Merge branch 'vendor/GCC50'
[dragonfly.git] / sys / dev / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/atomic.h>
37 #include <linux/errno.h>
38 #include <linux/export.h>
39 #include <linux/rbtree.h>
40 #include <linux/wait.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob);
49
50 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
51 {
52         int i;
53
54         for (i = 0; i <= TTM_PL_PRIV5; i++)
55                 if (flags & (1 << i)) {
56                         *mem_type = i;
57                         return 0;
58                 }
59         return -EINVAL;
60 }
61
62 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
63 {
64         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
65
66         kprintf("    has_type: %d\n", man->has_type);
67         kprintf("    use_type: %d\n", man->use_type);
68         kprintf("    flags: 0x%08X\n", man->flags);
69         kprintf("    gpu_offset: 0x%08lX\n", man->gpu_offset);
70         kprintf("    size: %ju\n", (uintmax_t)man->size);
71         kprintf("    available_caching: 0x%08X\n", man->available_caching);
72         kprintf("    default_caching: 0x%08X\n", man->default_caching);
73         if (mem_type != TTM_PL_SYSTEM)
74                 (*man->func->debug)(man, TTM_PFX);
75 }
76
77 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
78                                         struct ttm_placement *placement)
79 {
80         int i, ret, mem_type;
81
82         kprintf("No space for %p (%lu pages, %luK, %luM)\n",
83                bo, bo->mem.num_pages, bo->mem.size >> 10,
84                bo->mem.size >> 20);
85         for (i = 0; i < placement->num_placement; i++) {
86                 ret = ttm_mem_type_from_flags(placement->placement[i],
87                                                 &mem_type);
88                 if (ret)
89                         return;
90                 kprintf("  placement[%d]=0x%08X (%d)\n",
91                        i, placement->placement[i], mem_type);
92                 ttm_mem_type_debug(bo->bdev, mem_type);
93         }
94 }
95
96 #if 0
97 static ssize_t ttm_bo_global_show(struct ttm_bo_global *glob,
98     char *buffer)
99 {
100
101         return snprintf(buffer, PAGE_SIZE, "%lu\n",
102                         (unsigned long) atomic_read(&glob->bo_count));
103 }
104 #endif
105
106 static inline uint32_t ttm_bo_type_flags(unsigned type)
107 {
108         return 1 << (type);
109 }
110
111 static void ttm_bo_release_list(struct kref *list_kref)
112 {
113         struct ttm_buffer_object *bo =
114             container_of(list_kref, struct ttm_buffer_object, list_kref);
115         struct ttm_bo_device *bdev = bo->bdev;
116         size_t acc_size = bo->acc_size;
117
118         BUG_ON(atomic_read(&bo->list_kref.refcount));
119         BUG_ON(atomic_read(&bo->kref.refcount));
120         BUG_ON(atomic_read(&bo->cpu_writers));
121         BUG_ON(bo->sync_obj != NULL);
122         BUG_ON(bo->mem.mm_node != NULL);
123         BUG_ON(!list_empty(&bo->lru));
124         BUG_ON(!list_empty(&bo->ddestroy));
125
126         if (bo->ttm)
127                 ttm_tt_destroy(bo->ttm);
128         atomic_dec(&bo->glob->bo_count);
129         if (bo->destroy)
130                 bo->destroy(bo);
131         else {
132                 kfree(bo);
133         }
134         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
135 }
136
137 static int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo,
138                                   bool interruptible)
139 {
140         if (interruptible) {
141                 return wait_event_interruptible(bo->event_queue,
142                                                !ttm_bo_is_reserved(bo));
143         } else {
144                 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
145                 return 0;
146         }
147 }
148
149 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
150 {
151         struct ttm_bo_device *bdev = bo->bdev;
152         struct ttm_mem_type_manager *man;
153
154         BUG_ON(!ttm_bo_is_reserved(bo));
155
156         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
157
158                 BUG_ON(!list_empty(&bo->lru));
159
160                 man = &bdev->man[bo->mem.mem_type];
161                 list_add_tail(&bo->lru, &man->lru);
162                 kref_get(&bo->list_kref);
163
164                 if (bo->ttm != NULL) {
165                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
166                         kref_get(&bo->list_kref);
167                 }
168         }
169 }
170
171 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
172 {
173         int put_count = 0;
174
175         if (!list_empty(&bo->swap)) {
176                 list_del_init(&bo->swap);
177                 ++put_count;
178         }
179         if (!list_empty(&bo->lru)) {
180                 list_del_init(&bo->lru);
181                 ++put_count;
182         }
183
184         /*
185          * TODO: Add a driver hook to delete from
186          * driver-specific LRU's here.
187          */
188
189         return put_count;
190 }
191
192 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
193                           bool interruptible,
194                           bool no_wait, bool use_sequence, uint32_t sequence)
195 {
196         int ret;
197
198         while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
199                 /**
200                  * Deadlock avoidance for multi-bo reserving.
201                  */
202                 if (use_sequence && bo->seq_valid) {
203                         /**
204                          * We've already reserved this one.
205                          */
206                         if (unlikely(sequence == bo->val_seq))
207                                 return -EDEADLK;
208                         /**
209                          * Already reserved by a thread that will not back
210                          * off for us. We need to back off.
211                          */
212                         if (unlikely(sequence - bo->val_seq < (1U << 31)))
213                                 return -EAGAIN;
214                 }
215
216                 if (no_wait)
217                         return -EBUSY;
218
219                 ret = ttm_bo_wait_unreserved(bo, interruptible);
220
221                 if (unlikely(ret))
222                         return ret;
223         }
224
225         if (use_sequence) {
226                 bool wake_up = false;
227                 /**
228                  * Wake up waiters that may need to recheck for deadlock,
229                  * if we decreased the sequence number.
230                  */
231                 if (unlikely((bo->val_seq - sequence < (1U << 31))
232                              || !bo->seq_valid))
233                         wake_up = true;
234
235                 /*
236                  * In the worst case with memory ordering these values can be
237                  * seen in the wrong order. However since we call wake_up_all
238                  * in that case, this will hopefully not pose a problem,
239                  * and the worst case would only cause someone to accidentally
240                  * hit -EAGAIN in ttm_bo_reserve when they see old value of
241                  * val_seq. However this would only happen if seq_valid was
242                  * written before val_seq was, and just means some slightly
243                  * increased cpu usage
244                  */
245                 bo->val_seq = sequence;
246                 bo->seq_valid = true;
247                 if (wake_up)
248                         wake_up_all(&bo->event_queue);
249         } else {
250                 bo->seq_valid = false;
251         }
252
253         return 0;
254 }
255 EXPORT_SYMBOL(ttm_bo_reserve);
256
257 static void ttm_bo_ref_bug(struct kref *list_kref)
258 {
259         BUG();
260 }
261
262 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
263                          bool never_free)
264 {
265         kref_sub(&bo->list_kref, count,
266                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
267 }
268
269 int ttm_bo_reserve(struct ttm_buffer_object *bo,
270                    bool interruptible,
271                    bool no_wait, bool use_sequence, uint32_t sequence)
272 {
273         struct ttm_bo_global *glob = bo->glob;
274         int put_count = 0;
275         int ret;
276
277         ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
278                                    sequence);
279         if (likely(ret == 0)) {
280                 lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
281                 put_count = ttm_bo_del_from_lru(bo);
282                 lockmgr(&glob->lru_lock, LK_RELEASE);
283                 ttm_bo_list_ref_sub(bo, put_count, true);
284         }
285
286         return ret;
287 }
288
289 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
290                                   bool interruptible, uint32_t sequence)
291 {
292         bool wake_up = false;
293         int ret;
294
295         while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
296                 WARN_ON(bo->seq_valid && sequence == bo->val_seq);
297
298                 ret = ttm_bo_wait_unreserved(bo, interruptible);
299
300                 if (unlikely(ret))
301                         return ret;
302         }
303
304         if ((bo->val_seq - sequence < (1U << 31)) || !bo->seq_valid)
305                 wake_up = true;
306
307         /**
308          * Wake up waiters that may need to recheck for deadlock,
309          * if we decreased the sequence number.
