Merge branch 'vendor/LIBPCAP'
[dragonfly.git] / contrib / binutils-2.22 / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 #  define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 #  define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 #  define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 #  define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 #  define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 #  define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 #  define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80   errno = ENOSYS;
81   return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87   errno = ENOSYS;
88   return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94   errno = ENOSYS;
95   return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS  MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate.  Here we just set
116 // the file size and hope that there is enough disk space.  FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122   return ftruncate(o, offset + len);
123 }
124 #endif // !defined(HAVE_POSIX_FALLOCATE)
125
126 // Mingw does not have S_ISLNK.
127 #ifndef S_ISLNK
128 # define S_ISLNK(mode) 0
129 #endif
130
131 namespace gold
132 {
133
134 // Output_data variables.
135
136 bool Output_data::allocated_sizes_are_fixed;
137
138 // Output_data methods.
139
140 Output_data::~Output_data()
141 {
142 }
143
144 // Return the default alignment for the target size.
145
146 uint64_t
147 Output_data::default_alignment()
148 {
149   return Output_data::default_alignment_for_size(
150       parameters->target().get_size());
151 }
152
153 // Return the default alignment for a size--32 or 64.
154
155 uint64_t
156 Output_data::default_alignment_for_size(int size)
157 {
158   if (size == 32)
159     return 4;
160   else if (size == 64)
161     return 8;
162   else
163     gold_unreachable();
164 }
165
166 // Output_section_header methods.  This currently assumes that the
167 // segment and section lists are complete at construction time.
168
169 Output_section_headers::Output_section_headers(
170     const Layout* layout,
171     const Layout::Segment_list* segment_list,
172     const Layout::Section_list* section_list,
173     const Layout::Section_list* unattached_section_list,
174     const Stringpool* secnamepool,
175     const Output_section* shstrtab_section)
176   : layout_(layout),
177     segment_list_(segment_list),
178     section_list_(section_list),
179     unattached_section_list_(unattached_section_list),
180     secnamepool_(secnamepool),
181     shstrtab_section_(shstrtab_section)
182 {
183 }
184
185 // Compute the current data size.
186
187 off_t
188 Output_section_headers::do_size() const
189 {
190   // Count all the sections.  Start with 1 for the null section.
191   off_t count = 1;
192   if (!parameters->options().relocatable())
193     {
194       for (Layout::Segment_list::const_iterator p =
195              this->segment_list_->begin();
196            p != this->segment_list_->end();
197            ++p)
198         if ((*p)->type() == elfcpp::PT_LOAD)
199           count += (*p)->output_section_count();
200     }
201   else
202     {
203       for (Layout::Section_list::const_iterator p =
204              this->section_list_->begin();
205            p != this->section_list_->end();
206            ++p)
207         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208           ++count;
209     }
210   count += this->unattached_section_list_->size();
211
212   const int size = parameters->target().get_size();
213   int shdr_size;
214   if (size == 32)
215     shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216   else if (size == 64)
217     shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218   else
219     gold_unreachable();
220
221   return count * shdr_size;
222 }
223
224 // Write out the section headers.
225
226 void
227 Output_section_headers::do_write(Output_file* of)
228 {
229   switch (parameters->size_and_endianness())
230     {
231 #ifdef HAVE_TARGET_32_LITTLE
232     case Parameters::TARGET_32_LITTLE:
233       this->do_sized_write<32, false>(of);
234       break;
235 #endif
236 #ifdef HAVE_TARGET_32_BIG
237     case Parameters::TARGET_32_BIG:
238       this->do_sized_write<32, true>(of);
239       break;
240 #endif
241 #ifdef HAVE_TARGET_64_LITTLE
242     case Parameters::TARGET_64_LITTLE:
243       this->do_sized_write<64, false>(of);
244       break;
245 #endif
246 #ifdef HAVE_TARGET_64_BIG
247     case Parameters::TARGET_64_BIG:
248       this->do_sized_write<64, true>(of);
249       break;
250 #endif
251     default:
252       gold_unreachable();
253     }
254 }
255
256 template<int size, bool big_endian>
257 void
258 Output_section_headers::do_sized_write(Output_file* of)
259 {
260   off_t all_shdrs_size = this->data_size();
261   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264   unsigned char* v = view;
265
266   {
267     typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268     oshdr.put_sh_name(0);
269     oshdr.put_sh_type(elfcpp::SHT_NULL);
270     oshdr.put_sh_flags(0);
271     oshdr.put_sh_addr(0);
272     oshdr.put_sh_offset(0);
273
274     size_t section_count = (this->data_size()
275                             / elfcpp::Elf_sizes<size>::shdr_size);
276     if (section_count < elfcpp::SHN_LORESERVE)
277       oshdr.put_sh_size(0);
278     else
279       oshdr.put_sh_size(section_count);
280
281     unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282     if (shstrndx < elfcpp::SHN_LORESERVE)
283       oshdr.put_sh_link(0);
284     else
285       oshdr.put_sh_link(shstrndx);
286
287     size_t segment_count = this->segment_list_->size();
288     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
290     oshdr.put_sh_addralign(0);
291     oshdr.put_sh_entsize(0);
292   }
293
294   v += shdr_size;
295
296   unsigned int shndx = 1;
297   if (!parameters->options().relocatable())
298     {
299       for (Layout::Segment_list::const_iterator p =
300              this->segment_list_->begin();
301            p != this->segment_list_->end();
302            ++p)
303         v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304                                                           this->secnamepool_,
305                                                           v,
306                                                           &shndx);
307     }
308   else
309     {
310       for (Layout::Section_list::const_iterator p =
311              this->section_list_->begin();
312            p != this->section_list_->end();
313            ++p)
314         {
315           // We do unallocated sections below, except that group
316           // sections have to come first.
317           if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318               && (*p)->type() != elfcpp::SHT_GROUP)
319             continue;
320           gold_assert(shndx == (*p)->out_shndx());
321           elfcpp::Shdr_write<size, big_endian> oshdr(v);
322           (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323           v += shdr_size;
324           ++shndx;
325         }
326     }
327
328   for (Layout::Section_list::const_iterator p =
329          this->unattached_section_list_->begin();
330        p != this->unattached_section_list_->end();
331        ++p)
332     {
333       // For a relocatable link, we did unallocated group sections
334       // above, since they have to come first.
335       if ((*p)->type() == elfcpp::SHT_GROUP
336           && parameters->options().relocatable())
337         continue;
338       gold_assert(shndx == (*p)->out_shndx());
339       elfcpp::Shdr_write<size, big_endian> oshdr(v);
340       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
341       v += shdr_size;
342       ++shndx;
343     }
344
345   of->write_output_view(this->offset(), all_shdrs_size, view);
346 }
347
348 // Output_segment_header methods.
349
350 Output_segment_headers::Output_segment_headers(
351     const Layout::Segment_list& segment_list)
352   : segment_list_(segment_list)
353 {
354   this->set_current_data_size_for_child(this->do_size());
355 }
356
357 void
358 Output_segment_headers::do_write(Output_file* of)
359 {
360   switch (parameters->size_and_endianness())
361     {
362 #ifdef HAVE_TARGET_32_LITTLE
363     case Parameters::TARGET_32_LITTLE:
364       this->do_sized_write<32, false>(of);
365       break;
366 #endif
367 #ifdef HAVE_TARGET_32_BIG
368     case Parameters::TARGET_32_BIG:
369       this->do_sized_write<32, true>(of);
370       break;
371 #endif
372 #ifdef HAVE_TARGET_64_LITTLE
373     case Parameters::TARGET_64_LITTLE:
374       this->do_sized_write<64, false>(of);
375       break;
376 #endif
377 #ifdef HAVE_TARGET_64_BIG
378     case Parameters::TARGET_64_BIG:
379       this->do_sized_write<64, true>(of);
380       break;
381 #endif
382     default:
383       gold_unreachable();
384     }
385 }
386
387 template<int size, bool big_endian>
388 void
389 Output_segment_headers::do_sized_write(Output_file* of)
390 {
391   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392   off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393   gold_assert(all_phdrs_size == this->data_size());
394   unsigned char* view = of->get_output_view(this->offset(),
395                                             all_phdrs_size);
396   unsigned char* v = view;
397   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398        p != this->segment_list_.end();
399        ++p)
400     {
401       elfcpp::Phdr_write<size, big_endian> ophdr(v);
402       (*p)->write_header(&ophdr);
403       v += phdr_size;
404     }
405
406   gold_assert(v - view == all_phdrs_size);
407
408   of->write_output_view(this->offset(), all_phdrs_size, view);
409 }
410
411 off_t
412 Output_segment_headers::do_size() const
413 {
414   const int size = parameters->target().get_size();
415   int phdr_size;
416   if (size == 32)
417     phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418   else if (size == 64)
419     phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420   else
421     gold_unreachable();
422
423   return this->segment_list_.size() * phdr_size;
424 }
425
426 // Output_file_header methods.
427
428 Output_file_header::Output_file_header(const Target* target,
429                                        const Symbol_table* symtab,
430                                        const Output_segment_headers* osh)
431   : target_(target),
432     symtab_(symtab),
433     segment_header_(osh),
434     section_header_(NULL),
435     shstrtab_(NULL)
436 {
437   this->set_data_size(this->do_size());
438 }
439
440 // Set the section table information for a file header.
441
442 void
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444                                      const Output_section* shstrtab)
445 {
446   this->section_header_ = shdrs;
447   this->shstrtab_ = shstrtab;
448 }
449
450 // Write out the file header.
451
452 void
453 Output_file_header::do_write(Output_file* of)
454 {
455   gold_assert(this->offset() == 0);
456
457   switch (parameters->size_and_endianness())
458     {
459 #ifdef HAVE_TARGET_32_LITTLE
460     case Parameters::TARGET_32_LITTLE:
461       this->do_sized_write<32, false>(of);
462       break;
463 #endif
464 #ifdef HAVE_TARGET_32_BIG
465     case Parameters::TARGET_32_BIG:
466       this->do_sized_write<32, true>(of);
467       break;
468 #endif
469 #ifdef HAVE_TARGET_64_LITTLE
470     case Parameters::TARGET_64_LITTLE:
471       this->do_sized_write<64, false>(of);
472       break;
473 #endif
474 #ifdef HAVE_TARGET_64_BIG
475     case Parameters::TARGET_64_BIG:
476       this->do_sized_write<64, true>(of);
477       break;
478 #endif
479     default:
480       gold_unreachable();
481     }
482 }
483
484 // Write out the file header with appropriate size and endianness.
485
486 template<int size, bool big_endian>
487 void
488 Output_file_header::do_sized_write(Output_file* of)
489 {
490   gold_assert(this->offset() == 0);
491
492   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493   unsigned char* view = of->get_output_view(0, ehdr_size);
494   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496   unsigned char e_ident[elfcpp::EI_NIDENT];
497   memset(e_ident, 0, elfcpp::EI_NIDENT);
498   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502   if (size == 32)
503     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504   else if (size == 64)
505     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506   else
507     gold_unreachable();
508   e_ident[elfcpp::EI_DATA] = (big_endian
509                               ? elfcpp::ELFDATA2MSB
510                               : elfcpp::ELFDATA2LSB);
511   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512   oehdr.put_e_ident(e_ident);
513
514   elfcpp::ET e_type;
515   if (parameters->options().relocatable())
516     e_type = elfcpp::ET_REL;
517   else if (parameters->options().output_is_position_independent())
518     e_type = elfcpp::ET_DYN;
519   else
520     e_type = elfcpp::ET_EXEC;
521   oehdr.put_e_type(e_type);
522
523   oehdr.put_e_machine(this->target_->machine_code());
524   oehdr.put_e_version(elfcpp::EV_CURRENT);
525
526   oehdr.put_e_entry(this->entry<size>());
527
528   if (this->segment_header_ == NULL)
529     oehdr.put_e_phoff(0);
530   else
531     oehdr.put_e_phoff(this->segment_header_->offset());
532
533   oehdr.put_e_shoff(this->section_header_->offset());
534   oehdr.put_e_flags(this->target_->processor_specific_flags());
535   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
537   if (this->segment_header_ == NULL)
538     {
539       oehdr.put_e_phentsize(0);
540       oehdr.put_e_phnum(0);
541     }
542   else
543     {
544       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545       size_t phnum = (this->segment_header_->data_size()
546                       / elfcpp::Elf_sizes<size>::phdr_size);
547       if (phnum > elfcpp::PN_XNUM)
548         phnum = elfcpp::PN_XNUM;
549       oehdr.put_e_phnum(phnum);
550     }
551
552   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553   size_t section_count = (this->section_header_->data_size()
554                           / elfcpp::Elf_sizes<size>::shdr_size);
555
556   if (section_count < elfcpp::SHN_LORESERVE)
557     oehdr.put_e_shnum(this->section_header_->data_size()
558                       / elfcpp::Elf_sizes<size>::shdr_size);
559   else
560     oehdr.put_e_shnum(0);
561
562   unsigned int shstrndx = this->shstrtab_->out_shndx();
563   if (shstrndx < elfcpp::SHN_LORESERVE)
564     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565   else
566     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
568   // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569   // the e_ident field.
570   parameters->target().adjust_elf_header(view, ehdr_size);
571
572   of->write_output_view(0, ehdr_size, view);
573 }
574
575 // Return the value to use for the entry address.
576
577 template<int size>
578 typename elfcpp::Elf_types<size>::Elf_Addr
579 Output_file_header::entry()
580 {
581   const bool should_issue_warning = (parameters->options().entry() != NULL
582                                      && !parameters->options().relocatable()
583                                      && !parameters->options().shared());
584   const char* entry = parameters->entry();
585   Symbol* sym = this->symtab_->lookup(entry);
586
587   typename Sized_symbol<size>::Value_type v;
588   if (sym != NULL)
589     {
590       Sized_symbol<size>* ssym;
591       ssym = this->symtab_->get_sized_symbol<size>(sym);
592       if (!ssym->is_defined() && should_issue_warning)
593         gold_warning("entry symbol '%s' exists but is not defined", entry);
594       v = ssym->value();
595     }
596   else
597     {
598       // We couldn't find the entry symbol.  See if we can parse it as
599       // a number.  This supports, e.g., -e 0x1000.
600       char* endptr;
601       v = strtoull(entry, &endptr, 0);
602       if (*endptr != '\0')
603         {
604           if (should_issue_warning)
605             gold_warning("cannot find entry symbol '%s'", entry);
606           v = 0;
607         }
608     }
609
610   return v;
611 }
612
613 // Compute the current data size.
614
615 off_t
616 Output_file_header::do_size() const
617 {
618   const int size = parameters->target().get_size();
619   if (size == 32)
620     return elfcpp::Elf_sizes<32>::ehdr_size;
621   else if (size == 64)
622     return elfcpp::Elf_sizes<64>::ehdr_size;
623   else
624     gold_unreachable();
625 }
626
627 // Output_data_const methods.
628
629 void
630 Output_data_const::do_write(Output_file* of)
631 {
632   of->write(this->offset(), this->data_.data(), this->data_.size());
633 }
634
635 // Output_data_const_buffer methods.
636
637 void
638 Output_data_const_buffer::do_write(Output_file* of)
639 {
640   of->write(this->offset(), this->p_, this->data_size());
641 }
642
643 // Output_section_data methods.
644
645 // Record the output section, and set the entry size and such.
646
647 void
648 Output_section_data::set_output_section(Output_section* os)
649 {
650   gold_assert(this->output_section_ == NULL);
651   this->output_section_ = os;
652   this->do_adjust_output_section(os);
653 }
654
655 // Return the section index of the output section.
656
657 unsigned int
658 Output_section_data::do_out_shndx() const
659 {
660   gold_assert(this->output_section_ != NULL);
661   return this->output_section_->out_shndx();
662 }
663
664 // Set the alignment, which means we may need to update the alignment
665 // of the output section.
666
667 void
668 Output_section_data::set_addralign(uint64_t addralign)
669 {
670   this->addralign_ = addralign;
671   if (this->output_section_ != NULL
672       && this->output_section_->addralign() < addralign)
673     this->output_section_->set_addralign(addralign);
674 }
675
676 // Output_data_strtab methods.
677
678 // Set the final data size.
679
680 void
681 Output_data_strtab::set_final_data_size()
682 {
683   this->strtab_->set_string_offsets();
684   this->set_data_size(this->strtab_->get_strtab_size());
685 }
686
687 // Write out a string table.
688
689 void
690 Output_data_strtab::do_write(Output_file* of)
691 {
692   this->strtab_->write(of, this->offset());
693 }
694
695 // Output_reloc methods.
696
697 // A reloc against a global symbol.
698
699 template<bool dynamic, int size, bool big_endian>
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701     Symbol* gsym,
702     unsigned int type,
703     Output_data* od,
704     Address address,
705     bool is_relative,
706     bool is_symbolless)
707   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708     is_relative_(is_relative), is_symbolless_(is_symbolless),
709     is_section_symbol_(false), shndx_(INVALID_CODE)
710 {
711   // this->type_ is a bitfield; make sure TYPE fits.
712   gold_assert(this->type_ == type);
713   this->u1_.gsym = gsym;
714   this->u2_.od = od;
715   if (dynamic)
716     this->set_needs_dynsym_index();
717 }
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721     Symbol* gsym,
722     unsigned int type,
723     Sized_relobj<size, big_endian>* relobj,
724     unsigned int shndx,
725     Address address,
726     bool is_relative,
727     bool is_symbolless)
728   : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729     is_relative_(is_relative), is_symbolless_(is_symbolless),
730     is_section_symbol_(false), shndx_(shndx)
731 {
732   gold_assert(shndx != INVALID_CODE);
733   // this->type_ is a bitfield; make sure TYPE fits.
734   gold_assert(this->type_ == type);
735   this->u1_.gsym = gsym;
736   this->u2_.relobj = relobj;
737   if (dynamic)
738     this->set_needs_dynsym_index();
739 }
740
741 // A reloc against a local symbol.
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745     Sized_relobj<size, big_endian>* relobj,
746     unsigned int local_sym_index,
747     unsigned int type,
748     Output_data* od,
749     Address address,
750     bool is_relative,
751     bool is_symbolless,
752     bool is_section_symbol)
753   : address_(address), local_sym_index_(local_sym_index), type_(type),
754     is_relative_(is_relative), is_symbolless_(is_symbolless),
755     is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
756 {
757   gold_assert(local_sym_index != GSYM_CODE
758               && local_sym_index != INVALID_CODE);
759   // this->type_ is a bitfield; make sure TYPE fits.
760   gold_assert(this->type_ == type);
761   this->u1_.relobj = relobj;
762   this->u2_.od = od;
763   if (dynamic)
764     this->set_needs_dynsym_index();
765 }
766
767 template<bool dynamic, int size, bool big_endian>
768 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
769     Sized_relobj<size, big_endian>* relobj,
770     unsigned int local_sym_index,
771     unsigned int type,
772     unsigned int shndx,
773     Address address,
774     bool is_relative,
775     bool is_symbolless,
776     bool is_section_symbol)
777   : address_(address), local_sym_index_(local_sym_index), type_(type),
778     is_relative_(is_relative), is_symbolless_(is_symbolless),
779     is_section_symbol_(is_section_symbol), shndx_(shndx)
780 {
781   gold_assert(local_sym_index != GSYM_CODE
782               && local_sym_index != INVALID_CODE);
783   gold_assert(shndx != INVALID_CODE);
784   // this->type_ is a bitfield; make sure TYPE fits.
785   gold_assert(this->type_ == type);
786   this->u1_.relobj = relobj;
787   this->u2_.relobj = relobj;
788   if (dynamic)
789     this->set_needs_dynsym_index();
790 }
791
792 // A reloc against the STT_SECTION symbol of an output section.
793
794 template<bool dynamic, int size, bool big_endian>
795 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796     Output_section* os,
797     unsigned int type,
798     Output_data* od,
799     Address address)
800   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
801     is_relative_(false), is_symbolless_(false),
802     is_section_symbol_(true), shndx_(INVALID_CODE)
803 {
804   // this->type_ is a bitfield; make sure TYPE fits.
