Open source ath(4) HAL code.
[dragonfly.git] / sys / dev / netif / ath / hal / ath_hal / ar5212 / ar2425.c
1 /*
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $Id: ar2425.c,v 1.8 2008/11/16 21:33:05 sam Exp $
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2425
31 #define AH_5212_2417
32 #include "ar5212/ar5212.ini"
33
34 #define N(a)    (sizeof(a)/sizeof(a[0]))
35
36 struct ar2425State {
37         RF_HAL_FUNCS    base;           /* public state, must be first */
38         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
39
40         uint32_t        Bank1Data[N(ar5212Bank1_2425)];
41         uint32_t        Bank2Data[N(ar5212Bank2_2425)];
42         uint32_t        Bank3Data[N(ar5212Bank3_2425)];
43         uint32_t        Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
44         uint32_t        Bank7Data[N(ar5212Bank7_2425)];
45 };
46 #define AR2425(ah)      ((struct ar2425State *) AH5212(ah)->ah_rfHal)
47
48 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49                 uint32_t numBits, uint32_t firstBit, uint32_t column);
50
51 static void
52 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53         int writes)
54 {
55         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56         HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58 #if 0
59         /*
60          * for SWAN similar to Condor
61          * Bit 0 enables link to go to L1 when MAC goes to sleep.
62          * Bit 3 enables the loop back the link down to reset.
63          */
64         if (IS_PCIE(ah) && ath_hal_pcieL1SKPEnable) {
65                 OS_REG_WRITE(ah, AR_PCIE_PMC,
66                     AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67         }
68         /*
69          * for Standby issue in Swan/Condor.
70          * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71          *      before last Training Sequence 2 (TS2)
72          * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73          *      Power Reset along with PCI Reset
74          */
75         OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76 #endif
77 }
78
79 /*
80  * Take the MHz channel value and set the Channel value
81  *
82  * ASSUMES: Writes enabled to analog bus
83  */
84 static HAL_BOOL
85 ar2425SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
86 {
87         uint32_t channelSel  = 0;
88         uint32_t bModeSynth  = 0;
89         uint32_t aModeRefSel = 0;
90         uint32_t reg32       = 0;
91         uint16_t freq;
92
93         OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
94
95         if (chan->channel < 4800) {
96                 uint32_t txctl;
97
98         channelSel = chan->channel - 2272;
99         channelSel = ath_hal_reverseBits(channelSel, 8);
100
101                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102         if (chan->channel == 2484) {
103                         // Enable channel spreading for channel 14
104                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106                 } else {
107                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109                 }
110
111         } else if (((chan->channel % 5) == 2) && (chan->channel <= 5435)) {
112                 freq = chan->channel - 2; /* Align to even 5MHz raster */
113                 channelSel = ath_hal_reverseBits(
114                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115                 aModeRefSel = ath_hal_reverseBits(0, 2);
116         } else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
117                 channelSel = ath_hal_reverseBits(
118                         ((chan->channel - 4800) / 20 << 2), 8);
119                 aModeRefSel = ath_hal_reverseBits(1, 2);
120         } else if ((chan->channel % 10) == 0) {
121                 channelSel = ath_hal_reverseBits(
122                         ((chan->channel - 4800) / 10 << 1), 8);
123                 aModeRefSel = ath_hal_reverseBits(1, 2);
124         } else if ((chan->channel % 5) == 0) {
125                 channelSel = ath_hal_reverseBits(
126                         (chan->channel - 4800) / 5, 8);
127                 aModeRefSel = ath_hal_reverseBits(1, 2);
128         } else {
129                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130                     __func__, chan->channel);
131                 return AH_FALSE;
132         }
133
134         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135                         (1 << 12) | 0x1;
