Open source ath(4) HAL code.
[dragonfly.git] / sys / dev / netif / ath / hal / ath_hal / ar5212 / ar2317.c
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar2317.c,v 1.8 2008/11/15 22:15:46 sam Exp $
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2317
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 typedef RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
36 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
37 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
38
39 struct ar2317State {
40         RF_HAL_FUNCS    base;           /* public state, must be first */
41         uint16_t        pcdacTable[PWR_TABLE_SIZE_2317];
42
43         uint32_t        Bank1Data[N(ar5212Bank1_2317)];
44         uint32_t        Bank2Data[N(ar5212Bank2_2317)];
45         uint32_t        Bank3Data[N(ar5212Bank3_2317)];
46         uint32_t        Bank6Data[N(ar5212Bank6_2317)];
47         uint32_t        Bank7Data[N(ar5212Bank7_2317)];
48
49         /*
50          * Private state for reduced stack usage.
51          */
52         /* filled out Vpd table for all pdGains (chanL) */
53         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
54                             [MAX_PWR_RANGE_IN_HALF_DB];
55         /* filled out Vpd table for all pdGains (chanR) */
56         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
57                             [MAX_PWR_RANGE_IN_HALF_DB];
58         /* filled out Vpd table for all pdGains (interpolated) */
59         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
60                             [MAX_PWR_RANGE_IN_HALF_DB];
61 };
62 #define AR2317(ah)      ((struct ar2317State *) AH5212(ah)->ah_rfHal)
63
64 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
65                 uint32_t numBits, uint32_t firstBit, uint32_t column);
66
67 static void
68 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
69         int writes)
70 {
71         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
72         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
73         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
74 }
75
76 /*
77  * Take the MHz channel value and set the Channel value
78  *
79  * ASSUMES: Writes enabled to analog bus
80  */
81 static HAL_BOOL
82 ar2317SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
83 {
84         uint32_t channelSel  = 0;
85         uint32_t bModeSynth  = 0;
86         uint32_t aModeRefSel = 0;
87         uint32_t reg32       = 0;
88
89         OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
90
91         if (chan->channel < 4800) {
92                 uint32_t txctl;
93                 channelSel = chan->channel - 2272 ;
94                 channelSel = ath_hal_reverseBits(channelSel, 8);
95
96                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
97                 if (chan->channel == 2484) {
98                         /* Enable channel spreading for channel 14 */
99                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
100                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
101                 } else {
102                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
103                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
104                 }
105         } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
106                 channelSel = ath_hal_reverseBits(
107                         ((chan->channel - 4800) / 20 << 2), 8);
108                 aModeRefSel = ath_hal_reverseBits(3, 2);
109         } else if ((chan->channel % 10) == 0) {
110                 channelSel = ath_hal_reverseBits(
111                         ((chan->channel - 4800) / 10 << 1), 8);
112                 aModeRefSel = ath_hal_reverseBits(2, 2);
113         } else if ((chan->channel % 5) == 0) {
114                 channelSel = ath_hal_reverseBits(
115                         (chan->channel - 4800) / 5, 8);
116                 aModeRefSel = ath_hal_reverseBits(1, 2);
117         } else {
118                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
119                     __func__, chan->channel);
120                 return AH_FALSE;
121         }
122
123         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
124                         (1 << 12) | 0x1;
125         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
126
127         reg32 >>= 8;
128         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
129
130         AH_PRIVATE(ah)->ah_curchan = chan;
131         return AH_TRUE;
132 }
133
134 /*
135  * Reads EEPROM header info from device structure and programs
136  * all rf registers
137  *
138  * REQUIRES: Access to the analog rf device
139  */
140 static HAL_BOOL
141 ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
142 {
143 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
144         int i;                                                              \
145         for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)                     \
146                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
147 } while (0)
148         struct ath_hal_5212 *ahp = AH5212(ah);
149         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
150         uint16_t ob2GHz = 0, db2GHz = 0;
151         struct ar2317State *priv = AR2317(ah);
152         int regWrites = 0;
153
154         HALDEBUG(ah, HAL_DEBUG_RFPARAM,
155             "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
156             __func__, chan->channel, chan->channelFlags, modesIndex);
157
158         HALASSERT(priv);
159
160         /* Setup rf parameters */
161         switch (chan->channelFlags & CHANNEL_ALL) {
162         case CHANNEL_B:
163                 ob2GHz = ee->ee_obFor24;
164                 db2GHz = ee->ee_dbFor24;
165                 break;
166         case CHANNEL_G:
167         case CHANNEL_108G:
168                 ob2GHz = ee->ee_obFor24g;
169                 db2GHz = ee->ee_dbFor24g;
170                 break;
171         default:
172                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