310          */
311         bo->val_seq = sequence;
312         bo->seq_valid = true;
313         if (wake_up)
314                 wake_up_all(&bo->event_queue);
315
316         return 0;
317 }
318
319 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
320                             bool interruptible, uint32_t sequence)
321 {
322         struct ttm_bo_global *glob = bo->glob;
323         int put_count, ret;
324
325         ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
326         if (likely(!ret)) {
327                 lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
328                 put_count = ttm_bo_del_from_lru(bo);
329                 lockmgr(&glob->lru_lock, LK_RELEASE);
330                 ttm_bo_list_ref_sub(bo, put_count, true);
331         }
332         return ret;
333 }
334 EXPORT_SYMBOL(ttm_bo_reserve_slowpath);
335
336 /*
337  * Must interlock with event_queue to avoid race against
338  * wait_event_common() which can cause wait_event_common()
339  * to become stuck.
340  */
341 static void
342 ttm_bo_unreserve_core(struct ttm_buffer_object *bo)
343 {
344         lockmgr(&bo->event_queue.lock, LK_EXCLUSIVE);
345         atomic_set(&bo->reserved, 0);
346         lockmgr(&bo->event_queue.lock, LK_RELEASE);
347         wake_up_all(&bo->event_queue);
348 }
349
350 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
351 {
352         ttm_bo_add_to_lru(bo);
353         ttm_bo_unreserve_core(bo);
354 }
355
356 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
357 {
358         struct ttm_bo_global *glob = bo->glob;
359
360         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
361         ttm_bo_unreserve_locked(bo);
362         lockmgr(&glob->lru_lock, LK_RELEASE);
363 }
364 EXPORT_SYMBOL(ttm_bo_unreserve);
365
366 /*
367  * Call bo->mutex locked.
368  */
369 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
370 {
371         struct ttm_bo_device *bdev = bo->bdev;
372         struct ttm_bo_global *glob = bo->glob;
373         int ret = 0;
374         uint32_t page_flags = 0;
375
376         TTM_ASSERT_LOCKED(&bo->mutex);
377         bo->ttm = NULL;
378
379         if (bdev->need_dma32)
380                 page_flags |= TTM_PAGE_FLAG_DMA32;
381
382         switch (bo->type) {
383         case ttm_bo_type_device:
384                 if (zero_alloc)
385                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
386         case ttm_bo_type_kernel:
387                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
388                                                       page_flags, glob->dummy_read_page);
389                 if (unlikely(bo->ttm == NULL))
390                         ret = -ENOMEM;
391                 break;
392         case ttm_bo_type_sg:
393                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
394                                                       page_flags | TTM_PAGE_FLAG_SG,
395                                                       glob->dummy_read_page);
396                 if (unlikely(bo->ttm == NULL)) {
397                         ret = -ENOMEM;
398                         break;
399                 }
400                 bo->ttm->sg = bo->sg;
401                 break;
402         default:
403                 kprintf("[TTM] Illegal buffer object type\n");
404                 ret = -EINVAL;
405                 break;
406         }
407
408         return ret;
409 }
410
411 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
412                                   struct ttm_mem_reg *mem,
413                                   bool evict, bool interruptible,
414                                   bool no_wait_gpu)
415 {
416         struct ttm_bo_device *bdev = bo->bdev;
417         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
418         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
419         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
420         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
421         int ret = 0;
422
423         if (old_is_pci || new_is_pci ||
424             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
425                 ret = ttm_mem_io_lock(old_man, true);
426                 if (unlikely(ret != 0))
427                         goto out_err;
428                 ttm_bo_unmap_virtual_locked(bo);
429                 ttm_mem_io_unlock(old_man);
430         }
431
432         /*
433          * Create and bind a ttm if required.
434          */
435
436         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
437                 if (bo->ttm == NULL) {
438                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
439                         ret = ttm_bo_add_ttm(bo, zero);
440                         if (ret)
441                                 goto out_err;
442                 }
443
444                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
445                 if (ret)
446                         goto out_err;
447
448                 if (mem->mem_type != TTM_PL_SYSTEM) {
449                         ret = ttm_tt_bind(bo->ttm, mem);
450                         if (ret)
451                                 goto out_err;
452                 }
453
454                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
455                         if (bdev->driver->move_notify)
456                                 bdev->driver->move_notify(bo, mem);
457                         bo->mem = *mem;
458                         mem->mm_node = NULL;
459                         goto moved;
460                 }
461         }
462
463         if (bdev->driver->move_notify)
464                 bdev->driver->move_notify(bo, mem);
465
466         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
467             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
468                 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
469         else if (bdev->driver->move)
470                 ret = bdev->driver->move(bo, evict, interruptible,
471                                          no_wait_gpu, mem);
472         else
473                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
474
475         if (ret) {
476                 if (bdev->driver->move_notify) {
477                         struct ttm_mem_reg tmp_mem = *mem;
478                         *mem = bo->mem;
479                         bo->mem = tmp_mem;
480                         bdev->driver->move_notify(bo, mem);
481                         bo->mem = *mem;
482                         *mem = tmp_mem;
483                 }
484
485                 goto out_err;
486         }
487
488 moved:
489         if (bo->evicted) {
490                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
491                 if (ret)
492                         kprintf("[TTM] Can not flush read caches\n");
493                 bo->evicted = false;
494         }
495
496         if (bo->mem.mm_node) {
497                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
498                     bdev->man[bo->mem.mem_type].gpu_offset;
499                 bo->cur_placement = bo->mem.placement;
500         } else
501                 bo->offset = 0;
502
503         return 0;
504
505 out_err:
506         new_man = &bdev->man[bo->mem.mem_type];
507         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
508                 ttm_tt_unbind(bo->ttm);
509                 ttm_tt_destroy(bo->ttm);
510                 bo->ttm = NULL;
511         }
512
513         return ret;
514 }
515
516 /**
517  * Call bo::reserved.
518  * Will release GPU memory type usage on destruction.
519  * This is the place to put in driver specific hooks to release
520  * driver private resources.
521  * Will release the bo::reserved lock.
522  */
523
524 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
525 {
526         if (bo->bdev->driver->move_notify)
527                 bo->bdev->driver->move_notify(bo, NULL);
528
529         if (bo->ttm) {
530                 ttm_tt_unbind(bo->ttm);
531                 ttm_tt_destroy(bo->ttm);
532                 bo->ttm = NULL;
533         }
534         ttm_bo_mem_put(bo, &bo->mem);
535         ttm_bo_unreserve_core(bo);
536
537         /*
538          * Since the final reference to this bo may not be dropped by
539          * the current task we have to put a memory barrier here to make
540          * sure the changes done in this function are always visible.
541          *
542          * This function only needs protection against the final kref_put.