136         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137
138         reg32 >>= 8;
139         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140
141         AH_PRIVATE(ah)->ah_curchan = chan;
142         return AH_TRUE;
143 }
144
145 /*
146  * Reads EEPROM header info from device structure and programs
147  * all rf registers
148  *
149  * REQUIRES: Access to the analog rf device
150  */
151 static HAL_BOOL
152 ar2425SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
153 {
154 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
155         int i;                                                              \
156         for (i = 0; i < N(ar5212Bank##_ix##_2425); i++)                     \
157                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
158 } while (0)
159         struct ath_hal_5212 *ahp = AH5212(ah);
160         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
161         struct ar2425State *priv = AR2425(ah);
162         uint16_t ob2GHz = 0, db2GHz = 0;
163         int regWrites = 0;
164
165         HALDEBUG(ah, HAL_DEBUG_RFPARAM,
166             "==>%s:chan 0x%x flag 0x%x modesIndex 0x%x\n",
167             __func__, chan->channel, chan->channelFlags, modesIndex);
168
169         HALASSERT(priv);
170
171         /* Setup rf parameters */
172         switch (chan->channelFlags & CHANNEL_ALL) {
173         case CHANNEL_B:
174                 ob2GHz = ee->ee_obFor24;
175                 db2GHz = ee->ee_dbFor24;
176                 break;
177         case CHANNEL_G:
178         case CHANNEL_108G:
179                 ob2GHz = ee->ee_obFor24g;
180                 db2GHz = ee->ee_dbFor24g;
181                 break;
182         default:
183                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
184                         __func__, chan->channelFlags);
185                 return AH_FALSE;
186         }
187
188         /* Bank 1 Write */
189         RF_BANK_SETUP(priv, 1, 1);
190
191         /* Bank 2 Write */
192         RF_BANK_SETUP(priv, 2, modesIndex);
193
194         /* Bank 3 Write */
195         RF_BANK_SETUP(priv, 3, modesIndex);
196
197         /* Bank 6 Write */
198         RF_BANK_SETUP(priv, 6, modesIndex);
199
200         ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
201         ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
202
203         /* Bank 7 Setup */
204         RF_BANK_SETUP(priv, 7, modesIndex);
205
206         /* Write Analog registers */
207         HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
208         HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
209         HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
210         if (IS_2417(ah)) {
211                 HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
212                 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
213                     regWrites);
214         } else
215                 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
216                     regWrites);
217         HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
218
219         /* Now that we have reprogrammed rfgain value, clear the flag. */
220         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
221
222         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
223         return AH_TRUE;
224 #undef  RF_BANK_SETUP
225 }
226
227 /*
228  * Return a reference to the requested RF Bank.
229  */
230 static uint32_t *
231 ar2425GetRfBank(struct ath_hal *ah, int bank)
232 {
233         struct ar2425State *priv = AR2425(ah);
234
235         HALASSERT(priv != AH_NULL);
236         switch (bank) {
237         case 1: return priv->Bank1Data;
238         case 2: return priv->Bank2Data;
239         case 3: return priv->Bank3Data;
240         case 6: return priv->Bank6Data;
241         case 7: return priv->Bank7Data;
242         }
243         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
244             __func__, bank);
245         return AH_NULL;
246 }
247
248 /*
249  * Return indices surrounding the value in sorted integer lists.
250  *
251  * NB: the input list is assumed to be sorted in ascending order
252  */
253 static void
254 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
255                           uint32_t *vlo, uint32_t *vhi)
256 {
257         int16_t target = v;
258         const uint16_t *ep = lp+listSize;
259         const uint16_t *tp;
260
261         /*
262          * Check first and last elements for out-of-bounds conditions.