173                     __func__, chan->channelFlags);
174                 return AH_FALSE;
175         }
176
177         /* Bank 1 Write */
178         RF_BANK_SETUP(priv, 1, 1);
179
180         /* Bank 2 Write */
181         RF_BANK_SETUP(priv, 2, modesIndex);
182
183         /* Bank 3 Write */
184         RF_BANK_SETUP(priv, 3, modesIndex);
185
186         /* Bank 6 Write */
187         RF_BANK_SETUP(priv, 6, modesIndex);
188
189         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
190         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
191
192         /* Bank 7 Setup */
193         RF_BANK_SETUP(priv, 7, modesIndex);
194
195         /* Write Analog registers */
196         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
197         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
198         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
199         HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
200         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);   
201         /* Now that we have reprogrammed rfgain value, clear the flag. */
202         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
203
204         return AH_TRUE;
205 #undef  RF_BANK_SETUP
206 }
207
208 /*
209  * Return a reference to the requested RF Bank.
210  */
211 static uint32_t *
212 ar2317GetRfBank(struct ath_hal *ah, int bank)
213 {
214         struct ar2317State *priv = AR2317(ah);
215
216         HALASSERT(priv != AH_NULL);
217         switch (bank) {
218         case 1: return priv->Bank1Data;
219         case 2: return priv->Bank2Data;
220         case 3: return priv->Bank3Data;
221         case 6: return priv->Bank6Data;
222         case 7: return priv->Bank7Data;
223         }
224         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
225             __func__, bank);
226         return AH_NULL;
227 }
228
229 /*
230  * Return indices surrounding the value in sorted integer lists.
231  *
232  * NB: the input list is assumed to be sorted in ascending order
233  */
234 static void
235 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
236                           uint32_t *vlo, uint32_t *vhi)
237 {
238         int16_t target = v;
239         const int16_t *ep = lp+listSize;
240         const int16_t *tp;
241
242         /*
243          * Check first and last elements for out-of-bounds conditions.
244          */
245         if (target < lp[0]) {
246                 *vlo = *vhi = 0;
247                 return;
248         }
249         if (target >= ep[-1]) {
250                 *vlo = *vhi = listSize - 1;
251                 return;
252         }
253
254         /* look for value being near or between 2 values in list */
255         for (tp = lp; tp < ep; tp++) {
256                 /*
257                  * If value is close to the current value of the list
258                  * then target is not between values, it is one of the values
259                  */
260                 if (*tp == target) {
261                         *vlo = *vhi = tp - (const int16_t *) lp;
262                         return;
263                 }
264                 /*
265                  * Look for value being between current value and next value
266                  * if so return these 2 values
267                  */
268                 if (target < tp[1]) {
269                         *vlo = tp - (const int16_t *) lp;
270                         *vhi = *vlo + 1;
271                         return;
272                 }
273         }
274 }
275
276 /*
277  * Fill the Vpdlist for indices Pmax-Pmin
278  */
279 static HAL_BOOL
280 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
281                    const int16_t *pwrList, const int16_t *VpdList,
282                    uint16_t numIntercepts, uint16_t retVpdList[][64])
283 {
284         uint16_t ii, jj, kk;
285         int16_t currPwr = (int16_t)(2*Pmin);
286         /* since Pmin is pwr*2 and pwrList is 4*pwr */
287         uint32_t  idxL, idxR;
288
289         ii = 0;
290         jj = 0;
291
292         if (numIntercepts < 2)
293                 return AH_FALSE;
294
295         while (ii <= (uint16_t)(Pmax - Pmin)) {
296                 GetLowerUpperIndex(currPwr, pwrList, numIntercepts, 
297                                          &(idxL), &(idxR));
298                 if (idxR < 1)
299                         idxR = 1;                       /* extrapolate below */
300                 if (idxL == (uint32_t)(numIntercepts - 1))
301                         idxL = numIntercepts - 2;       /* extrapolate above */
302                 if (pwrList[idxL] == pwrList[idxR])
303                         kk = VpdList[idxL];
304                 else
305                         kk = (uint16_t)
306                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
307                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
308                                  (pwrList[idxR] - pwrList[idxL]));
309                 retVpdList[pdGainIdx][ii] = kk;
310                 ii++;
311                 currPwr += 2;                           /* half dB steps */
312         }
313
314         return AH_TRUE;
315 }
316
317 /*
318  * Returns interpolated or the scaled up interpolated value
319  */
320 static int16_t
321 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
322         int16_t targetLeft, int16_t targetRight)
323 {
324         int16_t rv;
325
326         if (srcRight != srcLeft) {
327                 rv = ((target - srcLeft)*targetRight +
328                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
329         } else {
330                 rv = targetLeft;
331         }
332         return rv;
333 }
334
335 /*
336  * Uses the data points read from EEPROM to reconstruct the pdadc power table
337  * Called by ar2317SetPowerTable()
338  */
339 static int 
340 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
341                 const RAW_DATA_STRUCT_2317 *pRawDataset,
342                 uint16_t pdGainOverlap_t2, 
