kernel - Make VM fault waits in low memory the same as other low memory waits
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int hardfault;
119         int fault_flags;
120         int map_generation;
121         int shared;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int debug_cluster = 0;
127 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
128 int vm_shared_fault = 1;
129 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
130            "Allow shared token on vm_object");
131 static long vm_shared_hit = 0;
132 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
133            "Successful shared faults");
134 static long vm_shared_miss = 0;
135 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
136            "Unsuccessful shared faults");
137
138 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
139 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
140 #if 0
141 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
142 #endif
143 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
144 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
145                         vm_map_entry_t entry, int prot, int fault_flags);
146 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
147                         vm_map_entry_t entry, int prot, int fault_flags);
148
149 static __inline void
150 release_page(struct faultstate *fs)
151 {
152         vm_page_deactivate(fs->m);
153         vm_page_wakeup(fs->m);
154         fs->m = NULL;
155 }
156
157 /*
158  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
159  *       requires relocking and then checking the timestamp.
160  *
161  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
162  *       not have to update fs->map_generation here.
163  *
164  * NOTE: This function can fail due to a deadlock against the caller's
165  *       holding of a vm_page BUSY.
166  */
167 static __inline int
168 relock_map(struct faultstate *fs)
169 {
170         int error;
171
172         if (fs->lookup_still_valid == FALSE && fs->map) {
173                 error = vm_map_lock_read_to(fs->map);
174                 if (error == 0)
175                         fs->lookup_still_valid = TRUE;
176         } else {
177                 error = 0;
178         }
179         return error;
180 }
181
182 static __inline void
183 unlock_map(struct faultstate *fs)
184 {
185         if (fs->lookup_still_valid && fs->map) {
186                 vm_map_lookup_done(fs->map, fs->entry, 0);
187                 fs->lookup_still_valid = FALSE;
188         }
189 }
190
191 /*
192  * Clean up after a successful call to vm_fault_object() so another call
193  * to vm_fault_object() can be made.
194  */
195 static void
196 _cleanup_successful_fault(struct faultstate *fs, int relock)
197 {
198         if (fs->object != fs->first_object) {
199                 vm_page_free(fs->first_m);
200                 vm_object_pip_wakeup(fs->object);
201                 fs->first_m = NULL;
202         }
203         fs->object = fs->first_object;
204         if (relock && fs->lookup_still_valid == FALSE) {
205                 if (fs->map)
206                         vm_map_lock_read(fs->map);
207                 fs->lookup_still_valid = TRUE;
208         }
209 }
210
211 static void
212 _unlock_things(struct faultstate *fs, int dealloc)
213 {
214         _cleanup_successful_fault(fs, 0);
215         if (dealloc) {
216                 /*vm_object_deallocate(fs->first_object);*/
217                 /*fs->first_object = NULL; drop used later on */
218         }
219         unlock_map(fs); 
220         if (fs->vp != NULL) { 
221                 vput(fs->vp);
222                 fs->vp = NULL;
223         }
224 }
225
226 #define unlock_things(fs) _unlock_things(fs, 0)
227 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
228 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
229
230 /*
231  * TRYPAGER 
232  *
233  * Determine if the pager for the current object *might* contain the page.
234  *
235  * We only need to try the pager if this is not a default object (default
236  * objects are zero-fill and have no real pager), and if we are not taking
237  * a wiring fault or if the FS entry is wired.
238  */
239 #define TRYPAGER(fs)    \
240                 (fs->object->type != OBJT_DEFAULT && \
241                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
242
243 /*
244  * vm_fault:
245  *
246  * Handle a page fault occuring at the given address, requiring the given
247  * permissions, in the map specified.  If successful, the page is inserted
248  * into the associated physical map.
249  *
250  * NOTE: The given address should be truncated to the proper page address.
251  *
252  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
253  * a standard error specifying why the fault is fatal is returned.
254  *
255  * The map in question must be referenced, and remains so.
256  * The caller may hold no locks.
257  * No other requirements.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
261 {
262         int result;
263         vm_pindex_t first_pindex;
264         struct faultstate fs;
265         struct lwp *lp;
266         int growstack;
267
268         vm_page_pcpu_cache();
269         fs.hardfault = 0;
270         fs.fault_flags = fault_flags;
271         fs.vp = NULL;
272         growstack = 1;
273
274         if ((lp = curthread->td_lwp) != NULL)
275                 lp->lwp_flags |= LWP_PAGING;
276
277         lwkt_gettoken(&map->token);
278
279 RetryFault:
280         /*
281          * Find the vm_map_entry representing the backing store and resolve
282          * the top level object and page index.  This may have the side
283          * effect of executing a copy-on-write on the map entry and/or
284          * creating a shadow object, but will not COW any actual VM pages.
285          *
286          * On success fs.map is left read-locked and various other fields 
287          * are initialized but not otherwise referenced or locked.
288          *
289          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
290          * VM_FAULT_WRITE if the map entry is a virtual page table and also
291          * writable, so we can set the 'A'accessed bit in the virtual page
292          * table entry.
293          */
294         fs.map = map;
295         result = vm_map_lookup(&fs.map, vaddr, fault_type,
296                                &fs.entry, &fs.first_object,
297                                &first_pindex, &fs.first_prot, &fs.wired);
298
299         /*
300          * If the lookup failed or the map protections are incompatible,
301          * the fault generally fails.  However, if the caller is trying
302          * to do a user wiring we have more work to do.
303          */
304         if (result != KERN_SUCCESS) {
305                 if (result != KERN_PROTECTION_FAILURE ||
306                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
307                 {
308                         if (result == KERN_INVALID_ADDRESS && growstack &&
309                             map != &kernel_map && curproc != NULL) {
310                                 result = vm_map_growstack(curproc, vaddr);
311                                 if (result == KERN_SUCCESS) {
312                                         growstack = 0;
313                                         goto RetryFault;
314                                 }
315                                 result = KERN_FAILURE;
316                         }
317                         goto done;
318                 }
319
320                 /*
321                  * If we are user-wiring a r/w segment, and it is COW, then
322                  * we need to do the COW operation.  Note that we don't
323                  * currently COW RO sections now, because it is NOT desirable
324                  * to COW .text.  We simply keep .text from ever being COW'ed
325                  * and take the heat that one cannot debug wired .text sections.
326                  */
327                 result = vm_map_lookup(&fs.map, vaddr,
328                                        VM_PROT_READ|VM_PROT_WRITE|
329                                         VM_PROT_OVERRIDE_WRITE,
330                                        &fs.entry, &fs.first_object,
331                                        &first_pindex, &fs.first_prot,
332                                        &fs.wired);
333                 if (result != KERN_SUCCESS) {
334                         result = KERN_FAILURE;
335                         goto done;
336                 }
337
338                 /*
339                  * If we don't COW now, on a user wire, the user will never
340                  * be able to write to the mapping.  If we don't make this
341                  * restriction, the bookkeeping would be nearly impossible.
342                  *
343                  * XXX We have a shared lock, this will have a MP race but
344                  * I don't see how it can hurt anything.
345                  */
346                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
347                         fs.entry->max_protection &= ~VM_PROT_WRITE;
348         }
349
350         /*
351          * fs.map is read-locked
352          *
353          * Misc checks.  Save the map generation number to detect races.
354          */
355         fs.map_generation = fs.map->timestamp;
356
357         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
358                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
359                         panic("vm_fault: fault on nofault entry, addr: %p",
360                               (void *)vaddr);
361                 }
362                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
363                     vaddr >= fs.entry->start &&
364                     vaddr < fs.entry->start + PAGE_SIZE) {
365                         panic("vm_fault: fault on stack guard, addr: %p",
366                               (void *)vaddr);
367                 }
368         }
369
370         /*
371          * A system map entry may return a NULL object.  No object means
372          * no pager means an unrecoverable kernel fault.
373          */
374         if (fs.first_object == NULL) {
375                 panic("vm_fault: unrecoverable fault at %p in entry %p",
376                         (void *)vaddr, fs.entry);
377         }
378
379         /*
380          * Attempt to shortcut the fault if the lookup returns a
381          * terminal object and the page is present.  This allows us
382          * to obtain a shared token on the object instead of an exclusive
383          * token, which theoretically should allow concurrent faults.
384          *
385          * We cannot acquire a shared token on kernel_map, at least not
386          * on i386, because the i386 pmap code uses the kernel_object for
387          * its page table page management, resulting in a shared->exclusive
388          * sequence which will deadlock.  This will not happen normally
389          * anyway, except on well cached pageable kmem (like pipe buffers),
390          * so it should not impact performance.
391          */
392         if (vm_shared_fault &&
393             fs.first_object->backing_object == NULL &&
394             fs.entry->maptype == VM_MAPTYPE_NORMAL &&
395             fs.map != &kernel_map) {
396                 int error;
397                 vm_object_hold_shared(fs.first_object);
398                 /*fs.vp = vnode_pager_lock(fs.first_object);*/
399                 fs.m = vm_page_lookup_busy_try(fs.first_object,
400                                                 first_pindex,
401                                                 TRUE, &error);
402                 if (error == 0 && fs.m) {
403                         /*
404                          * Activate the page and figure out if we can
405                          * short-cut a quick mapping.
406                          *
407                          * WARNING!  We cannot call swap_pager_unswapped()
408                          *           with a shared token!  Note that we
409                          *           have to test fs.first_prot here.
410                          */
411                         vm_page_activate(fs.m);
412                         if (fs.m->valid == VM_PAGE_BITS_ALL &&
413                             ((fs.m->flags & PG_SWAPPED) == 0 ||
414                              (fs.first_prot & VM_PROT_WRITE) == 0 ||
415                              (fs.fault_flags & VM_FAULT_DIRTY) == 0)) {
416                                 fs.lookup_still_valid = TRUE;
417                                 fs.first_m = NULL;
418                                 fs.object = fs.first_object;
419                                 fs.prot = fs.first_prot;
420                                 if (fs.wired)
421                                         fault_type = fs.first_prot;
422                                 if (fs.prot & VM_PROT_WRITE) {
423                                         vm_object_set_writeable_dirty(
424                                                         fs.m->object);
425                                         vm_set_nosync(fs.m, fs.entry);
426                                         if (fs.fault_flags & VM_FAULT_DIRTY) {
427                                                 vm_page_dirty(fs.m);
428                                                 /*XXX*/
429                                                 swap_pager_unswapped(fs.m);
430                                         }
431                                 }
432                                 result = KERN_SUCCESS;
433                                 fault_flags |= VM_FAULT_BURST_QUICK;
434                                 fault_flags &= ~VM_FAULT_BURST;
435                                 ++vm_shared_hit;
436                                 goto quick;
437                         }
438                         vm_page_wakeup(fs.m);
439                         fs.m = NULL;
440                 }
441                 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/
442         }
443         ++vm_shared_miss;
444
445         /*
446          * Bump the paging-in-progress count to prevent size changes (e.g.