263          */
264         if (target < lp[0]) {
265                 *vlo = *vhi = 0;
266                 return;
267         }
268         if (target >= ep[-1]) {
269                 *vlo = *vhi = listSize - 1;
270                 return;
271         }
272
273         /* look for value being near or between 2 values in list */
274         for (tp = lp; tp < ep; tp++) {
275                 /*
276                  * If value is close to the current value of the list
277                  * then target is not between values, it is one of the values
278                  */
279                 if (*tp == target) {
280                         *vlo = *vhi = tp - (const uint16_t *) lp;
281                         return;
282                 }
283                 /*
284                  * Look for value being between current value and next value
285                  * if so return these 2 values
286                  */
287                 if (target < tp[1]) {
288                         *vlo = tp - (const uint16_t *) lp;
289                         *vhi = *vlo + 1;
290                         return;
291                 }
292         }
293 }
294
295 /*
296  * Fill the Vpdlist for indices Pmax-Pmin
297  */
298 static HAL_BOOL
299 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
300                    const int16_t *pwrList, const uint16_t *VpdList,
301                    uint16_t numIntercepts,
302                    uint16_t retVpdList[][64])
303 {
304         uint16_t ii, jj, kk;
305         int16_t currPwr = (int16_t)(2*Pmin);
306         /* since Pmin is pwr*2 and pwrList is 4*pwr */
307         uint32_t  idxL, idxR;
308
309         ii = 0;
310         jj = 0;
311
312         if (numIntercepts < 2)
313                 return AH_FALSE;
314
315         while (ii <= (uint16_t)(Pmax - Pmin)) {
316                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
317                                    numIntercepts, &(idxL), &(idxR));
318                 if (idxR < 1)
319                         idxR = 1;                       /* extrapolate below */
320                 if (idxL == (uint32_t)(numIntercepts - 1))
321                         idxL = numIntercepts - 2;       /* extrapolate above */
322                 if (pwrList[idxL] == pwrList[idxR])
323                         kk = VpdList[idxL];
324                 else
325                         kk = (uint16_t)
326                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
327                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
328                                  (pwrList[idxR] - pwrList[idxL]));
329                 retVpdList[pdGainIdx][ii] = kk;
330                 ii++;
331                 currPwr += 2;                           /* half dB steps */
332         }
333
334         return AH_TRUE;
335 }
336
337 /*
338  * Returns interpolated or the scaled up interpolated value
339  */
340 static int16_t
341 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
342         int16_t targetLeft, int16_t targetRight)
343 {
344         int16_t rv;
345
346         if (srcRight != srcLeft) {
347                 rv = ((target - srcLeft)*targetRight +
348                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
349         } else {
350                 rv = targetLeft;
351         }
352         return rv;
353 }
354
355 /*
356  * Uses the data points read from EEPROM to reconstruct the pdadc power table
357  * Called by ar2425SetPowerTable()
358  */
359 static void 
360 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
361                 const RAW_DATA_STRUCT_2413 *pRawDataset,
362                 uint16_t pdGainOverlap_t2, 
363                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
364                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
365 {
366     /* Note the items statically allocated below are to reduce stack usage */
367         uint32_t ii, jj, kk;
368         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
369         uint32_t idxL, idxR;
370         uint32_t numPdGainsUsed = 0;
371         static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
372         /* filled out Vpd table for all pdGains (chanL) */
373         static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
374         /* filled out Vpd table for all pdGains (chanR) */
375         static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
376         /* filled out Vpd table for all pdGains (interpolated) */
377         /* 
378          * If desired to support -ve power levels in future, just
379          * change pwr_I_0 to signed 5-bits.
380          */
381         static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
382         /* to accomodate -ve power levels later on. */
383         static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
384         /* to accomodate -ve power levels later on */
385         uint16_t numVpd = 0;
386         uint16_t Vpd_step;
387         int16_t tmpVal ; 
388         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
389
390         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
391     
392         /* Get upper lower index */
393         GetLowerUpperIndex(channel, pRawDataset->pChannels,
394                                  pRawDataset->numChannels, &(idxL), &(idxR));
395
396         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
397                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
398                 /* work backwards 'cause highest pdGain for lowest power */
399                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
400                 if (numVpd > 0) {
401                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
402                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
403                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
404                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
405                         }
406                         Pmin_t2[numPdGainsUsed] = (int16_t)
407                                 (Pmin_t2[numPdGainsUsed] / 2);
408                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
409                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
410                                 Pmax_t2[numPdGainsUsed] = 
411                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
412                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
413                         ar2425FillVpdTable(
414                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
415                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
416                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