343                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
344                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
345 {
346         struct ar2317State *priv = AR2317(ah);
347 #define VpdTable_L      priv->vpdTable_L
348 #define VpdTable_R      priv->vpdTable_R
349 #define VpdTable_I      priv->vpdTable_I
350         /* XXX excessive stack usage? */
351         uint32_t ii, jj, kk;
352         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
353         uint32_t idxL, idxR;
354         uint32_t numPdGainsUsed = 0;
355         /* 
356          * If desired to support -ve power levels in future, just
357          * change pwr_I_0 to signed 5-bits.
358          */
359         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
360         /* to accomodate -ve power levels later on. */
361         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
362         /* to accomodate -ve power levels later on */
363         uint16_t numVpd = 0;
364         uint16_t Vpd_step;
365         int16_t tmpVal ; 
366         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
367
368         /* Get upper lower index */
369         GetLowerUpperIndex(channel, pRawDataset->pChannels,
370                                  pRawDataset->numChannels, &(idxL), &(idxR));
371
372         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
373                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
374                 /* work backwards 'cause highest pdGain for lowest power */
375                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
376                 if (numVpd > 0) {
377                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
378                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
379                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
380                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
381                         }
382                         Pmin_t2[numPdGainsUsed] = (int16_t)
383                                 (Pmin_t2[numPdGainsUsed] / 2);
384                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
385                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
386                                 Pmax_t2[numPdGainsUsed] = 
387                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
388                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
389                         ar2317FillVpdTable(
390                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
391                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
392                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
393                                            );
394                         ar2317FillVpdTable(
395                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
396                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
397                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
398                                            );
399                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
400                                 VpdTable_I[numPdGainsUsed][kk] = 
401                                         interpolate_signed(
402                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
403                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
404                         }
405                         /* fill VpdTable_I for this pdGain */
406                         numPdGainsUsed++;
407                 }
408                 /* if this pdGain is used */
409         }
410
411         *pMinCalPower = Pmin_t2[0];
412         kk = 0; /* index for the final table */
413         for (ii = 0; ii < numPdGainsUsed; ii++) {
414                 if (ii == (numPdGainsUsed - 1))
415                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
416                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
417                 else 
418                         pPdGainBoundaries[ii] = (uint16_t)
419                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
420                 if (pPdGainBoundaries[ii] > 63) {
421                         HALDEBUG(ah, HAL_DEBUG_ANY,
422                             "%s: clamp pPdGainBoundaries[%d] %d\n",
423                            __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
424                         pPdGainBoundaries[ii] = 63;
425                 }
426
427                 /* Find starting index for this pdGain */
428                 if (ii == 0) 
429                         ss = 0; /* for the first pdGain, start from index 0 */
430                 else 
431                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
432                                 pdGainOverlap_t2;
433                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
434                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
435                 /*
436                  *-ve ss indicates need to extrapolate data below for this pdGain
437                  */
438                 while (ss < 0) {
439                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
440                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
441                         ss++;
442                 }
443
444                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
445                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
446                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
447
448                 while (ss < (int16_t)maxIndex)
449                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
450
451                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
452                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
453                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
454                 /*
455                  * for last gain, pdGainBoundary == Pmax_t2, so will 
456                  * have to extrapolate
457                  */