805   gold_assert(this->type_ == type);
806   this->u1_.os = os;
807   this->u2_.od = od;
808   if (dynamic)
809     this->set_needs_dynsym_index();
810   else
811     os->set_needs_symtab_index();
812 }
813
814 template<bool dynamic, int size, bool big_endian>
815 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816     Output_section* os,
817     unsigned int type,
818     Sized_relobj<size, big_endian>* relobj,
819     unsigned int shndx,
820     Address address)
821   : address_(address), local_sym_index_(SECTION_CODE), type_(type),
822     is_relative_(false), is_symbolless_(false),
823     is_section_symbol_(true), shndx_(shndx)
824 {
825   gold_assert(shndx != INVALID_CODE);
826   // this->type_ is a bitfield; make sure TYPE fits.
827   gold_assert(this->type_ == type);
828   this->u1_.os = os;
829   this->u2_.relobj = relobj;
830   if (dynamic)
831     this->set_needs_dynsym_index();
832   else
833     os->set_needs_symtab_index();
834 }
835
836 // An absolute relocation.
837
838 template<bool dynamic, int size, bool big_endian>
839 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
840     unsigned int type,
841     Output_data* od,
842     Address address)
843   : address_(address), local_sym_index_(0), type_(type),
844     is_relative_(false), is_symbolless_(false),
845     is_section_symbol_(false), shndx_(INVALID_CODE)
846 {
847   // this->type_ is a bitfield; make sure TYPE fits.
848   gold_assert(this->type_ == type);
849   this->u1_.relobj = NULL;
850   this->u2_.od = od;
851 }
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855     unsigned int type,
856     Sized_relobj<size, big_endian>* relobj,
857     unsigned int shndx,
858     Address address)
859   : address_(address), local_sym_index_(0), type_(type),
860     is_relative_(false), is_symbolless_(false),
861     is_section_symbol_(false), shndx_(shndx)
862 {
863   gold_assert(shndx != INVALID_CODE);
864   // this->type_ is a bitfield; make sure TYPE fits.
865   gold_assert(this->type_ == type);
866   this->u1_.relobj = NULL;
867   this->u2_.relobj = relobj;
868 }
869
870 // A target specific relocation.
871
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874     unsigned int type,
875     void* arg,
876     Output_data* od,
877     Address address)
878   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
879     is_relative_(false), is_symbolless_(false),
880     is_section_symbol_(false), shndx_(INVALID_CODE)
881 {
882   // this->type_ is a bitfield; make sure TYPE fits.
883   gold_assert(this->type_ == type);
884   this->u1_.arg = arg;
885   this->u2_.od = od;
886 }
887
888 template<bool dynamic, int size, bool big_endian>
889 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
890     unsigned int type,
891     void* arg,
892     Sized_relobj<size, big_endian>* relobj,
893     unsigned int shndx,
894     Address address)
895   : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896     is_relative_(false), is_symbolless_(false),
897     is_section_symbol_(false), shndx_(shndx)
898 {
899   gold_assert(shndx != INVALID_CODE);
900   // this->type_ is a bitfield; make sure TYPE fits.
901   gold_assert(this->type_ == type);
902   this->u1_.arg = arg;
903   this->u2_.relobj = relobj;
904 }
905
906 // Record that we need a dynamic symbol index for this relocation.
907
908 template<bool dynamic, int size, bool big_endian>
909 void
910 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
911 set_needs_dynsym_index()
912 {
913   if (this->is_symbolless_)
914     return;
915   switch (this->local_sym_index_)
916     {
917     case INVALID_CODE:
918       gold_unreachable();
919
920     case GSYM_CODE:
921       this->u1_.gsym->set_needs_dynsym_entry();
922       break;
923
924     case SECTION_CODE:
925       this->u1_.os->set_needs_dynsym_index();
926       break;
927
928     case TARGET_CODE:
929       // The target must take care of this if necessary.
930       break;
931
932     case 0:
933       break;
934
935     default:
936       {
937         const unsigned int lsi = this->local_sym_index_;
938         Sized_relobj_file<size, big_endian>* relobj =
939             this->u1_.relobj->sized_relobj();
940         gold_assert(relobj != NULL);
941         if (!this->is_section_symbol_)
942           relobj->set_needs_output_dynsym_entry(lsi);
943         else
944           relobj->output_section(lsi)->set_needs_dynsym_index();
945       }
946       break;
947     }
948 }
949
950 // Get the symbol index of a relocation.
951
952 template<bool dynamic, int size, bool big_endian>
953 unsigned int
954 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
955   const
956 {
957   unsigned int index;
958   if (this->is_symbolless_)
959     return 0;
960   switch (this->local_sym_index_)
961     {
962     case INVALID_CODE:
963       gold_unreachable();
964
965     case GSYM_CODE:
966       if (this->u1_.gsym == NULL)
967         index = 0;
968       else if (dynamic)
969         index = this->u1_.gsym->dynsym_index();
970       else
971         index = this->u1_.gsym->symtab_index();
972       break;
973
974     case SECTION_CODE:
975       if (dynamic)
976         index = this->u1_.os->dynsym_index();
977       else
978         index = this->u1_.os->symtab_index();
979       break;
980
981     case TARGET_CODE:
982       index = parameters->target().reloc_symbol_index(this->u1_.arg,
983                                                       this->type_);
984       break;
985
986     case 0:
987       // Relocations without symbols use a symbol index of 0.
988       index = 0;
989       break;
990
991     default:
992       {
993         const unsigned int lsi = this->local_sym_index_;
994         Sized_relobj_file<size, big_endian>* relobj =
995             this->u1_.relobj->sized_relobj();
996         gold_assert(relobj != NULL);
997         if (!this->is_section_symbol_)
998           {
999             if (dynamic)
1000               index = relobj->dynsym_index(lsi);
1001             else
1002               index = relobj->symtab_index(lsi);
1003           }
1004         else
1005           {
1006             Output_section* os = relobj->output_section(lsi);
1007             gold_assert(os != NULL);
1008             if (dynamic)
1009               index = os->dynsym_index();
1010             else
1011               index = os->symtab_index();
1012           }
1013       }
1014       break;
1015     }
1016   gold_assert(index != -1U);
1017   return index;
1018 }
1019
1020 // For a local section symbol, get the address of the offset ADDEND
1021 // within the input section.
1022
1023 template<bool dynamic, int size, bool big_endian>
1024 typename elfcpp::Elf_types<size>::Elf_Addr
1025 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1026   local_section_offset(Addend addend) const
1027 {
1028   gold_assert(this->local_sym_index_ != GSYM_CODE
1029               && this->local_sym_index_ != SECTION_CODE
1030               && this->local_sym_index_ != TARGET_CODE
1031               && this->local_sym_index_ != INVALID_CODE
1032               && this->local_sym_index_ != 0
1033               && this->is_section_symbol_);
1034   const unsigned int lsi = this->local_sym_index_;
1035   Output_section* os = this->u1_.relobj->output_section(lsi);
1036   gold_assert(os != NULL);
1037   Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1038   if (offset != invalid_address)
1039     return offset + addend;
1040   // This is a merge section.
1041   Sized_relobj_file<size, big_endian>* relobj =
1042       this->u1_.relobj->sized_relobj();
1043   gold_assert(relobj != NULL);
1044   offset = os->output_address(relobj, lsi, addend);
1045   gold_assert(offset != invalid_address);
1046   return offset;
1047 }
1048
1049 // Get the output address of a relocation.
1050
1051 template<bool dynamic, int size, bool big_endian>
1052 typename elfcpp::Elf_types<size>::Elf_Addr
1053 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1054 {
1055   Address address = this->address_;
1056   if (this->shndx_ != INVALID_CODE)
1057     {
1058       Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1059       gold_assert(os != NULL);
1060       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1061       if (off != invalid_address)
1062         address += os->address() + off;
1063       else
1064         {
1065           Sized_relobj_file<size, big_endian>* relobj =
1066               this->u2_.relobj->sized_relobj();
1067           gold_assert(relobj != NULL);
1068           address = os->output_address(relobj, this->shndx_, address);
1069           gold_assert(address != invalid_address);
1070         }
1071     }
1072   else if (this->u2_.od != NULL)
1073     address += this->u2_.od->address();
1074   return address;
1075 }
1076
1077 // Write out the offset and info fields of a Rel or Rela relocation
1078 // entry.
1079
1080 template<bool dynamic, int size, bool big_endian>
1081 template<typename Write_rel>
1082 void
1083 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1084     Write_rel* wr) const
1085 {
1086   wr->put_r_offset(this->get_address());
1087   unsigned int sym_index = this->get_symbol_index();
1088   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1089 }
1090
1091 // Write out a Rel relocation.
1092
1093 template<bool dynamic, int size, bool big_endian>
1094 void
1095 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1096     unsigned char* pov) const
1097 {
1098   elfcpp::Rel_write<size, big_endian> orel(pov);
1099   this->write_rel(&orel);
1100 }
1101
1102 // Get the value of the symbol referred to by a Rel relocation.
1103
1104 template<bool dynamic, int size, bool big_endian>
1105 typename elfcpp::Elf_types<size>::Elf_Addr
1106 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1107     Addend addend) const
1108 {
1109   if (this->local_sym_index_ == GSYM_CODE)
1110     {
1111       const Sized_symbol<size>* sym;
1112       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1113       return sym->value() + addend;
1114     }
1115   gold_assert(this->local_sym_index_ != SECTION_CODE
1116               && this->local_sym_index_ != TARGET_CODE
1117               && this->local_sym_index_ != INVALID_CODE
1118               && this->local_sym_index_ != 0
1119               && !this->is_section_symbol_);
1120   const unsigned int lsi = this->local_sym_index_;
1121   Sized_relobj_file<size, big_endian>* relobj =
1122       this->u1_.relobj->sized_relobj();
1123   gold_assert(relobj != NULL);
1124   const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1125   return symval->value(relobj, addend);
1126 }
1127
1128 // Reloc comparison.  This function sorts the dynamic relocs for the
1129 // benefit of the dynamic linker.  First we sort all relative relocs
1130 // to the front.  Among relative relocs, we sort by output address.
1131 // Among non-relative relocs, we sort by symbol index, then by output
1132 // address.
1133
1134 template<bool dynamic, int size, bool big_endian>
1135 int
1136 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1137   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1138     const
1139 {
1140   if (this->is_relative_)
1141     {
1142       if (!r2.is_relative_)
1143         return -1;
1144       // Otherwise sort by reloc address below.
1145     }
1146   else if (r2.is_relative_)
1147     return 1;
1148   else
1149     {
1150       unsigned int sym1 = this->get_symbol_index();
1151       unsigned int sym2 = r2.get_symbol_index();
1152       if (sym1 < sym2)
1153         return -1;
1154       else if (sym1 > sym2)
1155         return 1;
1156       // Otherwise sort by reloc address.
1157     }
1158
1159   section_offset_type addr1 = this->get_address();
1160   section_offset_type addr2 = r2.get_address();
1161   if (addr1 < addr2)
1162     return -1;
1163   else if (addr1 > addr2)
1164     return 1;
1165
1166   // Final tie breaker, in order to generate the same output on any
1167   // host: reloc type.
1168   unsigned int type1 = this->type_;
1169   unsigned int type2 = r2.type_;
1170   if (type1 < type2)
1171     return -1;
1172   else if (type1 > type2)
1173     return 1;
1174
1175   // These relocs appear to be exactly the same.
1176   return 0;
1177 }
1178
1179 // Write out a Rela relocation.
1180
1181 template<bool dynamic, int size, bool big_endian>
1182 void
1183 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1184     unsigned char* pov) const
1185 {
1186   elfcpp::Rela_write<size, big_endian> orel(pov);
1187   this->rel_.write_rel(&orel);
1188   Addend addend = this->addend_;
1189   if (this->rel_.is_target_specific())
1190     addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1191                                                this->rel_.type(), addend);
1192   else if (this->rel_.is_symbolless())
1193     addend = this->rel_.symbol_value(addend);
1194   else if (this->rel_.is_local_section_symbol())
1195     addend = this->rel_.local_section_offset(addend);
1196   orel.put_r_addend(addend);
1197 }
1198
1199 // Output_data_reloc_base methods.
1200
1201 // Adjust the output section.
1202
1203 template<int sh_type, bool dynamic, int size, bool big_endian>
1204 void
1205 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1206     ::do_adjust_output_section(Output_section* os)
1207 {
1208   if (sh_type == elfcpp::SHT_REL)
1209     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1210   else if (sh_type == elfcpp::SHT_RELA)
1211     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1212   else
1213     gold_unreachable();
1214
1215   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1216   // static link.  The backends will generate a dynamic reloc section
1217   // to hold this.  In that case we don't want to link to the dynsym
1218   // section, because there isn't one.
1219   if (!dynamic)
1220     os->set_should_link_to_symtab();
1221   else if (parameters->doing_static_link())
1222     ;
1223   else
1224     os->set_should_link_to_dynsym();
1225 }
1226
1227 // Write out relocation data.
1228
1229 template<int sh_type, bool dynamic, int size, bool big_endian>
1230 void
1231 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1232     Output_file* of)
1233 {
1234   const off_t off = this->offset();
1235   const off_t oview_size = this->data_size();
1236   unsigned char* const oview = of->get_output_view(off, oview_size);
1237
1238   if (this->sort_relocs())
1239     {
1240       gold_assert(dynamic);
1241       std::sort(this->relocs_.begin(), this->relocs_.end(),
1242                 Sort_relocs_comparison());
1243     }
1244
1245   unsigned char* pov = oview;
1246   for (typename Relocs::const_iterator p = this->relocs_.begin();
1247        p != this->relocs_.end();
1248        ++p)
1249     {
1250       p->write(pov);
1251       pov += reloc_size;
1252     }
1253
1254   gold_assert(pov - oview == oview_size);
1255
1256   of->write_output_view(off, oview_size, oview);
1257
1258   // We no longer need the relocation entries.
1259   this->relocs_.clear();
1260 }
1261
1262 // Class Output_relocatable_relocs.
1263
1264 template<int sh_type, int size, bool big_endian>
1265 void
1266 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1267 {
1268   this->set_data_size(this->rr_->output_reloc_count()
1269                       * Reloc_types<sh_type, size, big_endian>::reloc_size);
1270 }
1271
1272 // class Output_data_group.
1273
1274 template<int size, bool big_endian>
1275 Output_data_group<size, big_endian>::Output_data_group(
1276     Sized_relobj_file<size, big_endian>* relobj,
1277     section_size_type entry_count,
1278     elfcpp::Elf_Word flags,
1279     std::vector<unsigned int>* input_shndxes)
1280   : Output_section_data(entry_count * 4, 4, false),
1281     relobj_(relobj),
1282     flags_(flags)
1283 {
1284   this->input_shndxes_.swap(*input_shndxes);
1285 }
1286
1287 // Write out the section group, which means translating the section
1288 // indexes to apply to the output file.
1289
1290 template<int size, bool big_endian>
1291 void
1292 Output_data_group<size, big_endian>::do_write(Output_file* of)
1293 {
1294   const off_t off = this->offset();
1295   const section_size_type oview_size =
1296     convert_to_section_size_type(this->data_size());
1297   unsigned char* const oview = of->get_output_view(off, oview_size);
1298
1299   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1300   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1301   ++contents;
1302
1303   for (std::vector<unsigned int>::const_iterator p =
1304          this->input_shndxes_.begin();
1305        p != this->input_shndxes_.end();
1306        ++p, ++contents)
1307     {
1308       Output_section* os = this->relobj_->output_section(*p);
1309
1310       unsigned int output_shndx;
1311       if (os != NULL)
1312         output_shndx = os->out_shndx();
1313       else
1314         {
1315           this->relobj_->error(_("section group retained but "
1316                                  "group element discarded"));
1317           output_shndx = 0;
1318         }
1319
1320       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1321     }
1322
1323   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1324   gold_assert(wrote == oview_size);
1325
1326   of->write_output_view(off, oview_size, oview);
1327
1328   // We no longer need this information.
1329   this->input_shndxes_.clear();
1330 }
1331
1332 // Output_data_got::Got_entry methods.
1333
1334 // Write out the entry.
1335
1336 template<int size, bool big_endian>
1337 void
1338 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1339 {
1340   Valtype val = 0;
1341
1342   switch (this->local_sym_index_)
1343     {
1344     case GSYM_CODE:
1345       {
1346         // If the symbol is resolved locally, we need to write out the
1347         // link-time value, which will be relocated dynamically by a
1348         // RELATIVE relocation.
1349         Symbol* gsym = this->u_.gsym;
1350         if (this->use_plt_offset_ && gsym->has_plt_offset())
1351           val = (parameters->target().plt_address_for_global(gsym)
1352                  + gsym->plt_offset());
1353         else
1354           {
1355             Sized_symbol<size>* sgsym;
1356             // This cast is a bit ugly.  We don't want to put a
1357             // virtual method in Symbol, because we want Symbol to be
1358             // as small as possible.
1359             sgsym = static_cast<Sized_symbol<size>*>(gsym);
1360             val = sgsym->value();
1361           }
1362       }
1363       break;
1364
1365     case CONSTANT_CODE:
1366       val = this->u_.constant;
1367       break;
1368
1369     case RESERVED_CODE:
1370       // If we're doing an incremental update, don't touch this GOT entry.
1371       if (parameters->incremental_update())
1372         return;
1373       val = this->u_.constant;
1374       break;
1375
1376     default:
1377       {
1378         const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1379         const unsigned int lsi = this->local_sym_index_;
1380         const Symbol_value<size>* symval = object->local_symbol(lsi);
1381         if (!this->use_plt_offset_)
1382           val = symval->value(this->u_.object, 0);
1383         else
1384           {
1385             uint64_t plt_address =
1386               parameters->target().plt_address_for_local(object, lsi);
1387             val = plt_address + object->local_plt_offset(lsi);
1388           }
1389       }
1390       break;
1391     }
1392
1393   elfcpp::Swap<size, big_endian>::writeval(pov, val);
1394 }
1395
1396 // Output_data_got methods.
1397
1398 // Add an entry for a global symbol to the GOT.  This returns true if
1399 // this is a new GOT entry, false if the symbol already had a GOT
1400 // entry.
1401
1402 template<int size, bool big_endian>
1403 bool
1404 Output_data_got<size, big_endian>::add_global(
1405     Symbol* gsym,
1406     unsigned int got_type)
1407 {
1408   if (gsym->has_got_offset(got_type))
1409     return false;
1410
1411   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1412   gsym->set_got_offset(got_type, got_offset);
1413   return true;
1414 }
1415
1416 // Like add_global, but use the PLT offset.
1417
1418 template<int size, bool big_endian>
1419 bool
1420 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1421                                                   unsigned int got_type)
1422 {
1423   if (gsym->has_got_offset(got_type))
1424     return false;
1425
1426   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1427   gsym->set_got_offset(got_type, got_offset);
1428   return true;
1429 }
1430
1431 // Add an entry for a global symbol to the GOT, and add a dynamic
1432 // relocation of type R_TYPE for the GOT entry.
1433
1434 template<int size, bool big_endian>
1435 void
1436 Output_data_got<size, big_endian>::add_global_with_rel(
1437     Symbol* gsym,
1438     unsigned int got_type,
1439     Rel_dyn* rel_dyn,
1440     unsigned int r_type)
1441 {
1442   if (gsym->has_got_offset(got_type))
1443     return;
1444
1445   unsigned int got_offset = this->add_got_entry(Got_entry());
1446   gsym->set_got_offset(got_type, got_offset);
1447   rel_dyn->add_global(gsym, r_type, this, got_offset);
1448 }
1449
1450 template<int size, bool big_endian>
1451 void
1452 Output_data_got<size, big_endian>::add_global_with_rela(
1453     Symbol* gsym,
1454     unsigned int got_type,
1455     Rela_dyn* rela_dyn,
1456     unsigned int r_type)
1457 {
1458   if (gsym->has_got_offset(got_type))
1459     return;
1460
1461   unsigned int got_offset = this->add_got_entry(Got_entry());
1462   gsym->set_got_offset(got_type, got_offset);
1463   rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a global symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1472     Symbol* gsym,
1473     unsigned int got_type,
1474     Rel_dyn* rel_dyn,
1475     unsigned int r_type_1,
1476     unsigned int r_type_2)
1477 {
1478   if (gsym->has_got_offset(got_type))
1479     return;
1480
1481   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1482   gsym->set_got_offset(got_type, got_offset);
1483   rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1484
1485   if (r_type_2 != 0)
1486     rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1487 }
1488
1489 template<int size, bool big_endian>
1490 void
1491 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1492     Symbol* gsym,
1493     unsigned int got_type,
1494     Rela_dyn* rela_dyn,
1495     unsigned int r_type_1,
1496     unsigned int r_type_2)
1497 {
1498   if (gsym->has_got_offset(got_type))
1499     return;
1500
1501   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1502   gsym->set_got_offset(got_type, got_offset);
1503   rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1504
1505   if (r_type_2 != 0)
1506     rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1507 }
1508
1509 // Add an entry for a local symbol to the GOT.  This returns true if
1510 // this is a new GOT entry, false if the symbol already has a GOT
1511 // entry.