447          * truncation operations) during I/O.  This must be done after
448          * obtaining the vnode lock in order to avoid possible deadlocks.
449          */
450         vm_object_hold(fs.first_object);
451         if (fs.vp == NULL)
452                 fs.vp = vnode_pager_lock(fs.first_object);
453
454         fs.lookup_still_valid = TRUE;
455         fs.first_m = NULL;
456         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
457         fs.shared = 0;
458
459         /*
460          * If the entry is wired we cannot change the page protection.
461          */
462         if (fs.wired)
463                 fault_type = fs.first_prot;
464
465         /*
466          * The page we want is at (first_object, first_pindex), but if the
467          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
468          * page table to figure out the actual pindex.
469          *
470          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
471          * ONLY
472          */
473         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
474                 result = vm_fault_vpagetable(&fs, &first_pindex,
475                                              fs.entry->aux.master_pde,
476                                              fault_type);
477                 if (result == KERN_TRY_AGAIN) {
478                         vm_object_drop(fs.first_object);
479                         goto RetryFault;
480                 }
481                 if (result != KERN_SUCCESS)
482                         goto done;
483         }
484
485         /*
486          * Now we have the actual (object, pindex), fault in the page.  If
487          * vm_fault_object() fails it will unlock and deallocate the FS
488          * data.   If it succeeds everything remains locked and fs->object
489          * will have an additional PIP count if it is not equal to
490          * fs->first_object
491          *
492          * vm_fault_object will set fs->prot for the pmap operation.  It is
493          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
494          * page can be safely written.  However, it will force a read-only
495          * mapping for a read fault if the memory is managed by a virtual
496          * page table.
497          *
498          * If the fault code uses the shared object lock shortcut
499          * we must not try to burst (we can't allocate VM pages).
500          */
501         result = vm_fault_object(&fs, first_pindex, fault_type);
502         if (fs.shared)
503                 fault_flags &= ~VM_FAULT_BURST;
504
505         if (result == KERN_TRY_AGAIN) {
506                 vm_object_drop(fs.first_object);
507                 goto RetryFault;
508         }
509         if (result != KERN_SUCCESS)
510                 goto done;
511
512 quick:
513         /*
514          * On success vm_fault_object() does not unlock or deallocate, and fs.m
515          * will contain a busied page.
516          *
517          * Enter the page into the pmap and do pmap-related adjustments.
518          */
519         vm_page_flag_set(fs.m, PG_REFERENCED);
520         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry);
521         mycpu->gd_cnt.v_vm_faults++;
522         if (curthread->td_lwp)
523                 ++curthread->td_lwp->lwp_ru.ru_minflt;
524
525         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
526         KKASSERT(fs.m->flags & PG_BUSY);
527
528         /*
529          * If the page is not wired down, then put it where the pageout daemon
530          * can find it.
531          */
532         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
533                 if (fs.wired)
534                         vm_page_wire(fs.m);
535                 else
536                         vm_page_unwire(fs.m, 1);
537         } else {
538                 vm_page_activate(fs.m);
539         }
540         vm_page_wakeup(fs.m);
541
542         /*
543          * Burst in a few more pages if possible.  The fs.map should still
544          * be locked.  To avoid interlocking against a vnode->getblk
545          * operation we had to be sure to unbusy our primary vm_page above
546          * first.
547          */
548         if (fault_flags & VM_FAULT_BURST) {
549                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
550                     && fs.wired == 0) {
551                         vm_prefault(fs.map->pmap, vaddr,
552                                     fs.entry, fs.prot, fault_flags);
553                 }
554         }
555         if (fault_flags & VM_FAULT_BURST_QUICK) {
556                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
557                     && fs.wired == 0) {
558                         vm_prefault_quick(fs.map->pmap, vaddr,
559                                           fs.entry, fs.prot, fault_flags);
560                 }
561         }
562
563         /*
564          * Unlock everything, and return
565          */
566         unlock_things(&fs);
567
568         if (curthread->td_lwp) {
569                 if (fs.hardfault) {
570                         curthread->td_lwp->lwp_ru.ru_majflt++;
571                 } else {
572                         curthread->td_lwp->lwp_ru.ru_minflt++;
573                 }
574         }
575
576         /*vm_object_deallocate(fs.first_object);*/
577         /*fs.m = NULL; */
578         /*fs.first_object = NULL; must still drop later */
579
580         result = KERN_SUCCESS;
581 done:
582         if (fs.first_object)
583                 vm_object_drop(fs.first_object);
584         lwkt_reltoken(&map->token);
585         if (lp)
586                 lp->lwp_flags &= ~LWP_PAGING;
587         return (result);
588 }
589
590 /*
591  * Fault in the specified virtual address in the current process map, 
592  * returning a held VM page or NULL.  See vm_fault_page() for more 
593  * information.
594  *
595  * No requirements.
596  */
597 vm_page_t
598 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
599 {
600         struct lwp *lp = curthread->td_lwp;
601         vm_page_t m;
602
603         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
604                           fault_type, VM_FAULT_NORMAL, errorp);
605         return(m);
606 }
607
608 /*
609  * Fault in the specified virtual address in the specified map, doing all
610  * necessary manipulation of the object store and all necessary I/O.  Return
611  * a held VM page or NULL, and set *errorp.  The related pmap is not
612  * updated.
613  *
614  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
615  * and marked PG_REFERENCED as well.
616  *
617  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
618  * error will be returned.
619  *
620  * No requirements.
621  */
622 vm_page_t
623 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
624               int fault_flags, int *errorp)
625 {
626         vm_pindex_t first_pindex;
627         struct faultstate fs;
628         int result;
629         vm_prot_t orig_fault_type = fault_type;
630
631         fs.hardfault = 0;
632         fs.fault_flags = fault_flags;
633         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
634
635         lwkt_gettoken(&map->token);
636
637 RetryFault:
638         /*
639          * Find the vm_map_entry representing the backing store and resolve
640          * the top level object and page index.  This may have the side
641          * effect of executing a copy-on-write on the map entry and/or
642          * creating a shadow object, but will not COW any actual VM pages.
643          *
644          * On success fs.map is left read-locked and various other fields 
645          * are initialized but not otherwise referenced or locked.
646          *
647          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
648          * if the map entry is a virtual page table and also writable,
649          * so we can set the 'A'accessed bit in the virtual page table entry.
650          */
651         fs.map = map;
652         result = vm_map_lookup(&fs.map, vaddr, fault_type,
653                                &fs.entry, &fs.first_object,
654                                &first_pindex, &fs.first_prot, &fs.wired);
655
656         if (result != KERN_SUCCESS) {
657                 *errorp = result;
658                 fs.m = NULL;
659                 goto done;
660         }
661
662         /*
663          * fs.map is read-locked
664          *
665          * Misc checks.  Save the map generation number to detect races.
666          */
667         fs.map_generation = fs.map->timestamp;
668
669         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
670                 panic("vm_fault: fault on nofault entry, addr: %lx",
671                     (u_long)vaddr);
672         }
673
674         /*
675          * A system map entry may return a NULL object.  No object means
676          * no pager means an unrecoverable kernel fault.
677          */
678         if (fs.first_object == NULL) {
679                 panic("vm_fault: unrecoverable fault at %p in entry %p",
680                         (void *)vaddr, fs.entry);
681         }
682
683         /*
684          * Make a reference to this object to prevent its disposal while we
685          * are messing with it.  Once we have the reference, the map is free
686          * to be diddled.  Since objects reference their shadows (and copies),
687          * they will stay around as well.
688          *
689          * The reference should also prevent an unexpected collapse of the
690          * parent that might move pages from the current object into the
691          * parent unexpectedly, resulting in corruption.
692          *
693          * Bump the paging-in-progress count to prevent size changes (e.g.
694          * truncation operations) during I/O.  This must be done after
695          * obtaining the vnode lock in order to avoid possible deadlocks.
696          */
697         vm_object_hold(fs.first_object);
698         fs.vp = vnode_pager_lock(fs.first_object);
699
700         fs.lookup_still_valid = TRUE;
701         fs.first_m = NULL;
702         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
703         fs.shared = 0;
704
705         /*
706          * If the entry is wired we cannot change the page protection.
707          */
708         if (fs.wired)
709                 fault_type = fs.first_prot;
710
711         /*
712          * The page we want is at (first_object, first_pindex), but if the
713          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
714          * page table to figure out the actual pindex.
715          *
716          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
717          * ONLY
718          */
719         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
720                 result = vm_fault_vpagetable(&fs, &first_pindex,
721                                              fs.entry->aux.master_pde,
722                                              fault_type);
723                 if (result == KERN_TRY_AGAIN) {
724                         vm_object_drop(fs.first_object);
725                         goto RetryFault;
726                 }
727                 if (result != KERN_SUCCESS) {
728                         *errorp = result;
729                         fs.m = NULL;
730                         goto done;
731                 }
732         }
733
734         /*
735          * Now we have the actual (object, pindex), fault in the page.  If
736          * vm_fault_object() fails it will unlock and deallocate the FS
737          * data.   If it succeeds everything remains locked and fs->object
738          * will have an additinal PIP count if it is not equal to
739          * fs->first_object
740          */
741         fs.m = NULL;
742         result = vm_fault_object(&fs, first_pindex, fault_type);
743
744         if (result == KERN_TRY_AGAIN) {
745                 vm_object_drop(fs.first_object);
746                 goto RetryFault;
747         }
748         if (result != KERN_SUCCESS) {
749                 *errorp = result;
750                 fs.m = NULL;
751                 goto done;
752         }
753
754         if ((orig_fault_type & VM_PROT_WRITE) &&
755             (fs.prot & VM_PROT_WRITE) == 0) {
756                 *errorp = KERN_PROTECTION_FAILURE;
757                 unlock_and_deallocate(&fs);
758                 fs.m = NULL;
759                 goto done;
760         }
761
762         /*
763          * DO NOT UPDATE THE PMAP!!!  This function may be called for
764          * a pmap unrelated to the current process pmap, in which case
765          * the current cpu core will not be listed in the pmap's pm_active
766          * mask.  Thus invalidation interlocks will fail to work properly.
767          *
768          * (for example, 'ps' uses procfs to read program arguments from
769          * each process's stack).
770          *
771          * In addition to the above this function will be called to acquire
772          * a page that might already be faulted in, re-faulting it
773          * continuously is a waste of time.
774          *
775          * XXX could this have been the cause of our random seg-fault
776          *     issues?  procfs accesses user stacks.