543          */
544         cpu_mfence();
545 }
546
547 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
548 {
549         struct ttm_bo_device *bdev = bo->bdev;
550         struct ttm_bo_global *glob = bo->glob;
551         struct ttm_bo_driver *driver = bdev->driver;
552         void *sync_obj = NULL;
553         int put_count;
554         int ret;
555
556         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
557         ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
558
559         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
560         (void) ttm_bo_wait(bo, false, false, true);
561         if (!ret && !bo->sync_obj) {
562                 lockmgr(&bdev->fence_lock, LK_RELEASE);
563                 put_count = ttm_bo_del_from_lru(bo);
564
565                 lockmgr(&glob->lru_lock, LK_RELEASE);
566                 ttm_bo_cleanup_memtype_use(bo);
567
568                 ttm_bo_list_ref_sub(bo, put_count, true);
569
570                 return;
571         }
572         if (bo->sync_obj)
573                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
574         lockmgr(&bdev->fence_lock, LK_RELEASE);
575
576         if (!ret) {
577                 ttm_bo_unreserve_core(bo);
578         }
579
580         kref_get(&bo->list_kref);
581         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
582         lockmgr(&glob->lru_lock, LK_RELEASE);
583
584         if (sync_obj) {
585                 driver->sync_obj_flush(sync_obj);
586                 driver->sync_obj_unref(&sync_obj);
587         }
588         schedule_delayed_work(&bdev->wq,
589                               ((hz / 100) < 1) ? 1 : hz / 100);
590 }
591
592 /**
593  * function ttm_bo_cleanup_refs_and_unlock
594  * If bo idle, remove from delayed- and lru lists, and unref.
595  * If not idle, do nothing.
596  *
597  * Must be called with lru_lock and reservation held, this function
598  * will drop both before returning.
599  *
600  * @interruptible         Any sleeps should occur interruptibly.
601  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
602  */
603
604 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
605                                           bool interruptible,
606                                           bool no_wait_gpu)
607 {
608         struct ttm_bo_device *bdev = bo->bdev;
609         struct ttm_bo_driver *driver = bdev->driver;
610         struct ttm_bo_global *glob = bo->glob;
611         int put_count;
612         int ret;
613
614         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
615         ret = ttm_bo_wait(bo, false, false, true);
616
617         if (ret && !no_wait_gpu) {
618                 void *sync_obj;
619
620                 /*
621                  * Take a reference to the fence and unreserve,
622                  * at this point the buffer should be dead, so
623                  * no new sync objects can be attached.
624                  */
625                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
626                 lockmgr(&bdev->fence_lock, LK_RELEASE);
627
628                 ttm_bo_unreserve_core(bo);
629                 lockmgr(&glob->lru_lock, LK_RELEASE);
630
631                 ret = driver->sync_obj_wait(sync_obj, false, interruptible);
632                 driver->sync_obj_unref(&sync_obj);
633                 if (ret)
634                         return ret;
635
636                 /*
637                  * remove sync_obj with ttm_bo_wait, the wait should be
638                  * finished, and no new wait object should have been added.
639                  */
640                 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
641                 ret = ttm_bo_wait(bo, false, false, true);
642                 WARN_ON(ret);
643                 lockmgr(&bdev->fence_lock, LK_RELEASE);
644                 if (ret)
645                         return ret;
646
647                 lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
648                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
649
650                 /*
651                  * We raced, and lost, someone else holds the reservation now,
652                  * and is probably busy in ttm_bo_cleanup_memtype_use.
653                  *
654                  * Even if it's not the case, because we finished waiting any
655                  * delayed destruction would succeed, so just return success
656                  * here.
657                  */
658                 if (ret) {
659                         lockmgr(&glob->lru_lock, LK_RELEASE);
660                         return 0;
661                 }
662         } else
663                 lockmgr(&bdev->fence_lock, LK_RELEASE);
664
665         if (ret || unlikely(list_empty(&bo->ddestroy))) {
666                 ttm_bo_unreserve_core(bo);
667                 lockmgr(&glob->lru_lock, LK_RELEASE);
668                 return ret;
669         }
670
671         put_count = ttm_bo_del_from_lru(bo);
672         list_del_init(&bo->ddestroy);
673         ++put_count;
674
675         lockmgr(&glob->lru_lock, LK_RELEASE);
676         ttm_bo_cleanup_memtype_use(bo);
677
678         ttm_bo_list_ref_sub(bo, put_count, true);
679
680         return 0;
681 }
682
683 /**
684  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
685  * encountered buffers.
686  */
687
688 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
689 {
690         struct ttm_bo_global *glob = bdev->glob;
691         struct ttm_buffer_object *entry = NULL;
692         int ret = 0;
693
694         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
695         if (list_empty(&bdev->ddestroy))
696                 goto out_unlock;
697
698         entry = list_first_entry(&bdev->ddestroy,
699                 struct ttm_buffer_object, ddestroy);
700         kref_get(&entry->list_kref);
701
702         for (;;) {
703                 struct ttm_buffer_object *nentry = NULL;
704
705                 if (entry->ddestroy.next != &bdev->ddestroy) {
706                         nentry = list_first_entry(&entry->ddestroy,
707                                 struct ttm_buffer_object, ddestroy);
708                         kref_get(&nentry->list_kref);
709                 }
710
711                 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
712                 if (remove_all && ret) {
713                         lockmgr(&glob->lru_lock, LK_RELEASE);
714                         ret = ttm_bo_reserve_nolru(entry, false, false,
715                                                    false, 0);
716                         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
717                 }
718
719                 if (!ret)
720                         ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
721                                                              !remove_all);
722                 else
723                         lockmgr(&glob->lru_lock, LK_RELEASE);
724
725                 kref_put(&entry->list_kref, ttm_bo_release_list);
726                 entry = nentry;
727
728                 if (ret || !entry)
729                         goto out;
730
731                 lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
732                 if (list_empty(&entry->ddestroy))
733                         break;
734         }
735
736 out_unlock:
737         lockmgr(&glob->lru_lock, LK_RELEASE);
738 out:
739         if (entry)
740                 kref_put(&entry->list_kref, ttm_bo_release_list);
741         return ret;
742 }
743
744 static void ttm_bo_delayed_workqueue(struct work_struct *work)
745 {
746         struct ttm_bo_device *bdev =
747             container_of(work, struct ttm_bo_device, wq.work);
748
749         if (ttm_bo_delayed_delete(bdev, false)) {
750                 schedule_delayed_work(&bdev->wq,
751                                       ((hz / 100) < 1) ? 1 : hz / 100);
752         }
753 }
754
755 /*
756  * NOTE: bdev->vm_lock already held on call, this function release it.
757  */
758 static void ttm_bo_release(struct kref *kref)
759 {
760         struct ttm_buffer_object *bo =
761             container_of(kref, struct ttm_buffer_object, kref);
762         struct ttm_bo_device *bdev = bo->bdev;
763         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
764         int release_active;
765
766         if (atomic_read(&bo->kref.refcount) > 0) {
767                 lockmgr(&bdev->vm_lock, LK_RELEASE);
768                 return;
769         }
770         if (likely(bo->vm_node != NULL)) {
771                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
772                 drm_mm_put_block(bo->vm_node);
773                 bo->vm_node = NULL;
774         }
775
776         /*
777          * Should we clean up our implied list_kref?  Because ttm_bo_release()
778          * can be called reentrantly due to races (this may not be true any
779          * more with the lock management changes in the deref), it is possible
780          * to get here twice, but there's only one list_kref ref to drop and
781          * in the other path 'bo' can be kfree()d by another thread the
782          * instant we release our lock.