1512
1513 template<int size, bool big_endian>
1514 bool
1515 Output_data_got<size, big_endian>::add_local(
1516     Sized_relobj_file<size, big_endian>* object,
1517     unsigned int symndx,
1518     unsigned int got_type)
1519 {
1520   if (object->local_has_got_offset(symndx, got_type))
1521     return false;
1522
1523   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1524                                                           false));
1525   object->set_local_got_offset(symndx, got_type, got_offset);
1526   return true;
1527 }
1528
1529 // Like add_local, but use the PLT offset.
1530
1531 template<int size, bool big_endian>
1532 bool
1533 Output_data_got<size, big_endian>::add_local_plt(
1534     Sized_relobj_file<size, big_endian>* object,
1535     unsigned int symndx,
1536     unsigned int got_type)
1537 {
1538   if (object->local_has_got_offset(symndx, got_type))
1539     return false;
1540
1541   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1542                                                           true));
1543   object->set_local_got_offset(symndx, got_type, got_offset);
1544   return true;
1545 }
1546
1547 // Add an entry for a local symbol to the GOT, and add a dynamic
1548 // relocation of type R_TYPE for the GOT entry.
1549
1550 template<int size, bool big_endian>
1551 void
1552 Output_data_got<size, big_endian>::add_local_with_rel(
1553     Sized_relobj_file<size, big_endian>* object,
1554     unsigned int symndx,
1555     unsigned int got_type,
1556     Rel_dyn* rel_dyn,
1557     unsigned int r_type)
1558 {
1559   if (object->local_has_got_offset(symndx, got_type))
1560     return;
1561
1562   unsigned int got_offset = this->add_got_entry(Got_entry());
1563   object->set_local_got_offset(symndx, got_type, got_offset);
1564   rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1565 }
1566
1567 template<int size, bool big_endian>
1568 void
1569 Output_data_got<size, big_endian>::add_local_with_rela(
1570     Sized_relobj_file<size, big_endian>* object,
1571     unsigned int symndx,
1572     unsigned int got_type,
1573     Rela_dyn* rela_dyn,
1574     unsigned int r_type)
1575 {
1576   if (object->local_has_got_offset(symndx, got_type))
1577     return;
1578
1579   unsigned int got_offset = this->add_got_entry(Got_entry());
1580   object->set_local_got_offset(symndx, got_type, got_offset);
1581   rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1582 }
1583
1584 // Add a pair of entries for a local symbol to the GOT, and add
1585 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1586 // If R_TYPE_2 == 0, add the second entry with no relocation.
1587 template<int size, bool big_endian>
1588 void
1589 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1590     Sized_relobj_file<size, big_endian>* object,
1591     unsigned int symndx,
1592     unsigned int shndx,
1593     unsigned int got_type,
1594     Rel_dyn* rel_dyn,
1595     unsigned int r_type_1,
1596     unsigned int r_type_2)
1597 {
1598   if (object->local_has_got_offset(symndx, got_type))
1599     return;
1600
1601   unsigned int got_offset =
1602       this->add_got_entry_pair(Got_entry(),
1603                                Got_entry(object, symndx, false));
1604   object->set_local_got_offset(symndx, got_type, got_offset);
1605   Output_section* os = object->output_section(shndx);
1606   rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1607
1608   if (r_type_2 != 0)
1609     rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1610 }
1611
1612 template<int size, bool big_endian>
1613 void
1614 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1615     Sized_relobj_file<size, big_endian>* object,
1616     unsigned int symndx,
1617     unsigned int shndx,
1618     unsigned int got_type,
1619     Rela_dyn* rela_dyn,
1620     unsigned int r_type_1,
1621     unsigned int r_type_2)
1622 {
1623   if (object->local_has_got_offset(symndx, got_type))
1624     return;
1625
1626   unsigned int got_offset =
1627       this->add_got_entry_pair(Got_entry(),
1628                                Got_entry(object, symndx, false));
1629   object->set_local_got_offset(symndx, got_type, got_offset);
1630   Output_section* os = object->output_section(shndx);
1631   rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1632
1633   if (r_type_2 != 0)
1634     rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1635 }
1636
1637 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639 template<int size, bool big_endian>
1640 void
1641 Output_data_got<size, big_endian>::reserve_local(
1642     unsigned int i,
1643     Sized_relobj<size, big_endian>* object,
1644     unsigned int sym_index,
1645     unsigned int got_type)
1646 {
1647   this->reserve_slot(i);
1648   object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649 }
1650
1651 // Reserve a slot in the GOT for a global symbol.
1652
1653 template<int size, bool big_endian>
1654 void
1655 Output_data_got<size, big_endian>::reserve_global(
1656     unsigned int i,
1657     Symbol* gsym,
1658     unsigned int got_type)
1659 {
1660   this->reserve_slot(i);
1661   gsym->set_got_offset(got_type, this->got_offset(i));
1662 }
1663
1664 // Write out the GOT.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Output_data_got<size, big_endian>::do_write(Output_file* of)
1669 {
1670   const int add = size / 8;
1671
1672   const off_t off = this->offset();
1673   const off_t oview_size = this->data_size();
1674   unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676   unsigned char* pov = oview;
1677   for (typename Got_entries::const_iterator p = this->entries_.begin();
1678        p != this->entries_.end();
1679        ++p)
1680     {
1681       p->write(pov);
1682       pov += add;
1683     }
1684
1685   gold_assert(pov - oview == oview_size);
1686
1687   of->write_output_view(off, oview_size, oview);
1688
1689   // We no longer need the GOT entries.
1690   this->entries_.clear();
1691 }
1692
1693 // Create a new GOT entry and return its offset.
1694
1695 template<int size, bool big_endian>
1696 unsigned int
1697 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1698 {
1699   if (!this->is_data_size_valid())
1700     {
1701       this->entries_.push_back(got_entry);
1702       this->set_got_size();
1703       return this->last_got_offset();
1704     }
1705   else
1706     {
1707       // For an incremental update, find an available slot.
1708       off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1709       if (got_offset == -1)
1710         gold_fallback(_("out of patch space (GOT);"
1711                         " relink with --incremental-full"));
1712       unsigned int got_index = got_offset / (size / 8);
1713       gold_assert(got_index < this->entries_.size());
1714       this->entries_[got_index] = got_entry;
1715       return static_cast<unsigned int>(got_offset);
1716     }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int size, bool big_endian>
1722 unsigned int
1723 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1724                                                       Got_entry got_entry_2)
1725 {
1726   if (!this->is_data_size_valid())
1727     {
1728       unsigned int got_offset;
1729       this->entries_.push_back(got_entry_1);
1730       got_offset = this->last_got_offset();
1731       this->entries_.push_back(got_entry_2);
1732       this->set_got_size();
1733       return got_offset;
1734     }
1735   else
1736     {
1737       // For an incremental update, find an available pair of slots.
1738       off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1739       if (got_offset == -1)
1740         gold_fallback(_("out of patch space (GOT);"
1741                         " relink with --incremental-full"));
1742       unsigned int got_index = got_offset / (size / 8);
1743       gold_assert(got_index < this->entries_.size());
1744       this->entries_[got_index] = got_entry_1;
1745       this->entries_[got_index + 1] = got_entry_2;
1746       return static_cast<unsigned int>(got_offset);
1747     }
1748 }
1749
1750 // Output_data_dynamic::Dynamic_entry methods.
1751
1752 // Write out the entry.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Output_data_dynamic::Dynamic_entry::write(
1757     unsigned char* pov,
1758     const Stringpool* pool) const
1759 {
1760   typename elfcpp::Elf_types<size>::Elf_WXword val;
1761   switch (this->offset_)
1762     {
1763     case DYNAMIC_NUMBER:
1764       val = this->u_.val;
1765       break;
1766
1767     case DYNAMIC_SECTION_SIZE:
1768       val = this->u_.od->data_size();
1769       if (this->od2 != NULL)
1770         val += this->od2->data_size();
1771       break;
1772
1773     case DYNAMIC_SYMBOL:
1774       {
1775         const Sized_symbol<size>* s =
1776           static_cast<const Sized_symbol<size>*>(this->u_.sym);
1777         val = s->value();
1778       }
1779       break;
1780
1781     case DYNAMIC_STRING:
1782       val = pool->get_offset(this->u_.str);
1783       break;
1784
1785     default:
1786       val = this->u_.od->address() + this->offset_;
1787       break;
1788     }
1789
1790   elfcpp::Dyn_write<size, big_endian> dw(pov);
1791   dw.put_d_tag(this->tag_);
1792   dw.put_d_val(val);
1793 }
1794
1795 // Output_data_dynamic methods.
1796
1797 // Adjust the output section to set the entry size.
1798
1799 void
1800 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801 {
1802   if (parameters->target().get_size() == 32)
1803     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1804   else if (parameters->target().get_size() == 64)
1805     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806   else
1807     gold_unreachable();
1808 }
1809
1810 // Set the final data size.
1811
1812 void
1813 Output_data_dynamic::set_final_data_size()
1814 {
1815   // Add the terminating entry if it hasn't been added.
1816   // Because of relaxation, we can run this multiple times.
1817   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818     {
1819       int extra = parameters->options().spare_dynamic_tags();
1820       for (int i = 0; i < extra; ++i)
1821         this->add_constant(elfcpp::DT_NULL, 0);
1822       this->add_constant(elfcpp::DT_NULL, 0);
1823     }
1824
1825   int dyn_size;
1826   if (parameters->target().get_size() == 32)
1827     dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1828   else if (parameters->target().get_size() == 64)
1829     dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830   else
1831     gold_unreachable();
1832   this->set_data_size(this->entries_.size() * dyn_size);
1833 }
1834
1835 // Write out the dynamic entries.
1836
1837 void
1838 Output_data_dynamic::do_write(Output_file* of)
1839 {
1840   switch (parameters->size_and_endianness())
1841     {
1842 #ifdef HAVE_TARGET_32_LITTLE
1843     case Parameters::TARGET_32_LITTLE:
1844       this->sized_write<32, false>(of);
1845       break;
1846 #endif
1847 #ifdef HAVE_TARGET_32_BIG
1848     case Parameters::TARGET_32_BIG:
1849       this->sized_write<32, true>(of);
1850       break;
1851 #endif
1852 #ifdef HAVE_TARGET_64_LITTLE
1853     case Parameters::TARGET_64_LITTLE:
1854       this->sized_write<64, false>(of);
1855       break;
1856 #endif
1857 #ifdef HAVE_TARGET_64_BIG
1858     case Parameters::TARGET_64_BIG:
1859       this->sized_write<64, true>(of);
1860       break;
1861 #endif
1862     default:
1863       gold_unreachable();
1864     }
1865 }
1866
1867 template<int size, bool big_endian>
1868 void
1869 Output_data_dynamic::sized_write(Output_file* of)
1870 {
1871   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
1873   const off_t offset = this->offset();
1874   const off_t oview_size = this->data_size();
1875   unsigned char* const oview = of->get_output_view(offset, oview_size);
1876
1877   unsigned char* pov = oview;
1878   for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879        p != this->entries_.end();
1880        ++p)
1881     {
1882       p->write<size, big_endian>(pov, this->pool_);
1883       pov += dyn_size;
1884     }
1885
1886   gold_assert(pov - oview == oview_size);
1887
1888   of->write_output_view(offset, oview_size, oview);
1889
1890   // We no longer need the dynamic entries.
1891   this->entries_.clear();
1892 }
1893
1894 // Class Output_symtab_xindex.
1895
1896 void
1897 Output_symtab_xindex::do_write(Output_file* of)
1898 {
1899   const off_t offset = this->offset();
1900   const off_t oview_size = this->data_size();
1901   unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903   memset(oview, 0, oview_size);
1904
1905   if (parameters->target().is_big_endian())
1906     this->endian_do_write<true>(oview);
1907   else
1908     this->endian_do_write<false>(oview);
1909
1910   of->write_output_view(offset, oview_size, oview);
1911
1912   // We no longer need the data.
1913   this->entries_.clear();
1914 }
1915
1916 template<bool big_endian>
1917 void
1918 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919 {
1920   for (Xindex_entries::const_iterator p = this->entries_.begin();
1921        p != this->entries_.end();
1922        ++p)
1923     {
1924       unsigned int symndx = p->first;
1925       gold_assert(symndx * 4 < this->data_size());
1926       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927     }
1928 }
1929
1930 // Output_fill_debug_info methods.
1931
1932 // Return the minimum size needed for a dummy compilation unit header.
1933
1934 size_t
1935 Output_fill_debug_info::do_minimum_hole_size() const
1936 {
1937   // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938   // address_size.
1939   const size_t len = 4 + 2 + 4 + 1;
1940   // For type units, add type_signature, type_offset.
1941   if (this->is_debug_types_)
1942     return len + 8 + 4;
1943   return len;
1944 }
1945
1946 // Write a dummy compilation unit header to fill a hole in the
1947 // .debug_info or .debug_types section.
1948
1949 void
1950 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951 {
1952   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1953              static_cast<long>(off), static_cast<long>(len));
1954
1955   gold_assert(len >= this->do_minimum_hole_size());
1956
1957   unsigned char* const oview = of->get_output_view(off, len);
1958   unsigned char* pov = oview;
1959
1960   // Write header fields: unit_length, version, debug_abbrev_offset,
1961   // address_size.
1962   if (this->is_big_endian())
1963     {
1964       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1965       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1966       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1967     }
1968   else
1969     {
1970       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1971       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1972       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1973     }
1974   pov += 4 + 2 + 4;
1975   *pov++ = 4;
1976
1977   // For type units, the additional header fields -- type_signature,
1978   // type_offset -- can be filled with zeroes.
1979
1980   // Fill the remainder of the free space with zeroes.  The first
1981   // zero should tell the consumer there are no DIEs to read in this
1982   // compilation unit.
1983   if (pov < oview + len)
1984     memset(pov, 0, oview + len - pov);
1985
1986   of->write_output_view(off, len, oview);
1987 }
1988
1989 // Output_fill_debug_line methods.
1990
1991 // Return the minimum size needed for a dummy line number program header.
1992
1993 size_t
1994 Output_fill_debug_line::do_minimum_hole_size() const
1995 {
1996   // Line number program header fields: unit_length, version, header_length,
1997   // minimum_instruction_length, default_is_stmt, line_base, line_range,
1998   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1999   const size_t len = 4 + 2 + 4 + this->header_length;
2000   return len;
2001 }
2002
2003 // Write a dummy line number program header to fill a hole in the
2004 // .debug_line section.
2005
2006 void
2007 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2008 {
2009   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2010              static_cast<long>(off), static_cast<long>(len));
2011
2012   gold_assert(len >= this->do_minimum_hole_size());
2013
2014   unsigned char* const oview = of->get_output_view(off, len);
2015   unsigned char* pov = oview;
2016
2017   // Write header fields: unit_length, version, header_length,
2018   // minimum_instruction_length, default_is_stmt, line_base, line_range,
2019   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2020   // We set the header_length field to cover the entire hole, so the
2021   // line number program is empty.
2022   if (this->is_big_endian())
2023     {
2024       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2025       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2026       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2027     }
2028   else
2029     {
2030       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2031       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2032       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2033     }
2034   pov += 4 + 2 + 4;
2035   *pov++ = 1;   // minimum_instruction_length
2036   *pov++ = 0;   // default_is_stmt
2037   *pov++ = 0;   // line_base
2038   *pov++ = 5;   // line_range
2039   *pov++ = 13;  // opcode_base
2040   *pov++ = 0;   // standard_opcode_lengths[1]
2041   *pov++ = 1;   // standard_opcode_lengths[2]
2042   *pov++ = 1;   // standard_opcode_lengths[3]
2043   *pov++ = 1;   // standard_opcode_lengths[4]
2044   *pov++ = 1;   // standard_opcode_lengths[5]
2045   *pov++ = 0;   // standard_opcode_lengths[6]
2046   *pov++ = 0;   // standard_opcode_lengths[7]
2047   *pov++ = 0;   // standard_opcode_lengths[8]
2048   *pov++ = 1;   // standard_opcode_lengths[9]
2049   *pov++ = 0;   // standard_opcode_lengths[10]
2050   *pov++ = 0;   // standard_opcode_lengths[11]
2051   *pov++ = 1;   // standard_opcode_lengths[12]
2052   *pov++ = 0;   // include_directories (empty)
2053   *pov++ = 0;   // filenames (empty)
2054
2055   // Some consumers don't check the header_length field, and simply
2056   // start reading the line number program immediately following the
2057   // header.  For those consumers, we fill the remainder of the free
2058   // space with DW_LNS_set_basic_block opcodes.  These are effectively
2059   // no-ops: the resulting line table program will not create any rows.
2060   if (pov < oview + len)
2061     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2062
2063   of->write_output_view(off, len, oview);
2064 }
2065
2066 // Output_section::Input_section methods.
2067
2068 // Return the current data size.  For an input section we store the size here.
2069 // For an Output_section_data, we have to ask it for the size.
2070
2071 off_t
2072 Output_section::Input_section::current_data_size() const
2073 {
2074   if (this->is_input_section())
2075     return this->u1_.data_size;
2076   else
2077     {
2078       this->u2_.posd->pre_finalize_data_size();
2079       return this->u2_.posd->current_data_size();
2080     }
2081 }
2082
2083 // Return the data size.  For an input section we store the size here.
2084 // For an Output_section_data, we have to ask it for the size.
2085
2086 off_t
2087 Output_section::Input_section::data_size() const
2088 {
2089   if (this->is_input_section())
2090     return this->u1_.data_size;
2091   else
2092     return this->u2_.posd->data_size();
2093 }
2094
2095 // Return the object for an input section.
2096
2097 Relobj*
2098 Output_section::Input_section::relobj() const
2099 {
2100   if (this->is_input_section())
2101     return this->u2_.object;
2102   else if (this->is_merge_section())
2103     {
2104       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2105       return this->u2_.pomb->first_relobj();
2106     }
2107   else if (this->is_relaxed_input_section())
2108     return this->u2_.poris->relobj();
2109   else
2110     gold_unreachable();
2111 }
2112
2113 // Return the input section index for an input section.
2114
2115 unsigned int
2116 Output_section::Input_section::shndx() const
2117 {
2118   if (this->is_input_section())
2119     return this->shndx_;
2120   else if (this->is_merge_section())
2121     {
2122       gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123       return this->u2_.pomb->first_shndx();
2124     }
2125   else if (this->is_relaxed_input_section())
2126     return this->u2_.poris->shndx();
2127   else
2128     gold_unreachable();
2129 }
2130
2131 // Set the address and file offset.
2132
2133 void
2134 Output_section::Input_section::set_address_and_file_offset(
2135     uint64_t address,
2136     off_t file_offset,
2137     off_t section_file_offset)
2138 {
2139   if (this->is_input_section())
2140     this->u2_.object->set_section_offset(this->shndx_,
2141                                          file_offset - section_file_offset);
2142   else
2143     this->u2_.posd->set_address_and_file_offset(address, file_offset);
2144 }
2145
2146 // Reset the address and file offset.
2147
2148 void
2149 Output_section::Input_section::reset_address_and_file_offset()
2150 {
2151   if (!this->is_input_section())
2152     this->u2_.posd->reset_address_and_file_offset();
2153 }
2154
2155 // Finalize the data size.
2156
2157 void
2158 Output_section::Input_section::finalize_data_size()
2159 {
2160   if (!this->is_input_section())
2161     this->u2_.posd->finalize_data_size();
2162 }
2163
2164 // Try to turn an input offset into an output offset.  We want to
2165 // return the output offset relative to the start of this
2166 // Input_section in the output section.
2167
2168 inline bool
2169 Output_section::Input_section::output_offset(
2170     const Relobj* object,
2171     unsigned int shndx,
2172     section_offset_type offset,
2173     section_offset_type* poutput) const
2174 {
2175   if (!this->is_input_section())
2176     return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2177   else
2178     {
2179       if (this->shndx_ != shndx || this->u2_.object != object)
2180         return false;
2181       *poutput = offset;
2182       return true;
2183     }
2184 }
2185
2186 // Return whether this is the merge section for the input section
2187 // SHNDX in OBJECT.
