kernel: Use NULL for pointers.
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68
69 /*
70  *      Virtual memory object module.
71  */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>           /* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97
98 #define EASY_SCAN_FACTOR        8
99
100 static void     vm_object_qcollapse(vm_object_t object,
101                                     vm_object_t backing_object);
102 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103                                              int pagerflags);
104 static void     vm_object_lock_init(vm_object_t);
105
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;         /* locked by vmobj_token */
134 struct vm_object kernel_object;
135
136 static long vm_object_count;            /* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154         int i;
155
156         obj->debug_hold_bitmap = 0;
157         obj->debug_hold_ovfl = 0;
158         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159                 obj->debug_hold_thrs[i] = NULL;
160                 obj->debug_hold_file[i] = NULL;
161                 obj->debug_hold_line[i] = 0;
162         }
163 #endif
164 }
165
166 void
167 vm_object_lock_swap(void)
168 {
169         lwkt_token_swap();
170 }
171
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175         lwkt_gettoken(&obj->token);
176 }
177
178 /*
179  * Returns TRUE on sucesss
180  */
181 static int
182 vm_object_lock_try(vm_object_t obj)
183 {
184         return(lwkt_trytoken(&obj->token));
185 }
186
187 void
188 vm_object_lock_shared(vm_object_t obj)
189 {
190         lwkt_gettoken_shared(&obj->token);
191 }
192
193 void
194 vm_object_unlock(vm_object_t obj)
195 {
196         lwkt_reltoken(&obj->token);
197 }
198
199 static __inline void
200 vm_object_assert_held(vm_object_t obj)
201 {
202         ASSERT_LWKT_TOKEN_HELD(&obj->token);
203 }
204
205 void
206 #ifndef DEBUG_LOCKS
207 vm_object_hold(vm_object_t obj)
208 #else
209 debugvm_object_hold(vm_object_t obj, char *file, int line)
210 #endif
211 {
212         KKASSERT(obj != NULL);
213
214         /*
215          * Object must be held (object allocation is stable due to callers
216          * context, typically already holding the token on a parent object)
217          * prior to potentially blocking on the lock, otherwise the object
218          * can get ripped away from us.
219          */
220         refcount_acquire(&obj->hold_count);
221         vm_object_lock(obj);
222
223 #if defined(DEBUG_LOCKS)
224         int i;
225         u_int mask;
226
227         for (;;) {
228                 mask = ~obj->debug_hold_bitmap;
229                 cpu_ccfence();
230                 if (mask == 0xFFFFFFFFU) {
231                         if (obj->debug_hold_ovfl == 0)
232                                 obj->debug_hold_ovfl = 1;
233                         break;
234                 }
235                 i = ffs(mask) - 1;
236                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
237                                       ~mask | (1 << i))) {
238                         obj->debug_hold_bitmap |= (1 << i);
239                         obj->debug_hold_thrs[i] = curthread;
240                         obj->debug_hold_file[i] = file;
241                         obj->debug_hold_line[i] = line;
242                         break;
243                 }
244         }
245 #endif
246 }
247
248 int
249 #ifndef DEBUG_LOCKS
250 vm_object_hold_try(vm_object_t obj)
251 #else
252 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
253 #endif
254 {
255         KKASSERT(obj != NULL);
256
257         /*
258          * Object must be held (object allocation is stable due to callers
259          * context, typically already holding the token on a parent object)
260          * prior to potentially blocking on the lock, otherwise the object
261          * can get ripped away from us.