777          */
778         vm_page_flag_set(fs.m, PG_REFERENCED);
779 #if 0
780         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
781         mycpu->gd_cnt.v_vm_faults++;
782         if (curthread->td_lwp)
783                 ++curthread->td_lwp->lwp_ru.ru_minflt;
784 #endif
785
786         /*
787          * On success vm_fault_object() does not unlock or deallocate, and fs.m
788          * will contain a busied page.  So we must unlock here after having
789          * messed with the pmap.
790          */
791         unlock_things(&fs);
792
793         /*
794          * Return a held page.  We are not doing any pmap manipulation so do
795          * not set PG_MAPPED.  However, adjust the page flags according to
796          * the fault type because the caller may not use a managed pmapping
797          * (so we don't want to lose the fact that the page will be dirtied
798          * if a write fault was specified).
799          */
800         vm_page_hold(fs.m);
801         vm_page_activate(fs.m);
802         if (fault_type & VM_PROT_WRITE)
803                 vm_page_dirty(fs.m);
804
805         if (curthread->td_lwp) {
806                 if (fs.hardfault) {
807                         curthread->td_lwp->lwp_ru.ru_majflt++;
808                 } else {
809                         curthread->td_lwp->lwp_ru.ru_minflt++;
810                 }
811         }
812
813         /*
814          * Unlock everything, and return the held page.
815          */
816         vm_page_wakeup(fs.m);
817         /*vm_object_deallocate(fs.first_object);*/
818         /*fs.first_object = NULL; */
819         *errorp = 0;
820
821 done:
822         if (fs.first_object)
823                 vm_object_drop(fs.first_object);
824         lwkt_reltoken(&map->token);
825         return(fs.m);
826 }
827
828 /*
829  * Fault in the specified (object,offset), dirty the returned page as
830  * needed.  If the requested fault_type cannot be done NULL and an
831  * error is returned.
832  *
833  * A held (but not busied) page is returned.
834  *
835  * No requirements.
836  */
837 vm_page_t
838 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
839                      vm_prot_t fault_type, int fault_flags,
840                      int shared, int *errorp)
841 {
842         int result;
843         vm_pindex_t first_pindex;
844         struct faultstate fs;
845         struct vm_map_entry entry;
846
847         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
848         bzero(&entry, sizeof(entry));
849         entry.object.vm_object = object;
850         entry.maptype = VM_MAPTYPE_NORMAL;
851         entry.protection = entry.max_protection = fault_type;
852
853         fs.hardfault = 0;
854         fs.fault_flags = fault_flags;
855         fs.map = NULL;
856         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
857
858 RetryFault:
859         
860         fs.first_object = object;
861         first_pindex = OFF_TO_IDX(offset);
862         fs.entry = &entry;
863         fs.first_prot = fault_type;
864         fs.wired = 0;
865         fs.shared = shared;
866         /*fs.map_generation = 0; unused */
867
868         /*
869          * Make a reference to this object to prevent its disposal while we
870          * are messing with it.  Once we have the reference, the map is free
871          * to be diddled.  Since objects reference their shadows (and copies),
872          * they will stay around as well.
873          *
874          * The reference should also prevent an unexpected collapse of the
875          * parent that might move pages from the current object into the
876          * parent unexpectedly, resulting in corruption.
877          *
878          * Bump the paging-in-progress count to prevent size changes (e.g.
879          * truncation operations) during I/O.  This must be done after
880          * obtaining the vnode lock in order to avoid possible deadlocks.
881          */
882         fs.vp = vnode_pager_lock(fs.first_object);
883
884         fs.lookup_still_valid = TRUE;
885         fs.first_m = NULL;
886         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
887
888 #if 0
889         /* XXX future - ability to operate on VM object using vpagetable */
890         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
891                 result = vm_fault_vpagetable(&fs, &first_pindex,
892                                              fs.entry->aux.master_pde,
893                                              fault_type);
894                 if (result == KERN_TRY_AGAIN)
895                         goto RetryFault;
896                 if (result != KERN_SUCCESS) {
897                         *errorp = result;
898                         return (NULL);
899                 }
900         }
901 #endif
902
903         /*
904          * Now we have the actual (object, pindex), fault in the page.  If
905          * vm_fault_object() fails it will unlock and deallocate the FS
906          * data.   If it succeeds everything remains locked and fs->object
907          * will have an additinal PIP count if it is not equal to
908          * fs->first_object
909          */
910         result = vm_fault_object(&fs, first_pindex, fault_type);
911
912         if (result == KERN_TRY_AGAIN)
913                 goto RetryFault;
914         if (result != KERN_SUCCESS) {
915                 *errorp = result;
916                 return(NULL);
917         }
918
919         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
920                 *errorp = KERN_PROTECTION_FAILURE;
921                 unlock_and_deallocate(&fs);
922                 return(NULL);
923         }
924
925         /*
926          * On success vm_fault_object() does not unlock or deallocate, so we
927          * do it here.  Note that the returned fs.m will be busied.
928          */
929         unlock_things(&fs);
930
931         /*
932          * Return a held page.  We are not doing any pmap manipulation so do
933          * not set PG_MAPPED.  However, adjust the page flags according to
934          * the fault type because the caller may not use a managed pmapping
935          * (so we don't want to lose the fact that the page will be dirtied
936          * if a write fault was specified).
937          */
938         vm_page_hold(fs.m);
939         vm_page_activate(fs.m);
940         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
941                 vm_page_dirty(fs.m);
942         if (fault_flags & VM_FAULT_UNSWAP)
943                 swap_pager_unswapped(fs.m);
944
945         /*
946          * Indicate that the page was accessed.
947          */
948         vm_page_flag_set(fs.m, PG_REFERENCED);
949
950         if (curthread->td_lwp) {
951                 if (fs.hardfault) {
952                         curthread->td_lwp->lwp_ru.ru_majflt++;
953                 } else {
954                         curthread->td_lwp->lwp_ru.ru_minflt++;
955                 }
956         }
957
958         /*
959          * Unlock everything, and return the held page.
960          */
961         vm_page_wakeup(fs.m);
962         /*vm_object_deallocate(fs.first_object);*/
963         /*fs.first_object = NULL; */
964
965         *errorp = 0;
966         return(fs.m);
967 }
968
969 /*
970  * Translate the virtual page number (first_pindex) that is relative
971  * to the address space into a logical page number that is relative to the
972  * backing object.  Use the virtual page table pointed to by (vpte).
973  *
974  * This implements an N-level page table.  Any level can terminate the
975  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
976  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
977  */
978 static
979 int
980 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
981                     vpte_t vpte, int fault_type)
982 {
983         struct lwbuf *lwb;
984         struct lwbuf lwb_cache;
985         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
986         int result = KERN_SUCCESS;
987         vpte_t *ptep;
988
989         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
990         for (;;) {
991                 /*
992                  * We cannot proceed if the vpte is not valid, not readable
993                  * for a read fault, or not writable for a write fault.
994                  */
995                 if ((vpte & VPTE_V) == 0) {
996                         unlock_and_deallocate(fs);
997                         return (KERN_FAILURE);
998                 }
999                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
1000                         unlock_and_deallocate(fs);
1001                         return (KERN_FAILURE);
1002                 }
1003                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
1004                         unlock_and_deallocate(fs);
1005                         return (KERN_FAILURE);
1006                 }
1007                 if ((vpte & VPTE_PS) || vshift == 0)
1008                         break;
1009                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1010
1011                 /*
1012                  * Get the page table page.  Nominally we only read the page
1013                  * table, but since we are actively setting VPTE_M and VPTE_A,
1014                  * tell vm_fault_object() that we are writing it. 
1015                  *
1016                  * There is currently no real need to optimize this.
1017                  */
1018                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1019                                          VM_PROT_READ|VM_PROT_WRITE);
1020                 if (result != KERN_SUCCESS)
1021                         return (result);
1022
1023                 /*
1024                  * Process the returned fs.m and look up the page table
1025                  * entry in the page table page.
1026                  */
1027                 vshift -= VPTE_PAGE_BITS;
1028                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1029                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1030                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1031                 vpte = *ptep;
1032
1033                 /*
1034                  * Page table write-back.  If the vpte is valid for the
1035                  * requested operation, do a write-back to the page table.
1036                  *
1037                  * XXX VPTE_M is not set properly for page directory pages.
1038                  * It doesn't get set in the page directory if the page table
1039                  * is modified during a read access.
1040                  */
1041                 vm_page_activate(fs->m);
1042                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1043                     (vpte & VPTE_W)) {
1044                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1045                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1046                                 vm_page_dirty(fs->m);
1047                         }
1048                 }
1049                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
1050                     (vpte & VPTE_R)) {
1051                         if ((vpte & VPTE_A) == 0) {
1052                                 atomic_set_long(ptep, VPTE_A);
1053                                 vm_page_dirty(fs->m);
1054                         }
1055                 }
1056                 lwbuf_free(lwb);
1057                 vm_page_flag_set(fs->m, PG_REFERENCED);
1058                 vm_page_wakeup(fs->m);
1059                 fs->m = NULL;
1060                 cleanup_successful_fault(fs);
1061         }
1062         /*
1063          * Combine remaining address bits with the vpte.
1064          */
1065         /* JG how many bits from each? */
1066         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1067                   (*pindex & ((1L << vshift) - 1));
1068         return (KERN_SUCCESS);
1069 }
1070
1071
1072 /*
1073  * This is the core of the vm_fault code.
1074  *
1075  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1076  * through the shadow chain as necessary and do required COW or virtual
1077  * copy operations.  The caller has already fully resolved the vm_map_entry
1078  * and, if appropriate, has created a copy-on-write layer.  All we need to
1079  * do is iterate the object chain.
1080  *
1081  * On failure (fs) is unlocked and deallocated and the caller may return or
1082  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1083  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1084  * will have an additional PIP count if it is not equal to fs.first_object.
1085  *
1086  * fs->first_object must be held on call.
1087  */
1088 static
1089 int
1090 vm_fault_object(struct faultstate *fs,
1091                 vm_pindex_t first_pindex, vm_prot_t fault_type)
1092 {
1093         vm_object_t next_object;
1094         vm_pindex_t pindex;
1095         int error;
1096
1097         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1098         fs->prot = fs->first_prot;
1099         fs->object = fs->first_object;
1100         pindex = first_pindex;
1101
1102         vm_object_chain_acquire(fs->first_object);
1103         vm_object_pip_add(fs->first_object, 1);
1104
1105         /* 
1106          * If a read fault occurs we try to make the page writable if
1107          * possible.  There are three cases where we cannot make the
1108          * page mapping writable:
1109          *
1110          * (1) The mapping is read-only or the VM object is read-only,
1111          *     fs->prot above will simply not have VM_PROT_WRITE set.
