc->bge_cdata.bge_rx_mtag = NULL;
3482                 return error;
3483         }
3484
3485         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3486                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3487                                           BUS_DMA_WAITOK,
3488                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3489                 if (error) {
3490                         int j;
3491
3492                         for (j = 0; j < i; ++j) {
3493                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3494                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3495                         }
3496                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3497                         sc->bge_cdata.bge_rx_mtag = NULL;
3498
3499                         if_printf(ifp, "could not create DMA map for RX\n");
3500                         return error;
3501                 }
3502         }
3503
3504         /*
3505          * Create DMA tag and maps for TX mbufs.
3506          */
3507         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3508                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3509                                    NULL, NULL,
3510                                    BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
3511                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3512                                    BUS_DMA_ONEBPAGE,
3513                                    &sc->bge_cdata.bge_tx_mtag);
3514         if (error) {
3515                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
3516                 return error;
3517         }
3518
3519         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3520                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
3521                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3522                                           &sc->bge_cdata.bge_tx_dmamap[i]);
3523                 if (error) {
3524                         int j;
3525
3526                         for (j = 0; j < i; ++j) {
3527                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3528                                         sc->bge_cdata.bge_tx_dmamap[j]);
3529                         }
3530                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3531                         sc->bge_cdata.bge_tx_mtag = NULL;
3532
3533                         if_printf(ifp, "could not create DMA map for TX\n");
3534                         return error;
3535                 }
3536         }
3537
3538         /*
3539          * Create DMA stuffs for standard RX ring.
3540          */
3541         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3542                                     &sc->bge_cdata.bge_rx_std_ring_tag,
3543                                     &sc->bge_cdata.bge_rx_std_ring_map,
3544                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
3545                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
3546         if (error) {
3547                 if_printf(ifp, "could not create std RX ring\n");
3548                 return error;
3549         }
3550
3551         /*
3552          * Create jumbo buffer pool.
3553          */
3554         if (BGE_IS_JUMBO_CAPABLE(sc)) {
3555                 error = bge_alloc_jumbo_mem(sc);
3556                 if (error) {
3557                         if_printf(ifp, "could not create jumbo buffer pool\n");
3558                         return error;
3559                 }
3560         }
3561
3562         /*
3563          * Create DMA stuffs for RX return ring.
3564          */
3565         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3566                                     &sc->bge_cdata.bge_rx_return_ring_tag,
3567                                     &sc->bge_cdata.bge_rx_return_ring_map,
3568                                     (void *)&sc->bge_ldata.bge_rx_return_ring,
3569                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
3570         if (error) {
3571                 if_printf(ifp, "could not create RX ret ring\n");
3572                 return error;
3573         }
3574
3575         /*
3576          * Create DMA stuffs for TX ring.
3577          */
3578         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3579                                     &sc->bge_cdata.bge_tx_ring_tag,
3580                                     &sc->bge_cdata.bge_tx_ring_map,
3581                                     (void *)&sc->bge_ldata.bge_tx_ring,
3582                                     &sc->bge_ldata.bge_tx_ring_paddr);
3583         if (error) {
3584                 if_printf(ifp, "could not create TX ring\n");
3585                 return error;
3586         }
3587
3588         /*
3589          * Create DMA stuffs for status block.
3590          */
3591         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3592                                     &sc->bge_cdata.bge_status_tag,
3593                                     &sc->bge_cdata.bge_status_map,
3594                                     (void *)&sc->bge_ldata.bge_status_block,
3595                                     &sc->bge_ldata.bge_status_block_paddr);
3596         if (error) {
3597                 if_printf(ifp, "could not create status block\n");
3598                 return error;
3599         }
3600
3601         /*
3602          * Create DMA stuffs for statistics block.
3603          */
3604         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3605                                     &sc->bge_cdata.bge_stats_tag,
3606                                     &sc->bge_cdata.bge_stats_map,
3607                                     (void *)&sc->bge_ldata.bge_stats,
3608                                     &sc->bge_ldata.bge_stats_paddr);
3609         if (error) {
3610                 if_printf(ifp, "could not create stats block\n");
3611                 return error;
3612         }
3613         return 0;
3614 }
3615
3616 static int
3617 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3618                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3619 {
3620         bus_dmamem_t dmem;
3621         int error;
3622
3623         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3624                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3625                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3626         if (error)
3627                 return error;
3628
3629         *tag = dmem.dmem_tag;
3630         *map = dmem.dmem_map;
3631         *addr = dmem.dmem_addr;
3632         *paddr = dmem.dmem_busaddr;
3633
3634         return 0;
3635 }
3636
3637 static void
3638 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3639 {
3640         if (tag != NULL) {
3641                 bus_dmamap_unload(tag, map);
3642                 bus_dmamem_free(tag, addr, map);
3643                 bus_dma_tag_destroy(tag);
3644         }
3645 }
3646
3647 /*
3648  * Grrr. The link status word in the status block does
3649  * not work correctly on the BCM5700 rev AX and BX chips,
3650  * according to all available information. Hence, we have
3651  * to enable MII interrupts in order to properly obtain
3652  * async link changes. Unfortunately, this also means that
3653  * we have to read the MAC status register to detect link
3654  * changes, thereby adding an additional register access to
3655  * the interrupt handler.