783          */
784         release_active = test_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags);
785         if (release_active) {
786                 clear_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags);
787                 lockmgr(&bdev->vm_lock, LK_RELEASE);
788                 ttm_mem_io_lock(man, false);
789                 ttm_mem_io_free_vm(bo);
790                 ttm_mem_io_unlock(man);
791                 ttm_bo_cleanup_refs_or_queue(bo);
792                 kref_put(&bo->list_kref, ttm_bo_release_list);
793         } else {
794                 lockmgr(&bdev->vm_lock, LK_RELEASE);
795         }
796 }
797
798 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
799 {
800         struct ttm_buffer_object *bo = *p_bo;
801         struct ttm_bo_device *bdev = bo->bdev;
802
803         *p_bo = NULL;
804         lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
805         if (kref_put(&bo->kref, ttm_bo_release) == 0)
806                 lockmgr(&bdev->vm_lock, LK_RELEASE);
807 }
808 EXPORT_SYMBOL(ttm_bo_unref);
809
810 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
811 {
812         return cancel_delayed_work_sync(&bdev->wq);
813 }
814 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
815
816 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
817 {
818         if (resched)
819                 schedule_delayed_work(&bdev->wq,
820                                       ((hz / 100) < 1) ? 1 : hz / 100);
821 }
822 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
823
824 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
825                         bool no_wait_gpu)
826 {
827         struct ttm_bo_device *bdev = bo->bdev;
828         struct ttm_mem_reg evict_mem;
829         struct ttm_placement placement;
830         int ret = 0;
831
832         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
833         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
834         lockmgr(&bdev->fence_lock, LK_RELEASE);
835
836         if (unlikely(ret != 0)) {
837                 if (ret != -ERESTARTSYS) {
838                         pr_err("Failed to expire sync object before buffer eviction\n");
839                 }
840                 goto out;
841         }
842
843         BUG_ON(!ttm_bo_is_reserved(bo));
844
845         evict_mem = bo->mem;
846         evict_mem.mm_node = NULL;
847         evict_mem.bus.io_reserved_vm = false;
848         evict_mem.bus.io_reserved_count = 0;
849
850         placement.fpfn = 0;
851         placement.lpfn = 0;
852         placement.num_placement = 0;
853         placement.num_busy_placement = 0;
854         bdev->driver->evict_flags(bo, &placement);
855         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
856                                 no_wait_gpu);
857         if (ret) {
858                 if (ret != -ERESTARTSYS) {
859                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
860                                bo);
861                         ttm_bo_mem_space_debug(bo, &placement);
862                 }
863                 goto out;
864         }
865
866         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
867                                      no_wait_gpu);
868         if (ret) {
869                 if (ret != -ERESTARTSYS)
870                         pr_err("Buffer eviction failed\n");
871                 ttm_bo_mem_put(bo, &evict_mem);
872                 goto out;
873         }
874         bo->evicted = true;
875 out:
876         return ret;
877 }
878
879 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
880                                 uint32_t mem_type,
881                                 bool interruptible,
882                                 bool no_wait_gpu)
883 {
884         struct ttm_bo_global *glob = bdev->glob;
885         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
886         struct ttm_buffer_object *bo;
887         int ret = -EBUSY, put_count;
888
889         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
890         list_for_each_entry(bo, &man->lru, lru) {
891                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
892                 if (!ret)
893                         break;
894         }
895
896         if (ret) {
897                 lockmgr(&glob->lru_lock, LK_RELEASE);
898                 return ret;
899         }
900
901         kref_get(&bo->list_kref);
902
903         if (!list_empty(&bo->ddestroy)) {
904                 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
905                                                      no_wait_gpu);
906                 kref_put(&bo->list_kref, ttm_bo_release_list);
907                 return ret;
908         }
909
910         put_count = ttm_bo_del_from_lru(bo);
911         lockmgr(&glob->lru_lock, LK_RELEASE);
912
913         BUG_ON(ret != 0);
914
915         ttm_bo_list_ref_sub(bo, put_count, true);
916
917         ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
918         ttm_bo_unreserve(bo);
919
920         kref_put(&bo->list_kref, ttm_bo_release_list);
921         return ret;
922 }
923
924 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
925 {
926         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
927
928         if (mem->mm_node)
929                 (*man->func->put_node)(man, mem);
930 }
931 EXPORT_SYMBOL(ttm_bo_mem_put);
932
933 /**
934  * Repeatedly evict memory from the LRU for @mem_type until we create enough
935  * space, or we've evicted everything and there isn't enough space.
936  */
937 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
938                                         uint32_t mem_type,
939                                         struct ttm_placement *placement,
940                                         struct ttm_mem_reg *mem,
941                                         bool interruptible,
942                                         bool no_wait_gpu)
943 {
944         struct ttm_bo_device *bdev = bo->bdev;
945         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
946         int ret;
947
948         do {
949                 ret = (*man->func->get_node)(man, bo, placement, mem);
950                 if (unlikely(ret != 0))
951                         return ret;
952                 if (mem->mm_node)
953                         break;
954                 ret = ttm_mem_evict_first(bdev, mem_type,
955                                           interruptible, no_wait_gpu);
956                 if (unlikely(ret != 0))
957                         return ret;
958         } while (1);
959         if (mem->mm_node == NULL)
960                 return -ENOMEM;
961         mem->mem_type = mem_type;
962         return 0;
963 }
964
965 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
966                                       uint32_t cur_placement,
967                                       uint32_t proposed_placement)
968 {
969         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
970         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
971
972         /**
973          * Keep current caching if possible.
974          */
975
976         if ((cur_placement & caching) != 0)
977                 result |= (cur_placement & caching);
978         else if ((man->default_caching & caching) != 0)
979                 result |= man->default_caching;
980         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
981                 result |= TTM_PL_FLAG_CACHED;
982         else if ((TTM_PL_FLAG_WC & caching) != 0)
983                 result |= TTM_PL_FLAG_WC;
984         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
985                 result |= TTM_PL_FLAG_UNCACHED;
986
987         return result;
988 }
989
990 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
991                                  uint32_t mem_type,
992                                  uint32_t proposed_placement,
993                                  uint32_t *masked_placement)
994 {
995         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
996
997         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
998                 return false;
999
1000         if ((proposed_placement & man->available_caching) == 0)
1001                 return false;
1002
1003         cur_flags |= (proposed_placement & man->available_caching);
1004
1005         *masked_placement = cur_flags;
1006         return true;
1007 }
1008
1009 /**
1010  * Creates space for memory region @mem according to its type.
1011  *
1012  * This function first searches for free space in compatible memory types in
1013  * the priority order defined by the driver.  If free space isn't found, then
1014  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1015  * space.