262          */
263         refcount_acquire(&obj->hold_count);
264         if (vm_object_lock_try(obj) == 0) {
265                 if (refcount_release(&obj->hold_count)) {
266                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
267                                 zfree(obj_zone, obj);
268                 }
269                 return(0);
270         }
271
272 #if defined(DEBUG_LOCKS)
273         int i;
274         u_int mask;
275
276         for (;;) {
277                 mask = ~obj->debug_hold_bitmap;
278                 cpu_ccfence();
279                 if (mask == 0xFFFFFFFFU) {
280                         if (obj->debug_hold_ovfl == 0)
281                                 obj->debug_hold_ovfl = 1;
282                         break;
283                 }
284                 i = ffs(mask) - 1;
285                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
286                                       ~mask | (1 << i))) {
287                         obj->debug_hold_bitmap |= (1 << i);
288                         obj->debug_hold_thrs[i] = curthread;
289                         obj->debug_hold_file[i] = file;
290                         obj->debug_hold_line[i] = line;
291                         break;
292                 }
293         }
294 #endif
295         return(1);
296 }
297
298 void
299 #ifndef DEBUG_LOCKS
300 vm_object_hold_shared(vm_object_t obj)
301 #else
302 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
303 #endif
304 {
305         KKASSERT(obj != NULL);
306
307         /*
308          * Object must be held (object allocation is stable due to callers
309          * context, typically already holding the token on a parent object)
310          * prior to potentially blocking on the lock, otherwise the object
311          * can get ripped away from us.
312          */
313         refcount_acquire(&obj->hold_count);
314         vm_object_lock_shared(obj);
315
316 #if defined(DEBUG_LOCKS)
317         int i;
318         u_int mask;
319
320         for (;;) {
321                 mask = ~obj->debug_hold_bitmap;
322                 cpu_ccfence();
323                 if (mask == 0xFFFFFFFFU) {
324                         if (obj->debug_hold_ovfl == 0)
325                                 obj->debug_hold_ovfl = 1;
326                         break;
327                 }
328                 i = ffs(mask) - 1;
329                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
330                                       ~mask | (1 << i))) {
331                         obj->debug_hold_bitmap |= (1 << i);
332                         obj->debug_hold_thrs[i] = curthread;
333                         obj->debug_hold_file[i] = file;
334                         obj->debug_hold_line[i] = line;
335                         break;
336                 }
337         }
338 #endif
339 }
340
341 /*
342  * Drop the token and hold_count on the object.
343  */
344 void
345 vm_object_drop(vm_object_t obj)
346 {
347         if (obj == NULL)
348                 return;
349
350 #if defined(DEBUG_LOCKS)
351         int found = 0;
352         int i;
353
354         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
355                 if ((obj->debug_hold_bitmap & (1 << i)) &&
356                     (obj->debug_hold_thrs[i] == curthread)) {
357                         obj->debug_hold_bitmap &= ~(1 << i);
358                         obj->debug_hold_thrs[i] = NULL;
359                         obj->debug_hold_file[i] = NULL;
360                         obj->debug_hold_line[i] = 0;
361                         found = 1;
362                         break;
363                 }
364         }
365
366         if (found == 0 && obj->debug_hold_ovfl == 0)
367                 panic("vm_object: attempt to drop hold on non-self-held obj");
368 #endif
369
370         /*
371          * No new holders should be possible once we drop hold_count 1->0 as
372          * there is no longer any way to reference the object.
373          */
374         KKASSERT(obj->hold_count > 0);
375         if (refcount_release(&obj->hold_count)) {
376                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
377                         vm_object_unlock(obj);
378                         zfree(obj_zone, obj);
379                 } else {
380                         vm_object_unlock(obj);
381                 }
382         } else {
383                 vm_object_unlock(obj);
384         }
385 }
386
387 /*
388  * Initialize a freshly allocated object, returning a held object.
389  *
390  * Used only by vm_object_allocate() and zinitna().
391  *
392  * No requirements.