3656  *
3657  * XXX: perhaps link state detection procedure used for
3658  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3659  */
3660 static void
3661 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3662 {
3663         struct ifnet *ifp = &sc->arpcom.ac_if;
3664         struct mii_data *mii = device_get_softc(sc->bge_miibus);
3665
3666         mii_pollstat(mii);
3667
3668         if (!sc->bge_link &&
3669             (mii->mii_media_status & IFM_ACTIVE) &&
3670             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3671                 sc->bge_link++;
3672                 if (bootverbose)
3673                         if_printf(ifp, "link UP\n");
3674         } else if (sc->bge_link &&
3675             (!(mii->mii_media_status & IFM_ACTIVE) ||
3676             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3677                 sc->bge_link = 0;
3678                 if (bootverbose)
3679                         if_printf(ifp, "link DOWN\n");
3680         }
3681
3682         /* Clear the interrupt. */
3683         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3684         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3685         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3686 }
3687
3688 static void
3689 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3690 {
3691         struct ifnet *ifp = &sc->arpcom.ac_if;
3692
3693 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3694
3695         /*
3696          * Sometimes PCS encoding errors are detected in
3697          * TBI mode (on fiber NICs), and for some reason
3698          * the chip will signal them as link changes.
3699          * If we get a link change event, but the 'PCS
3700          * encoding error' bit in the MAC status register
3701          * is set, don't bother doing a link check.
3702          * This avoids spurious "gigabit link up" messages
3703          * that sometimes appear on fiber NICs during
3704          * periods of heavy traffic.
3705          */
3706         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3707                 if (!sc->bge_link) {
3708                         sc->bge_link++;
3709                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3710                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3711                                     BGE_MACMODE_TBI_SEND_CFGS);
3712                         }
3713                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3714
3715                         if (bootverbose)
3716                                 if_printf(ifp, "link UP\n");
3717
3718                         ifp->if_link_state = LINK_STATE_UP;
3719                         if_link_state_change(ifp);
3720                 }
3721         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3722                 if (sc->bge_link) {
3723                         sc->bge_link = 0;
3724
3725                         if (bootverbose)
3726                                 if_printf(ifp, "link DOWN\n");
3727
3728                         ifp->if_link_state = LINK_STATE_DOWN;
3729                         if_link_state_change(ifp);
3730                 }
3731         }
3732
3733 #undef PCS_ENCODE_ERR
3734
3735         /* Clear the attention. */
3736         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3737             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3738             BGE_MACSTAT_LINK_CHANGED);
3739 }
3740
3741 static void
3742 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3743 {
3744         /*
3745          * Check that the AUTOPOLL bit is set before
3746          * processing the event as a real link change.
3747          * Turning AUTOPOLL on and off in the MII read/write
3748          * functions will often trigger a link status
3749          * interrupt for no reason.
3750          */
3751         if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3752                 struct ifnet *ifp = &sc->arpcom.ac_if;
3753                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3754
3755                 mii_pollstat(mii);
3756
3757                 if (!sc->bge_link &&
3758                     (mii->mii_media_status & IFM_ACTIVE) &&
3759                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3760                         sc->bge_link++;
3761                         if (bootverbose)
3762                                 if_printf(ifp, "link UP\n");
3763                 } else if (sc->bge_link &&
3764                     (!(mii->mii_media_status & IFM_ACTIVE) ||
3765                     IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3766                         sc->bge_link = 0;
3767                         if (bootverbose)
3768                                 if_printf(ifp, "link DOWN\n");
3769                 }
3770         }
3771
3772         /* Clear the attention. */
3773         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3774             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3775             BGE_MACSTAT_LINK_CHANGED);
3776 }
3777
3778 static int
3779 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3780 {
3781         struct bge_softc *sc = arg1;
3782
3783         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3784                                    &sc->bge_rx_coal_ticks,
3785                                    BGE_RX_COAL_TICKS_CHG);
3786 }
3787
3788 static int
3789 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3790 {
3791         struct bge_softc *sc = arg1;
3792
3793         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3794                                    &sc->bge_tx_coal_ticks,
3795                                    BGE_TX_COAL_TICKS_CHG);
3796 }
3797
3798 static int
3799 bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3800 {
3801         struct bge_softc *sc = arg1;
3802
3803         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3804                                    &sc->bge_rx_max_coal_bds,
3805                                    BGE_RX_MAX_COAL_BDS_CHG);
3806 }
3807
3808 static int
3809 bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3810 {
3811         struct bge_softc *sc = arg1;
3812
3813         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3814                                    &sc->bge_tx_max_coal_bds,
3815                                    BGE_TX_MAX_COAL_BDS_CHG);
3816 }
3817
3818 static int