1016  */
1017 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1018                         struct ttm_placement *placement,
1019                         struct ttm_mem_reg *mem,
1020                         bool interruptible,
1021                         bool no_wait_gpu)
1022 {
1023         struct ttm_bo_device *bdev = bo->bdev;
1024         struct ttm_mem_type_manager *man;
1025         uint32_t mem_type = TTM_PL_SYSTEM;
1026         uint32_t cur_flags = 0;
1027         bool type_found = false;
1028         bool type_ok = false;
1029         bool has_erestartsys = false;
1030         int i, ret;
1031
1032         mem->mm_node = NULL;
1033         for (i = 0; i < placement->num_placement; ++i) {
1034                 ret = ttm_mem_type_from_flags(placement->placement[i],
1035                                                 &mem_type);
1036                 if (ret)
1037                         return ret;
1038                 man = &bdev->man[mem_type];
1039
1040                 type_ok = ttm_bo_mt_compatible(man,
1041                                                 mem_type,
1042                                                 placement->placement[i],
1043                                                 &cur_flags);
1044
1045                 if (!type_ok)
1046                         continue;
1047
1048                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1049                                                   cur_flags);
1050                 /*
1051                  * Use the access and other non-mapping-related flag bits from
1052                  * the memory placement flags to the current flags
1053                  */
1054                 ttm_flag_masked(&cur_flags, placement->placement[i],
1055                                 ~TTM_PL_MASK_MEMTYPE);
1056
1057                 if (mem_type == TTM_PL_SYSTEM)
1058                         break;
1059
1060                 if (man->has_type && man->use_type) {
1061                         type_found = true;
1062                         ret = (*man->func->get_node)(man, bo, placement, mem);
1063                         if (unlikely(ret))
1064                                 return ret;
1065                 }
1066                 if (mem->mm_node)
1067                         break;
1068         }
1069
1070         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1071                 mem->mem_type = mem_type;
1072                 mem->placement = cur_flags;
1073                 return 0;
1074         }
1075
1076         if (!type_found)
1077                 return -EINVAL;
1078
1079         for (i = 0; i < placement->num_busy_placement; ++i) {
1080                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1081                                                 &mem_type);
1082                 if (ret)
1083                         return ret;
1084                 man = &bdev->man[mem_type];
1085                 if (!man->has_type)
1086                         continue;
1087                 if (!ttm_bo_mt_compatible(man,
1088                                                 mem_type,
1089                                                 placement->busy_placement[i],
1090                                                 &cur_flags))
1091                         continue;
1092
1093                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1094                                                   cur_flags);
1095                 /*
1096                  * Use the access and other non-mapping-related flag bits from
1097                  * the memory placement flags to the current flags
1098                  */
1099                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1100                                 ~TTM_PL_MASK_MEMTYPE);
1101
1102
1103                 if (mem_type == TTM_PL_SYSTEM) {
1104                         mem->mem_type = mem_type;
1105                         mem->placement = cur_flags;
1106                         mem->mm_node = NULL;
1107                         return 0;
1108                 }
1109
1110                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1111                                                 interruptible, no_wait_gpu);
1112                 if (ret == 0 && mem->mm_node) {
1113                         mem->placement = cur_flags;
1114                         return 0;
1115                 }
1116                 if (ret == -ERESTARTSYS)
1117                         has_erestartsys = true;
1118         }
1119         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1120         return ret;
1121 }
1122 EXPORT_SYMBOL(ttm_bo_mem_space);
1123
1124 static
1125 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1126                         struct ttm_placement *placement,
1127                         bool interruptible,
1128                         bool no_wait_gpu)
1129 {
1130         int ret = 0;
1131         struct ttm_mem_reg mem;
1132         struct ttm_bo_device *bdev = bo->bdev;
1133
1134         BUG_ON(!ttm_bo_is_reserved(bo));
1135
1136         /*
1137          * FIXME: It's possible to pipeline buffer moves.
1138          * Have the driver move function wait for idle when necessary,
1139          * instead of doing it here.
1140          */
1141         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1142         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1143         lockmgr(&bdev->fence_lock, LK_RELEASE);
1144         if (ret)
1145                 return ret;
1146         mem.num_pages = bo->num_pages;
1147         mem.size = mem.num_pages << PAGE_SHIFT;
1148         mem.page_alignment = bo->mem.page_alignment;
1149         mem.bus.io_reserved_vm = false;
1150         mem.bus.io_reserved_count = 0;
1151         /*
1152          * Determine where to move the buffer.
1153          */
1154         ret = ttm_bo_mem_space(bo, placement, &mem,
1155                                interruptible, no_wait_gpu);
1156         if (ret)
1157                 goto out_unlock;
1158         ret = ttm_bo_handle_move_mem(bo, &mem, false,
1159                                      interruptible, no_wait_gpu);
1160 out_unlock:
1161         if (ret && mem.mm_node)
1162                 ttm_bo_mem_put(bo, &mem);
1163         return ret;
1164 }
1165
1166 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1167                              struct ttm_mem_reg *mem)
1168 {
1169         int i;
1170
1171         if (mem->mm_node && placement->lpfn != 0 &&
1172             (mem->start < placement->fpfn ||
1173              mem->start + mem->num_pages > placement->lpfn))
1174                 return -1;
1175
1176         for (i = 0; i < placement->num_placement; i++) {
1177                 if ((placement->placement[i] & mem->placement &
1178                         TTM_PL_MASK_CACHING) &&
1179                         (placement->placement[i] & mem->placement &
1180                         TTM_PL_MASK_MEM))
1181                         return i;
1182         }
1183         return -1;
1184 }
1185
1186 int ttm_bo_validate(struct ttm_buffer_object *bo,
1187                         struct ttm_placement *placement,
1188                         bool interruptible,
1189                         bool no_wait_gpu)
1190 {
1191         int ret;
1192
1193         BUG_ON(!ttm_bo_is_reserved(bo));
1194         /* Check that range is valid */
1195         if (placement->lpfn || placement->fpfn)
1196                 if (placement->fpfn > placement->lpfn ||
1197                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1198                         return -EINVAL;
1199         /*
1200          * Check whether we need to move buffer.
1201          */
1202         ret = ttm_bo_mem_compat(placement, &bo->mem);
1203         if (ret < 0) {
1204                 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1205                                          no_wait_gpu);
1206                 if (ret)
1207                         return ret;
1208         } else {
1209                 /*
1210                  * Use the access and other non-mapping-related flag bits from
1211                  * the compatible memory placement flags to the active flags
1212                  */
1213                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1214                                 ~TTM_PL_MASK_MEMTYPE);
1215         }
1216         /*
1217          * We might need to add a TTM.