458                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
459                         while(ss < (int16_t)tgtIndex) {
460                                 tmpVal = (uint16_t)
461                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
462                                          (ss-maxIndex)*Vpd_step);
463                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
464                                         127 : tmpVal;
465                                 ss++;
466                         }
467                 }                               /* extrapolated above */
468         }                                       /* for all pdGainUsed */
469
470         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
471                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
472                 ii++;
473         }
474         while (kk < 128) {
475                 pPDADCValues[kk] = pPDADCValues[kk-1];
476                 kk++;
477         }
478
479         return numPdGainsUsed;
480 #undef VpdTable_L
481 #undef VpdTable_R
482 #undef VpdTable_I
483 }
484
485 static HAL_BOOL
486 ar2317SetPowerTable(struct ath_hal *ah,
487         int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, 
488         uint16_t *rfXpdGain)
489 {
490         struct ath_hal_5212 *ahp = AH5212(ah);
491         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
492         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
493         uint16_t pdGainOverlap_t2;
494         int16_t minCalPower2317_t2;
495         uint16_t *pdadcValues = ahp->ah_pcdacTable;
496         uint16_t gainBoundaries[4];
497         uint32_t reg32, regoffset;
498         int i, numPdGainsUsed;
499 #ifndef AH_USE_INIPDGAIN
500         uint32_t tpcrg1;
501 #endif
502
503         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
504             __func__, chan->channel,chan->channelFlags);
505
506         if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
507                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
508         else if (IS_CHAN_B(chan))
509                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
510         else {
511                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
512                 return AH_FALSE;
513         }
514
515         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
516                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
517     
518         numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
519                 chan->channel, pRawDataset, pdGainOverlap_t2,
520                 &minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
521         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
522
523 #ifdef AH_USE_INIPDGAIN
524         /*
525          * Use pd_gains curve from eeprom; Atheros always uses
526          * the default curve from the ini file but some vendors
527          * (e.g. Zcomax) want to override this curve and not
528          * honoring their settings results in tx power 5dBm low.
529          */
530         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
531                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
532 #else
533         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
534         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
535                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
536         switch (numPdGainsUsed) {
537         case 3:
538                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
539                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
540                 /* fall thru... */
541         case 2:
542                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
543                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
544                 /* fall thru... */
545         case 1:
546                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
547                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
548                 break;
549         }
550 #ifdef AH_DEBUG
551         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
552                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
553                     "pd_gains (default 0x%x, calculated 0x%x)\n",
554                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
555 #endif
556         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
557 #endif
558
559         /*
560          * Note the pdadc table may not start at 0 dBm power, could be
561          * negative or greater than 0.  Need to offset the power
562          * values by the amount of minPower for griffin
563          */
564         if (minCalPower2317_t2 != 0)
565                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
566         else
567                 ahp->ah_txPowerIndexOffset = 0;
568
569         /* Finally, write the power values into the baseband power table */
570         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
571         for (i = 0; i < 32; i++) {
572                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
573                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
574                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
575                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
576                 OS_REG_WRITE(ah, regoffset, reg32);
577                 regoffset += 4;
578         }
579
580         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
581                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
582                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
583                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
584                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
585                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
586
587         return AH_TRUE;
588 }
589
590 static int16_t
591 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
592 {
593         uint32_t ii,jj;