393  */
394 void
395 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
396 {
397         int incr;
398
399         RB_INIT(&object->rb_memq);
400         LIST_INIT(&object->shadow_head);
401         lwkt_token_init(&object->token, "vmobj");
402
403         object->type = type;
404         object->size = size;
405         object->ref_count = 1;
406         object->hold_count = 0;
407         object->flags = 0;
408         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
409                 vm_object_set_flag(object, OBJ_ONEMAPPING);
410         object->paging_in_progress = 0;
411         object->resident_page_count = 0;
412         object->agg_pv_list_count = 0;
413         object->shadow_count = 0;
414 #ifdef SMP
415         /* cpu localization twist */
416         object->pg_color = (int)(intptr_t)curthread;
417 #else
418         object->pg_color = next_index;
419 #endif
420         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
421                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
422         else
423                 incr = size;
424         next_index = (next_index + incr) & PQ_L2_MASK;
425         object->handle = NULL;
426         object->backing_object = NULL;
427         object->backing_object_offset = (vm_ooffset_t)0;
428
429         object->generation++;
430         object->swblock_count = 0;
431         RB_INIT(&object->swblock_root);
432         vm_object_lock_init(object);
433
434         vm_object_hold(object);
435         lwkt_gettoken(&vmobj_token);
436         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
437         vm_object_count++;
438         lwkt_reltoken(&vmobj_token);
439 }
440
441 /*
442  * Initialize the VM objects module.
443  *
444  * Called from the low level boot code only.
445  */
446 void
447 vm_object_init(void)
448 {
449         TAILQ_INIT(&vm_object_list);
450         
451         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
452                             &kernel_object);
453         vm_object_drop(&kernel_object);
454
455         obj_zone = &obj_zone_store;
456         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
457                 vm_objects_init, VM_OBJECTS_INIT);
458 }
459
460 void
461 vm_object_init2(void)
462 {
463         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
464 }
465
466 /*
467  * Allocate and return a new object of the specified type and size.
468  *
469  * No requirements.
470  */
471 vm_object_t
472 vm_object_allocate(objtype_t type, vm_pindex_t size)
473 {
474         vm_object_t result;
475
476         result = (vm_object_t) zalloc(obj_zone);
477
478         _vm_object_allocate(type, size, result);
479         vm_object_drop(result);
480
481         return (result);
482 }
483
484 /*
485  * This version returns a held object, allowing further atomic initialization
486  * of the object.
487  */
488 vm_object_t
489 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
490 {
491         vm_object_t result;
492
493         result = (vm_object_t) zalloc(obj_zone);
494
495         _vm_object_allocate(type, size, result);
496
497         return (result);
498 }
499
500 /*
501  * Add an additional reference to a vm_object.  The object must already be
502  * held.  The original non-lock version is no longer supported.  The object
503  * must NOT be chain locked by anyone at the time the reference is added.
504  *
505  * Referencing a chain-locked object can blow up the fairly sensitive
506  * ref_count and shadow_count tests in the deallocator.  Most callers
507  * will call vm_object_chain_wait() prior to calling
508  * vm_object_reference_locked() to avoid the case.
509  *
510  * The object must be held.
511  */
512 void
513 vm_object_reference_locked(vm_object_t object)
514 {
515         KKASSERT(object != NULL);
516         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
517         KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
518         object->ref_count++;
519         if (object->type == OBJT_VNODE) {
520                 vref(object->handle);
521                 /* XXX what if the vnode is being destroyed? */
522         }
523 }
524
525 /*
526  * Object OBJ_CHAINLOCK lock handling.
527  *
528  * The caller can chain-lock backing objects recursively and then
529  * use vm_object_chain_release_all() to undo the whole chain.
530  *
531  * Chain locks are used to prevent collapses and are only applicable
532  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
533  * on other object types are ignored.  This is also important because
534  * it allows e.g. the vnode underlying a memory mapping to take concurrent
535  * faults.
536  *
537  * The object must usually be held on entry, though intermediate
538  * objects need not be held on release.