2188
2189 inline bool
2190 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2191                                                     unsigned int shndx) const
2192 {
2193   if (this->is_input_section())
2194     return false;
2195   return this->u2_.posd->is_merge_section_for(object, shndx);
2196 }
2197
2198 // Write out the data.  We don't have to do anything for an input
2199 // section--they are handled via Object::relocate--but this is where
2200 // we write out the data for an Output_section_data.
2201
2202 void
2203 Output_section::Input_section::write(Output_file* of)
2204 {
2205   if (!this->is_input_section())
2206     this->u2_.posd->write(of);
2207 }
2208
2209 // Write the data to a buffer.  As for write(), we don't have to do
2210 // anything for an input section.
2211
2212 void
2213 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2214 {
2215   if (!this->is_input_section())
2216     this->u2_.posd->write_to_buffer(buffer);
2217 }
2218
2219 // Print to a map file.
2220
2221 void
2222 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2223 {
2224   switch (this->shndx_)
2225     {
2226     case OUTPUT_SECTION_CODE:
2227     case MERGE_DATA_SECTION_CODE:
2228     case MERGE_STRING_SECTION_CODE:
2229       this->u2_.posd->print_to_mapfile(mapfile);
2230       break;
2231
2232     case RELAXED_INPUT_SECTION_CODE:
2233       {
2234         Output_relaxed_input_section* relaxed_section =
2235           this->relaxed_input_section();
2236         mapfile->print_input_section(relaxed_section->relobj(),
2237                                      relaxed_section->shndx());
2238       }
2239       break;
2240     default:
2241       mapfile->print_input_section(this->u2_.object, this->shndx_);
2242       break;
2243     }
2244 }
2245
2246 // Output_section methods.
2247
2248 // Construct an Output_section.  NAME will point into a Stringpool.
2249
2250 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2251                                elfcpp::Elf_Xword flags)
2252   : name_(name),
2253     addralign_(0),
2254     entsize_(0),
2255     load_address_(0),
2256     link_section_(NULL),
2257     link_(0),
2258     info_section_(NULL),
2259     info_symndx_(NULL),
2260     info_(0),
2261     type_(type),
2262     flags_(flags),
2263     order_(ORDER_INVALID),
2264     out_shndx_(-1U),
2265     symtab_index_(0),
2266     dynsym_index_(0),
2267     input_sections_(),
2268     first_input_offset_(0),
2269     fills_(),
2270     postprocessing_buffer_(NULL),
2271     needs_symtab_index_(false),
2272     needs_dynsym_index_(false),
2273     should_link_to_symtab_(false),
2274     should_link_to_dynsym_(false),
2275     after_input_sections_(false),
2276     requires_postprocessing_(false),
2277     found_in_sections_clause_(false),
2278     has_load_address_(false),
2279     info_uses_section_index_(false),
2280     input_section_order_specified_(false),
2281     may_sort_attached_input_sections_(false),
2282     must_sort_attached_input_sections_(false),
2283     attached_input_sections_are_sorted_(false),
2284     is_relro_(false),
2285     is_small_section_(false),
2286     is_large_section_(false),
2287     generate_code_fills_at_write_(false),
2288     is_entsize_zero_(false),
2289     section_offsets_need_adjustment_(false),
2290     is_noload_(false),
2291     always_keeps_input_sections_(false),
2292     has_fixed_layout_(false),
2293     is_patch_space_allowed_(false),
2294     tls_offset_(0),
2295     checkpoint_(NULL),
2296     lookup_maps_(new Output_section_lookup_maps),
2297     free_list_(),
2298     free_space_fill_(NULL),
2299     patch_space_(0)
2300 {
2301   // An unallocated section has no address.  Forcing this means that
2302   // we don't need special treatment for symbols defined in debug
2303   // sections.
2304   if ((flags & elfcpp::SHF_ALLOC) == 0)
2305     this->set_address(0);
2306 }
2307
2308 Output_section::~Output_section()
2309 {
2310   delete this->checkpoint_;
2311 }
2312
2313 // Set the entry size.
2314
2315 void
2316 Output_section::set_entsize(uint64_t v)
2317 {
2318   if (this->is_entsize_zero_)
2319     ;
2320   else if (this->entsize_ == 0)
2321     this->entsize_ = v;
2322   else if (this->entsize_ != v)
2323     {
2324       this->entsize_ = 0;
2325       this->is_entsize_zero_ = 1;
2326     }
2327 }
2328
2329 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2330 // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
2331 // relocation section which applies to this section, or 0 if none, or
2332 // -1U if more than one.  Return the offset of the input section
2333 // within the output section.  Return -1 if the input section will
2334 // receive special handling.  In the normal case we don't always keep
2335 // track of input sections for an Output_section.  Instead, each
2336 // Object keeps track of the Output_section for each of its input
2337 // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2338 // track of input sections here; this is used when SECTIONS appears in
2339 // a linker script.
2340
2341 template<int size, bool big_endian>
2342 off_t
2343 Output_section::add_input_section(Layout* layout,
2344                                   Sized_relobj_file<size, big_endian>* object,
2345                                   unsigned int shndx,
2346                                   const char* secname,
2347                                   const elfcpp::Shdr<size, big_endian>& shdr,
2348                                   unsigned int reloc_shndx,
2349                                   bool have_sections_script)
2350 {
2351   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2352   if ((addralign & (addralign - 1)) != 0)
2353     {
2354       object->error(_("invalid alignment %lu for section \"%s\""),
2355                     static_cast<unsigned long>(addralign), secname);
2356       addralign = 1;
2357     }
2358
2359   if (addralign > this->addralign_)
2360     this->addralign_ = addralign;
2361
2362   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2363   uint64_t entsize = shdr.get_sh_entsize();
2364
2365   // .debug_str is a mergeable string section, but is not always so
2366   // marked by compilers.  Mark manually here so we can optimize.
2367   if (strcmp(secname, ".debug_str") == 0)
2368     {
2369       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2370       entsize = 1;
2371     }
2372
2373   this->update_flags_for_input_section(sh_flags);
2374   this->set_entsize(entsize);
2375
2376   // If this is a SHF_MERGE section, we pass all the input sections to
2377   // a Output_data_merge.  We don't try to handle relocations for such
2378   // a section.  We don't try to handle empty merge sections--they
2379   // mess up the mappings, and are useless anyhow.
2380   // FIXME: Need to handle merge sections during incremental update.
2381   if ((sh_flags & elfcpp::SHF_MERGE) != 0
2382       && reloc_shndx == 0
2383       && shdr.get_sh_size() > 0
2384       && !parameters->incremental())
2385     {
2386       // Keep information about merged input sections for rebuilding fast
2387       // lookup maps if we have sections-script or we do relaxation.
2388       bool keeps_input_sections = (this->always_keeps_input_sections_
2389                                    || have_sections_script
2390                                    || parameters->target().may_relax());
2391
2392       if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2393                                         addralign, keeps_input_sections))
2394         {
2395           // Tell the relocation routines that they need to call the
2396           // output_offset method to determine the final address.
2397           return -1;
2398         }
2399     }
2400
2401   section_size_type input_section_size = shdr.get_sh_size();
2402   section_size_type uncompressed_size;
2403   if (object->section_is_compressed(shndx, &uncompressed_size))
2404     input_section_size = uncompressed_size;
2405
2406   off_t offset_in_section;
2407   off_t aligned_offset_in_section;
2408   if (this->has_fixed_layout())
2409     {
2410       // For incremental updates, find a chunk of unused space in the section.
2411       offset_in_section = this->free_list_.allocate(input_section_size,
2412                                                     addralign, 0);
2413       if (offset_in_section == -1)
2414         gold_fallback(_("out of patch space in section %s; "
2415                         "relink with --incremental-full"),
2416                       this->name());
2417       aligned_offset_in_section = offset_in_section;
2418     }
2419   else
2420     {
2421       offset_in_section = this->current_data_size_for_child();
2422       aligned_offset_in_section = align_address(offset_in_section,
2423                                                 addralign);
2424       this->set_current_data_size_for_child(aligned_offset_in_section
2425                                             + input_section_size);
2426     }
2427
2428   // Determine if we want to delay code-fill generation until the output
2429   // section is written.  When the target is relaxing, we want to delay fill
2430   // generating to avoid adjusting them during relaxation.  Also, if we are
2431   // sorting input sections we must delay fill generation.
2432   if (!this->generate_code_fills_at_write_
2433       && !have_sections_script
2434       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2435       && parameters->target().has_code_fill()
2436       && (parameters->target().may_relax()
2437           || layout->is_section_ordering_specified()))
2438     {
2439       gold_assert(this->fills_.empty());
2440       this->generate_code_fills_at_write_ = true;
2441     }
2442
2443   if (aligned_offset_in_section > offset_in_section
2444       && !this->generate_code_fills_at_write_
2445       && !have_sections_script
2446       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2447       && parameters->target().has_code_fill())
2448     {
2449       // We need to add some fill data.  Using fill_list_ when
2450       // possible is an optimization, since we will often have fill
2451       // sections without input sections.
2452       off_t fill_len = aligned_offset_in_section - offset_in_section;
2453       if (this->input_sections_.empty())
2454         this->fills_.push_back(Fill(offset_in_section, fill_len));
2455       else
2456         {
2457           std::string fill_data(parameters->target().code_fill(fill_len));
2458           Output_data_const* odc = new Output_data_const(fill_data, 1);
2459           this->input_sections_.push_back(Input_section(odc));
2460         }
2461     }
2462
2463   // We need to keep track of this section if we are already keeping
2464   // track of sections, or if we are relaxing.  Also, if this is a
2465   // section which requires sorting, or which may require sorting in
2466   // the future, we keep track of the sections.  If the
2467   // --section-ordering-file option is used to specify the order of
2468   // sections, we need to keep track of sections.
2469   if (this->always_keeps_input_sections_
2470       || have_sections_script
2471       || !this->input_sections_.empty()
2472       || this->may_sort_attached_input_sections()
2473       || this->must_sort_attached_input_sections()
2474       || parameters->options().user_set_Map()
2475       || parameters->target().may_relax()
2476       || layout->is_section_ordering_specified())
2477     {
2478       Input_section isecn(object, shndx, input_section_size, addralign);
2479       if (layout->is_section_ordering_specified())
2480         {
2481           unsigned int section_order_index =
2482             layout->find_section_order_index(std::string(secname));
2483           if (section_order_index != 0)
2484             {
2485               isecn.set_section_order_index(section_order_index);
2486               this->set_input_section_order_specified();
2487             }
2488         }
2489       if (this->has_fixed_layout())
2490         {
2491           // For incremental updates, finalize the address and offset now.
2492           uint64_t addr = this->address();
2493           isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2494                                             aligned_offset_in_section,
2495                                             this->offset());
2496         }
2497       this->input_sections_.push_back(isecn);
2498     }
2499
2500   return aligned_offset_in_section;
2501 }
2502
2503 // Add arbitrary data to an output section.
2504
2505 void
2506 Output_section::add_output_section_data(Output_section_data* posd)
2507 {
2508   Input_section inp(posd);
2509   this->add_output_section_data(&inp);
2510
2511   if (posd->is_data_size_valid())
2512     {
2513       off_t offset_in_section;
2514       if (this->has_fixed_layout())
2515         {
2516           // For incremental updates, find a chunk of unused space.
2517           offset_in_section = this->free_list_.allocate(posd->data_size(),
2518                                                         posd->addralign(), 0);
2519           if (offset_in_section == -1)
2520             gold_fallback(_("out of patch space in section %s; "
2521                             "relink with --incremental-full"),
2522                           this->name());
2523           // Finalize the address and offset now.
2524           uint64_t addr = this->address();
2525           off_t offset = this->offset();
2526           posd->set_address_and_file_offset(addr + offset_in_section,
2527                                             offset + offset_in_section);
2528         }
2529       else
2530         {
2531           offset_in_section = this->current_data_size_for_child();
2532           off_t aligned_offset_in_section = align_address(offset_in_section,
2533                                                           posd->addralign());
2534           this->set_current_data_size_for_child(aligned_offset_in_section
2535                                                 + posd->data_size());
2536         }
2537     }
2538   else if (this->has_fixed_layout())
2539     {
2540       // For incremental updates, arrange for the data to have a fixed layout.
2541       // This will mean that additions to the data must be allocated from
2542       // free space within the containing output section.
2543       uint64_t addr = this->address();
2544       posd->set_address(addr);
2545       posd->set_file_offset(0);
2546       // FIXME: This should eventually be unreachable.
2547       // gold_unreachable();
2548     }
2549 }
2550
2551 // Add a relaxed input section.
2552
2553 void
2554 Output_section::add_relaxed_input_section(Layout* layout,
2555                                           Output_relaxed_input_section* poris,
2556                                           const std::string& name)
2557 {
2558   Input_section inp(poris);
2559
2560   // If the --section-ordering-file option is used to specify the order of
2561   // sections, we need to keep track of sections.
2562   if (layout->is_section_ordering_specified())
2563     {
2564       unsigned int section_order_index =
2565         layout->find_section_order_index(name);
2566       if (section_order_index != 0)
2567         {
2568           inp.set_section_order_index(section_order_index);
2569           this->set_input_section_order_specified();
2570         }
2571     }
2572
2573   this->add_output_section_data(&inp);
2574   if (this->lookup_maps_->is_valid())
2575     this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2576                                                   poris->shndx(), poris);
2577
2578   // For a relaxed section, we use the current data size.  Linker scripts
2579   // get all the input sections, including relaxed one from an output
2580   // section and add them back to them same output section to compute the
2581   // output section size.  If we do not account for sizes of relaxed input
2582   // sections,  an output section would be incorrectly sized.
2583   off_t offset_in_section = this->current_data_size_for_child();
2584   off_t aligned_offset_in_section = align_address(offset_in_section,
2585                                                   poris->addralign());
2586   this->set_current_data_size_for_child(aligned_offset_in_section
2587                                         + poris->current_data_size());
2588 }
2589
2590 // Add arbitrary data to an output section by Input_section.
2591
2592 void
2593 Output_section::add_output_section_data(Input_section* inp)
2594 {
2595   if (this->input_sections_.empty())
2596     this->first_input_offset_ = this->current_data_size_for_child();
2597
2598   this->input_sections_.push_back(*inp);
2599
2600   uint64_t addralign = inp->addralign();
2601   if (addralign > this->addralign_)
2602     this->addralign_ = addralign;
2603
2604   inp->set_output_section(this);
2605 }
2606
2607 // Add a merge section to an output section.
2608
2609 void
2610 Output_section::add_output_merge_section(Output_section_data* posd,
2611                                          bool is_string, uint64_t entsize)
2612 {
2613   Input_section inp(posd, is_string, entsize);
2614   this->add_output_section_data(&inp);
2615 }
2616
2617 // Add an input section to a SHF_MERGE section.
2618
2619 bool
2620 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2621                                         uint64_t flags, uint64_t entsize,
2622                                         uint64_t addralign,
2623                                         bool keeps_input_sections)
2624 {
2625   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2626
2627   // We only merge strings if the alignment is not more than the
2628   // character size.  This could be handled, but it's unusual.
2629   if (is_string && addralign > entsize)
2630     return false;
2631
2632   // We cannot restore merged input section states.
2633   gold_assert(this->checkpoint_ == NULL);
2634
2635   // Look up merge sections by required properties.
2636   // Currently, we only invalidate the lookup maps in script processing
2637   // and relaxation.  We should not have done either when we reach here.
2638   // So we assume that the lookup maps are valid to simply code.
2639   gold_assert(this->lookup_maps_->is_valid());
2640   Merge_section_properties msp(is_string, entsize, addralign);
2641   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2642   bool is_new = false;
2643   if (pomb != NULL)
2644     {
2645       gold_assert(pomb->is_string() == is_string
2646                   && pomb->entsize() == entsize
2647                   && pomb->addralign() == addralign);
2648     }
2649   else
2650     {
2651       // Create a new Output_merge_data or Output_merge_string_data.
2652       if (!is_string)
2653         pomb = new Output_merge_data(entsize, addralign);
2654       else
2655         {
2656           switch (entsize)
2657             {
2658             case 1:
2659               pomb = new Output_merge_string<char>(addralign);
2660               break;
2661             case 2:
2662               pomb = new Output_merge_string<uint16_t>(addralign);
2663               break;
2664             case 4:
2665               pomb = new Output_merge_string<uint32_t>(addralign);
2666               break;
2667             default:
2668               return false;
2669             }
2670         }
2671       // If we need to do script processing or relaxation, we need to keep
2672       // the original input sections to rebuild the fast lookup maps.
2673       if (keeps_input_sections)
2674         pomb->set_keeps_input_sections();
2675       is_new = true;
2676     }
2677
2678   if (pomb->add_input_section(object, shndx))
2679     {
2680       // Add new merge section to this output section and link merge
2681       // section properties to new merge section in map.
2682       if (is_new)
2683         {
2684           this->add_output_merge_section(pomb, is_string, entsize);
2685           this->lookup_maps_->add_merge_section(msp, pomb);
2686         }
2687
2688       // Add input section to new merge section and link input section to new
2689       // merge section in map.
2690       this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2691       return true;
2692     }
2693   else
2694     {
2695       // If add_input_section failed, delete new merge section to avoid
2696       // exporting empty merge sections in Output_section::get_input_section.
2697       if (is_new)
2698         delete pomb;
2699       return false;
2700     }
2701 }
2702
2703 // Build a relaxation map to speed up relaxation of existing input sections.
2704 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2705
2706 void
2707 Output_section::build_relaxation_map(
2708   const Input_section_list& input_sections,
2709   size_t limit,
2710   Relaxation_map* relaxation_map) const
2711 {
2712   for (size_t i = 0; i < limit; ++i)
2713     {
2714       const Input_section& is(input_sections[i]);
2715       if (is.is_input_section() || is.is_relaxed_input_section())
2716         {
2717           Section_id sid(is.relobj(), is.shndx());
2718           (*relaxation_map)[sid] = i;
2719         }
2720     }
2721 }
2722
2723 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2724 // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
2725 // indices of INPUT_SECTIONS.
2726
2727 void
2728 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2729   const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2730   const Relaxation_map& map,
2731   Input_section_list* input_sections)
2732 {
2733   for (size_t i = 0; i < relaxed_sections.size(); ++i)
2734     {
2735       Output_relaxed_input_section* poris = relaxed_sections[i];
2736       Section_id sid(poris->relobj(), poris->shndx());
2737       Relaxation_map::const_iterator p = map.find(sid);
2738       gold_assert(p != map.end());
2739       gold_assert((*input_sections)[p->second].is_input_section());
2740
2741       // Remember section order index of original input section
2742       // if it is set.  Copy it to the relaxed input section.
2743       unsigned int soi =
2744         (*input_sections)[p->second].section_order_index();
2745       (*input_sections)[p->second] = Input_section(poris);
2746       (*input_sections)[p->second].set_section_order_index(soi);
2747     }
2748 }
2749   
2750 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2751 // is a vector of pointers to Output_relaxed_input_section or its derived
2752 // classes.  The relaxed sections must correspond to existing input sections.
2753
2754 void
2755 Output_section::convert_input_sections_to_relaxed_sections(
2756   const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2757 {
2758   gold_assert(parameters->target().may_relax());
2759
2760   // We want to make sure that restore_states does not undo the effect of
2761   // this.  If there is no checkpoint active, just search the current
2762   // input section list and replace the sections there.  If there is
2763   // a checkpoint, also replace the sections there.
2764   
2765   // By default, we look at the whole list.
2766   size_t limit = this->input_sections_.size();
2767
2768   if (this->checkpoint_ != NULL)
2769     {
2770       // Replace input sections with relaxed input section in the saved
2771       // copy of the input section list.
2772       if (this->checkpoint_->input_sections_saved())
2773         {
2774           Relaxation_map map;
2775           this->build_relaxation_map(
2776                     *(this->checkpoint_->input_sections()),
2777                     this->checkpoint_->input_sections()->size(),
2778                     &map);
2779           this->convert_input_sections_in_list_to_relaxed_sections(
2780                     relaxed_sections,
2781                     map,
2782                     this->checkpoint_->input_sections());
2783         }
2784       else
2785         {
2786           // We have not copied the input section list yet.  Instead, just
2787           // look at the portion that would be saved.