1218          */
1219         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1220                 ret = ttm_bo_add_ttm(bo, true);
1221                 if (ret)
1222                         return ret;
1223         }
1224         return 0;
1225 }
1226 EXPORT_SYMBOL(ttm_bo_validate);
1227
1228 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1229                                 struct ttm_placement *placement)
1230 {
1231         BUG_ON((placement->fpfn || placement->lpfn) &&
1232                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1233
1234         return 0;
1235 }
1236
1237 int ttm_bo_init(struct ttm_bo_device *bdev,
1238                 struct ttm_buffer_object *bo,
1239                 unsigned long size,
1240                 enum ttm_bo_type type,
1241                 struct ttm_placement *placement,
1242                 uint32_t page_alignment,
1243                 bool interruptible,
1244                 struct vm_object *persistent_swap_storage,
1245                 size_t acc_size,
1246                 struct sg_table *sg,
1247                 void (*destroy) (struct ttm_buffer_object *))
1248 {
1249         int ret = 0;
1250         unsigned long num_pages;
1251         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1252
1253         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1254         if (ret) {
1255                 kprintf("[TTM] Out of kernel memory\n");
1256                 if (destroy)
1257                         (*destroy)(bo);
1258                 else
1259                         kfree(bo);
1260                 return -ENOMEM;
1261         }
1262
1263         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1264         if (num_pages == 0) {
1265                 kprintf("[TTM] Illegal buffer object size\n");
1266                 if (destroy)
1267                         (*destroy)(bo);
1268                 else
1269                         kfree(bo);
1270                 ttm_mem_global_free(mem_glob, acc_size);
1271                 return -EINVAL;
1272         }
1273         bo->destroy = destroy;
1274
1275         kref_init(&bo->kref);
1276         kref_init(&bo->list_kref);
1277         atomic_set(&bo->cpu_writers, 0);
1278         atomic_set(&bo->reserved, 1);
1279         init_waitqueue_head(&bo->event_queue);
1280         INIT_LIST_HEAD(&bo->lru);
1281         INIT_LIST_HEAD(&bo->ddestroy);
1282         INIT_LIST_HEAD(&bo->swap);
1283         INIT_LIST_HEAD(&bo->io_reserve_lru);
1284         /*bzero(&bo->vm_rb, sizeof(bo->vm_rb));*/
1285         bo->bdev = bdev;
1286         bo->glob = bdev->glob;
1287         bo->type = type;
1288         bo->num_pages = num_pages;
1289         bo->mem.size = num_pages << PAGE_SHIFT;
1290         bo->mem.mem_type = TTM_PL_SYSTEM;
1291         bo->mem.num_pages = bo->num_pages;
1292         bo->mem.mm_node = NULL;
1293         bo->mem.page_alignment = page_alignment;
1294         bo->mem.bus.io_reserved_vm = false;
1295         bo->mem.bus.io_reserved_count = 0;
1296         bo->priv_flags = 0;
1297         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1298         bo->seq_valid = false;
1299         bo->persistent_swap_storage = persistent_swap_storage;
1300         bo->acc_size = acc_size;
1301         bo->sg = sg;
1302         atomic_inc(&bo->glob->bo_count);
1303
1304         /*
1305          * Mirror ref from kref_init() for list_kref.
1306          */
1307         set_bit(TTM_BO_PRIV_FLAG_ACTIVE, &bo->priv_flags);
1308
1309         ret = ttm_bo_check_placement(bo, placement);
1310         if (unlikely(ret != 0))
1311                 goto out_err;
1312
1313         /*
1314          * For ttm_bo_type_device buffers, allocate
1315          * address space from the device.
1316          */
1317         if (bo->type == ttm_bo_type_device ||
1318             bo->type == ttm_bo_type_sg) {
1319                 ret = ttm_bo_setup_vm(bo);
1320                 if (ret)
1321                         goto out_err;
1322         }
1323
1324         ret = ttm_bo_validate(bo, placement, interruptible, false);
1325         if (ret)
1326                 goto out_err;
1327
1328         ttm_bo_unreserve(bo);
1329         return 0;
1330
1331 out_err:
1332         ttm_bo_unreserve(bo);
1333         ttm_bo_unref(&bo);
1334
1335         return ret;
1336 }
1337 EXPORT_SYMBOL(ttm_bo_init);
1338
1339 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1340                        unsigned long bo_size,
1341                        unsigned struct_size)
1342 {
1343         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1344         size_t size = 0;
1345
1346         size += ttm_round_pot(struct_size);
1347         size += PAGE_ALIGN(npages * sizeof(void *));
1348         size += ttm_round_pot(sizeof(struct ttm_tt));
1349         return size;
1350 }
1351 EXPORT_SYMBOL(ttm_bo_acc_size);
1352
1353 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1354                            unsigned long bo_size,
1355                            unsigned struct_size)
1356 {
1357         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1358         size_t size = 0;
1359
1360         size += ttm_round_pot(struct_size);
1361         size += PAGE_ALIGN(npages * sizeof(void *));
1362         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1363         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1364         return size;
1365 }
1366 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1367
1368 int ttm_bo_create(struct ttm_bo_device *bdev,
1369                         unsigned long size,
1370                         enum ttm_bo_type type,
1371                         struct ttm_placement *placement,
1372                         uint32_t page_alignment,
1373                         bool interruptible,
1374                         struct vm_object *persistent_swap_storage,
1375                         struct ttm_buffer_object **p_bo)
1376 {
1377         struct ttm_buffer_object *bo;
1378         size_t acc_size;
1379         int ret;
1380
1381         *p_bo = NULL;
1382         bo = kmalloc(sizeof(*bo), M_DRM, M_WAITOK | M_ZERO);
1383         if (unlikely(bo == NULL))
1384                 return -ENOMEM;
1385
1386         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1387         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1388                           interruptible, persistent_swap_storage, acc_size,
1389                           NULL, NULL);
1390         if (likely(ret == 0))
1391                 *p_bo = bo;
1392
1393         return ret;
1394 }
1395 EXPORT_SYMBOL(ttm_bo_create);
1396
1397 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1398                                         unsigned mem_type, bool allow_errors)
1399 {
1400         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1401         struct ttm_bo_global *glob = bdev->glob;
1402         int ret;
1403
1404         /*
1405          * Can't use standard list traversal since we're unlocking.
1406          */
1407
1408         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1409         while (!list_empty(&man->lru)) {
1410                 lockmgr(&glob->lru_lock, LK_RELEASE);
1411                 ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1412                 if (ret) {
1413                         if (allow_errors) {
1414                                 return ret;
1415                         } else {
1416                                 kprintf("[TTM] Cleanup eviction failed\n");
1417                         }
1418                 }
1419                 lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1420         }
1421         lockmgr(&glob->lru_lock, LK_RELEASE);
1422         return 0;
1423 }
1424
1425 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1426 {
1427         struct ttm_mem_type_manager *man;
1428         int ret = -EINVAL;
1429
1430         if (mem_type >= TTM_NUM_MEM_TYPES) {
1431                 kprintf("[TTM] Illegal memory type %d\n", mem_type);
1432                 return ret;
1433         }
1434         man = &bdev->man[mem_type];
1435
1436         if (!man->has_type) {
1437                 kprintf("[TTM] Trying to take down uninitialized memory manager type %u\n",
1438                        mem_type);
1439                 return ret;
1440         }
1441
1442         man->use_type = false;
1443         man->has_type = false;
1444
1445         ret = 0;
1446         if (mem_type > 0) {
1447                 ttm_bo_force_list_clean(bdev, mem_type, false);
1448
1449                 ret = (*man->func->takedown)(man);
1450         }
1451
1452         return ret;
1453 }
1454 EXPORT_SYMBOL(ttm_bo_clean_mm);
1455
1456 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1457 {
1458         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1459
1460         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1461                 kprintf("[TTM] Illegal memory manager memory type %u\n", mem_type);
1462                 return -EINVAL;
1463         }
1464
1465         if (!man->has_type) {
1466                 kprintf("[TTM] Memory type %u has not been initialized\n", mem_type);
1467                 return 0;
1468         }
1469
1470         return ttm_bo_force_list_clean(bdev, mem_type, true);
1471 }
1472 EXPORT_SYMBOL(ttm_bo_evict_mm);