539  */
540 void
541 vm_object_chain_wait(vm_object_t object)
542 {
543         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
544         while (object->flags & OBJ_CHAINLOCK) {
545                 vm_object_set_flag(object, OBJ_CHAINWANT);
546                 tsleep(object, 0, "objchain", 0);
547         }
548 }
549
550 void
551 vm_object_chain_acquire(vm_object_t object)
552 {
553         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
554                 vm_object_chain_wait(object);
555                 vm_object_set_flag(object, OBJ_CHAINLOCK);
556         }
557 }
558
559 void
560 vm_object_chain_release(vm_object_t object)
561 {
562         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
563         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
564                 KKASSERT(object->flags & OBJ_CHAINLOCK);
565                 if (object->flags & OBJ_CHAINWANT) {
566                         vm_object_clear_flag(object,
567                                              OBJ_CHAINLOCK | OBJ_CHAINWANT);
568                         wakeup(object);
569                 } else {
570                         vm_object_clear_flag(object, OBJ_CHAINLOCK);
571                 }
572         }
573 }
574
575 /*
576  * This releases the entire chain of objects from first_object to and
577  * including stopobj, flowing through object->backing_object.
578  *
579  * We release stopobj first as an optimization as this object is most
580  * likely to be shared across multiple processes.
581  */
582 void
583 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
584 {
585         vm_object_t backing_object;
586         vm_object_t object;
587
588         vm_object_chain_release(stopobj);
589         object = first_object;
590
591         while (object != stopobj) {
592                 KKASSERT(object);
593                 if (object != first_object)
594                         vm_object_hold(object);
595                 backing_object = object->backing_object;
596                 vm_object_chain_release(object);
597                 if (object != first_object)
598                         vm_object_drop(object);
599                 object = backing_object;
600         }
601 }
602
603 /*
604  * Dereference an object and its underlying vnode.
605  *
606  * The object must be held and will be held on return.
607  */
608 static void
609 vm_object_vndeallocate(vm_object_t object)
610 {
611         struct vnode *vp = (struct vnode *) object->handle;
612
613         KASSERT(object->type == OBJT_VNODE,
614             ("vm_object_vndeallocate: not a vnode object"));
615         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
616         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
617 #ifdef INVARIANTS
618         if (object->ref_count == 0) {
619                 vprint("vm_object_vndeallocate", vp);
620                 panic("vm_object_vndeallocate: bad object reference count");
621         }
622 #endif
623         object->ref_count--;
624         if (object->ref_count == 0)
625                 vclrflags(vp, VTEXT);
626         vrele(vp);
627 }
628
629 /*
630  * Release a reference to the specified object, gained either through a
631  * vm_object_allocate or a vm_object_reference call.  When all references
632  * are gone, storage associated with this object may be relinquished.
633  *
634  * The caller does not have to hold the object locked but must have control
635  * over the reference in question in order to guarantee that the object
636  * does not get ripped out from under us.
637  */
638 void
639 vm_object_deallocate(vm_object_t object)
640 {
641         if (object) {
642                 vm_object_hold(object);
643                 vm_object_deallocate_locked(object);
644                 vm_object_drop(object);
645         }
646 }
647
648 void
649 vm_object_deallocate_locked(vm_object_t object)
650 {
651         struct vm_object_dealloc_list *dlist = NULL;
652         struct vm_object_dealloc_list *dtmp;
653         vm_object_t temp;
654         int must_drop = 0;
655
656         /*
657          * We may chain deallocate object, but additional objects may
658          * collect on the dlist which also have to be deallocated.  We
659          * must avoid a recursion, vm_object chains can get deep.
660          */
661 again:
662         while (object != NULL) {
663 #if 0
664                 /*
665                  * Don't rip a ref_count out from under an object undergoing
666                  * collapse, it will confuse the collapse code.