1112          *
1113          * (2) If the mapping is a virtual page table we need to be able
1114          *     to detect writes so we can set VPTE_M in the virtual page
1115          *     table.
1116          *
1117          * (3) If the VM page is read-only or copy-on-write, upgrading would
1118          *     just result in an unnecessary COW fault.
1119          *
1120          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1121          * causes adjustments to the 'M'odify bit to also turn off write
1122          * access to force a re-fault.
1123          */
1124         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1125                 if ((fault_type & VM_PROT_WRITE) == 0)
1126                         fs->prot &= ~VM_PROT_WRITE;
1127         }
1128
1129         /* vm_object_hold(fs->object); implied b/c object == first_object */
1130
1131         for (;;) {
1132                 /*
1133                  * The entire backing chain from first_object to object
1134                  * inclusive is chainlocked.
1135                  *
1136                  * If the object is dead, we stop here
1137                  *
1138                  * vm_shared_fault (fs->shared != 0) case: nothing special.
1139                  */
1140                 if (fs->object->flags & OBJ_DEAD) {
1141                         vm_object_pip_wakeup(fs->first_object);
1142                         vm_object_chain_release_all(fs->first_object,
1143                                                     fs->object);
1144                         if (fs->object != fs->first_object)
1145                                 vm_object_drop(fs->object);
1146                         unlock_and_deallocate(fs);
1147                         return (KERN_PROTECTION_FAILURE);
1148                 }
1149
1150                 /*
1151                  * See if the page is resident.  Wait/Retry if the page is
1152                  * busy (lots of stuff may have changed so we can't continue
1153                  * in that case).
1154                  *
1155                  * We can theoretically allow the soft-busy case on a read
1156                  * fault if the page is marked valid, but since such
1157                  * pages are typically already pmap'd, putting that
1158                  * special case in might be more effort then it is
1159                  * worth.  We cannot under any circumstances mess
1160                  * around with a vm_page_t->busy page except, perhaps,
1161                  * to pmap it.
1162                  *
1163                  * vm_shared_fault (fs->shared != 0) case:
1164                  *      error           nothing special
1165                  *      fs->m           relock excl if I/O needed
1166                  *      NULL            relock excl
1167                  */
1168                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1169                                                 TRUE, &error);
1170                 if (error) {
1171                         vm_object_pip_wakeup(fs->first_object);
1172                         vm_object_chain_release_all(fs->first_object,
1173                                                     fs->object);
1174                         if (fs->object != fs->first_object)
1175                                 vm_object_drop(fs->object);
1176                         unlock_things(fs);
1177                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1178                         mycpu->gd_cnt.v_intrans++;
1179                         /*vm_object_deallocate(fs->first_object);*/
1180                         /*fs->first_object = NULL;*/
1181                         fs->m = NULL;
1182                         return (KERN_TRY_AGAIN);
1183                 }
1184                 if (fs->m) {
1185                         /*
1186                          * The page is busied for us.
1187                          *
1188                          * If reactivating a page from PQ_CACHE we may have
1189                          * to rate-limit.
1190                          */
1191                         int queue = fs->m->queue;
1192                         vm_page_unqueue_nowakeup(fs->m);
1193
1194                         if ((queue - fs->m->pc) == PQ_CACHE && 
1195                             vm_page_count_severe()) {
1196                                 vm_page_activate(fs->m);
1197                                 vm_page_wakeup(fs->m);
1198                                 fs->m = NULL;
1199                                 vm_object_pip_wakeup(fs->first_object);
1200                                 vm_object_chain_release_all(fs->first_object,
1201                                                             fs->object);
1202                                 if (fs->object != fs->first_object)
1203                                         vm_object_drop(fs->object);
1204                                 unlock_and_deallocate(fs);
1205                                 vm_wait_pfault();
1206                                 return (KERN_TRY_AGAIN);
1207                         }
1208
1209                         /*
1210                          * If it still isn't completely valid (readable),
1211                          * or if a read-ahead-mark is set on the VM page,
1212                          * jump to readrest, else we found the page and
1213                          * can return.
1214                          *
1215                          * We can release the spl once we have marked the
1216                          * page busy.
1217                          */
1218                         if (fs->m->object != &kernel_object) {
1219                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1220                                     VM_PAGE_BITS_ALL) {
1221                                         if (fs->shared) {
1222                                                 vm_object_drop(fs->object);
1223                                                 vm_object_hold(fs->object);
1224                                                 fs->shared = 0;
1225                                         }
1226                                         goto readrest;
1227                                 }
1228                                 if (fs->m->flags & PG_RAM) {
1229                                         if (debug_cluster)
1230                                                 kprintf("R");
1231                                         vm_page_flag_clear(fs->m, PG_RAM);
1232                                         if (fs->shared) {
1233                                                 vm_object_drop(fs->object);
1234                                                 vm_object_hold(fs->object);
1235                                                 fs->shared = 0;
1236                                         }
1237                                         goto readrest;
1238                                 }
1239                         }
1240                         break; /* break to PAGE HAS BEEN FOUND */
1241                 }
1242
1243                 if (fs->shared) {
1244                         vm_object_drop(fs->object);
1245                         vm_object_hold(fs->object);
1246                         fs->shared = 0;
1247                 }
1248
1249                 /*
1250                  * Page is not resident, If this is the search termination
1251                  * or the pager might contain the page, allocate a new page.
1252                  */
1253                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1254                         /*
1255                          * If the page is beyond the object size we fail
1256                          */
1257                         if (pindex >= fs->object->size) {
1258                                 vm_object_pip_wakeup(fs->first_object);
1259                                 vm_object_chain_release_all(fs->first_object,
1260                                                             fs->object);
1261                                 if (fs->object != fs->first_object)
1262                                         vm_object_drop(fs->object);
1263                                 unlock_and_deallocate(fs);
1264                                 return (KERN_PROTECTION_FAILURE);
1265                         }
1266
1267                         /*
1268                          * Allocate a new page for this object/offset pair.
1269                          *
1270                          * It is possible for the allocation to race, so
1271                          * handle the case.
1272                          */
1273                         fs->m = NULL;
1274                         if (!vm_page_count_severe()) {
1275                                 fs->m = vm_page_alloc(fs->object, pindex,
1276                                     ((fs->vp || fs->object->backing_object) ?
1277                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1278                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1279                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1280                         }
1281                         if (fs->m == NULL) {
1282                                 vm_object_pip_wakeup(fs->first_object);
1283                                 vm_object_chain_release_all(fs->first_object,
1284                                                             fs->object);
1285                                 if (fs->object != fs->first_object)
1286                                         vm_object_drop(fs->object);
1287                                 unlock_and_deallocate(fs);
1288                                 vm_wait_pfault();
1289                                 return (KERN_TRY_AGAIN);
1290                         }
1291
1292                         /*
1293                          * Fall through to readrest.  We have a new page which
1294                          * will have to be paged (since m->valid will be 0).
1295                          */
1296                 }
1297
1298 readrest:
1299                 /*
1300                  * We have found an invalid or partially valid page, a
1301                  * page with a read-ahead mark which might be partially or
1302                  * fully valid (and maybe dirty too), or we have allocated
1303                  * a new page.
1304                  *
1305                  * Attempt to fault-in the page if there is a chance that the
1306                  * pager has it, and potentially fault in additional pages
1307                  * at the same time.
1308                  *
1309                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1310                  * for us.
1311                  */
1312                 if (TRYPAGER(fs)) {
1313                         int rv;
1314                         int seqaccess;
1315                         u_char behavior = vm_map_entry_behavior(fs->entry);
1316
1317                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1318                                 seqaccess = 0;
1319                         else
1320                                 seqaccess = -1;
1321
1322 #if 0
1323                         /*
1324                          * If sequential access is detected then attempt
1325                          * to deactivate/cache pages behind the scan to
1326                          * prevent resource hogging.
1327                          *
1328                          * Use of PG_RAM to detect sequential access
1329                          * also simulates multi-zone sequential access
1330                          * detection for free.
1331                          *
1332                          * NOTE: Partially valid dirty pages cannot be
1333                          *       deactivated without causing NFS picemeal
1334                          *       writes to barf.
1335                          */
1336                         if ((fs->first_object->type != OBJT_DEVICE) &&
1337                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1338                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1339                                  (fs->m->flags & PG_RAM)))
1340                         ) {
1341                                 vm_pindex_t scan_pindex;
1342                                 int scan_count = 16;
1343
1344                                 if (first_pindex < 16) {
1345                                         scan_pindex = 0;
1346                                         scan_count = 0;
1347                                 } else {
1348                                         scan_pindex = first_pindex - 16;
1349                                         if (scan_pindex < 16)
1350                                                 scan_count = scan_pindex;
1351                                         else
1352                                                 scan_count = 16;
1353                                 }
1354
1355                                 while (scan_count) {
1356                                         vm_page_t mt;
1357
1358                                         mt = vm_page_lookup(fs->first_object,
1359                                                             scan_pindex);
1360                                         if (mt == NULL)
1361                                                 break;
1362                                         if (vm_page_busy_try(mt, TRUE))
1363                                                 goto skip;
1364
1365                                         if (mt->valid != VM_PAGE_BITS_ALL) {
1366                                                 vm_page_wakeup(mt);
1367                                                 break;
1368                                         }
1369                                         if ((mt->flags &
1370                                              (PG_FICTITIOUS | PG_UNMANAGED |
1371                                               PG_NEED_COMMIT)) ||
1372                                             mt->hold_count ||
1373                                             mt->wire_count)  {
1374                                                 vm_page_wakeup(mt);
1375                                                 goto skip;
1376                                         }
1377                                         if (mt->dirty == 0)
1378                                                 vm_page_test_dirty(mt);
1379                                         if (mt->dirty) {
1380                                                 vm_page_protect(mt,
1381                                                                 VM_PROT_NONE);
1382                                                 vm_page_deactivate(mt);
1383                                                 vm_page_wakeup(mt);
1384                                         } else {
1385                                                 vm_page_cache(mt);
1386                                         }
1387 skip:
1388                                         --scan_count;
1389                                         --scan_pindex;
1390                                 }
1391
1392                                 seqaccess = 1;
1393                         }
1394 #endif
1395
1396                         /*
1397                          * Avoid deadlocking against the map when doing I/O.
1398                          * fs.object and the page is PG_BUSY'd.
1399                          *
1400                          * NOTE: Once unlocked, fs->entry can become stale
1401                          *       so this will NULL it out.
1402                          *
1403                          * NOTE: fs->entry is invalid until we relock the
1404                          *       map and verify that the timestamp has not
1405                          *       changed.