3819 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3820                     uint32_t coal_chg_mask)
3821 {
3822         struct bge_softc *sc = arg1;
3823         struct ifnet *ifp = &sc->arpcom.ac_if;
3824         int error = 0, v;
3825
3826         lwkt_serialize_enter(ifp->if_serializer);
3827
3828         v = *coal;
3829         error = sysctl_handle_int(oidp, &v, 0, req);
3830         if (!error && req->newptr != NULL) {
3831                 if (v < 0) {
3832                         error = EINVAL;
3833                 } else {
3834                         *coal = v;
3835                         sc->bge_coal_chg |= coal_chg_mask;
3836                 }
3837         }
3838
3839         lwkt_serialize_exit(ifp->if_serializer);
3840         return error;
3841 }
3842
3843 static void
3844 bge_coal_change(struct bge_softc *sc)
3845 {
3846         struct ifnet *ifp = &sc->arpcom.ac_if;
3847         uint32_t val;
3848
3849         ASSERT_SERIALIZED(ifp->if_serializer);
3850
3851         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3852                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3853                             sc->bge_rx_coal_ticks);
3854                 DELAY(10);
3855                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3856
3857                 if (bootverbose) {
3858                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3859                                   sc->bge_rx_coal_ticks);
3860                 }
3861         }
3862
3863         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3864                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3865                             sc->bge_tx_coal_ticks);
3866                 DELAY(10);
3867                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3868
3869                 if (bootverbose) {
3870                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3871                                   sc->bge_tx_coal_ticks);
3872                 }
3873         }
3874
3875         if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3876                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3877                             sc->bge_rx_max_coal_bds);
3878                 DELAY(10);
3879                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3880
3881                 if (bootverbose) {
3882                         if_printf(ifp, "rx_max_coal_bds -> %u\n",
3883                                   sc->bge_rx_max_coal_bds);
3884                 }
3885         }
3886
3887         if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3888                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3889                             sc->bge_tx_max_coal_bds);
3890                 DELAY(10);
3891                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3892
3893                 if (bootverbose) {
3894                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
3895                                   sc->bge_tx_max_coal_bds);
3896                 }
3897         }
3898
3899         sc->bge_coal_chg = 0;
3900 }
3901
3902 static void
3903 bge_enable_intr(struct bge_softc *sc)
3904 {
3905         struct ifnet *ifp = &sc->arpcom.ac_if;
3906
3907         lwkt_serialize_handler_enable(ifp->if_serializer);
3908
3909         /*
3910          * Enable interrupt.
3911          */
3912         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3913
3914         /*
3915          * Unmask the interrupt when we stop polling.
3916          */
3917         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3918
3919         /*
3920          * Trigger another interrupt, since above writing
3921          * to interrupt mailbox0 may acknowledge pending
3922          * interrupt.
3923          */
3924         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3925 }
3926
3927 static void
3928 bge_disable_intr(struct bge_softc *sc)
3929 {
3930         struct ifnet *ifp = &sc->arpcom.ac_if;
3931
3932         /*
3933          * Mask the interrupt when we start polling.
3934          */
3935         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3936
3937         /*
3938          * Acknowledge possible asserted interrupt.
3939          */
3940         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3941
3942         lwkt_serialize_handler_disable(ifp->if_serializer);
3943 }
3944
3945 static int
3946 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
3947 {
3948         uint32_t mac_addr;
3949         int ret = 1;
3950
3951         mac_addr = bge_readmem_ind(sc, 0x0c14);
3952         if ((mac_addr >> 16) == 0x484b) {
3953                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
3954                 ether_addr[1] = (uint8_t)mac_addr;
3955                 mac_addr = bge_readmem_ind(sc, 0x0c18);
3956                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
3957                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
3958                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
3959                 ether_addr[5] = (uint8_t)mac_addr;
3960                 ret = 0;
3961         }
3962         return ret;
3963 }
3964
3965 static int
3966 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
3967 {
3968         int mac_offset = BGE_EE_MAC_OFFSET;
3969
3970         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
3971                 mac_offset = BGE_EE_MAC_OFFSET_5906;
3972
3973         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
3974 }
3975
3976 static int
3977 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
3978 {
3979         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
3980                 return 1;
3981
3982         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
3983                                ETHER_ADDR_LEN);
3984 }
3985
3986 static int
3987 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
3988 {
3989         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
3990                 /* NOTE: Order is critical */
3991                 bge_get_eaddr_mem,
3992                 bge_get_eaddr_nvram,
3993                 bge_get_eaddr_eeprom,
3994                 NULL
3995         };
3996         const bge_eaddr_fcn_t *func;
3997
3998         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
3999                 if ((*func)(sc, eaddr) == 0)
4000                         break;
4001         }
4002         return (*func == NULL ? ENXIO : 0);
4003 }