667                  */
668                 vm_object_chain_wait(object);
669 #endif
670                 if (object->type == OBJT_VNODE) {
671                         vm_object_vndeallocate(object);
672                         break;
673                 }
674
675                 if (object->ref_count == 0) {
676                         panic("vm_object_deallocate: object deallocated "
677                               "too many times: %d", object->type);
678                 }
679                 if (object->ref_count > 2) {
680                         object->ref_count--;
681                         break;
682                 }
683
684                 /*
685                  * Here on ref_count of one or two, which are special cases for
686                  * objects.
687                  *
688                  * Nominal ref_count > 1 case if the second ref is not from
689                  * a shadow.
690                  */
691                 if (object->ref_count == 2 && object->shadow_count == 0) {
692                         vm_object_set_flag(object, OBJ_ONEMAPPING);
693                         object->ref_count--;
694                         break;
695                 }
696
697                 /*
698                  * If the second ref is from a shadow we chain along it
699                  * upwards if object's handle is exhausted.
700                  *
701                  * We have to decrement object->ref_count before potentially
702                  * collapsing the first shadow object or the collapse code
703                  * will not be able to handle the degenerate case to remove
704                  * object.  However, if we do it too early the object can
705                  * get ripped out from under us.
706                  */
707                 if (object->ref_count == 2 && object->shadow_count == 1 &&
708                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
709                                                object->type == OBJT_SWAP)) {
710                         temp = LIST_FIRST(&object->shadow_head);
711                         KKASSERT(temp != NULL);
712                         vm_object_hold(temp);
713
714                         /*
715                          * Wait for any paging to complete so the collapse
716                          * doesn't (or isn't likely to) qcollapse.  pip
717                          * waiting must occur before we acquire the
718                          * chainlock.
719                          */
720                         while (
721                                 temp->paging_in_progress ||
722                                 object->paging_in_progress
723                         ) {
724                                 vm_object_pip_wait(temp, "objde1");
725                                 vm_object_pip_wait(object, "objde2");
726                         }
727
728                         /*
729                          * If the parent is locked we have to give up, as
730                          * otherwise we would be acquiring locks in the
731                          * wrong order and potentially deadlock.
732                          */
733                         if (temp->flags & OBJ_CHAINLOCK) {
734                                 vm_object_drop(temp);
735                                 goto skip;
736                         }
737                         vm_object_chain_acquire(temp);
738
739                         /*
740                          * Recheck/retry after the hold and the paging
741                          * wait, both of which can block us.
742                          */
743                         if (object->ref_count != 2 ||
744                             object->shadow_count != 1 ||
745                             object->handle ||
746                             LIST_FIRST(&object->shadow_head) != temp ||
747                             (object->type != OBJT_DEFAULT &&
748                              object->type != OBJT_SWAP)) {
749                                 vm_object_chain_release(temp);
750                                 vm_object_drop(temp);
751                                 continue;
752                         }
753
754                         /*
755                          * We can safely drop object's ref_count now.
756                          */
757                         KKASSERT(object->ref_count == 2);
758                         object->ref_count--;
759
760                         /*
761                          * If our single parent is not collapseable just
762                          * decrement ref_count (2->1) and stop.
763                          */
764                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
765                                              temp->type != OBJT_SWAP)) {
766                                 vm_object_chain_release(temp);
767                                 vm_object_drop(temp);
768                                 break;
769                         }
770
771                         /*
772                          * At this point we have already dropped object's
773                          * ref_count so it is possible for a race to
774                          * deallocate obj out from under us.  Any collapse
775                          * will re-check the situation.  We must not block
776                          * until we are able to collapse.
777                          *
778                          * Bump temp's ref_count to avoid an unwanted
779                          * degenerate recursion (can't call
780                          * vm_object_reference_locked() because it asserts
781                          * that CHAINLOCK is not set).
782                          */
783                         temp->ref_count++;
784                         KKASSERT(temp->ref_count > 1);
785
786                         /*
787                          * Collapse temp, then deallocate the extra ref
788                          * formally.