1473
1474 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1475                         unsigned long p_size)
1476 {
1477         int ret = -EINVAL;
1478         struct ttm_mem_type_manager *man;
1479
1480         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1481         man = &bdev->man[type];
1482         BUG_ON(man->has_type);
1483         man->io_reserve_fastpath = true;
1484         man->use_io_reserve_lru = false;
1485         lockinit(&man->io_reserve_mutex, "ttmman", 0, LK_CANRECURSE);
1486         INIT_LIST_HEAD(&man->io_reserve_lru);
1487
1488         ret = bdev->driver->init_mem_type(bdev, type, man);
1489         if (ret)
1490                 return ret;
1491         man->bdev = bdev;
1492
1493         ret = 0;
1494         if (type != TTM_PL_SYSTEM) {
1495                 ret = (*man->func->init)(man, p_size);
1496                 if (ret)
1497                         return ret;
1498         }
1499         man->has_type = true;
1500         man->use_type = true;
1501         man->size = p_size;
1502
1503         INIT_LIST_HEAD(&man->lru);
1504
1505         return 0;
1506 }
1507 EXPORT_SYMBOL(ttm_bo_init_mm);
1508
1509 static void ttm_bo_global_kobj_release(struct ttm_bo_global *glob)
1510 {
1511         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1512         vm_page_free_contig(glob->dummy_read_page, PAGE_SIZE);
1513         glob->dummy_read_page = NULL;
1514         /*
1515         vm_page_free(glob->dummy_read_page);
1516         */
1517 }
1518
1519 void ttm_bo_global_release(struct drm_global_reference *ref)
1520 {
1521         struct ttm_bo_global *glob = ref->object;
1522
1523         if (refcount_release(&glob->kobj_ref))
1524                 ttm_bo_global_kobj_release(glob);
1525 }
1526 EXPORT_SYMBOL(ttm_bo_global_release);
1527
1528 int ttm_bo_global_init(struct drm_global_reference *ref)
1529 {
1530         struct ttm_bo_global_ref *bo_ref =
1531                 container_of(ref, struct ttm_bo_global_ref, ref);
1532         struct ttm_bo_global *glob = ref->object;
1533         int ret;
1534
1535         lockinit(&glob->device_list_mutex, "ttmdlm", 0, LK_CANRECURSE);
1536         lockinit(&glob->lru_lock, "ttmlru", 0, LK_CANRECURSE);
1537         glob->mem_glob = bo_ref->mem_glob;
1538         glob->dummy_read_page = vm_page_alloc_contig(
1539             0, VM_MAX_ADDRESS, PAGE_SIZE, 0, 1*PAGE_SIZE, VM_MEMATTR_UNCACHEABLE);
1540
1541         if (unlikely(glob->dummy_read_page == NULL)) {
1542                 ret = -ENOMEM;
1543                 goto out_no_drp;
1544         }
1545
1546         INIT_LIST_HEAD(&glob->swap_lru);
1547         INIT_LIST_HEAD(&glob->device_list);
1548
1549         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1550         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1551         if (unlikely(ret != 0)) {
1552                 kprintf("[TTM] Could not register buffer object swapout\n");
1553                 goto out_no_shrink;
1554         }
1555
1556         atomic_set(&glob->bo_count, 0);
1557
1558         refcount_init(&glob->kobj_ref, 1);
1559         return (0);
1560
1561 out_no_shrink:
1562         vm_page_free_contig(glob->dummy_read_page, PAGE_SIZE);
1563         glob->dummy_read_page = NULL;
1564         /*
1565         vm_page_free(glob->dummy_read_page);
1566         */
1567 out_no_drp:
1568         kfree(glob);
1569         return ret;
1570 }
1571 EXPORT_SYMBOL(ttm_bo_global_init);
1572
1573
1574 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1575 {
1576         int ret = 0;
1577         unsigned i = TTM_NUM_MEM_TYPES;
1578         struct ttm_mem_type_manager *man;
1579         struct ttm_bo_global *glob = bdev->glob;
1580
1581         while (i--) {
1582                 man = &bdev->man[i];
1583                 if (man->has_type) {
1584                         man->use_type = false;
1585                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1586                                 ret = -EBUSY;
1587                                 kprintf("[TTM] DRM memory manager type %d is not clean\n",
1588                                        i);
1589                         }
1590                         man->has_type = false;
1591                 }
1592         }
1593
1594         lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1595         list_del(&bdev->device_list);
1596         lockmgr(&glob->device_list_mutex, LK_RELEASE);
1597
1598         cancel_delayed_work_sync(&bdev->wq);
1599
1600         while (ttm_bo_delayed_delete(bdev, true))
1601                 ;
1602
1603         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1604         if (list_empty(&bdev->ddestroy))
1605                 TTM_DEBUG("Delayed destroy list was clean\n");
1606
1607         if (list_empty(&bdev->man[0].lru))
1608                 TTM_DEBUG("Swap list was clean\n");
1609         lockmgr(&glob->lru_lock, LK_RELEASE);
1610
1611         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1612         lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1613         drm_mm_takedown(&bdev->addr_space_mm);
1614         lockmgr(&bdev->vm_lock, LK_RELEASE);
1615
1616         return ret;
1617 }
1618 EXPORT_SYMBOL(ttm_bo_device_release);
1619
1620 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1621                        struct ttm_bo_global *glob,
1622                        struct ttm_bo_driver *driver,
1623                        uint64_t file_page_offset,
1624                        bool need_dma32)
1625 {
1626         int ret = -EINVAL;
1627
1628         lockinit(&bdev->vm_lock, "ttmvml", 0, LK_CANRECURSE);
1629         bdev->driver = driver;
1630
1631         memset(bdev->man, 0, sizeof(bdev->man));
1632
1633         /*
1634          * Initialize the system memory buffer type.
1635          * Other types need to be driver / IOCTL initialized.
1636          */
1637         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1638         if (unlikely(ret != 0))
1639                 goto out_no_sys;
1640
1641         bdev->addr_space_rb = RB_ROOT;
1642         drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1643
1644         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1645         INIT_LIST_HEAD(&bdev->ddestroy);
1646         bdev->dev_mapping = NULL;
1647         bdev->glob = glob;
1648         bdev->need_dma32 = need_dma32;
1649         bdev->val_seq = 0;
1650         lockinit(&bdev->fence_lock, "ttmfence", 0, LK_CANRECURSE);
1651         lockmgr(&glob->device_list_mutex, LK_EXCLUSIVE);
1652         list_add_tail(&bdev->device_list, &glob->device_list);
1653         lockmgr(&glob->device_list_mutex, LK_RELEASE);
1654
1655         return 0;
1656 out_no_sys:
1657         return ret;
1658 }
1659 EXPORT_SYMBOL(ttm_bo_device_init);
1660
1661 /*
1662  * buffer object vm functions.
1663  */
1664
1665 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1666 {
1667         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1668
1669         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1670                 if (mem->mem_type == TTM_PL_SYSTEM)
1671                         return false;
1672
1673                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1674                         return false;
1675
1676                 if (mem->placement & TTM_PL_FLAG_CACHED)
1677                         return false;
1678         }
1679         return true;
1680 }
1681
1682 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1683 {
1684
1685         ttm_bo_release_mmap(bo);
1686         ttm_mem_io_free_vm(bo);
1687 }
1688
1689 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1690 {
1691         struct ttm_bo_device *bdev = bo->bdev;
1692         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1693
1694         ttm_mem_io_lock(man, false);
1695         ttm_bo_unmap_virtual_locked(bo);
1696         ttm_mem_io_unlock(man);
1697 }
1698
1699
1700 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1701
1702 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1703 {
1704         struct ttm_bo_device *bdev = bo->bdev;
1705
1706         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1707         struct rb_node *parent = NULL;
1708         struct ttm_buffer_object *cur_bo;
1709         unsigned long offset = bo->vm_node->start;
1710         unsigned long cur_offset;
1711
1712         while (*cur) {
1713                 parent = *cur;
1714                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1715                 cur_offset = cur_bo->vm_node->start;
1716                 if (offset < cur_offset)
1717                         cur = &parent->rb_left;
1718                 else if (offset > cur_offset)
1719                         cur = &parent->rb_right;
1720                 else
1721                         BUG();
1722         }
1723  
1724         rb_link_node(&bo->vm_rb, parent, cur);
1725         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1726 }
1727
1728 /**
1729  * ttm_bo_setup_vm:
1730  *
1731  * @bo: the buffer to allocate address space for
1732  *
1733  * Allocate address space in the drm device so that applications
1734  * can mmap the buffer and access the contents. This only
1735  * applies to ttm_bo_type_device objects as others are not
1736  * placed in the drm device address space.