2788           limit = this->checkpoint_->input_sections_size();
2789         }
2790     }
2791
2792   // Convert input sections in input_section_list.
2793   Relaxation_map map;
2794   this->build_relaxation_map(this->input_sections_, limit, &map);
2795   this->convert_input_sections_in_list_to_relaxed_sections(
2796             relaxed_sections,
2797             map,
2798             &this->input_sections_);
2799
2800   // Update fast look-up map.
2801   if (this->lookup_maps_->is_valid())
2802     for (size_t i = 0; i < relaxed_sections.size(); ++i)
2803       {
2804         Output_relaxed_input_section* poris = relaxed_sections[i];
2805         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2806                                                       poris->shndx(), poris);
2807       }
2808 }
2809
2810 // Update the output section flags based on input section flags.
2811
2812 void
2813 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2814 {
2815   // If we created the section with SHF_ALLOC clear, we set the
2816   // address.  If we are now setting the SHF_ALLOC flag, we need to
2817   // undo that.
2818   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2819       && (flags & elfcpp::SHF_ALLOC) != 0)
2820     this->mark_address_invalid();
2821
2822   this->flags_ |= (flags
2823                    & (elfcpp::SHF_WRITE
2824                       | elfcpp::SHF_ALLOC
2825                       | elfcpp::SHF_EXECINSTR));
2826
2827   if ((flags & elfcpp::SHF_MERGE) == 0)
2828     this->flags_ &=~ elfcpp::SHF_MERGE;
2829   else
2830     {
2831       if (this->current_data_size_for_child() == 0)
2832         this->flags_ |= elfcpp::SHF_MERGE;
2833     }
2834
2835   if ((flags & elfcpp::SHF_STRINGS) == 0)
2836     this->flags_ &=~ elfcpp::SHF_STRINGS;
2837   else
2838     {
2839       if (this->current_data_size_for_child() == 0)
2840         this->flags_ |= elfcpp::SHF_STRINGS;
2841     }
2842 }
2843
2844 // Find the merge section into which an input section with index SHNDX in
2845 // OBJECT has been added.  Return NULL if none found.
2846
2847 Output_section_data*
2848 Output_section::find_merge_section(const Relobj* object,
2849                                    unsigned int shndx) const
2850 {
2851   if (!this->lookup_maps_->is_valid())
2852     this->build_lookup_maps();
2853   return this->lookup_maps_->find_merge_section(object, shndx);
2854 }
2855
2856 // Build the lookup maps for merge and relaxed sections.  This is needs
2857 // to be declared as a const methods so that it is callable with a const
2858 // Output_section pointer.  The method only updates states of the maps.
2859
2860 void
2861 Output_section::build_lookup_maps() const
2862 {
2863   this->lookup_maps_->clear();
2864   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2865        p != this->input_sections_.end();
2866        ++p)
2867     {
2868       if (p->is_merge_section())
2869         {
2870           Output_merge_base* pomb = p->output_merge_base();
2871           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2872                                        pomb->addralign());
2873           this->lookup_maps_->add_merge_section(msp, pomb);
2874           for (Output_merge_base::Input_sections::const_iterator is =
2875                  pomb->input_sections_begin();
2876                is != pomb->input_sections_end();
2877                ++is) 
2878             {
2879               const Const_section_id& csid = *is;
2880             this->lookup_maps_->add_merge_input_section(csid.first,
2881                                                         csid.second, pomb);
2882             }
2883             
2884         }
2885       else if (p->is_relaxed_input_section())
2886         {
2887           Output_relaxed_input_section* poris = p->relaxed_input_section();
2888           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2889                                                         poris->shndx(), poris);
2890         }
2891     }
2892 }
2893
2894 // Find an relaxed input section corresponding to an input section
2895 // in OBJECT with index SHNDX.
2896
2897 const Output_relaxed_input_section*
2898 Output_section::find_relaxed_input_section(const Relobj* object,
2899                                            unsigned int shndx) const
2900 {
2901   if (!this->lookup_maps_->is_valid())
2902     this->build_lookup_maps();
2903   return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2904 }
2905
2906 // Given an address OFFSET relative to the start of input section
2907 // SHNDX in OBJECT, return whether this address is being included in
2908 // the final link.  This should only be called if SHNDX in OBJECT has
2909 // a special mapping.
2910
2911 bool
2912 Output_section::is_input_address_mapped(const Relobj* object,
2913                                         unsigned int shndx,
2914                                         off_t offset) const
2915 {
2916   // Look at the Output_section_data_maps first.
2917   const Output_section_data* posd = this->find_merge_section(object, shndx);
2918   if (posd == NULL)
2919     posd = this->find_relaxed_input_section(object, shndx);
2920
2921   if (posd != NULL)
2922     {
2923       section_offset_type output_offset;
2924       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2925       gold_assert(found);   
2926       return output_offset != -1;
2927     }
2928
2929   // Fall back to the slow look-up.
2930   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2931        p != this->input_sections_.end();
2932        ++p)
2933     {
2934       section_offset_type output_offset;
2935       if (p->output_offset(object, shndx, offset, &output_offset))
2936         return output_offset != -1;
2937     }
2938
2939   // By default we assume that the address is mapped.  This should
2940   // only be called after we have passed all sections to Layout.  At
2941   // that point we should know what we are discarding.
2942   return true;
2943 }
2944
2945 // Given an address OFFSET relative to the start of input section
2946 // SHNDX in object OBJECT, return the output offset relative to the
2947 // start of the input section in the output section.  This should only
2948 // be called if SHNDX in OBJECT has a special mapping.
2949
2950 section_offset_type
2951 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2952                               section_offset_type offset) const
2953 {
2954   // This can only be called meaningfully when we know the data size
2955   // of this.
2956   gold_assert(this->is_data_size_valid());
2957
2958   // Look at the Output_section_data_maps first.
2959   const Output_section_data* posd = this->find_merge_section(object, shndx);
2960   if (posd == NULL) 
2961     posd = this->find_relaxed_input_section(object, shndx);
2962   if (posd != NULL)
2963     {
2964       section_offset_type output_offset;
2965       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2966       gold_assert(found);   
2967       return output_offset;
2968     }
2969
2970   // Fall back to the slow look-up.
2971   for (Input_section_list::const_iterator p = this->input_sections_.begin();
2972        p != this->input_sections_.end();
2973        ++p)
2974     {
2975       section_offset_type output_offset;
2976       if (p->output_offset(object, shndx, offset, &output_offset))
2977         return output_offset;
2978     }
2979   gold_unreachable();
2980 }
2981
2982 // Return the output virtual address of OFFSET relative to the start
2983 // of input section SHNDX in object OBJECT.
2984
2985 uint64_t
2986 Output_section::output_address(const Relobj* object, unsigned int shndx,
2987                                off_t offset) const
2988 {
2989   uint64_t addr = this->address() + this->first_input_offset_;
2990
2991   // Look at the Output_section_data_maps first.
2992   const Output_section_data* posd = this->find_merge_section(object, shndx);
2993   if (posd == NULL) 
2994     posd = this->find_relaxed_input_section(object, shndx);
2995   if (posd != NULL && posd->is_address_valid())
2996     {
2997       section_offset_type output_offset;
2998       bool found = posd->output_offset(object, shndx, offset, &output_offset);
2999       gold_assert(found);
3000       return posd->address() + output_offset;
3001     }
3002
3003   // Fall back to the slow look-up.
3004   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3005        p != this->input_sections_.end();
3006        ++p)
3007     {
3008       addr = align_address(addr, p->addralign());
3009       section_offset_type output_offset;
3010       if (p->output_offset(object, shndx, offset, &output_offset))
3011         {
3012           if (output_offset == -1)
3013             return -1ULL;
3014           return addr + output_offset;
3015         }
3016       addr += p->data_size();
3017     }
3018
3019   // If we get here, it means that we don't know the mapping for this
3020   // input section.  This might happen in principle if
3021   // add_input_section were called before add_output_section_data.
3022   // But it should never actually happen.
3023
3024   gold_unreachable();
3025 }
3026
3027 // Find the output address of the start of the merged section for
3028 // input section SHNDX in object OBJECT.
3029
3030 bool
3031 Output_section::find_starting_output_address(const Relobj* object,
3032                                              unsigned int shndx,
3033                                              uint64_t* paddr) const
3034 {
3035   // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3036   // Looking up the merge section map does not always work as we sometimes
3037   // find a merge section without its address set.
3038   uint64_t addr = this->address() + this->first_input_offset_;
3039   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3040        p != this->input_sections_.end();
3041        ++p)
3042     {
3043       addr = align_address(addr, p->addralign());
3044
3045       // It would be nice if we could use the existing output_offset
3046       // method to get the output offset of input offset 0.
3047       // Unfortunately we don't know for sure that input offset 0 is
3048       // mapped at all.
3049       if (p->is_merge_section_for(object, shndx))
3050         {
3051           *paddr = addr;
3052           return true;
3053         }
3054
3055       addr += p->data_size();
3056     }
3057
3058   // We couldn't find a merge output section for this input section.
3059   return false;
3060 }
3061
3062 // Update the data size of an Output_section.
3063
3064 void
3065 Output_section::update_data_size()
3066 {
3067   if (this->input_sections_.empty())
3068       return;
3069
3070   if (this->must_sort_attached_input_sections()
3071       || this->input_section_order_specified())
3072     this->sort_attached_input_sections();
3073
3074   off_t off = this->first_input_offset_;
3075   for (Input_section_list::iterator p = this->input_sections_.begin();
3076        p != this->input_sections_.end();
3077        ++p)
3078     {
3079       off = align_address(off, p->addralign());
3080       off += p->current_data_size();
3081     }
3082
3083   this->set_current_data_size_for_child(off);
3084 }
3085
3086 // Set the data size of an Output_section.  This is where we handle
3087 // setting the addresses of any Output_section_data objects.
3088
3089 void
3090 Output_section::set_final_data_size()
3091 {
3092   off_t data_size;
3093
3094   if (this->input_sections_.empty())
3095     data_size = this->current_data_size_for_child();
3096   else
3097     {
3098       if (this->must_sort_attached_input_sections()
3099           || this->input_section_order_specified())
3100         this->sort_attached_input_sections();
3101
3102       uint64_t address = this->address();
3103       off_t startoff = this->offset();
3104       off_t off = startoff + this->first_input_offset_;
3105       for (Input_section_list::iterator p = this->input_sections_.begin();
3106            p != this->input_sections_.end();
3107            ++p)
3108         {
3109           off = align_address(off, p->addralign());
3110           p->set_address_and_file_offset(address + (off - startoff), off,
3111                                          startoff);
3112           off += p->data_size();
3113         }
3114       data_size = off - startoff;
3115     }
3116
3117   // For full incremental links, we want to allocate some patch space
3118   // in most sections for subsequent incremental updates.
3119   if (this->is_patch_space_allowed_ && parameters->incremental_full())
3120     {
3121       double pct = parameters->options().incremental_patch();
3122       size_t extra = static_cast<size_t>(data_size * pct);
3123       if (this->free_space_fill_ != NULL
3124           && this->free_space_fill_->minimum_hole_size() > extra)
3125         extra = this->free_space_fill_->minimum_hole_size();
3126       off_t new_size = align_address(data_size + extra, this->addralign());
3127       this->patch_space_ = new_size - data_size;
3128       gold_debug(DEBUG_INCREMENTAL,
3129                  "set_final_data_size: %08lx + %08lx: section %s",
3130                  static_cast<long>(data_size),
3131                  static_cast<long>(this->patch_space_),
3132                  this->name());
3133       data_size = new_size;
3134     }
3135
3136   this->set_data_size(data_size);
3137 }
3138
3139 // Reset the address and file offset.
3140
3141 void
3142 Output_section::do_reset_address_and_file_offset()
3143 {
3144   // An unallocated section has no address.  Forcing this means that
3145   // we don't need special treatment for symbols defined in debug
3146   // sections.  We do the same in the constructor.  This does not
3147   // apply to NOLOAD sections though.
3148   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3149      this->set_address(0);
3150
3151   for (Input_section_list::iterator p = this->input_sections_.begin();
3152        p != this->input_sections_.end();
3153        ++p)
3154     p->reset_address_and_file_offset();
3155
3156   // Remove any patch space that was added in set_final_data_size.
3157   if (this->patch_space_ > 0)
3158     {
3159       this->set_current_data_size_for_child(this->current_data_size_for_child()
3160                                             - this->patch_space_);
3161       this->patch_space_ = 0;
3162     }
3163 }
3164
3165 // Return true if address and file offset have the values after reset.
3166
3167 bool
3168 Output_section::do_address_and_file_offset_have_reset_values() const
3169 {
3170   if (this->is_offset_valid())
3171     return false;
3172
3173   // An unallocated section has address 0 after its construction or a reset.
3174   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3175     return this->is_address_valid() && this->address() == 0;
3176   else
3177     return !this->is_address_valid();
3178 }
3179
3180 // Set the TLS offset.  Called only for SHT_TLS sections.
3181
3182 void
3183 Output_section::do_set_tls_offset(uint64_t tls_base)
3184 {
3185   this->tls_offset_ = this->address() - tls_base;
3186 }
3187
3188 // In a few cases we need to sort the input sections attached to an
3189 // output section.  This is used to implement the type of constructor
3190 // priority ordering implemented by the GNU linker, in which the
3191 // priority becomes part of the section name and the sections are
3192 // sorted by name.  We only do this for an output section if we see an
3193 // attached input section matching ".ctors.*", ".dtors.*",
3194 // ".init_array.*" or ".fini_array.*".
3195
3196 class Output_section::Input_section_sort_entry
3197 {
3198  public:
3199   Input_section_sort_entry()
3200     : input_section_(), index_(-1U), section_has_name_(false),
3201       section_name_()
3202   { }
3203
3204   Input_section_sort_entry(const Input_section& input_section,
3205                            unsigned int index,
3206                            bool must_sort_attached_input_sections)
3207     : input_section_(input_section), index_(index),
3208       section_has_name_(input_section.is_input_section()
3209                         || input_section.is_relaxed_input_section())
3210   {
3211     if (this->section_has_name_
3212         && must_sort_attached_input_sections)
3213       {
3214         // This is only called single-threaded from Layout::finalize,
3215         // so it is OK to lock.  Unfortunately we have no way to pass
3216         // in a Task token.
3217         const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3218         Object* obj = (input_section.is_input_section()
3219                        ? input_section.relobj()
3220                        : input_section.relaxed_input_section()->relobj());
3221         Task_lock_obj<Object> tl(dummy_task, obj);
3222
3223         // This is a slow operation, which should be cached in
3224         // Layout::layout if this becomes a speed problem.
3225         this->section_name_ = obj->section_name(input_section.shndx());
3226       }
3227   }
3228
3229   // Return the Input_section.
3230   const Input_section&
3231   input_section() const
3232   {
3233     gold_assert(this->index_ != -1U);
3234     return this->input_section_;
3235   }
3236
3237   // The index of this entry in the original list.  This is used to
3238   // make the sort stable.
3239   unsigned int
3240   index() const
3241   {
3242     gold_assert(this->index_ != -1U);
3243     return this->index_;
3244   }
3245
3246   // Whether there is a section name.
3247   bool
3248   section_has_name() const
3249   { return this->section_has_name_; }
3250
3251   // The section name.
3252   const std::string&
3253   section_name() const
3254   {
3255     gold_assert(this->section_has_name_);
3256     return this->section_name_;
3257   }
3258
3259   // Return true if the section name has a priority.  This is assumed
3260   // to be true if it has a dot after the initial dot.
3261   bool
3262   has_priority() const
3263   {
3264     gold_assert(this->section_has_name_);
3265     return this->section_name_.find('.', 1) != std::string::npos;
3266   }
3267
3268   // Return the priority.  Believe it or not, gcc encodes the priority
3269   // differently for .ctors/.dtors and .init_array/.fini_array
3270   // sections.
3271   unsigned int
3272   get_priority() const
3273   {
3274     gold_assert(this->section_has_name_);
3275     bool is_ctors;
3276     if (is_prefix_of(".ctors.", this->section_name_.c_str())
3277         || is_prefix_of(".dtors.", this->section_name_.c_str()))
3278       is_ctors = true;
3279     else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3280              || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3281       is_ctors = false;
3282     else
3283       return 0;
3284     char* end;
3285     unsigned long prio = strtoul((this->section_name_.c_str()
3286                                   + (is_ctors ? 7 : 12)),
3287                                  &end, 10);
3288     if (*end != '\0')
3289       return 0;
3290     else if (is_ctors)
3291       return 65535 - prio;
3292     else
3293       return prio;
3294   }
3295
3296   // Return true if this an input file whose base name matches
3297   // FILE_NAME.  The base name must have an extension of ".o", and
3298   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3299   // This is to match crtbegin.o as well as crtbeginS.o without
3300   // getting confused by other possibilities.  Overall matching the
3301   // file name this way is a dreadful hack, but the GNU linker does it
3302   // in order to better support gcc, and we need to be compatible.
3303   bool
3304   match_file_name(const char* file_name) const
3305   { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3306
3307   // Returns 1 if THIS should appear before S in section order, -1 if S
3308   // appears before THIS and 0 if they are not comparable.
3309   int
3310   compare_section_ordering(const Input_section_sort_entry& s) const
3311   {
3312     unsigned int this_secn_index = this->input_section_.section_order_index();
3313     unsigned int s_secn_index = s.input_section().section_order_index();
3314     if (this_secn_index > 0 && s_secn_index > 0)
3315       {
3316         if (this_secn_index < s_secn_index)
3317           return 1;
3318         else if (this_secn_index > s_secn_index)
3319           return -1;
3320       }
3321     return 0;
3322   }
3323
3324  private:
3325   // The Input_section we are sorting.
3326   Input_section input_section_;
3327   // The index of this Input_section in the original list.
3328   unsigned int index_;
3329   // Whether this Input_section has a section name--it won't if this
3330   // is some random Output_section_data.
3331   bool section_has_name_;
3332   // The section name if there is one.
3333   std::string section_name_;
3334 };
3335
3336 // Return true if S1 should come before S2 in the output section.
3337
3338 bool
3339 Output_section::Input_section_sort_compare::operator()(
3340     const Output_section::Input_section_sort_entry& s1,
3341     const Output_section::Input_section_sort_entry& s2) const
3342 {
3343   // crtbegin.o must come first.
3344   bool s1_begin = s1.match_file_name("crtbegin");
3345   bool s2_begin = s2.match_file_name("crtbegin");
3346   if (s1_begin || s2_begin)
3347     {
3348       if (!s1_begin)
3349         return false;
3350       if (!s2_begin)
3351         return true;
3352       return s1.index() < s2.index();
3353     }
3354
3355   // crtend.o must come last.
3356   bool s1_end = s1.match_file_name("crtend");
3357   bool s2_end = s2.match_file_name("crtend");
3358   if (s1_end || s2_end)
3359     {
3360       if (!s1_end)
3361         return true;
3362       if (!s2_end)
3363         return false;
3364       return s1.index() < s2.index();
3365     }
3366
3367   // We sort all the sections with no names to the end.
3368   if (!s1.section_has_name() || !s2.section_has_name())
3369     {
3370       if (s1.section_has_name())
3371         return true;
3372       if (s2.section_has_name())
3373         return false;
3374       return s1.index() < s2.index();
3375     }
3376
3377   // A section with a priority follows a section without a priority.
3378   bool s1_has_priority = s1.has_priority();
3379   bool s2_has_priority = s2.has_priority();
3380   if (s1_has_priority && !s2_has_priority)
3381     return false;
3382   if (!s1_has_priority && s2_has_priority)
3383     return true;
3384
3385   // Check if a section order exists for these sections through a section
3386   // ordering file.  If sequence_num is 0, an order does not exist.
3387   int sequence_num = s1.compare_section_ordering(s2);
3388   if (sequence_num != 0)
3389     return sequence_num == 1;
3390
3391   // Otherwise we sort by name.
3392   int compare = s1.section_name().compare(s2.section_name());
3393   if (compare != 0)
3394     return compare < 0;
3395
3396   // Otherwise we keep the input order.
3397   return s1.index() < s2.index();
3398 }
3399
3400 // Return true if S1 should come before S2 in an .init_array or .fini_array
3401 // output section.
3402
3403 bool
3404 Output_section::Input_section_sort_init_fini_compare::operator()(
3405     const Output_section::Input_section_sort_entry& s1,
3406     const Output_section::Input_section_sort_entry& s2) const
3407 {
3408   // We sort all the sections with no names to the end.