789                          */
790                         vm_object_collapse(temp, &dlist);
791                         vm_object_chain_release(temp);
792                         if (must_drop) {
793                                 vm_object_lock_swap();
794                                 vm_object_drop(object);
795                         }
796                         object = temp;
797                         must_drop = 1;
798                         continue;
799                 }
800
801                 /*
802                  * Drop the ref and handle termination on the 1->0 transition.
803                  * We may have blocked above so we have to recheck.
804                  */
805 skip:
806                 KKASSERT(object->ref_count != 0);
807                 if (object->ref_count >= 2) {
808                         object->ref_count--;
809                         break;
810                 }
811                 KKASSERT(object->ref_count == 1);
812
813                 /*
814                  * 1->0 transition.  Chain through the backing_object.
815                  * Maintain the ref until we've located the backing object,
816                  * then re-check.
817                  */
818                 while ((temp = object->backing_object) != NULL) {
819                         vm_object_hold(temp);
820                         if (temp == object->backing_object)
821                                 break;
822                         vm_object_drop(temp);
823                 }
824
825                 /*
826                  * 1->0 transition verified, retry if ref_count is no longer
827                  * 1.  Otherwise disconnect the backing_object (temp) and
828                  * clean up.
829                  */
830                 if (object->ref_count != 1) {
831                         vm_object_drop(temp);
832                         continue;
833                 }
834
835                 /*
836                  * It shouldn't be possible for the object to be chain locked
837                  * if we're removing the last ref on it.
838                  */
839                 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
840
841                 if (temp) {
842                         LIST_REMOVE(object, shadow_list);
843                         temp->shadow_count--;
844                         temp->generation++;
845                         object->backing_object = NULL;
846                 }
847
848                 --object->ref_count;
849                 if ((object->flags & OBJ_DEAD) == 0)
850                         vm_object_terminate(object);
851                 if (must_drop && temp)
852                         vm_object_lock_swap();
853                 if (must_drop)
854                         vm_object_drop(object);
855                 object = temp;
856                 must_drop = 1;
857         }
858         if (must_drop && object)
859                 vm_object_drop(object);
860
861         /*
862          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
863          * on the dlist have a hold count but are not locked.
864          */
865         if ((dtmp = dlist) != NULL) {
866                 dlist = dtmp->next;
867                 object = dtmp->object;
868                 kfree(dtmp, M_TEMP);
869
870                 vm_object_lock(object); /* already held, add lock */
871                 must_drop = 1;          /* and we're responsible for it */
872                 goto again;
873         }
874 }
875
876 /*
877  * Destroy the specified object, freeing up related resources.
878  *
879  * The object must have zero references.
880  *
881  * The object must held.  The caller is responsible for dropping the object
882  * after terminate returns.  Terminate does NOT drop the object.
883  */
884 static int vm_object_terminate_callback(vm_page_t p, void *data);
885
886 void
887 vm_object_terminate(vm_object_t object)
888 {
889         /*
890          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
891          * able to safely block.
892          */
893         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
894         KKASSERT((object->flags & OBJ_DEAD) == 0);
895         vm_object_set_flag(object, OBJ_DEAD);
896
897         /*
898          * Wait for the pageout daemon to be done with the object
899          */
900         vm_object_pip_wait(object, "objtrm1");
901
902         KASSERT(!object->paging_in_progress,
903                 ("vm_object_terminate: pageout in progress"));
904
905         /*
906          * Clean and free the pages, as appropriate. All references to the
907          * object are gone, so we don't need to lock it.
908          */
909         if (object->type == OBJT_VNODE) {
910                 struct vnode *vp;
911
912                 /*
913                  * Clean pages and flush buffers.
914                  */
915                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
916
917                 vp = (struct vnode *) object->handle;
918                 vinvalbuf(vp, V_SAVE, 0, 0);
919         }
920
921         /*
922          * Wait for any I/O to complete, after which there had better not
923          * be any references left on the object.