594         uint16_t Pmin=0,numVpd;
595
596         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
597                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
598                 /* work backwards 'cause highest pdGain for lowest power */
599                 numVpd = data->pDataPerPDGain[jj].numVpd;
600                 if (numVpd > 0) {
601                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
602                         return(Pmin);
603                 }
604         }
605         return(Pmin);
606 }
607
608 static int16_t
609 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
610 {
611         uint32_t ii;
612         uint16_t Pmax=0,numVpd;
613         uint16_t vpdmax;
614         
615         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
616                 /* work forwards cuase lowest pdGain for highest power */
617                 numVpd = data->pDataPerPDGain[ii].numVpd;
618                 if (numVpd > 0) {
619                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
620                         vpdmax = data->pDataPerPDGain[ii].Vpd[numVpd-1];
621                         return(Pmax);
622                 }
623         }
624         return(Pmax);
625 }
626
627 static HAL_BOOL
628 ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
629         int16_t *maxPow, int16_t *minPow)
630 {
631         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
632         const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
633         const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
634         uint16_t numChannels;
635         int totalD,totalF, totalMin,last, i;
636
637         *maxPow = 0;
638
639         if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
640                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
641         else if (IS_CHAN_B(chan))
642                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
643         else
644                 return(AH_FALSE);
645
646         numChannels = pRawDataset->numChannels;
647         data = pRawDataset->pDataPerChannel;
648         
649         /* Make sure the channel is in the range of the TP values 
650          *  (freq piers)
651          */
652         if (numChannels < 1)
653                 return(AH_FALSE);
654
655         if ((chan->channel < data[0].channelValue) ||
656             (chan->channel > data[numChannels-1].channelValue)) {
657                 if (chan->channel < data[0].channelValue) {
658                         *maxPow = ar2317GetMaxPower(ah, &data[0]);
659                         *minPow = ar2317GetMinPower(ah, &data[0]);
660                         return(AH_TRUE);
661                 } else {
662                         *maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
663                         *minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
664                         return(AH_TRUE);
665                 }
666         }
667
668         /* Linearly interpolate the power value now */
669         for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
670              last = i++);
671         totalD = data[i].channelValue - data[last].channelValue;
672         if (totalD > 0) {
673                 totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
674                 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + 
675                                      ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
676                 totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
677                 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
678                                      ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
679                 return(AH_TRUE);
680         } else {
681                 if (chan->channel == data[i].channelValue) {
682                         *maxPow = ar2317GetMaxPower(ah, &data[i]);
683                         *minPow = ar2317GetMinPower(ah, &data[i]);
684                         return(AH_TRUE);
685                 } else
686                         return(AH_FALSE);
687         }
688 }
689
690 /*
691  * Free memory for analog bank scratch buffers
692  */
693 static void
694 ar2317RfDetach(struct ath_hal *ah)
695 {
696         struct ath_hal_5212 *ahp = AH5212(ah);
697
698         HALASSERT(ahp->ah_rfHal != AH_NULL);
699         ath_hal_free(ahp->ah_rfHal);
700         ahp->ah_rfHal = AH_NULL;
701 }
702
703 /*
704  * Allocate memory for analog bank scratch buffers
705  * Scratch Buffer will be reinitialized every reset so no need to zero now
706  */
707 static HAL_BOOL
708 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
709 {
710         struct ath_hal_5212 *ahp = AH5212(ah);
711         struct ar2317State *priv;
712
713         HALASSERT(ah->ah_magic == AR5212_MAGIC);
714
715         HALASSERT(ahp->ah_rfHal == AH_NULL);
716         priv = ath_hal_malloc(sizeof(struct ar2317State));
717         if (priv == AH_NULL) {
718                 HALDEBUG(ah, HAL_DEBUG_ANY,
719                     "%s: cannot allocate private state\n", __func__);
720                 *status = HAL_ENOMEM;           /* XXX */
721                 return AH_FALSE;
722         }
723         priv->base.rfDetach             = ar2317RfDetach;
724         priv->base.writeRegs            = ar2317WriteRegs;
725         priv->base.getRfBank            = ar2317GetRfBank;
726         priv->base.setChannel           = ar2317SetChannel;
727         priv->base.setRfRegs            = ar2317SetRfRegs;
728         priv->base.setPowerTable        = ar2317SetPowerTable;
729         priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
730         priv->base.getNfAdjust          = ar5212GetNfAdjust;
731
732         ahp->ah_pcdacTable = priv->pcdacTable;
733         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
734         ahp->ah_rfHal = &priv->base;
735
736         return AH_TRUE;
737 }
738
739 static HAL_BOOL
740 ar2317Probe(struct ath_hal *ah)
741 {
742         return IS_2317(ah);
743 }
744 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);