1406                          */
1407                         unlock_map(fs);
1408
1409                         /*
1410                          * Acquire the page data.  We still hold a ref on
1411                          * fs.object and the page has been PG_BUSY's.
1412                          *
1413                          * The pager may replace the page (for example, in
1414                          * order to enter a fictitious page into the
1415                          * object).  If it does so it is responsible for
1416                          * cleaning up the passed page and properly setting
1417                          * the new page PG_BUSY.
1418                          *
1419                          * If we got here through a PG_RAM read-ahead
1420                          * mark the page may be partially dirty and thus
1421                          * not freeable.  Don't bother checking to see
1422                          * if the pager has the page because we can't free
1423                          * it anyway.  We have to depend on the get_page
1424                          * operation filling in any gaps whether there is
1425                          * backing store or not.
1426                          */
1427                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1428
1429                         if (rv == VM_PAGER_OK) {
1430                                 /*
1431                                  * Relookup in case pager changed page. Pager
1432                                  * is responsible for disposition of old page
1433                                  * if moved.
1434                                  *
1435                                  * XXX other code segments do relookups too.
1436                                  * It's a bad abstraction that needs to be
1437                                  * fixed/removed.
1438                                  */
1439                                 fs->m = vm_page_lookup(fs->object, pindex);
1440                                 if (fs->m == NULL) {
1441                                         vm_object_pip_wakeup(fs->first_object);
1442                                         vm_object_chain_release_all(
1443                                                 fs->first_object, fs->object);
1444                                         if (fs->object != fs->first_object)
1445                                                 vm_object_drop(fs->object);
1446                                         unlock_and_deallocate(fs);
1447                                         return (KERN_TRY_AGAIN);
1448                                 }
1449
1450                                 ++fs->hardfault;
1451                                 break; /* break to PAGE HAS BEEN FOUND */
1452                         }
1453
1454                         /*
1455                          * Remove the bogus page (which does not exist at this
1456                          * object/offset); before doing so, we must get back
1457                          * our object lock to preserve our invariant.
1458                          *
1459                          * Also wake up any other process that may want to bring
1460                          * in this page.
1461                          *
1462                          * If this is the top-level object, we must leave the
1463                          * busy page to prevent another process from rushing
1464                          * past us, and inserting the page in that object at
1465                          * the same time that we are.
1466                          */
1467                         if (rv == VM_PAGER_ERROR) {
1468                                 if (curproc) {
1469                                         kprintf("vm_fault: pager read error, "
1470                                                 "pid %d (%s)\n",
1471                                                 curproc->p_pid,
1472                                                 curproc->p_comm);
1473                                 } else {
1474                                         kprintf("vm_fault: pager read error, "
1475                                                 "thread %p (%s)\n",
1476                                                 curthread,
1477                                                 curproc->p_comm);
1478                                 }
1479                         }
1480
1481                         /*
1482                          * Data outside the range of the pager or an I/O error
1483                          *
1484                          * The page may have been wired during the pagein,
1485                          * e.g. by the buffer cache, and cannot simply be
1486                          * freed.  Call vnode_pager_freepage() to deal with it.
1487                          */
1488                         /*
1489                          * XXX - the check for kernel_map is a kludge to work
1490                          * around having the machine panic on a kernel space
1491                          * fault w/ I/O error.
1492                          */
1493                         if (((fs->map != &kernel_map) &&
1494                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1495                                 vnode_pager_freepage(fs->m);
1496                                 fs->m = NULL;
1497                                 vm_object_pip_wakeup(fs->first_object);
1498                                 vm_object_chain_release_all(fs->first_object,
1499                                                             fs->object);
1500                                 if (fs->object != fs->first_object)
1501                                         vm_object_drop(fs->object);
1502                                 unlock_and_deallocate(fs);
1503                                 if (rv == VM_PAGER_ERROR)
1504                                         return (KERN_FAILURE);
1505                                 else
1506                                         return (KERN_PROTECTION_FAILURE);
1507                                 /* NOT REACHED */
1508                         }
1509                         if (fs->object != fs->first_object) {
1510                                 vnode_pager_freepage(fs->m);
1511                                 fs->m = NULL;
1512                                 /*
1513                                  * XXX - we cannot just fall out at this
1514                                  * point, m has been freed and is invalid!
1515                                  */
1516                         }
1517                 }
1518
1519                 /*
1520                  * We get here if the object has a default pager (or unwiring) 
1521                  * or the pager doesn't have the page.
1522                  */
1523                 if (fs->object == fs->first_object)
1524                         fs->first_m = fs->m;
1525
1526                 /*
1527                  * Move on to the next object.  The chain lock should prevent
1528                  * the backing_object from getting ripped out from under us.
1529                  *
1530                  * vm_shared_fault case:
1531                  *
1532                  *      If the next object is the last object and
1533                  *      vnode-backed (thus possibly shared), we can try a
1534                  *      shared object lock.  There is no 'chain' for this
1535                  *      last object if vnode-backed (otherwise we would
1536                  *      need an exclusive lock).
1537                  *
1538                  *      fs->shared mode is very fragile and only works
1539                  *      under certain specific conditions, and is only
1540                  *      handled for those conditions in our loop.  Essentially
1541                  *      it is designed only to be able to 'dip into' the
1542                  *      vnode's object and extract an already-cached page.
1543                  */
1544                 fs->shared = 0;
1545                 if ((next_object = fs->object->backing_object) != NULL) {
1546                         fs->shared = vm_object_hold_maybe_shared(next_object);
1547                         vm_object_chain_acquire(next_object);
1548                         KKASSERT(next_object == fs->object->backing_object);
1549                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1550                 }
1551
1552                 if (next_object == NULL) {
1553                         /*
1554                          * If there's no object left, fill the page in the top
1555                          * object with zeros.
1556                          */
1557                         if (fs->object != fs->first_object) {
1558                                 if (fs->first_object->backing_object !=
1559                                     fs->object) {
1560                                         vm_object_hold(fs->first_object->backing_object);
1561                                 }
1562                                 vm_object_chain_release_all(
1563                                         fs->first_object->backing_object,
1564                                         fs->object);
1565                                 if (fs->first_object->backing_object !=
1566                                     fs->object) {
1567                                         vm_object_drop(fs->first_object->backing_object);
1568                                 }
1569                                 vm_object_pip_wakeup(fs->object);
1570                                 vm_object_drop(fs->object);
1571                                 fs->object = fs->first_object;
1572                                 pindex = first_pindex;
1573                                 fs->m = fs->first_m;
1574                         }
1575                         fs->first_m = NULL;
1576
1577                         /*
1578                          * Zero the page if necessary and mark it valid.
1579                          */
1580                         if ((fs->m->flags & PG_ZERO) == 0) {
1581                                 vm_page_zero_fill(fs->m);
1582                         } else {
1583 #ifdef PMAP_DEBUG
1584                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1585 #endif
1586                                 vm_page_flag_clear(fs->m, PG_ZERO);
1587                                 mycpu->gd_cnt.v_ozfod++;
1588                         }
1589                         mycpu->gd_cnt.v_zfod++;
1590                         fs->m->valid = VM_PAGE_BITS_ALL;
1591                         break;  /* break to PAGE HAS BEEN FOUND */
1592                 }
1593                 if (fs->object != fs->first_object) {
1594                         vm_object_pip_wakeup(fs->object);
1595                         vm_object_lock_swap();
1596                         vm_object_drop(fs->object);
1597                 }
1598                 KASSERT(fs->object != next_object,
1599                         ("object loop %p", next_object));
1600                 fs->object = next_object;
1601                 vm_object_pip_add(fs->object, 1);
1602         }
1603
1604         /*
1605          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1606          * is held.]
1607          *
1608          * object still held.
1609          *
1610          * If the page is being written, but isn't already owned by the
1611          * top-level object, we have to copy it into a new page owned by the
1612          * top-level object.
1613          */
1614         KASSERT((fs->m->flags & PG_BUSY) != 0,
1615                 ("vm_fault: not busy after main loop"));
1616
1617         if (fs->object != fs->first_object) {
1618                 /*
1619                  * We only really need to copy if we want to write it.
1620                  */
1621                 if (fault_type & VM_PROT_WRITE) {
1622                         /*
1623                          * This allows pages to be virtually copied from a 
1624                          * backing_object into the first_object, where the 
1625                          * backing object has no other refs to it, and cannot
1626                          * gain any more refs.  Instead of a bcopy, we just 
1627                          * move the page from the backing object to the 
1628                          * first object.  Note that we must mark the page 
1629                          * dirty in the first object so that it will go out 
1630                          * to swap when needed.
1631                          */
1632                         if (
1633                                 /*
1634                                  * Map, if present, has not changed
1635                                  */
1636                                 (fs->map == NULL ||
1637                                 fs->map_generation == fs->map->timestamp) &&
1638                                 /*
1639                                  * Only one shadow object
1640                                  */
1641                                 (fs->object->shadow_count == 1) &&
1642                                 /*
1643                                  * No COW refs, except us
1644                                  */
1645                                 (fs->object->ref_count == 1) &&
1646                                 /*
1647                                  * No one else can look this object up
1648                                  */
1649                                 (fs->object->handle == NULL) &&
1650                                 /*
1651                                  * No other ways to look the object up
1652                                  */
1653                                 ((fs->object->type == OBJT_DEFAULT) ||
1654                                  (fs->object->type == OBJT_SWAP)) &&
1655                                 /*
1656                                  * We don't chase down the shadow chain
1657                                  */
1658                                 (fs->object == fs->first_object->backing_object) &&
1659
1660                                 /*
1661                                  * grab the lock if we need to
1662                                  */
1663                                 (fs->lookup_still_valid ||
1664                                  fs->map == NULL ||
1665                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1666                             ) {
1667                                 /*
1668                                  * (first_m) and (m) are both busied.  We have
1669                                  * move (m) into (first_m)'s object/pindex
1670                                  * in an atomic fashion, then free (first_m).
1671                                  *
1672                                  * first_object is held so second remove
1673                                  * followed by the rename should wind
1674                                  * up being atomic.  vm_page_free() might
1675                                  * block so we don't do it until after the
1676                                  * rename.
1677                                  */
1678                                 fs->lookup_still_valid = 1;
1679                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1680                                 vm_page_remove(fs->first_m);
1681                                 vm_page_rename(fs->m, fs->first_object,
1682                                                first_pindex);
1683                                 vm_page_free(fs->first_m);
1684                                 fs->first_m = fs->m;
1685                                 fs->m = NULL;
1686                                 mycpu->gd_cnt.v_cow_optim++;
1687                         } else {
1688                                 /*
1689                                  * Oh, well, lets copy it.