417                                            );
418                         ar2425FillVpdTable(
419                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
420                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
421                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
422                                            );
423                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
424                                 VpdTable_I[numPdGainsUsed][kk] = 
425                                         interpolate_signed(
426                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
427                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
428                         }
429                         /* fill VpdTable_I for this pdGain */
430                         numPdGainsUsed++;
431                 }
432                 /* if this pdGain is used */
433         }
434
435         *pMinCalPower = Pmin_t2[0];
436         kk = 0; /* index for the final table */
437         for (ii = 0; ii < numPdGainsUsed; ii++) {
438                 if (ii == (numPdGainsUsed - 1))
439                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
440                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
441                 else 
442                         pPdGainBoundaries[ii] = (uint16_t)
443                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
444
445                 /* Find starting index for this pdGain */
446                 if (ii == 0) 
447                         ss = 0; /* for the first pdGain, start from index 0 */
448                 else 
449                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
450                                 pdGainOverlap_t2;
451                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
452                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
453                 /*
454                  *-ve ss indicates need to extrapolate data below for this pdGain
455                  */
456                 while (ss < 0) {
457                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
458                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
459                         ss++;
460                 }
461
462                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
463                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
464                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
465
466                 while (ss < (int16_t)maxIndex)
467                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
468
469                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
470                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
471                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
472                 /*
473                  * for last gain, pdGainBoundary == Pmax_t2, so will 
474                  * have to extrapolate
475                  */
476                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
477                         while(ss < (int16_t)tgtIndex) {
478                                 tmpVal = (uint16_t)
479                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
480                                          (ss-maxIndex)*Vpd_step);
481                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
482                                         127 : tmpVal;
483                                 ss++;
484                         }
485                 }                               /* extrapolated above */
486         }                                       /* for all pdGainUsed */
487
488         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
489                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
490                 ii++;
491         }
492         while (kk < 128) {
493                 pPDADCValues[kk] = pPDADCValues[kk-1];
494                 kk++;
495         }
496
497         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
498 }
499
500
501 /* Same as 2413 set power table */
502 static HAL_BOOL
503 ar2425SetPowerTable(struct ath_hal *ah,
504         int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan, 
505         uint16_t *rfXpdGain)
506 {
507         struct ath_hal_5212 *ahp = AH5212(ah);
508         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
509         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
510         uint16_t pdGainOverlap_t2;
511         int16_t minCalPower2413_t2;
512         uint16_t *pdadcValues = ahp->ah_pcdacTable;
513         uint16_t gainBoundaries[4];
514         uint32_t i, reg32, regoffset;
515
516         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
517             __func__, chan->channel,chan->channelFlags);
518
519         if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
520                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
521         else if (IS_CHAN_B(chan))
522                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
523         else {
524                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
525                 return AH_FALSE;
526         }
527
528         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
529                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
530     
531         ar2425getGainBoundariesAndPdadcsForPowers(ah, chan->channel,
532                 pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
533                 rfXpdGain, pdadcValues);
534
535         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
536                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
537
538         /*
539          * Note the pdadc table may not start at 0 dBm power, could be
540          * negative or greater than 0.  Need to offset the power
541          * values by the amount of minPower for griffin
542          */
543         if (minCalPower2413_t2 != 0)
544                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
545         else
546                 ahp->ah_txPowerIndexOffset = 0;
547
548         /* Finally, write the power values into the baseband power table */
549         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
550         for (i = 0; i < 32; i++) {
551                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
552                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
553                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
554                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