3409   if (!s1.section_has_name() || !s2.section_has_name())
3410     {
3411       if (s1.section_has_name())
3412         return true;
3413       if (s2.section_has_name())
3414         return false;
3415       return s1.index() < s2.index();
3416     }
3417
3418   // A section without a priority follows a section with a priority.
3419   // This is the reverse of .ctors and .dtors sections.
3420   bool s1_has_priority = s1.has_priority();
3421   bool s2_has_priority = s2.has_priority();
3422   if (s1_has_priority && !s2_has_priority)
3423     return true;
3424   if (!s1_has_priority && s2_has_priority)
3425     return false;
3426
3427   // .ctors and .dtors sections without priority come after
3428   // .init_array and .fini_array sections without priority.
3429   if (!s1_has_priority
3430       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3431       && s1.section_name() != s2.section_name())
3432     return false;
3433   if (!s2_has_priority
3434       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3435       && s2.section_name() != s1.section_name())
3436     return true;
3437
3438   // Sort by priority if we can.
3439   if (s1_has_priority)
3440     {
3441       unsigned int s1_prio = s1.get_priority();
3442       unsigned int s2_prio = s2.get_priority();
3443       if (s1_prio < s2_prio)
3444         return true;
3445       else if (s1_prio > s2_prio)
3446         return false;
3447     }
3448
3449   // Check if a section order exists for these sections through a section
3450   // ordering file.  If sequence_num is 0, an order does not exist.
3451   int sequence_num = s1.compare_section_ordering(s2);
3452   if (sequence_num != 0)
3453     return sequence_num == 1;
3454
3455   // Otherwise we sort by name.
3456   int compare = s1.section_name().compare(s2.section_name());
3457   if (compare != 0)
3458     return compare < 0;
3459
3460   // Otherwise we keep the input order.
3461   return s1.index() < s2.index();
3462 }
3463
3464 // Return true if S1 should come before S2.  Sections that do not match
3465 // any pattern in the section ordering file are placed ahead of the sections
3466 // that match some pattern.
3467
3468 bool
3469 Output_section::Input_section_sort_section_order_index_compare::operator()(
3470     const Output_section::Input_section_sort_entry& s1,
3471     const Output_section::Input_section_sort_entry& s2) const
3472 {
3473   unsigned int s1_secn_index = s1.input_section().section_order_index();
3474   unsigned int s2_secn_index = s2.input_section().section_order_index();
3475
3476   // Keep input order if section ordering cannot determine order.
3477   if (s1_secn_index == s2_secn_index)
3478     return s1.index() < s2.index();
3479   
3480   return s1_secn_index < s2_secn_index;
3481 }
3482
3483 // This updates the section order index of input sections according to the
3484 // the order specified in the mapping from Section id to order index.
3485
3486 void
3487 Output_section::update_section_layout(
3488   const Section_layout_order& order_map)
3489 {
3490   for (Input_section_list::iterator p = this->input_sections_.begin();
3491        p != this->input_sections_.end();
3492        ++p)
3493     {
3494       if (p->is_input_section()
3495           || p->is_relaxed_input_section())
3496         {
3497           Object* obj = (p->is_input_section()
3498                          ? p->relobj()
3499                          : p->relaxed_input_section()->relobj());
3500           unsigned int shndx = p->shndx();
3501           Section_layout_order::const_iterator it
3502             = order_map.find(Section_id(obj, shndx));
3503           if (it == order_map.end())
3504             continue;
3505           unsigned int section_order_index = it->second;
3506           if (section_order_index != 0)
3507             {
3508               p->set_section_order_index(section_order_index);
3509               this->set_input_section_order_specified();
3510             }
3511         }
3512     }
3513 }
3514
3515 // Sort the input sections attached to an output section.
3516
3517 void
3518 Output_section::sort_attached_input_sections()
3519 {
3520   if (this->attached_input_sections_are_sorted_)
3521     return;
3522
3523   if (this->checkpoint_ != NULL
3524       && !this->checkpoint_->input_sections_saved())
3525     this->checkpoint_->save_input_sections();
3526
3527   // The only thing we know about an input section is the object and
3528   // the section index.  We need the section name.  Recomputing this
3529   // is slow but this is an unusual case.  If this becomes a speed
3530   // problem we can cache the names as required in Layout::layout.
3531
3532   // We start by building a larger vector holding a copy of each
3533   // Input_section, plus its current index in the list and its name.
3534   std::vector<Input_section_sort_entry> sort_list;
3535
3536   unsigned int i = 0;
3537   for (Input_section_list::iterator p = this->input_sections_.begin();
3538        p != this->input_sections_.end();
3539        ++p, ++i)
3540       sort_list.push_back(Input_section_sort_entry(*p, i,
3541                             this->must_sort_attached_input_sections()));
3542
3543   // Sort the input sections.
3544   if (this->must_sort_attached_input_sections())
3545     {
3546       if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3547           || this->type() == elfcpp::SHT_INIT_ARRAY
3548           || this->type() == elfcpp::SHT_FINI_ARRAY)
3549         std::sort(sort_list.begin(), sort_list.end(),
3550                   Input_section_sort_init_fini_compare());
3551       else
3552         std::sort(sort_list.begin(), sort_list.end(),
3553                   Input_section_sort_compare());
3554     }
3555   else
3556     {
3557       gold_assert(this->input_section_order_specified());
3558       std::sort(sort_list.begin(), sort_list.end(),
3559                 Input_section_sort_section_order_index_compare());
3560     }
3561
3562   // Copy the sorted input sections back to our list.
3563   this->input_sections_.clear();
3564   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3565        p != sort_list.end();
3566        ++p)
3567     this->input_sections_.push_back(p->input_section());
3568   sort_list.clear();
3569
3570   // Remember that we sorted the input sections, since we might get
3571   // called again.
3572   this->attached_input_sections_are_sorted_ = true;
3573 }
3574
3575 // Write the section header to *OSHDR.
3576
3577 template<int size, bool big_endian>
3578 void
3579 Output_section::write_header(const Layout* layout,
3580                              const Stringpool* secnamepool,
3581                              elfcpp::Shdr_write<size, big_endian>* oshdr) const
3582 {
3583   oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3584   oshdr->put_sh_type(this->type_);
3585
3586   elfcpp::Elf_Xword flags = this->flags_;
3587   if (this->info_section_ != NULL && this->info_uses_section_index_)
3588     flags |= elfcpp::SHF_INFO_LINK;
3589   oshdr->put_sh_flags(flags);
3590
3591   oshdr->put_sh_addr(this->address());
3592   oshdr->put_sh_offset(this->offset());
3593   oshdr->put_sh_size(this->data_size());
3594   if (this->link_section_ != NULL)
3595     oshdr->put_sh_link(this->link_section_->out_shndx());
3596   else if (this->should_link_to_symtab_)
3597     oshdr->put_sh_link(layout->symtab_section_shndx());
3598   else if (this->should_link_to_dynsym_)
3599     oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3600   else
3601     oshdr->put_sh_link(this->link_);
3602
3603   elfcpp::Elf_Word info;
3604   if (this->info_section_ != NULL)
3605     {
3606       if (this->info_uses_section_index_)
3607         info = this->info_section_->out_shndx();
3608       else
3609         info = this->info_section_->symtab_index();
3610     }
3611   else if (this->info_symndx_ != NULL)
3612     info = this->info_symndx_->symtab_index();
3613   else
3614     info = this->info_;
3615   oshdr->put_sh_info(info);
3616
3617   oshdr->put_sh_addralign(this->addralign_);
3618   oshdr->put_sh_entsize(this->entsize_);
3619 }
3620
3621 // Write out the data.  For input sections the data is written out by
3622 // Object::relocate, but we have to handle Output_section_data objects
3623 // here.
3624
3625 void
3626 Output_section::do_write(Output_file* of)
3627 {
3628   gold_assert(!this->requires_postprocessing());
3629
3630   // If the target performs relaxation, we delay filler generation until now.
3631   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3632
3633   off_t output_section_file_offset = this->offset();
3634   for (Fill_list::iterator p = this->fills_.begin();
3635        p != this->fills_.end();
3636        ++p)
3637     {
3638       std::string fill_data(parameters->target().code_fill(p->length()));
3639       of->write(output_section_file_offset + p->section_offset(),
3640                 fill_data.data(), fill_data.size());
3641     }
3642
3643   off_t off = this->offset() + this->first_input_offset_;
3644   for (Input_section_list::iterator p = this->input_sections_.begin();
3645        p != this->input_sections_.end();
3646        ++p)
3647     {
3648       off_t aligned_off = align_address(off, p->addralign());
3649       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3650         {
3651           size_t fill_len = aligned_off - off;
3652           std::string fill_data(parameters->target().code_fill(fill_len));
3653           of->write(off, fill_data.data(), fill_data.size());
3654         }
3655
3656       p->write(of);
3657       off = aligned_off + p->data_size();
3658     }
3659
3660   // For incremental links, fill in unused chunks in debug sections
3661   // with dummy compilation unit headers.
3662   if (this->free_space_fill_ != NULL)
3663     {
3664       for (Free_list::Const_iterator p = this->free_list_.begin();
3665            p != this->free_list_.end();
3666            ++p)
3667         {
3668           off_t off = p->start_;
3669           size_t len = p->end_ - off;
3670           this->free_space_fill_->write(of, this->offset() + off, len);
3671         }
3672       if (this->patch_space_ > 0)
3673         {
3674           off_t off = this->current_data_size_for_child() - this->patch_space_;
3675           this->free_space_fill_->write(of, this->offset() + off,
3676                                         this->patch_space_);
3677         }
3678     }
3679 }
3680
3681 // If a section requires postprocessing, create the buffer to use.
3682
3683 void
3684 Output_section::create_postprocessing_buffer()
3685 {
3686   gold_assert(this->requires_postprocessing());
3687
3688   if (this->postprocessing_buffer_ != NULL)
3689     return;
3690
3691   if (!this->input_sections_.empty())
3692     {
3693       off_t off = this->first_input_offset_;
3694       for (Input_section_list::iterator p = this->input_sections_.begin();
3695            p != this->input_sections_.end();
3696            ++p)
3697         {
3698           off = align_address(off, p->addralign());
3699           p->finalize_data_size();
3700           off += p->data_size();
3701         }
3702       this->set_current_data_size_for_child(off);
3703     }
3704
3705   off_t buffer_size = this->current_data_size_for_child();
3706   this->postprocessing_buffer_ = new unsigned char[buffer_size];
3707 }
3708
3709 // Write all the data of an Output_section into the postprocessing
3710 // buffer.  This is used for sections which require postprocessing,
3711 // such as compression.  Input sections are handled by
3712 // Object::Relocate.
3713
3714 void
3715 Output_section::write_to_postprocessing_buffer()
3716 {
3717   gold_assert(this->requires_postprocessing());
3718
3719   // If the target performs relaxation, we delay filler generation until now.
3720   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3721
3722   unsigned char* buffer = this->postprocessing_buffer();
3723   for (Fill_list::iterator p = this->fills_.begin();
3724        p != this->fills_.end();
3725        ++p)
3726     {
3727       std::string fill_data(parameters->target().code_fill(p->length()));
3728       memcpy(buffer + p->section_offset(), fill_data.data(),
3729              fill_data.size());
3730     }
3731
3732   off_t off = this->first_input_offset_;
3733   for (Input_section_list::iterator p = this->input_sections_.begin();
3734        p != this->input_sections_.end();
3735        ++p)
3736     {
3737       off_t aligned_off = align_address(off, p->addralign());
3738       if (this->generate_code_fills_at_write_ && (off != aligned_off))
3739         {
3740           size_t fill_len = aligned_off - off;
3741           std::string fill_data(parameters->target().code_fill(fill_len));
3742           memcpy(buffer + off, fill_data.data(), fill_data.size());
3743         }
3744
3745       p->write_to_buffer(buffer + aligned_off);
3746       off = aligned_off + p->data_size();
3747     }
3748 }
3749
3750 // Get the input sections for linker script processing.  We leave
3751 // behind the Output_section_data entries.  Note that this may be
3752 // slightly incorrect for merge sections.  We will leave them behind,
3753 // but it is possible that the script says that they should follow
3754 // some other input sections, as in:
3755 //    .rodata { *(.rodata) *(.rodata.cst*) }
3756 // For that matter, we don't handle this correctly:
3757 //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3758 // With luck this will never matter.
3759
3760 uint64_t
3761 Output_section::get_input_sections(
3762     uint64_t address,
3763     const std::string& fill,
3764     std::list<Input_section>* input_sections)
3765 {
3766   if (this->checkpoint_ != NULL
3767       && !this->checkpoint_->input_sections_saved())
3768     this->checkpoint_->save_input_sections();
3769
3770   // Invalidate fast look-up maps.
3771   this->lookup_maps_->invalidate();
3772
3773   uint64_t orig_address = address;
3774
3775   address = align_address(address, this->addralign());
3776
3777   Input_section_list remaining;
3778   for (Input_section_list::iterator p = this->input_sections_.begin();
3779        p != this->input_sections_.end();
3780        ++p)
3781     {
3782       if (p->is_input_section()
3783           || p->is_relaxed_input_section()
3784           || p->is_merge_section())
3785         input_sections->push_back(*p);
3786       else
3787         {
3788           uint64_t aligned_address = align_address(address, p->addralign());
3789           if (aligned_address != address && !fill.empty())
3790             {
3791               section_size_type length =
3792                 convert_to_section_size_type(aligned_address - address);
3793               std::string this_fill;
3794               this_fill.reserve(length);
3795               while (this_fill.length() + fill.length() <= length)
3796                 this_fill += fill;
3797               if (this_fill.length() < length)
3798                 this_fill.append(fill, 0, length - this_fill.length());
3799
3800               Output_section_data* posd = new Output_data_const(this_fill, 0);
3801               remaining.push_back(Input_section(posd));
3802             }
3803           address = aligned_address;
3804
3805           remaining.push_back(*p);
3806
3807           p->finalize_data_size();
3808           address += p->data_size();
3809         }
3810     }
3811
3812   this->input_sections_.swap(remaining);
3813   this->first_input_offset_ = 0;
3814
3815   uint64_t data_size = address - orig_address;
3816   this->set_current_data_size_for_child(data_size);
3817   return data_size;
3818 }
3819
3820 // Add a script input section.  SIS is an Output_section::Input_section,
3821 // which can be either a plain input section or a special input section like
3822 // a relaxed input section.  For a special input section, its size must be
3823 // finalized.
3824
3825 void
3826 Output_section::add_script_input_section(const Input_section& sis)
3827 {
3828   uint64_t data_size = sis.data_size();
3829   uint64_t addralign = sis.addralign();
3830   if (addralign > this->addralign_)
3831     this->addralign_ = addralign;
3832
3833   off_t offset_in_section = this->current_data_size_for_child();
3834   off_t aligned_offset_in_section = align_address(offset_in_section,
3835                                                   addralign);
3836
3837   this->set_current_data_size_for_child(aligned_offset_in_section
3838                                         + data_size);
3839
3840   this->input_sections_.push_back(sis);
3841
3842   // Update fast lookup maps if necessary. 
3843   if (this->lookup_maps_->is_valid())
3844     {
3845       if (sis.is_merge_section())
3846         {
3847           Output_merge_base* pomb = sis.output_merge_base();
3848           Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3849                                        pomb->addralign());
3850           this->lookup_maps_->add_merge_section(msp, pomb);
3851           for (Output_merge_base::Input_sections::const_iterator p =
3852                  pomb->input_sections_begin();
3853                p != pomb->input_sections_end();
3854                ++p)
3855             this->lookup_maps_->add_merge_input_section(p->first, p->second,
3856                                                         pomb);
3857         }
3858       else if (sis.is_relaxed_input_section())
3859         {
3860           Output_relaxed_input_section* poris = sis.relaxed_input_section();
3861           this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3862                                                         poris->shndx(), poris);
3863         }
3864     }
3865 }
3866
3867 // Save states for relaxation.
3868
3869 void
3870 Output_section::save_states()
3871 {
3872   gold_assert(this->checkpoint_ == NULL);
3873   Checkpoint_output_section* checkpoint =
3874     new Checkpoint_output_section(this->addralign_, this->flags_,
3875                                   this->input_sections_,
3876                                   this->first_input_offset_,
3877                                   this->attached_input_sections_are_sorted_);
3878   this->checkpoint_ = checkpoint;
3879   gold_assert(this->fills_.empty());
3880 }
3881
3882 void
3883 Output_section::discard_states()
3884 {
3885   gold_assert(this->checkpoint_ != NULL);
3886   delete this->checkpoint_;
3887   this->checkpoint_ = NULL;
3888   gold_assert(this->fills_.empty());
3889
3890   // Simply invalidate the fast lookup maps since we do not keep
3891   // track of them.
3892   this->lookup_maps_->invalidate();
3893 }
3894
3895 void
3896 Output_section::restore_states()
3897 {
3898   gold_assert(this->checkpoint_ != NULL);
3899   Checkpoint_output_section* checkpoint = this->checkpoint_;
3900
3901   this->addralign_ = checkpoint->addralign();
3902   this->flags_ = checkpoint->flags();
3903   this->first_input_offset_ = checkpoint->first_input_offset();
3904
3905   if (!checkpoint->input_sections_saved())
3906     {
3907       // If we have not copied the input sections, just resize it.
3908       size_t old_size = checkpoint->input_sections_size();
3909       gold_assert(this->input_sections_.size() >= old_size);
3910       this->input_sections_.resize(old_size);
3911     }
3912   else
3913     {
3914       // We need to copy the whole list.  This is not efficient for
3915       // extremely large output with hundreads of thousands of input
3916       // objects.  We may need to re-think how we should pass sections
3917       // to scripts.
3918       this->input_sections_ = *checkpoint->input_sections();
3919     }
3920
3921   this->attached_input_sections_are_sorted_ =
3922     checkpoint->attached_input_sections_are_sorted();
3923
3924   // Simply invalidate the fast lookup maps since we do not keep
3925   // track of them.
3926   this->lookup_maps_->invalidate();
3927 }
3928
3929 // Update the section offsets of input sections in this.  This is required if
3930 // relaxation causes some input sections to change sizes.
3931
3932 void
3933 Output_section::adjust_section_offsets()
3934 {
3935   if (!this->section_offsets_need_adjustment_)
3936     return;
3937
3938   off_t off = 0;
3939   for (Input_section_list::iterator p = this->input_sections_.begin();
3940        p != this->input_sections_.end();
3941        ++p)
3942     {
3943       off = align_address(off, p->addralign());
3944       if (p->is_input_section())
3945         p->relobj()->set_section_offset(p->shndx(), off);
3946       off += p->data_size();
3947     }
3948
3949   this->section_offsets_need_adjustment_ = false;
3950 }
3951
3952 // Print to the map file.
3953
3954 void
3955 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3956 {
3957   mapfile->print_output_section(this);
3958
3959   for (Input_section_list::const_iterator p = this->input_sections_.begin();
3960        p != this->input_sections_.end();
3961        ++p)
3962     p->print_to_mapfile(mapfile);
3963 }
3964
3965 // Print stats for merge sections to stderr.
3966
3967 void
3968 Output_section::print_merge_stats()
3969 {
3970   Input_section_list::iterator p;
3971   for (p = this->input_sections_.begin();
3972        p != this->input_sections_.end();
3973        ++p)
3974     p->print_merge_stats(this->name_);
3975 }
3976
3977 // Set a fixed layout for the section.  Used for incremental update links.
3978
3979 void
3980 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3981                                  off_t sh_size, uint64_t sh_addralign)
3982 {
3983   this->addralign_ = sh_addralign;
3984   this->set_current_data_size(sh_size);
3985   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3986     this->set_address(sh_addr);
3987   this->set_file_offset(sh_offset);
3988   this->finalize_data_size();
3989   this->free_list_.init(sh_size, false);
3990   this->has_fixed_layout_ = true;
3991 }
3992
3993 // Reserve space within the fixed layout for the section.  Used for
3994 // incremental update links.
3995
3996 void
3997 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3998 {
3999   this->free_list_.remove(sh_offset, sh_offset + sh_size);
4000 }
4001
4002 // Allocate space from the free list for the section.  Used for
4003 // incremental update links.