1690                                  *
1691                                  * Why are we unmapping the original page
1692                                  * here?  Well, in short, not all accessors
1693                                  * of user memory go through the pmap.  The
1694                                  * procfs code doesn't have access user memory
1695                                  * via a local pmap, so vm_fault_page*()
1696                                  * can't call pmap_enter().  And the umtx*()
1697                                  * code may modify the COW'd page via a DMAP
1698                                  * or kernel mapping and not via the pmap,
1699                                  * leaving the original page still mapped
1700                                  * read-only into the pmap.
1701                                  *
1702                                  * So we have to remove the page from at
1703                                  * least the current pmap if it is in it.
1704                                  * Just remove it from all pmaps.
1705                                  */
1706                                 vm_page_copy(fs->m, fs->first_m);
1707                                 vm_page_protect(fs->m, VM_PROT_NONE);
1708                                 vm_page_event(fs->m, VMEVENT_COW);
1709                         }
1710
1711                         if (fs->m) {
1712                                 /*
1713                                  * We no longer need the old page or object.
1714                                  */
1715                                 release_page(fs);
1716                         }
1717
1718                         /*
1719                          * We intend to revert to first_object, undo the
1720                          * chain lock through to that.
1721                          */
1722                         if (fs->first_object->backing_object != fs->object)
1723                                 vm_object_hold(fs->first_object->backing_object);
1724                         vm_object_chain_release_all(
1725                                         fs->first_object->backing_object,
1726                                         fs->object);
1727                         if (fs->first_object->backing_object != fs->object)
1728                                 vm_object_drop(fs->first_object->backing_object);
1729
1730                         /*
1731                          * fs->object != fs->first_object due to above 
1732                          * conditional
1733                          */
1734                         vm_object_pip_wakeup(fs->object);
1735                         vm_object_drop(fs->object);
1736
1737                         /*
1738                          * Only use the new page below...
1739                          */
1740
1741                         mycpu->gd_cnt.v_cow_faults++;
1742                         fs->m = fs->first_m;
1743                         fs->object = fs->first_object;
1744                         pindex = first_pindex;
1745                 } else {
1746                         /*
1747                          * If it wasn't a write fault avoid having to copy
1748                          * the page by mapping it read-only.
1749                          */
1750                         fs->prot &= ~VM_PROT_WRITE;
1751                 }
1752         }
1753
1754         /*
1755          * Relock the map if necessary, then check the generation count.
1756          * relock_map() will update fs->timestamp to account for the
1757          * relocking if necessary.
1758          *
1759          * If the count has changed after relocking then all sorts of
1760          * crap may have happened and we have to retry.
1761          *
1762          * NOTE: The relock_map() can fail due to a deadlock against
1763          *       the vm_page we are holding BUSY.
1764          */
1765         if (fs->lookup_still_valid == FALSE && fs->map) {
1766                 if (relock_map(fs) ||
1767                     fs->map->timestamp != fs->map_generation) {
1768                         release_page(fs);
1769                         vm_object_pip_wakeup(fs->first_object);
1770                         vm_object_chain_release_all(fs->first_object,
1771                                                     fs->object);
1772                         if (fs->object != fs->first_object)
1773                                 vm_object_drop(fs->object);
1774                         unlock_and_deallocate(fs);
1775                         return (KERN_TRY_AGAIN);
1776                 }
1777         }
1778
1779         /*
1780          * If the fault is a write, we know that this page is being
1781          * written NOW so dirty it explicitly to save on pmap_is_modified()
1782          * calls later.
1783          *
1784          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1785          * if the page is already dirty to prevent data written with
1786          * the expectation of being synced from not being synced.
1787          * Likewise if this entry does not request NOSYNC then make
1788          * sure the page isn't marked NOSYNC.  Applications sharing
1789          * data should use the same flags to avoid ping ponging.
1790          *
1791          * Also tell the backing pager, if any, that it should remove
1792          * any swap backing since the page is now dirty.
1793          */
1794         vm_page_activate(fs->m);
1795         if (fs->prot & VM_PROT_WRITE) {
1796                 vm_object_set_writeable_dirty(fs->m->object);
1797                 vm_set_nosync(fs->m, fs->entry);
1798                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1799                         vm_page_dirty(fs->m);
1800                         swap_pager_unswapped(fs->m);
1801                 }
1802         }
1803
1804         vm_object_pip_wakeup(fs->first_object);
1805         vm_object_chain_release_all(fs->first_object, fs->object);
1806         if (fs->object != fs->first_object)
1807                 vm_object_drop(fs->object);
1808
1809         /*
1810          * Page had better still be busy.  We are still locked up and 
1811          * fs->object will have another PIP reference if it is not equal
1812          * to fs->first_object.
1813          */
1814         KASSERT(fs->m->flags & PG_BUSY,
1815                 ("vm_fault: page %p not busy!", fs->m));
1816
1817         /*
1818          * Sanity check: page must be completely valid or it is not fit to
1819          * map into user space.  vm_pager_get_pages() ensures this.
1820          */
1821         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1822                 vm_page_zero_invalid(fs->m, TRUE);
1823                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1824         }
1825         vm_page_flag_clear(fs->m, PG_ZERO);
1826
1827         return (KERN_SUCCESS);
1828 }
1829
1830 /*
1831  * Wire down a range of virtual addresses in a map.  The entry in question
1832  * should be marked in-transition and the map must be locked.  We must
1833  * release the map temporarily while faulting-in the page to avoid a
1834  * deadlock.  Note that the entry may be clipped while we are blocked but
1835  * will never be freed.
1836  *
1837  * No requirements.
1838  */
1839 int
1840 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1841 {
1842         boolean_t fictitious;
1843         vm_offset_t start;
1844         vm_offset_t end;
1845         vm_offset_t va;
1846         vm_paddr_t pa;
1847         vm_page_t m;
1848         pmap_t pmap;
1849         int rv;
1850
1851         lwkt_gettoken(&map->token);
1852
1853         pmap = vm_map_pmap(map);
1854         start = entry->start;
1855         end = entry->end;
1856         fictitious = entry->object.vm_object &&
1857                         (entry->object.vm_object->type == OBJT_DEVICE);
1858         if (entry->eflags & MAP_ENTRY_KSTACK)
1859                 start += PAGE_SIZE;
1860         map->timestamp++;
1861         vm_map_unlock(map);
1862
1863         /*
1864          * We simulate a fault to get the page and enter it in the physical
1865          * map.
1866          */
1867         for (va = start; va < end; va += PAGE_SIZE) {
1868                 if (user_wire) {
1869                         rv = vm_fault(map, va, VM_PROT_READ, 
1870                                         VM_FAULT_USER_WIRE);
1871                 } else {
1872                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1873                                         VM_FAULT_CHANGE_WIRING);
1874                 }
1875                 if (rv) {
1876                         while (va > start) {
1877                                 va -= PAGE_SIZE;
1878                                 if ((pa = pmap_extract(pmap, va)) == 0)
1879                                         continue;
1880                                 pmap_change_wiring(pmap, va, FALSE, entry);
1881                                 if (!fictitious) {
1882                                         m = PHYS_TO_VM_PAGE(pa);
1883                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
1884                                         vm_page_unwire(m, 1);
1885                                         vm_page_wakeup(m);
1886                                 }
1887                         }
1888                         goto done;
1889                 }
1890         }
1891         rv = KERN_SUCCESS;
1892 done:
1893         vm_map_lock(map);
1894         lwkt_reltoken(&map->token);
1895         return (rv);
1896 }
1897
1898 /*
1899  * Unwire a range of virtual addresses in a map.  The map should be
1900  * locked.
1901  */
1902 void
1903 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1904 {
1905         boolean_t fictitious;
1906         vm_offset_t start;
1907         vm_offset_t end;
1908         vm_offset_t va;
1909         vm_paddr_t pa;
1910         vm_page_t m;
1911         pmap_t pmap;
1912
1913         lwkt_gettoken(&map->token);
1914
1915         pmap = vm_map_pmap(map);
1916         start = entry->start;
1917         end = entry->end;
1918         fictitious = entry->object.vm_object &&
1919                         (entry->object.vm_object->type == OBJT_DEVICE);
1920         if (entry->eflags & MAP_ENTRY_KSTACK)
1921                 start += PAGE_SIZE;
1922
1923         /*
1924          * Since the pages are wired down, we must be able to get their
1925          * mappings from the physical map system.
1926          */
1927         for (va = start; va < end; va += PAGE_SIZE) {
1928                 pa = pmap_extract(pmap, va);
1929                 if (pa != 0) {
1930                         pmap_change_wiring(pmap, va, FALSE, entry);
1931                         if (!fictitious) {
1932                                 m = PHYS_TO_VM_PAGE(pa);
1933                                 vm_page_busy_wait(m, FALSE, "vmwupg");
1934                                 vm_page_unwire(m, 1);
1935                                 vm_page_wakeup(m);
1936                         }
1937                 }
1938         }
1939         lwkt_reltoken(&map->token);
1940 }
1941
1942 /*
1943  * Copy all of the pages from a wired-down map entry to another.
1944  *
1945  * The source and destination maps must be locked for write.
1946  * The source and destination maps token must be held
1947  * The source map entry must be wired down (or be a sharing map
1948  * entry corresponding to a main map entry that is wired down).
1949  *
1950  * No other requirements.
1951  *
1952  * XXX do segment optimization
1953  */
1954 void
1955 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1956                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1957 {
1958         vm_object_t dst_object;
1959         vm_object_t src_object;
1960         vm_ooffset_t dst_offset;
1961         vm_ooffset_t src_offset;
1962         vm_prot_t prot;
1963         vm_offset_t vaddr;
1964         vm_page_t dst_m;
1965         vm_page_t src_m;
1966
1967         src_object = src_entry->object.vm_object;
1968         src_offset = src_entry->offset;
1969
1970         /*
1971          * Create the top-level object for the destination entry. (Doesn't
1972          * actually shadow anything - we copy the pages directly.)
1973          */
1974         vm_map_entry_allocate_object(dst_entry);
1975         dst_object = dst_entry->object.vm_object;
1976
1977         prot = dst_entry->max_protection;
1978
1979         /*
1980          * Loop through all of the pages in the entry's range, copying each
1981          * one from the source object (it should be there) to the destination
1982          * object.