1737  */
1738
1739 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1740 {
1741         struct ttm_bo_device *bdev = bo->bdev;
1742         int ret;
1743
1744 retry_pre_get:
1745         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1746         if (unlikely(ret != 0))
1747                 return ret;
1748
1749         lockmgr(&bdev->vm_lock, LK_EXCLUSIVE);
1750         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1751                                          bo->mem.num_pages, 0, 0);
1752
1753         if (unlikely(bo->vm_node == NULL)) {
1754                 ret = -ENOMEM;
1755                 goto out_unlock;
1756         }
1757
1758         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1759                                               bo->mem.num_pages, 0);
1760
1761         if (unlikely(bo->vm_node == NULL)) {
1762                 lockmgr(&bdev->vm_lock, LK_RELEASE);
1763                 goto retry_pre_get;
1764         }
1765
1766         ttm_bo_vm_insert_rb(bo);
1767         lockmgr(&bdev->vm_lock, LK_RELEASE);
1768         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1769
1770         return 0;
1771 out_unlock:
1772         lockmgr(&bdev->vm_lock, LK_RELEASE);
1773         return ret;
1774 }
1775
1776 int ttm_bo_wait(struct ttm_buffer_object *bo,
1777                 bool lazy, bool interruptible, bool no_wait)
1778 {
1779         struct ttm_bo_driver *driver = bo->bdev->driver;
1780         struct ttm_bo_device *bdev = bo->bdev;
1781         void *sync_obj;
1782         int ret = 0;
1783
1784         if (likely(bo->sync_obj == NULL))
1785                 return 0;
1786
1787         while (bo->sync_obj) {
1788
1789                 if (driver->sync_obj_signaled(bo->sync_obj)) {
1790                         void *tmp_obj = bo->sync_obj;
1791                         bo->sync_obj = NULL;
1792                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1793                         lockmgr(&bdev->fence_lock, LK_RELEASE);
1794                         driver->sync_obj_unref(&tmp_obj);
1795                         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1796                         continue;
1797                 }
1798
1799                 if (no_wait)
1800                         return -EBUSY;
1801
1802                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1803                 lockmgr(&bdev->fence_lock, LK_RELEASE);
1804                 ret = driver->sync_obj_wait(sync_obj,
1805                                             lazy, interruptible);
1806                 if (unlikely(ret != 0)) {
1807                         driver->sync_obj_unref(&sync_obj);
1808                         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1809                         return ret;
1810                 }
1811                 lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1812                 if (likely(bo->sync_obj == sync_obj)) {
1813                         void *tmp_obj = bo->sync_obj;
1814                         bo->sync_obj = NULL;
1815                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1816                                   &bo->priv_flags);
1817                         lockmgr(&bdev->fence_lock, LK_RELEASE);
1818                         driver->sync_obj_unref(&sync_obj);
1819                         driver->sync_obj_unref(&tmp_obj);
1820                         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1821                 } else {
1822                         lockmgr(&bdev->fence_lock, LK_RELEASE);
1823                         driver->sync_obj_unref(&sync_obj);
1824                         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1825                 }
1826         }
1827         return 0;
1828 }
1829 EXPORT_SYMBOL(ttm_bo_wait);
1830
1831 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1832 {
1833         struct ttm_bo_device *bdev = bo->bdev;
1834         int ret = 0;
1835
1836         /*
1837          * Using ttm_bo_reserve makes sure the lru lists are updated.
1838          */
1839
1840         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1841         if (unlikely(ret != 0))
1842                 return ret;
1843         lockmgr(&bdev->fence_lock, LK_EXCLUSIVE);
1844         ret = ttm_bo_wait(bo, false, true, no_wait);
1845         lockmgr(&bdev->fence_lock, LK_RELEASE);
1846         if (likely(ret == 0))
1847                 atomic_inc(&bo->cpu_writers);
1848         ttm_bo_unreserve(bo);
1849         return ret;
1850 }
1851 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1852
1853 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1854 {
1855         atomic_dec(&bo->cpu_writers);
1856 }
1857 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1858
1859 /**
1860  * A buffer object shrink method that tries to swap out the first
1861  * buffer object on the bo_global::swap_lru list.
1862  */
1863
1864 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1865 {
1866         struct ttm_bo_global *glob =
1867             container_of(shrink, struct ttm_bo_global, shrink);
1868         struct ttm_buffer_object *bo;
1869         int ret = -EBUSY;
1870         int put_count;
1871         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1872
1873         lockmgr(&glob->lru_lock, LK_EXCLUSIVE);
1874         list_for_each_entry(bo, &glob->swap_lru, swap) {
1875                 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1876                 if (!ret)
1877                         break;
1878         }
1879
1880         if (ret) {
1881                 lockmgr(&glob->lru_lock, LK_RELEASE);
1882                 return ret;
1883         }
1884
1885         kref_get(&bo->list_kref);
1886
1887         if (!list_empty(&bo->ddestroy)) {
1888                 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1889                 kref_put(&bo->list_kref, ttm_bo_release_list);
1890                 return ret;
1891         }
1892
1893         put_count = ttm_bo_del_from_lru(bo);
1894         lockmgr(&glob->lru_lock, LK_RELEASE);
1895
1896         ttm_bo_list_ref_sub(bo, put_count, true);
1897
1898         /**
1899          * Wait for GPU, then move to system cached.
1900          */
1901
1902         lockmgr(&bo->bdev->fence_lock, LK_EXCLUSIVE);
1903         ret = ttm_bo_wait(bo, false, false, false);
1904         lockmgr(&bo->bdev->fence_lock, LK_RELEASE);
1905
1906         if (unlikely(ret != 0))
1907                 goto out;
1908
1909         if ((bo->mem.placement & swap_placement) != swap_placement) {
1910                 struct ttm_mem_reg evict_mem;
1911
1912                 evict_mem = bo->mem;
1913                 evict_mem.mm_node = NULL;
1914                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1915                 evict_mem.mem_type = TTM_PL_SYSTEM;
1916
1917                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1918                                              false, false);
1919                 if (unlikely(ret != 0))
1920                         goto out;
1921         }
1922
1923         ttm_bo_unmap_virtual(bo);
1924
1925         /**
1926          * Swap out. Buffer will be swapped in again as soon as
1927          * anyone tries to access a ttm page.
1928          */
1929
1930         if (bo->bdev->driver->swap_notify)
1931                 bo->bdev->driver->swap_notify(bo);
1932
1933         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1934 out:
1935
1936         /**
1937          *
1938          * Unreserve without putting on LRU to avoid swapping out an
1939          * already swapped buffer.
1940          */
1941
1942         ttm_bo_unreserve_core(bo);
1943         kref_put(&bo->list_kref, ttm_bo_release_list);
1944         return ret;
1945 }
1946
1947 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1948 {
1949         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1950                 ;
1951 }
1952 EXPORT_SYMBOL(ttm_bo_swapout_all);