4004
4005 off_t
4006 Output_section::allocate(off_t len, uint64_t addralign)
4007 {
4008   return this->free_list_.allocate(len, addralign, 0);
4009 }
4010
4011 // Output segment methods.
4012
4013 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4014   : vaddr_(0),
4015     paddr_(0),
4016     memsz_(0),
4017     max_align_(0),
4018     min_p_align_(0),
4019     offset_(0),
4020     filesz_(0),
4021     type_(type),
4022     flags_(flags),
4023     is_max_align_known_(false),
4024     are_addresses_set_(false),
4025     is_large_data_segment_(false)
4026 {
4027   // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4028   // the flags.
4029   if (type == elfcpp::PT_TLS)
4030     this->flags_ = elfcpp::PF_R;
4031 }
4032
4033 // Add an Output_section to a PT_LOAD Output_segment.
4034
4035 void
4036 Output_segment::add_output_section_to_load(Layout* layout,
4037                                            Output_section* os,
4038                                            elfcpp::Elf_Word seg_flags)
4039 {
4040   gold_assert(this->type() == elfcpp::PT_LOAD);
4041   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4042   gold_assert(!this->is_max_align_known_);
4043   gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4044
4045   this->update_flags_for_output_section(seg_flags);
4046
4047   // We don't want to change the ordering if we have a linker script
4048   // with a SECTIONS clause.
4049   Output_section_order order = os->order();
4050   if (layout->script_options()->saw_sections_clause())
4051     order = static_cast<Output_section_order>(0);
4052   else
4053     gold_assert(order != ORDER_INVALID);
4054
4055   this->output_lists_[order].push_back(os);
4056 }
4057
4058 // Add an Output_section to a non-PT_LOAD Output_segment.
4059
4060 void
4061 Output_segment::add_output_section_to_nonload(Output_section* os,
4062                                               elfcpp::Elf_Word seg_flags)
4063 {
4064   gold_assert(this->type() != elfcpp::PT_LOAD);
4065   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4066   gold_assert(!this->is_max_align_known_);
4067
4068   this->update_flags_for_output_section(seg_flags);
4069
4070   this->output_lists_[0].push_back(os);
4071 }
4072
4073 // Remove an Output_section from this segment.  It is an error if it
4074 // is not present.
4075
4076 void
4077 Output_segment::remove_output_section(Output_section* os)
4078 {
4079   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4080     {
4081       Output_data_list* pdl = &this->output_lists_[i];
4082       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4083         {
4084           if (*p == os)
4085             {
4086               pdl->erase(p);
4087               return;
4088             }
4089         }
4090     }
4091   gold_unreachable();
4092 }
4093
4094 // Add an Output_data (which need not be an Output_section) to the
4095 // start of a segment.
4096
4097 void
4098 Output_segment::add_initial_output_data(Output_data* od)
4099 {
4100   gold_assert(!this->is_max_align_known_);
4101   Output_data_list::iterator p = this->output_lists_[0].begin();
4102   this->output_lists_[0].insert(p, od);
4103 }
4104
4105 // Return true if this segment has any sections which hold actual
4106 // data, rather than being a BSS section.
4107
4108 bool
4109 Output_segment::has_any_data_sections() const
4110 {
4111   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4112     {
4113       const Output_data_list* pdl = &this->output_lists_[i];
4114       for (Output_data_list::const_iterator p = pdl->begin();
4115            p != pdl->end();
4116            ++p)
4117         {
4118           if (!(*p)->is_section())
4119             return true;
4120           if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4121             return true;
4122         }
4123     }
4124   return false;
4125 }
4126
4127 // Return whether the first data section (not counting TLS sections)
4128 // is a relro section.
4129
4130 bool
4131 Output_segment::is_first_section_relro() const
4132 {
4133   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4134     {
4135       if (i == static_cast<int>(ORDER_TLS_DATA)
4136           || i == static_cast<int>(ORDER_TLS_BSS))
4137         continue;
4138       const Output_data_list* pdl = &this->output_lists_[i];
4139       if (!pdl->empty())
4140         {
4141           Output_data* p = pdl->front();
4142           return p->is_section() && p->output_section()->is_relro();
4143         }
4144     }
4145   return false;
4146 }
4147
4148 // Return the maximum alignment of the Output_data in Output_segment.
4149
4150 uint64_t
4151 Output_segment::maximum_alignment()
4152 {
4153   if (!this->is_max_align_known_)
4154     {
4155       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4156         {       
4157           const Output_data_list* pdl = &this->output_lists_[i];
4158           uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4159           if (addralign > this->max_align_)
4160             this->max_align_ = addralign;
4161         }
4162       this->is_max_align_known_ = true;
4163     }
4164
4165   return this->max_align_;
4166 }
4167
4168 // Return the maximum alignment of a list of Output_data.
4169
4170 uint64_t
4171 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4172 {
4173   uint64_t ret = 0;
4174   for (Output_data_list::const_iterator p = pdl->begin();
4175        p != pdl->end();
4176        ++p)
4177     {
4178       uint64_t addralign = (*p)->addralign();
4179       if (addralign > ret)
4180         ret = addralign;
4181     }
4182   return ret;
4183 }
4184
4185 // Return whether this segment has any dynamic relocs.
4186
4187 bool
4188 Output_segment::has_dynamic_reloc() const
4189 {
4190   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4191     if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4192       return true;
4193   return false;
4194 }
4195
4196 // Return whether this Output_data_list has any dynamic relocs.
4197
4198 bool
4199 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4200 {
4201   for (Output_data_list::const_iterator p = pdl->begin();
4202        p != pdl->end();
4203        ++p)
4204     if ((*p)->has_dynamic_reloc())
4205       return true;
4206   return false;
4207 }
4208
4209 // Set the section addresses for an Output_segment.  If RESET is true,
4210 // reset the addresses first.  ADDR is the address and *POFF is the
4211 // file offset.  Set the section indexes starting with *PSHNDX.
4212 // INCREASE_RELRO is the size of the portion of the first non-relro
4213 // section that should be included in the PT_GNU_RELRO segment.
4214 // If this segment has relro sections, and has been aligned for
4215 // that purpose, set *HAS_RELRO to TRUE.  Return the address of
4216 // the immediately following segment.  Update *HAS_RELRO, *POFF,
4217 // and *PSHNDX.
4218
4219 uint64_t
4220 Output_segment::set_section_addresses(Layout* layout, bool reset,
4221                                       uint64_t addr,
4222                                       unsigned int* increase_relro,
4223                                       bool* has_relro,
4224                                       off_t* poff,
4225                                       unsigned int* pshndx)
4226 {
4227   gold_assert(this->type_ == elfcpp::PT_LOAD);
4228
4229   uint64_t last_relro_pad = 0;
4230   off_t orig_off = *poff;
4231
4232   bool in_tls = false;
4233
4234   // If we have relro sections, we need to pad forward now so that the
4235   // relro sections plus INCREASE_RELRO end on a common page boundary.
4236   if (parameters->options().relro()
4237       && this->is_first_section_relro()
4238       && (!this->are_addresses_set_ || reset))
4239     {
4240       uint64_t relro_size = 0;
4241       off_t off = *poff;
4242       uint64_t max_align = 0;
4243       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4244         {
4245           Output_data_list* pdl = &this->output_lists_[i];
4246           Output_data_list::iterator p;
4247           for (p = pdl->begin(); p != pdl->end(); ++p)
4248             {
4249               if (!(*p)->is_section())
4250                 break;
4251               uint64_t align = (*p)->addralign();
4252               if (align > max_align)
4253                 max_align = align;
4254               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4255                 in_tls = true;
4256               else if (in_tls)
4257                 {
4258                   // Align the first non-TLS section to the alignment
4259                   // of the TLS segment.
4260                   align = max_align;
4261                   in_tls = false;
4262                 }
4263               relro_size = align_address(relro_size, align);
4264               // Ignore the size of the .tbss section.
4265               if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4266                   && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4267                 continue;
4268               if ((*p)->is_address_valid())
4269                 relro_size += (*p)->data_size();
4270               else
4271                 {
4272                   // FIXME: This could be faster.
4273                   (*p)->set_address_and_file_offset(addr + relro_size,
4274                                                     off + relro_size);
4275                   relro_size += (*p)->data_size();
4276                   (*p)->reset_address_and_file_offset();
4277                 }
4278             }
4279           if (p != pdl->end())
4280             break;
4281         }
4282       relro_size += *increase_relro;
4283       // Pad the total relro size to a multiple of the maximum
4284       // section alignment seen.
4285       uint64_t aligned_size = align_address(relro_size, max_align);
4286       // Note the amount of padding added after the last relro section.
4287       last_relro_pad = aligned_size - relro_size;
4288       *has_relro = true;
4289
4290       uint64_t page_align = parameters->target().common_pagesize();
4291
4292       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4293       uint64_t desired_align = page_align - (aligned_size % page_align);
4294       if (desired_align < *poff % page_align)
4295         *poff += page_align - *poff % page_align;
4296       *poff += desired_align - *poff % page_align;
4297       addr += *poff - orig_off;
4298       orig_off = *poff;
4299     }
4300
4301   if (!reset && this->are_addresses_set_)
4302     {
4303       gold_assert(this->paddr_ == addr);
4304       addr = this->vaddr_;
4305     }
4306   else
4307     {
4308       this->vaddr_ = addr;
4309       this->paddr_ = addr;
4310       this->are_addresses_set_ = true;
4311     }
4312
4313   in_tls = false;
4314
4315   this->offset_ = orig_off;
4316
4317   off_t off = 0;
4318   uint64_t ret;
4319   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4320     {
4321       if (i == static_cast<int>(ORDER_RELRO_LAST))
4322         {
4323           *poff += last_relro_pad;
4324           addr += last_relro_pad;
4325           if (this->output_lists_[i].empty())
4326             {
4327               // If there is nothing in the ORDER_RELRO_LAST list,
4328               // the padding will occur at the end of the relro
4329               // segment, and we need to add it to *INCREASE_RELRO.
4330               *increase_relro += last_relro_pad;
4331             }
4332         }
4333       addr = this->set_section_list_addresses(layout, reset,
4334                                               &this->output_lists_[i],
4335                                               addr, poff, pshndx, &in_tls);
4336       if (i < static_cast<int>(ORDER_SMALL_BSS))
4337         {
4338           this->filesz_ = *poff - orig_off;
4339           off = *poff;
4340         }
4341
4342       ret = addr;
4343     }
4344
4345   // If the last section was a TLS section, align upward to the
4346   // alignment of the TLS segment, so that the overall size of the TLS
4347   // segment is aligned.
4348   if (in_tls)
4349     {
4350       uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4351       *poff = align_address(*poff, segment_align);
4352     }
4353
4354   this->memsz_ = *poff - orig_off;
4355
4356   // Ignore the file offset adjustments made by the BSS Output_data
4357   // objects.
4358   *poff = off;
4359
4360   return ret;
4361 }
4362
4363 // Set the addresses and file offsets in a list of Output_data
4364 // structures.
4365
4366 uint64_t
4367 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4368                                            Output_data_list* pdl,
4369                                            uint64_t addr, off_t* poff,
4370                                            unsigned int* pshndx,
4371                                            bool* in_tls)
4372 {
4373   off_t startoff = *poff;
4374   // For incremental updates, we may allocate non-fixed sections from
4375   // free space in the file.  This keeps track of the high-water mark.
4376   off_t maxoff = startoff;
4377
4378   off_t off = startoff;
4379   for (Output_data_list::iterator p = pdl->begin();
4380        p != pdl->end();
4381        ++p)
4382     {
4383       if (reset)
4384         (*p)->reset_address_and_file_offset();
4385
4386       // When doing an incremental update or when using a linker script,
4387       // the section will most likely already have an address.
4388       if (!(*p)->is_address_valid())
4389         {
4390           uint64_t align = (*p)->addralign();
4391
4392           if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4393             {
4394               // Give the first TLS section the alignment of the
4395               // entire TLS segment.  Otherwise the TLS segment as a
4396               // whole may be misaligned.
4397               if (!*in_tls)
4398                 {
4399                   Output_segment* tls_segment = layout->tls_segment();
4400                   gold_assert(tls_segment != NULL);
4401                   uint64_t segment_align = tls_segment->maximum_alignment();
4402                   gold_assert(segment_align >= align);
4403                   align = segment_align;
4404
4405                   *in_tls = true;
4406                 }
4407             }
4408           else
4409             {
4410               // If this is the first section after the TLS segment,
4411               // align it to at least the alignment of the TLS
4412               // segment, so that the size of the overall TLS segment
4413               // is aligned.
4414               if (*in_tls)
4415                 {
4416                   uint64_t segment_align =
4417                       layout->tls_segment()->maximum_alignment();
4418                   if (segment_align > align)
4419                     align = segment_align;
4420
4421                   *in_tls = false;
4422                 }
4423             }
4424
4425           if (!parameters->incremental_update())
4426             {
4427               off = align_address(off, align);
4428               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4429             }
4430           else
4431             {
4432               // Incremental update: allocate file space from free list.
4433               (*p)->pre_finalize_data_size();
4434               off_t current_size = (*p)->current_data_size();
4435               off = layout->allocate(current_size, align, startoff);
4436               if (off == -1)
4437                 {
4438                   gold_assert((*p)->output_section() != NULL);
4439                   gold_fallback(_("out of patch space for section %s; "
4440                                   "relink with --incremental-full"),
4441                                 (*p)->output_section()->name());
4442                 }
4443               (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4444               if ((*p)->data_size() > current_size)
4445                 {
4446                   gold_assert((*p)->output_section() != NULL);
4447                   gold_fallback(_("%s: section changed size; "
4448                                   "relink with --incremental-full"),
4449                                 (*p)->output_section()->name());
4450                 }
4451             }
4452         }
4453       else if (parameters->incremental_update())
4454         {
4455           // For incremental updates, use the fixed offset for the
4456           // high-water mark computation.
4457           off = (*p)->offset();
4458         }
4459       else
4460         {
4461           // The script may have inserted a skip forward, but it
4462           // better not have moved backward.
4463           if ((*p)->address() >= addr + (off - startoff))
4464             off += (*p)->address() - (addr + (off - startoff));
4465           else
4466             {
4467               if (!layout->script_options()->saw_sections_clause())
4468                 gold_unreachable();
4469               else
4470                 {
4471                   Output_section* os = (*p)->output_section();
4472
4473                   // Cast to unsigned long long to avoid format warnings.
4474                   unsigned long long previous_dot =
4475                     static_cast<unsigned long long>(addr + (off - startoff));
4476                   unsigned long long dot =
4477                     static_cast<unsigned long long>((*p)->address());
4478
4479                   if (os == NULL)
4480                     gold_error(_("dot moves backward in linker script "
4481                                  "from 0x%llx to 0x%llx"), previous_dot, dot);
4482                   else
4483                     gold_error(_("address of section '%s' moves backward "
4484                                  "from 0x%llx to 0x%llx"),
4485                                os->name(), previous_dot, dot);
4486                 }
4487             }
4488           (*p)->set_file_offset(off);
4489           (*p)->finalize_data_size();
4490         }
4491
4492       if (parameters->incremental_update())
4493         gold_debug(DEBUG_INCREMENTAL,
4494                    "set_section_list_addresses: %08lx %08lx %s",
4495                    static_cast<long>(off),
4496                    static_cast<long>((*p)->data_size()),
4497                    ((*p)->output_section() != NULL
4498                     ? (*p)->output_section()->name() : "(special)"));
4499
4500       // We want to ignore the size of a SHF_TLS SHT_NOBITS
4501       // section.  Such a section does not affect the size of a
4502       // PT_LOAD segment.
4503       if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4504           || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4505         off += (*p)->data_size();
4506
4507       if (off > maxoff)
4508         maxoff = off;
4509
4510       if ((*p)->is_section())
4511         {
4512           (*p)->set_out_shndx(*pshndx);
4513           ++*pshndx;
4514         }
4515     }
4516
4517   *poff = maxoff;
4518   return addr + (maxoff - startoff);
4519 }
4520
4521 // For a non-PT_LOAD segment, set the offset from the sections, if
4522 // any.  Add INCREASE to the file size and the memory size.
4523
4524 void
4525 Output_segment::set_offset(unsigned int increase)
4526 {
4527   gold_assert(this->type_ != elfcpp::PT_LOAD);
4528
4529   gold_assert(!this->are_addresses_set_);
4530
4531   // A non-load section only uses output_lists_[0].
4532
4533   Output_data_list* pdl = &this->output_lists_[0];
4534
4535   if (pdl->empty())
4536     {
4537       gold_assert(increase == 0);
4538       this->vaddr_ = 0;
4539       this->paddr_ = 0;
4540       this->are_addresses_set_ = true;
4541       this->memsz_ = 0;
4542       this->min_p_align_ = 0;
4543       this->offset_ = 0;
4544       this->filesz_ = 0;
4545       return;
4546     }
4547
4548   // Find the first and last section by address.
4549   const Output_data* first = NULL;
4550   const Output_data* last_data = NULL;
4551   const Output_data* last_bss = NULL;
4552   for (Output_data_list::const_iterator p = pdl->begin();
4553        p != pdl->end();
4554        ++p)
4555     {
4556       if (first == NULL
4557           || (*p)->address() < first->address()
4558           || ((*p)->address() == first->address()
4559               && (*p)->data_size() < first->data_size()))
4560         first = *p;
4561       const Output_data** plast;
4562       if ((*p)->is_section()
4563           && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4564         plast = &last_bss;
4565       else
4566         plast = &last_data;
4567       if (*plast == NULL
4568           || (*p)->address() > (*plast)->address()
4569           || ((*p)->address() == (*plast)->address()
4570               && (*p)->data_size() > (*plast)->data_size()))
4571         *plast = *p;
4572     }
4573
4574   this->vaddr_ = first->address();
4575   this->paddr_ = (first->has_load_address()
4576                   ? first->load_address()
4577                   : this->vaddr_);
4578   this->are_addresses_set_ = true;
4579   this->offset_ = first->offset();
4580
4581   if (last_data == NULL)
4582     this->filesz_ = 0;
4583   else
4584     this->filesz_ = (last_data->address()
4585                      + last_data->data_size()
4586                      - this->vaddr_);
4587
4588   const Output_data* last = last_bss != NULL ? last_bss : last_data;
4589   this->memsz_ = (last->address()
4590                   + last->data_size()
4591                   - this->vaddr_);
4592
4593   this->filesz_ += increase;
4594   this->memsz_ += increase;
4595
4596   // If this is a RELRO segment, verify that the segment ends at a
4597   // page boundary.
4598   if (this->type_ == elfcpp::PT_GNU_RELRO)
4599     {
4600       uint64_t page_align = parameters->target().common_pagesize();
4601       uint64_t segment_end = this->vaddr_ + this->memsz_;
4602       if (parameters->incremental_update())
4603         {
4604           // The INCREASE_RELRO calculation is bypassed for an incremental
4605           // update, so we need to adjust the segment size manually here.
4606           segment_end = align_address(segment_end, page_align);
4607           this->memsz_ = segment_end - this->vaddr_;
4608         }
4609       else
4610         gold_assert(segment_end == align_address(segment_end, page_align));
4611     }
4612
4613   // If this is a TLS segment, align the memory size.  The code in
4614   // set_section_list ensures that the section after the TLS segment
4615   // is aligned to give us room.
4616   if (this->type_ == elfcpp::PT_TLS)
4617     {
4618       uint64_t segment_align = this->maximum_alignment();
4619       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4620       this->memsz_ = align_address(this->memsz_, segment_align);
4621     }
4622 }
4623
4624 // Set the TLS offsets of the sections in the PT_TLS segment.
4625
4626 void
4627 Output_segment::set_tls_offsets()
4628 {
4629   gold_assert(this->type_ == elfcpp::PT_TLS);
4630
4631   for (Output_data_list::iterator p = this->output_lists_[0].begin();
4632        p != this->output_lists_[0].end();
4633        ++p)
4634     (*p)->set_tls_offset(this->vaddr_);
4635 }
4636
4637 // Return the load address of the first section.
4638
4639 uint64_t
4640 Output_segment::first_section_load_address() const
4641 {
4642   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4643     {
4644       const Output_data_list* pdl = &this->output_lists_[i];
4645       for (Output_data_list::const_iterator p = pdl->begin();
4646            p != pdl->end();
4647            ++p)
4648         {
4649           if ((*p)->is_section())
4650             return ((*p)->has_load_address()
4651                     ? (*p)->load_address()
4652                     : (*p)->address());
4653         }
4654     }
4655   gold_unreachable();
4656 }
4657
4658 // Return the number of Output_sections in an Output_segment.