1983          */
1984         vm_object_hold(src_object);
1985         vm_object_hold(dst_object);
1986         for (vaddr = dst_entry->start, dst_offset = 0;
1987             vaddr < dst_entry->end;
1988             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1989
1990                 /*
1991                  * Allocate a page in the destination object
1992                  */
1993                 do {
1994                         dst_m = vm_page_alloc(dst_object,
1995                                               OFF_TO_IDX(dst_offset),
1996                                               VM_ALLOC_NORMAL);
1997                         if (dst_m == NULL) {
1998                                 vm_wait(0);
1999                         }
2000                 } while (dst_m == NULL);
2001
2002                 /*
2003                  * Find the page in the source object, and copy it in.
2004                  * (Because the source is wired down, the page will be in
2005                  * memory.)
2006                  */
2007                 src_m = vm_page_lookup(src_object,
2008                                        OFF_TO_IDX(dst_offset + src_offset));
2009                 if (src_m == NULL)
2010                         panic("vm_fault_copy_wired: page missing");
2011
2012                 vm_page_copy(src_m, dst_m);
2013                 vm_page_event(src_m, VMEVENT_COW);
2014
2015                 /*
2016                  * Enter it in the pmap...
2017                  */
2018
2019                 vm_page_flag_clear(dst_m, PG_ZERO);
2020                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2021
2022                 /*
2023                  * Mark it no longer busy, and put it on the active list.
2024                  */
2025                 vm_page_activate(dst_m);
2026                 vm_page_wakeup(dst_m);
2027         }
2028         vm_object_drop(dst_object);
2029         vm_object_drop(src_object);
2030 }
2031
2032 #if 0
2033
2034 /*
2035  * This routine checks around the requested page for other pages that
2036  * might be able to be faulted in.  This routine brackets the viable
2037  * pages for the pages to be paged in.
2038  *
2039  * Inputs:
2040  *      m, rbehind, rahead
2041  *
2042  * Outputs:
2043  *  marray (array of vm_page_t), reqpage (index of requested page)
2044  *
2045  * Return value:
2046  *  number of pages in marray
2047  */
2048 static int
2049 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2050                           vm_page_t *marray, int *reqpage)
2051 {
2052         int i,j;
2053         vm_object_t object;
2054         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2055         vm_page_t rtm;
2056         int cbehind, cahead;
2057
2058         object = m->object;
2059         pindex = m->pindex;
2060
2061         /*
2062          * we don't fault-ahead for device pager
2063          */
2064         if (object->type == OBJT_DEVICE) {
2065                 *reqpage = 0;
2066                 marray[0] = m;
2067                 return 1;
2068         }
2069
2070         /*
2071          * if the requested page is not available, then give up now
2072          */
2073         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2074                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2075                 return 0;
2076         }
2077
2078         if ((cbehind == 0) && (cahead == 0)) {
2079                 *reqpage = 0;
2080                 marray[0] = m;
2081                 return 1;
2082         }
2083
2084         if (rahead > cahead) {
2085                 rahead = cahead;
2086         }
2087
2088         if (rbehind > cbehind) {
2089                 rbehind = cbehind;
2090         }
2091
2092         /*
2093          * Do not do any readahead if we have insufficient free memory.
2094          *
2095          * XXX code was broken disabled before and has instability
2096          * with this conditonal fixed, so shortcut for now.
2097          */
2098         if (burst_fault == 0 || vm_page_count_severe()) {
2099                 marray[0] = m;
2100                 *reqpage = 0;
2101                 return 1;
2102         }
2103
2104         /*
2105          * scan backward for the read behind pages -- in memory 
2106          *
2107          * Assume that if the page is not found an interrupt will not
2108          * create it.  Theoretically interrupts can only remove (busy)
2109          * pages, not create new associations.
2110          */
2111         if (pindex > 0) {
2112                 if (rbehind > pindex) {
2113                         rbehind = pindex;
2114                         startpindex = 0;
2115                 } else {
2116                         startpindex = pindex - rbehind;
2117                 }
2118
2119                 vm_object_hold(object);
2120                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2121                         if (vm_page_lookup(object, tpindex - 1))
2122                                 break;
2123                 }
2124
2125                 i = 0;
2126                 while (tpindex < pindex) {
2127                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2128                                                              VM_ALLOC_NULL_OK);
2129                         if (rtm == NULL) {
2130                                 for (j = 0; j < i; j++) {
2131                                         vm_page_free(marray[j]);
2132                                 }
2133                                 vm_object_drop(object);
2134                                 marray[0] = m;
2135                                 *reqpage = 0;
2136                                 return 1;
2137                         }
2138                         marray[i] = rtm;
2139                         ++i;
2140                         ++tpindex;
2141                 }
2142                 vm_object_drop(object);
2143         } else {
2144                 i = 0;
2145         }
2146
2147         /*
2148          * Assign requested page
2149          */
2150         marray[i] = m;
2151         *reqpage = i;
2152         ++i;
2153
2154         /*
2155          * Scan forwards for read-ahead pages
2156          */
2157         tpindex = pindex + 1;
2158         endpindex = tpindex + rahead;
2159         if (endpindex > object->size)
2160                 endpindex = object->size;
2161
2162         vm_object_hold(object);
2163         while (tpindex < endpindex) {
2164                 if (vm_page_lookup(object, tpindex))
2165                         break;
2166                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2167                                                      VM_ALLOC_NULL_OK);
2168                 if (rtm == NULL)
2169                         break;
2170                 marray[i] = rtm;
2171                 ++i;
2172                 ++tpindex;
2173         }
2174         vm_object_drop(object);
2175
2176         return (i);
2177 }
2178
2179 #endif
2180
2181 /*
2182  * vm_prefault() provides a quick way of clustering pagefaults into a
2183  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2184  * except it runs at page fault time instead of mmap time.
2185  *
2186  * vm.fast_fault        Enables pre-faulting zero-fill pages
2187  *
2188  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2189  *                      prefault.  Scan stops in either direction when
2190  *                      a page is found to already exist.
2191  *
2192  * This code used to be per-platform pmap_prefault().  It is now
2193  * machine-independent and enhanced to also pre-fault zero-fill pages
2194  * (see vm.fast_fault) as well as make them writable, which greatly
2195  * reduces the number of page faults programs incur.
2196  *
2197  * Application performance when pre-faulting zero-fill pages is heavily
2198  * dependent on the application.  Very tiny applications like /bin/echo
2199  * lose a little performance while applications of any appreciable size
2200  * gain performance.  Prefaulting multiple pages also reduces SMP
2201  * congestion and can improve SMP performance significantly.
2202  *
2203  * NOTE!  prot may allow writing but this only applies to the top level
2204  *        object.  If we wind up mapping a page extracted from a backing
2205  *        object we have to make sure it is read-only.
2206  *
2207  * NOTE!  The caller has already handled any COW operations on the
2208  *        vm_map_entry via the normal fault code.  Do NOT call this
2209  *        shortcut unless the normal fault code has run on this entry.
2210  *
2211  * The related map must be locked.
2212  * No other requirements.
2213  */
2214 static int vm_prefault_pages = 8;
2215 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2216            "Maximum number of pages to pre-fault");
2217 static int vm_fast_fault = 1;
2218 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2219            "Burst fault zero-fill regions");
2220
2221 /*
2222  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2223  * is not already dirty by other means.  This will prevent passive
2224  * filesystem syncing as well as 'sync' from writing out the page.
2225  */
2226 static void
2227 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2228 {
2229         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2230                 if (m->dirty == 0)
2231                         vm_page_flag_set(m, PG_NOSYNC);
2232         } else {
2233                 vm_page_flag_clear(m, PG_NOSYNC);
2234         }
2235 }
2236
2237 static void
2238 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2239             int fault_flags)
2240 {
2241         struct lwp *lp;
2242         vm_page_t m;
2243         vm_offset_t addr;
2244         vm_pindex_t index;
2245         vm_pindex_t pindex;
2246         vm_object_t object;
2247         int pprot;
2248         int i;
2249         int noneg;
2250         int nopos;
2251         int maxpages;
2252
2253         /*
2254          * Get stable max count value, disabled if set to 0
2255          */
2256         maxpages = vm_prefault_pages;
2257         cpu_ccfence();
2258         if (maxpages <= 0)
2259                 return;
2260
2261         /*
2262          * We do not currently prefault mappings that use virtual page
2263          * tables.  We do not prefault foreign pmaps.
2264          */
2265         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2266                 return;
2267         lp = curthread->td_lwp;
2268         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2269                 return;
2270
2271         /*
2272          * Limit pre-fault count to 1024 pages.
2273          */
2274         if (maxpages > 1024)
2275                 maxpages = 1024;
2276
2277         object = entry->object.vm_object;
2278         KKASSERT(object != NULL);
2279         KKASSERT(object == entry->object.vm_object);
2280         vm_object_hold(object);
2281         vm_object_chain_acquire(object);
2282
2283         noneg = 0;
2284         nopos = 0;
2285         for (i = 0; i < maxpages; ++i) {
2286                 vm_object_t lobject;
2287                 vm_object_t nobject;
2288                 int allocated = 0;
2289                 int error;
2290
2291                 /*
2292                  * This can eat a lot of time on a heavily contended
2293                  * machine so yield on the tick if needed.
2294                  */
2295                 if ((i & 7) == 7)
2296                         lwkt_yield();
2297
2298                 /*
2299                  * Calculate the page to pre-fault, stopping the scan in
2300                  * each direction separately if the limit is reached.
2301                  */
2302                 if (i & 1) {
2303                         if (noneg)
2304                                 continue;
2305                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2306                 } else {
2307                         if (nopos)
2308                                 continue;
2309                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2310                 }
2311                 if (addr < entry->start) {
2312                         noneg = 1;
2313                         if (noneg && nopos)
2314                                 break;
2315                         continue;
2316                 }
2317                 if (addr >= entry->end) {
2318                         nopos = 1;
2319                         if (noneg && nopos)
2320                                 break;
2321                         continue;
2322                 }
2323
2324                 /*
2325                  * Skip pages already mapped, and stop scanning in that
2326                  * direction.  When the scan terminates in both directions
2327                  * we are done.
2328                  */
2329                 if (pmap_prefault_ok(pmap, addr) == 0) {
2330                         if (i & 1)
2331                                 noneg = 1;
2332                         else
2333                                 nopos = 1;
2334                         if (noneg && nopos)
2335                                 break;
2336                         continue;
2337                 }
2338
2339                 /*
2340                  * Follow the VM object chain to obtain the page to be mapped
2341                  * into the pmap.
2342                  *
2343                  * If we reach the terminal object without finding a page
2344                  * and we determine it would be advantageous, then allocate
2345                  * a zero-fill page for the base object.  The base object
2346                  * is guaranteed to be OBJT_DEFAULT for this case.
2347                  *
2348                  * In order to not have to check the pager via *haspage*()
2349                  * we stop if any non-default object is encountered.  e.g.
2350                  * a vnode or swap object would stop the loop.