555                 OS_REG_WRITE(ah, regoffset, reg32);
556                 regoffset += 4;
557         }
558
559         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
560                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
561                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
562                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
563                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
564                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
565
566         return AH_TRUE;
567 }
568
569 static int16_t
570 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
571 {
572         uint32_t ii,jj;
573         uint16_t Pmin=0,numVpd;
574
575         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
576                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
577                 /* work backwards 'cause highest pdGain for lowest power */
578                 numVpd = data->pDataPerPDGain[jj].numVpd;
579                 if (numVpd > 0) {
580                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
581                         return(Pmin);
582                 }
583         }
584         return(Pmin);
585 }
586
587 static int16_t
588 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
589 {
590         uint32_t ii;
591         uint16_t Pmax=0,numVpd;
592         
593         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
594                 /* work forwards cuase lowest pdGain for highest power */
595                 numVpd = data->pDataPerPDGain[ii].numVpd;
596                 if (numVpd > 0) {
597                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
598                         return(Pmax);
599                 }
600         }
601         return(Pmax);
602 }
603
604 static
605 HAL_BOOL
606 ar2425GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
607                                      int16_t *maxPow, int16_t *minPow)
608 {
609         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
610         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
611         const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
612         uint16_t numChannels;
613         int totalD,totalF, totalMin,last, i;
614
615         *maxPow = 0;
616
617         if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
618                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
619         else if (IS_CHAN_B(chan))
620                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
621         else
622                 return(AH_FALSE);
623
624         numChannels = pRawDataset->numChannels;
625         data = pRawDataset->pDataPerChannel;
626         
627         /* Make sure the channel is in the range of the TP values 
628          *  (freq piers)
629          */
630         if (numChannels < 1)
631                 return(AH_FALSE);
632
633         if ((chan->channel < data[0].channelValue) ||
634             (chan->channel > data[numChannels-1].channelValue)) {
635                 if (chan->channel < data[0].channelValue) {
636                         *maxPow = ar2425GetMaxPower(ah, &data[0]);
637                         *minPow = ar2425GetMinPower(ah, &data[0]);
638                         return(AH_TRUE);
639                 } else {
640                         *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
641                         *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
642                         return(AH_TRUE);
643                 }
644         }
645
646         /* Linearly interpolate the power value now */
647         for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
648              last = i++);
649         totalD = data[i].channelValue - data[last].channelValue;
650         if (totalD > 0) {
651                 totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
652                 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + 
653                                      ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
654                 totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
655                 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
656                                      ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
657                 return(AH_TRUE);
658         } else {
659                 if (chan->channel == data[i].channelValue) {
660                         *maxPow = ar2425GetMaxPower(ah, &data[i]);
661                         *minPow = ar2425GetMinPower(ah, &data[i]);
662                         return(AH_TRUE);
663                 } else
664                         return(AH_FALSE);
665         }
666 }
667
668 /*
669  * Free memory for analog bank scratch buffers
670  */
671 static void
672 ar2425RfDetach(struct ath_hal *ah)
673 {
674         struct ath_hal_5212 *ahp = AH5212(ah);
675
676         HALASSERT(ahp->ah_rfHal != AH_NULL);
677         ath_hal_free(ahp->ah_rfHal);
678         ahp->ah_rfHal = AH_NULL;
679 }
680
681 /*
682  * Allocate memory for analog bank scratch buffers
683  * Scratch Buffer will be reinitialized every reset so no need to zero now
684  */
685 static HAL_BOOL
686 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
687 {
688         struct ath_hal_5212 *ahp = AH5212(ah);
689         struct ar2425State *priv;
690
691         HALASSERT(ah->ah_magic == AR5212_MAGIC);
692
693         HALASSERT(ahp->ah_rfHal == AH_NULL);
694         priv = ath_hal_malloc(sizeof(struct ar2425State));
695         if (priv == AH_NULL) {
696                 HALDEBUG(ah, HAL_DEBUG_ANY,
697                     "%s: cannot allocate private state\n", __func__);
698                 *status = HAL_ENOMEM;           /* XXX */
699                 return AH_FALSE;
700         }
701         priv->base.rfDetach             = ar2425RfDetach;
702         priv->base.writeRegs            = ar2425WriteRegs;
703         priv->base.getRfBank            = ar2425GetRfBank;
704         priv->base.setChannel           = ar2425SetChannel;
705         priv->base.setRfRegs            = ar2425SetRfRegs;
706         priv->base.setPowerTable        = ar2425SetPowerTable;
707         priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
708         priv->base.getNfAdjust          = ar5212GetNfAdjust;
709
710         ahp->ah_pcdacTable = priv->pcdacTable;
711         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
712         ahp->ah_rfHal = &priv->base;
713
714         return AH_TRUE;
715 }
716
717 static HAL_BOOL
718 ar2425Probe(struct ath_hal *ah)
719 {
720         return IS_2425(ah) || IS_2417(ah);
721 }
722 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);