4659
4660 unsigned int
4661 Output_segment::output_section_count() const
4662 {
4663   unsigned int ret = 0;
4664   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4665     ret += this->output_section_count_list(&this->output_lists_[i]);
4666   return ret;
4667 }
4668
4669 // Return the number of Output_sections in an Output_data_list.
4670
4671 unsigned int
4672 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4673 {
4674   unsigned int count = 0;
4675   for (Output_data_list::const_iterator p = pdl->begin();
4676        p != pdl->end();
4677        ++p)
4678     {
4679       if ((*p)->is_section())
4680         ++count;
4681     }
4682   return count;
4683 }
4684
4685 // Return the section attached to the list segment with the lowest
4686 // load address.  This is used when handling a PHDRS clause in a
4687 // linker script.
4688
4689 Output_section*
4690 Output_segment::section_with_lowest_load_address() const
4691 {
4692   Output_section* found = NULL;
4693   uint64_t found_lma = 0;
4694   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4695     this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4696                                       &found_lma);
4697   return found;
4698 }
4699
4700 // Look through a list for a section with a lower load address.
4701
4702 void
4703 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4704                                             Output_section** found,
4705                                             uint64_t* found_lma) const
4706 {
4707   for (Output_data_list::const_iterator p = pdl->begin();
4708        p != pdl->end();
4709        ++p)
4710     {
4711       if (!(*p)->is_section())
4712         continue;
4713       Output_section* os = static_cast<Output_section*>(*p);
4714       uint64_t lma = (os->has_load_address()
4715                       ? os->load_address()
4716                       : os->address());
4717       if (*found == NULL || lma < *found_lma)
4718         {
4719           *found = os;
4720           *found_lma = lma;
4721         }
4722     }
4723 }
4724
4725 // Write the segment data into *OPHDR.
4726
4727 template<int size, bool big_endian>
4728 void
4729 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4730 {
4731   ophdr->put_p_type(this->type_);
4732   ophdr->put_p_offset(this->offset_);
4733   ophdr->put_p_vaddr(this->vaddr_);
4734   ophdr->put_p_paddr(this->paddr_);
4735   ophdr->put_p_filesz(this->filesz_);
4736   ophdr->put_p_memsz(this->memsz_);
4737   ophdr->put_p_flags(this->flags_);
4738   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4739 }
4740
4741 // Write the section headers into V.
4742
4743 template<int size, bool big_endian>
4744 unsigned char*
4745 Output_segment::write_section_headers(const Layout* layout,
4746                                       const Stringpool* secnamepool,
4747                                       unsigned char* v,
4748                                       unsigned int* pshndx) const
4749 {
4750   // Every section that is attached to a segment must be attached to a
4751   // PT_LOAD segment, so we only write out section headers for PT_LOAD
4752   // segments.
4753   if (this->type_ != elfcpp::PT_LOAD)
4754     return v;
4755
4756   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4757     {
4758       const Output_data_list* pdl = &this->output_lists_[i];
4759       v = this->write_section_headers_list<size, big_endian>(layout,
4760                                                              secnamepool,
4761                                                              pdl,
4762                                                              v, pshndx);
4763     }
4764
4765   return v;
4766 }
4767
4768 template<int size, bool big_endian>
4769 unsigned char*
4770 Output_segment::write_section_headers_list(const Layout* layout,
4771                                            const Stringpool* secnamepool,
4772                                            const Output_data_list* pdl,
4773                                            unsigned char* v,
4774                                            unsigned int* pshndx) const
4775 {
4776   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4777   for (Output_data_list::const_iterator p = pdl->begin();
4778        p != pdl->end();
4779        ++p)
4780     {
4781       if ((*p)->is_section())
4782         {
4783           const Output_section* ps = static_cast<const Output_section*>(*p);
4784           gold_assert(*pshndx == ps->out_shndx());
4785           elfcpp::Shdr_write<size, big_endian> oshdr(v);
4786           ps->write_header(layout, secnamepool, &oshdr);
4787           v += shdr_size;
4788           ++*pshndx;
4789         }
4790     }
4791   return v;
4792 }
4793
4794 // Print the output sections to the map file.
4795
4796 void
4797 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4798 {
4799   if (this->type() != elfcpp::PT_LOAD)
4800     return;
4801   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4802     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4803 }
4804
4805 // Print an output section list to the map file.
4806
4807 void
4808 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4809                                               const Output_data_list* pdl) const
4810 {
4811   for (Output_data_list::const_iterator p = pdl->begin();
4812        p != pdl->end();
4813        ++p)
4814     (*p)->print_to_mapfile(mapfile);
4815 }
4816
4817 // Output_file methods.
4818
4819 Output_file::Output_file(const char* name)
4820   : name_(name),
4821     o_(-1),
4822     file_size_(0),
4823     base_(NULL),
4824     map_is_anonymous_(false),
4825     map_is_allocated_(false),
4826     is_temporary_(false)
4827 {
4828 }
4829
4830 // Try to open an existing file.  Returns false if the file doesn't
4831 // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
4832 // NULL, open that file as the base for incremental linking, and
4833 // copy its contents to the new output file.  This routine can
4834 // be called for incremental updates, in which case WRITABLE should
4835 // be true, or by the incremental-dump utility, in which case
4836 // WRITABLE should be false.
4837
4838 bool
4839 Output_file::open_base_file(const char* base_name, bool writable)
4840 {
4841   // The name "-" means "stdout".
4842   if (strcmp(this->name_, "-") == 0)
4843     return false;
4844
4845   bool use_base_file = base_name != NULL;
4846   if (!use_base_file)
4847     base_name = this->name_;
4848   else if (strcmp(base_name, this->name_) == 0)
4849     gold_fatal(_("%s: incremental base and output file name are the same"),
4850                base_name);
4851
4852   // Don't bother opening files with a size of zero.
4853   struct stat s;
4854   if (::stat(base_name, &s) != 0)
4855     {
4856       gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4857       return false;
4858     }
4859   if (s.st_size == 0)
4860     {
4861       gold_info(_("%s: incremental base file is empty"), base_name);
4862       return false;
4863     }
4864
4865   // If we're using a base file, we want to open it read-only.
4866   if (use_base_file)
4867     writable = false;
4868
4869   int oflags = writable ? O_RDWR : O_RDONLY;
4870   int o = open_descriptor(-1, base_name, oflags, 0);
4871   if (o < 0)
4872     {
4873       gold_info(_("%s: open: %s"), base_name, strerror(errno));
4874       return false;
4875     }
4876
4877   // If the base file and the output file are different, open a
4878   // new output file and read the contents from the base file into
4879   // the newly-mapped region.
4880   if (use_base_file)
4881     {
4882       this->open(s.st_size);
4883       ssize_t len = ::read(o, this->base_, s.st_size);
4884       if (len < 0)
4885         {
4886           gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4887           return false;
4888         }
4889       if (len < s.st_size)
4890         {
4891           gold_info(_("%s: file too short"), base_name);
4892           return false;
4893         }
4894       ::close(o);
4895       return true;
4896     }
4897
4898   this->o_ = o;
4899   this->file_size_ = s.st_size;
4900
4901   if (!this->map_no_anonymous(writable))
4902     {
4903       release_descriptor(o, true);
4904       this->o_ = -1;
4905       this->file_size_ = 0;
4906       return false;
4907     }
4908
4909   return true;
4910 }
4911
4912 // Open the output file.
4913
4914 void
4915 Output_file::open(off_t file_size)
4916 {
4917   this->file_size_ = file_size;
4918
4919   // Unlink the file first; otherwise the open() may fail if the file
4920   // is busy (e.g. it's an executable that's currently being executed).
4921   //
4922   // However, the linker may be part of a system where a zero-length
4923   // file is created for it to write to, with tight permissions (gcc
4924   // 2.95 did something like this).  Unlinking the file would work
4925   // around those permission controls, so we only unlink if the file
4926   // has a non-zero size.  We also unlink only regular files to avoid
4927   // trouble with directories/etc.
4928   //
4929   // If we fail, continue; this command is merely a best-effort attempt
4930   // to improve the odds for open().
4931
4932   // We let the name "-" mean "stdout"
4933   if (!this->is_temporary_)
4934     {
4935       if (strcmp(this->name_, "-") == 0)
4936         this->o_ = STDOUT_FILENO;
4937       else
4938         {
4939           struct stat s;
4940           if (::stat(this->name_, &s) == 0
4941               && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4942             {
4943               if (s.st_size != 0)
4944                 ::unlink(this->name_);
4945               else if (!parameters->options().relocatable())
4946                 {
4947                   // If we don't unlink the existing file, add execute
4948                   // permission where read permissions already exist
4949                   // and where the umask permits.
4950                   int mask = ::umask(0);
4951                   ::umask(mask);
4952                   s.st_mode |= (s.st_mode & 0444) >> 2;
4953                   ::chmod(this->name_, s.st_mode & ~mask);
4954                 }
4955             }
4956
4957           int mode = parameters->options().relocatable() ? 0666 : 0777;
4958           int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4959                                   mode);
4960           if (o < 0)
4961             gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4962           this->o_ = o;
4963         }
4964     }
4965
4966   this->map();
4967 }
4968
4969 // Resize the output file.
4970
4971 void
4972 Output_file::resize(off_t file_size)
4973 {
4974   // If the mmap is mapping an anonymous memory buffer, this is easy:
4975   // just mremap to the new size.  If it's mapping to a file, we want
4976   // to unmap to flush to the file, then remap after growing the file.
4977   if (this->map_is_anonymous_)
4978     {
4979       void* base;
4980       if (!this->map_is_allocated_)
4981         {
4982           base = ::mremap(this->base_, this->file_size_, file_size,
4983                           MREMAP_MAYMOVE);
4984           if (base == MAP_FAILED)
4985             gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4986         }
4987       else
4988         {
4989           base = realloc(this->base_, file_size);
4990           if (base == NULL)
4991             gold_nomem();
4992           if (file_size > this->file_size_)
4993             memset(static_cast<char*>(base) + this->file_size_, 0,
4994                    file_size - this->file_size_);
4995         }
4996       this->base_ = static_cast<unsigned char*>(base);
4997       this->file_size_ = file_size;
4998     }
4999   else
5000     {
5001       this->unmap();
5002       this->file_size_ = file_size;
5003       if (!this->map_no_anonymous(true))
5004         gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5005     }
5006 }
5007
5008 // Map an anonymous block of memory which will later be written to the
5009 // file.  Return whether the map succeeded.
5010
5011 bool
5012 Output_file::map_anonymous()
5013 {
5014   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5015                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5016   if (base == MAP_FAILED)
5017     {
5018       base = malloc(this->file_size_);
5019       if (base == NULL)
5020         return false;
5021       memset(base, 0, this->file_size_);
5022       this->map_is_allocated_ = true;
5023     }
5024   this->base_ = static_cast<unsigned char*>(base);
5025   this->map_is_anonymous_ = true;
5026   return true;
5027 }
5028
5029 // Map the file into memory.  Return whether the mapping succeeded.
5030 // If WRITABLE is true, map with write access.
5031
5032 bool
5033 Output_file::map_no_anonymous(bool writable)
5034 {
5035   const int o = this->o_;
5036
5037   // If the output file is not a regular file, don't try to mmap it;
5038   // instead, we'll mmap a block of memory (an anonymous buffer), and
5039   // then later write the buffer to the file.
5040   void* base;
5041   struct stat statbuf;
5042   if (o == STDOUT_FILENO || o == STDERR_FILENO
5043       || ::fstat(o, &statbuf) != 0
5044       || !S_ISREG(statbuf.st_mode)
5045       || this->is_temporary_)
5046     return false;
5047
5048   // Ensure that we have disk space available for the file.  If we
5049   // don't do this, it is possible that we will call munmap, close,
5050   // and exit with dirty buffers still in the cache with no assigned
5051   // disk blocks.  If the disk is out of space at that point, the
5052   // output file will wind up incomplete, but we will have already
5053   // exited.  The alternative to fallocate would be to use fdatasync,
5054   // but that would be a more significant performance hit.
5055   if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5056     gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5057
5058   // Map the file into memory.
5059   int prot = PROT_READ;
5060   if (writable)
5061     prot |= PROT_WRITE;
5062   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5063
5064   // The mmap call might fail because of file system issues: the file
5065   // system might not support mmap at all, or it might not support
5066   // mmap with PROT_WRITE.
5067   if (base == MAP_FAILED)
5068     return false;
5069
5070   this->map_is_anonymous_ = false;
5071   this->base_ = static_cast<unsigned char*>(base);
5072   return true;
5073 }
5074
5075 // Map the file into memory.
5076
5077 void
5078 Output_file::map()
5079 {
5080   if (this->map_no_anonymous(true))
5081     return;
5082
5083   // The mmap call might fail because of file system issues: the file
5084   // system might not support mmap at all, or it might not support
5085   // mmap with PROT_WRITE.  I'm not sure which errno values we will
5086   // see in all cases, so if the mmap fails for any reason and we
5087   // don't care about file contents, try for an anonymous map.
5088   if (this->map_anonymous())
5089     return;
5090
5091   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5092              this->name_, static_cast<unsigned long>(this->file_size_),
5093              strerror(errno));
5094 }
5095
5096 // Unmap the file from memory.
5097
5098 void
5099 Output_file::unmap()
5100 {
5101   if (this->map_is_anonymous_)
5102     {
5103       // We've already written out the data, so there is no reason to
5104       // waste time unmapping or freeing the memory.
5105     }
5106   else
5107     {
5108       if (::munmap(this->base_, this->file_size_) < 0)
5109         gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5110     }
5111   this->base_ = NULL;
5112 }
5113
5114 // Close the output file.
5115
5116 void
5117 Output_file::close()
5118 {
5119   // If the map isn't file-backed, we need to write it now.
5120   if (this->map_is_anonymous_ && !this->is_temporary_)
5121     {
5122       size_t bytes_to_write = this->file_size_;
5123       size_t offset = 0;
5124       while (bytes_to_write > 0)
5125         {
5126           ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5127                                           bytes_to_write);
5128           if (bytes_written == 0)
5129             gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5130           else if (bytes_written < 0)
5131             gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5132           else
5133             {
5134               bytes_to_write -= bytes_written;
5135               offset += bytes_written;
5136             }
5137         }
5138     }
5139   this->unmap();
5140
5141   // We don't close stdout or stderr
5142   if (this->o_ != STDOUT_FILENO
5143       && this->o_ != STDERR_FILENO
5144       && !this->is_temporary_)
5145     if (::close(this->o_) < 0)
5146       gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5147   this->o_ = -1;
5148 }
5149
5150 // Instantiate the templates we need.  We could use the configure
5151 // script to restrict this to only the ones for implemented targets.
5152
5153 #ifdef HAVE_TARGET_32_LITTLE
5154 template
5155 off_t
5156 Output_section::add_input_section<32, false>(
5157     Layout* layout,
5158     Sized_relobj_file<32, false>* object,
5159     unsigned int shndx,
5160     const char* secname,
5161     const elfcpp::Shdr<32, false>& shdr,
5162     unsigned int reloc_shndx,
5163     bool have_sections_script);
5164 #endif
5165
5166 #ifdef HAVE_TARGET_32_BIG
5167 template
5168 off_t
5169 Output_section::add_input_section<32, true>(
5170     Layout* layout,
5171     Sized_relobj_file<32, true>* object,
5172     unsigned int shndx,
5173     const char* secname,
5174     const elfcpp::Shdr<32, true>& shdr,
5175     unsigned int reloc_shndx,
5176     bool have_sections_script);
5177 #endif
5178
5179 #ifdef HAVE_TARGET_64_LITTLE
5180 template
5181 off_t
5182 Output_section::add_input_section<64, false>(
5183     Layout* layout,
5184     Sized_relobj_file<64, false>* object,
5185     unsigned int shndx,
5186     const char* secname,
5187     const elfcpp::Shdr<64, false>& shdr,
5188     unsigned int reloc_shndx,
5189     bool have_sections_script);
5190 #endif
5191
5192 #ifdef HAVE_TARGET_64_BIG
5193 template
5194 off_t
5195 Output_section::add_input_section<64, true>(
5196     Layout* layout,
5197     Sized_relobj_file<64, true>* object,
5198     unsigned int shndx,
5199     const char* secname,
5200     const elfcpp::Shdr<64, true>& shdr,
5201     unsigned int reloc_shndx,
5202     bool have_sections_script);
5203 #endif
5204
5205 #ifdef HAVE_TARGET_32_LITTLE
5206 template
5207 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5208 #endif
5209
5210 #ifdef HAVE_TARGET_32_BIG
5211 template
5212 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5213 #endif
5214
5215 #ifdef HAVE_TARGET_64_LITTLE
5216 template
5217 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5218 #endif
5219
5220 #ifdef HAVE_TARGET_64_BIG
5221 template
5222 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5223 #endif
5224
5225 #ifdef HAVE_TARGET_32_LITTLE
5226 template
5227 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5228 #endif
5229
5230 #ifdef HAVE_TARGET_32_BIG
5231 template
5232 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5233 #endif
5234
5235 #ifdef HAVE_TARGET_64_LITTLE
5236 template
5237 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5238 #endif
5239
5240 #ifdef HAVE_TARGET_64_BIG
5241 template
5242 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5243 #endif
5244
5245 #ifdef HAVE_TARGET_32_LITTLE
5246 template
5247 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5248 #endif
5249
5250 #ifdef HAVE_TARGET_32_BIG
5251 template
5252 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5253 #endif
5254
5255 #ifdef HAVE_TARGET_64_LITTLE
5256 template
5257 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5258 #endif
5259
5260 #ifdef HAVE_TARGET_64_BIG
5261 template
5262 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5263 #endif
5264
5265 #ifdef HAVE_TARGET_32_LITTLE
5266 template
5267 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5268 #endif
5269
5270 #ifdef HAVE_TARGET_32_BIG
5271 template
5272 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5273 #endif
5274
5275 #ifdef HAVE_TARGET_64_LITTLE
5276 template
5277 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5278 #endif
5279
5280 #ifdef HAVE_TARGET_64_BIG
5281 template
5282 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5283 #endif
5284
5285 #ifdef HAVE_TARGET_32_LITTLE
5286 template
5287 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5288 #endif
5289
5290 #ifdef HAVE_TARGET_32_BIG
5291 template
5292 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5293 #endif
5294
5295 #ifdef HAVE_TARGET_64_LITTLE
5296 template
5297 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5298 #endif
5299
5300 #ifdef HAVE_TARGET_64_BIG
5301 template
5302 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5303 #endif
5304
5305 #ifdef HAVE_TARGET_32_LITTLE
5306 template
5307 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5308 #endif
5309
5310 #ifdef HAVE_TARGET_32_BIG
5311 template
5312 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5313 #endif
5314
5315 #ifdef HAVE_TARGET_64_LITTLE
5316 template
5317 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5318 #endif
5319
5320 #ifdef HAVE_TARGET_64_BIG
5321 template
5322 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_LITTLE
5326 template
5327 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5328 #endif
5329
5330 #ifdef HAVE_TARGET_32_BIG
5331 template
5332 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5333 #endif
5334
5335 #ifdef HAVE_TARGET_64_LITTLE
5336 template
5337 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_64_BIG
5341 template
5342 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_32_LITTLE
5346 template
5347 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_32_BIG
5351 template
5352 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_LITTLE
5356 template
5357 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_64_BIG
5361 template
5362 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_32_LITTLE
5366 template
5367 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_32_BIG
5371 template
5372 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_64_LITTLE
5376 template
5377 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_64_BIG
5381 template
5382 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_LITTLE
5386 template
5387 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_32_BIG
5391 template
5392 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_64_LITTLE
5396 template
5397 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_64_BIG
5401 template
5402 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_32_LITTLE
5406 template
5407 class Output_data_group<32, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_32_BIG
5411 template
5412 class Output_data_group<32, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 class Output_data_group<64, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_64_BIG
5421 template
5422 class Output_data_group<64, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_32_LITTLE
5426 template
5427 class Output_data_got<32, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_32_BIG
5431 template
5432 class Output_data_got<32, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_64_LITTLE
5436 template
5437 class Output_data_got<64, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_64_BIG
5441 template
5442 class Output_data_got<64, true>;
5443 #endif
5444
5445 } // End namespace gold.