2351                  */
2352                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2353                 lobject = object;
2354                 pindex = index;
2355                 pprot = prot;
2356
2357                 KKASSERT(lobject == entry->object.vm_object);
2358                 /*vm_object_hold(lobject); implied */
2359
2360                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2361                                                     TRUE, &error)) == NULL) {
2362                         if (lobject->type != OBJT_DEFAULT)
2363                                 break;
2364                         if (lobject->backing_object == NULL) {
2365                                 if (vm_fast_fault == 0)
2366                                         break;
2367                                 if ((prot & VM_PROT_WRITE) == 0 ||
2368                                     vm_page_count_min(0)) {
2369                                         break;
2370                                 }
2371
2372                                 /*
2373                                  * NOTE: Allocated from base object
2374                                  */
2375                                 m = vm_page_alloc(object, index,
2376                                                   VM_ALLOC_NORMAL |
2377                                                   VM_ALLOC_ZERO |
2378                                                   VM_ALLOC_USE_GD |
2379                                                   VM_ALLOC_NULL_OK);
2380                                 if (m == NULL)
2381                                         break;
2382                                 allocated = 1;
2383                                 pprot = prot;
2384                                 /* lobject = object .. not needed */
2385                                 break;
2386                         }
2387                         if (lobject->backing_object_offset & PAGE_MASK)
2388                                 break;
2389                         nobject = lobject->backing_object;
2390                         vm_object_hold(nobject);
2391                         KKASSERT(nobject == lobject->backing_object);
2392                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2393                         if (lobject != object) {
2394                                 vm_object_lock_swap();
2395                                 vm_object_drop(lobject);
2396                         }
2397                         lobject = nobject;
2398                         pprot &= ~VM_PROT_WRITE;
2399                         vm_object_chain_acquire(lobject);
2400                 }
2401
2402                 /*
2403                  * NOTE: A non-NULL (m) will be associated with lobject if
2404                  *       it was found there, otherwise it is probably a
2405                  *       zero-fill page associated with the base object.
2406                  *
2407                  * Give-up if no page is available.
2408                  */
2409                 if (m == NULL) {
2410                         if (lobject != object) {
2411                                 if (object->backing_object != lobject)
2412                                         vm_object_hold(object->backing_object);
2413                                 vm_object_chain_release_all(
2414                                         object->backing_object, lobject);
2415                                 if (object->backing_object != lobject)
2416                                         vm_object_drop(object->backing_object);
2417                                 vm_object_drop(lobject);
2418                         }
2419                         break;
2420                 }
2421
2422                 /*
2423                  * The object must be marked dirty if we are mapping a
2424                  * writable page.  m->object is either lobject or object,
2425                  * both of which are still held.  Do this before we
2426                  * potentially drop the object.
2427                  */
2428                 if (pprot & VM_PROT_WRITE)
2429                         vm_object_set_writeable_dirty(m->object);
2430
2431                 /*
2432                  * Do not conditionalize on PG_RAM.  If pages are present in
2433                  * the VM system we assume optimal caching.  If caching is
2434                  * not optimal the I/O gravy train will be restarted when we
2435                  * hit an unavailable page.  We do not want to try to restart
2436                  * the gravy train now because we really don't know how much
2437                  * of the object has been cached.  The cost for restarting
2438                  * the gravy train should be low (since accesses will likely
2439                  * be I/O bound anyway).
2440                  */
2441                 if (lobject != object) {
2442                         if (object->backing_object != lobject)
2443                                 vm_object_hold(object->backing_object);
2444                         vm_object_chain_release_all(object->backing_object,
2445                                                     lobject);
2446                         if (object->backing_object != lobject)
2447                                 vm_object_drop(object->backing_object);
2448                         vm_object_drop(lobject);
2449                 }
2450
2451                 /*
2452                  * Enter the page into the pmap if appropriate.  If we had
2453                  * allocated the page we have to place it on a queue.  If not
2454                  * we just have to make sure it isn't on the cache queue
2455                  * (pages on the cache queue are not allowed to be mapped).
2456                  */
2457                 if (allocated) {
2458                         /*
2459                          * Page must be zerod.
2460                          */
2461                         if ((m->flags & PG_ZERO) == 0) {
2462                                 vm_page_zero_fill(m);
2463                         } else {
2464 #ifdef PMAP_DEBUG
2465                                 pmap_page_assertzero(
2466                                                 VM_PAGE_TO_PHYS(m));
2467 #endif
2468                                 vm_page_flag_clear(m, PG_ZERO);
2469                                 mycpu->gd_cnt.v_ozfod++;
2470                         }
2471                         mycpu->gd_cnt.v_zfod++;
2472                         m->valid = VM_PAGE_BITS_ALL;
2473
2474                         /*
2475                          * Handle dirty page case
2476                          */
2477                         if (pprot & VM_PROT_WRITE)
2478                                 vm_set_nosync(m, entry);
2479                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2480                         mycpu->gd_cnt.v_vm_faults++;
2481                         if (curthread->td_lwp)
2482                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2483                         vm_page_deactivate(m);
2484                         if (pprot & VM_PROT_WRITE) {
2485                                 /*vm_object_set_writeable_dirty(m->object);*/
2486                                 vm_set_nosync(m, entry);
2487                                 if (fault_flags & VM_FAULT_DIRTY) {
2488                                         vm_page_dirty(m);
2489                                         /*XXX*/
2490                                         swap_pager_unswapped(m);
2491                                 }
2492                         }
2493                         vm_page_wakeup(m);
2494                 } else if (error) {
2495                         /* couldn't busy page, no wakeup */
2496                 } else if (
2497                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2498                     (m->flags & PG_FICTITIOUS) == 0) {
2499                         /*
2500                          * A fully valid page not undergoing soft I/O can
2501                          * be immediately entered into the pmap.
2502                          */
2503                         if ((m->queue - m->pc) == PQ_CACHE)
2504                                 vm_page_deactivate(m);
2505                         if (pprot & VM_PROT_WRITE) {
2506                                 /*vm_object_set_writeable_dirty(m->object);*/
2507                                 vm_set_nosync(m, entry);
2508                                 if (fault_flags & VM_FAULT_DIRTY) {
2509                                         vm_page_dirty(m);
2510                                         /*XXX*/
2511                                         swap_pager_unswapped(m);
2512                                 }
2513                         }
2514                         if (pprot & VM_PROT_WRITE)
2515                                 vm_set_nosync(m, entry);
2516                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2517                         mycpu->gd_cnt.v_vm_faults++;
2518                         if (curthread->td_lwp)
2519                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2520                         vm_page_wakeup(m);
2521                 } else {
2522                         vm_page_wakeup(m);
2523                 }
2524         }
2525         vm_object_chain_release(object);
2526         vm_object_drop(object);
2527 }
2528
2529 static void
2530 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2531                   vm_map_entry_t entry, int prot, int fault_flags)
2532 {
2533         struct lwp *lp;
2534         vm_page_t m;
2535         vm_offset_t addr;
2536         vm_pindex_t pindex;
2537         vm_object_t object;
2538         int i;
2539         int noneg;
2540         int nopos;
2541         int maxpages;
2542
2543         /*
2544          * Get stable max count value, disabled if set to 0
2545          */
2546         maxpages = vm_prefault_pages;
2547         cpu_ccfence();
2548         if (maxpages <= 0)
2549                 return;
2550
2551         /*
2552          * We do not currently prefault mappings that use virtual page
2553          * tables.  We do not prefault foreign pmaps.
2554          */
2555         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2556                 return;
2557         lp = curthread->td_lwp;
2558         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2559                 return;
2560
2561         /*
2562          * Limit pre-fault count to 1024 pages.
2563          */
2564         if (maxpages > 1024)
2565                 maxpages = 1024;
2566
2567         object = entry->object.vm_object;
2568         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2569         KKASSERT(object->backing_object == NULL);
2570
2571         noneg = 0;
2572         nopos = 0;
2573         for (i = 0; i < maxpages; ++i) {
2574                 int error;
2575
2576                 /*
2577                  * Calculate the page to pre-fault, stopping the scan in
2578                  * each direction separately if the limit is reached.
2579                  */
2580                 if (i & 1) {
2581                         if (noneg)
2582                                 continue;
2583                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2584                 } else {
2585                         if (nopos)
2586                                 continue;
2587                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2588                 }
2589                 if (addr < entry->start) {
2590                         noneg = 1;
2591                         if (noneg && nopos)
2592                                 break;
2593                         continue;
2594                 }
2595                 if (addr >= entry->end) {
2596                         nopos = 1;
2597                         if (noneg && nopos)
2598                                 break;
2599                         continue;
2600                 }
2601
2602                 /*
2603                  * Skip pages already mapped, and stop scanning in that
2604                  * direction.  When the scan terminates in both directions
2605                  * we are done.
2606                  */
2607                 if (pmap_prefault_ok(pmap, addr) == 0) {
2608                         if (i & 1)
2609                                 noneg = 1;
2610                         else
2611                                 nopos = 1;
2612                         if (noneg && nopos)
2613                                 break;
2614                         continue;
2615                 }
2616
2617                 /*
2618                  * Follow the VM object chain to obtain the page to be mapped
2619                  * into the pmap.  This version of the prefault code only
2620                  * works with terminal objects.
2621                  *
2622                  * WARNING!  We cannot call swap_pager_unswapped() with a
2623                  *           shared token.
2624                  */
2625                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2626
2627                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2628                 if (m == NULL || error)
2629                         continue;
2630
2631                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2632                     (m->flags & PG_FICTITIOUS) == 0 &&
2633                     ((m->flags & PG_SWAPPED) == 0 ||
2634                      (prot & VM_PROT_WRITE) == 0 ||
2635                      (fault_flags & VM_FAULT_DIRTY) == 0)) {
2636                         /*
2637                          * A fully valid page not undergoing soft I/O can
2638                          * be immediately entered into the pmap.
2639                          */
2640                         if ((m->queue - m->pc) == PQ_CACHE)
2641                                 vm_page_deactivate(m);
2642                         if (prot & VM_PROT_WRITE) {
2643                                 vm_object_set_writeable_dirty(m->object);
2644                                 vm_set_nosync(m, entry);
2645                                 if (fault_flags & VM_FAULT_DIRTY) {
2646                                         vm_page_dirty(m);
2647                                         /*XXX*/
2648                                         swap_pager_unswapped(m);
2649                                 }
2650                         }
2651                         pmap_enter(pmap, addr, m, prot, 0, entry);
2652                         mycpu->gd_cnt.v_vm_faults++;
2653                         if (curthread->td_lwp)
2654                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2655                 }
2656                 vm_page_wakeup(m);
2657         }
2658 }