924          */
925         vm_object_pip_wait(object, "objtrm2");
926
927         if (object->ref_count != 0) {
928                 panic("vm_object_terminate: object with references, "
929                       "ref_count=%d", object->ref_count);
930         }
931
932         /*
933          * Now free any remaining pages. For internal objects, this also
934          * removes them from paging queues. Don't free wired pages, just
935          * remove them from the object. 
936          */
937         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
938                                 vm_object_terminate_callback, NULL);
939
940         /*
941          * Let the pager know object is dead.
942          */
943         vm_pager_deallocate(object);
944
945         /*
946          * Wait for the object hold count to hit 1, clean out pages as
947          * we go.  vmobj_token interlocks any race conditions that might
948          * pick the object up from the vm_object_list after we have cleared
949          * rb_memq.
950          */
951         for (;;) {
952                 if (RB_ROOT(&object->rb_memq) == NULL)
953                         break;
954                 kprintf("vm_object_terminate: Warning, object %p "
955                         "still has %d pages\n",
956                         object, object->resident_page_count);
957                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
958                                         vm_object_terminate_callback, NULL);
959         }
960
961         /*
962          * There had better not be any pages left
963          */
964         KKASSERT(object->resident_page_count == 0);
965
966         /*
967          * Remove the object from the global object list.
968          */
969         lwkt_gettoken(&vmobj_token);
970         TAILQ_REMOVE(&vm_object_list, object, object_list);
971         vm_object_count--;
972         lwkt_reltoken(&vmobj_token);
973         vm_object_dead_wakeup(object);
974
975         if (object->ref_count != 0) {
976                 panic("vm_object_terminate2: object with references, "
977                       "ref_count=%d", object->ref_count);
978         }
979
980         /*
981          * NOTE: The object hold_count is at least 1, so we cannot zfree()
982          *       the object here.  See vm_object_drop().
983          */
984 }
985
986 /*
987  * The caller must hold the object.
988  */
989 static int
990 vm_object_terminate_callback(vm_page_t p, void *data __unused)
991 {
992         vm_object_t object;
993
994         object = p->object;
995         vm_page_busy_wait(p, TRUE, "vmpgtrm");
996         if (object != p->object) {
997                 kprintf("vm_object_terminate: Warning: Encountered "
998                         "busied page %p on queue %d\n", p, p->queue);
999                 vm_page_wakeup(p);
1000         } else if (p->wire_count == 0) {
1001                 vm_page_free(p);
1002                 mycpu->gd_cnt.v_pfree++;
1003         } else {
1004                 if (p->queue != PQ_NONE)
1005                         kprintf("vm_object_terminate: Warning: Encountered "
1006                                 "wired page %p on queue %d\n", p, p->queue);
1007                 vm_page_remove(p);
1008                 vm_page_wakeup(p);
1009         }
1010         lwkt_yield();
1011         return(0);
1012 }
1013
1014 /*
1015  * The object is dead but still has an object<->pager association.  Sleep
1016  * and return.  The caller typically retests the association in a loop.
1017  *
1018  * The caller must hold the object.
1019  */
1020 void
1021 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
1022 {
1023         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1024         if (object->handle) {
1025                 vm_object_set_flag(object, OBJ_DEADWNT);
1026                 tsleep(object, 0, wmesg, 0);
1027                 /* object may be invalid after this point */
1028         }
1029 }
1030
1031 /*
1032  * Wakeup anyone waiting for the object<->pager disassociation on
1033  * a dead object.
1034  *
1035  * The caller must hold the object.
1036  */
1037 void
1038 vm_object_dead_wakeup(vm_object_t object)
1039 {
1040         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1041         if (object->flags & OBJ_DEADWNT) {
1042                 vm_object_clear_flag(object, OBJ_DEADWNT);
1043                 wakeup(object);
1044         }
1045 }
1046
1047 /*
1048  * Clean all dirty pages in the specified range of object.  Leaves page
1049  * on whatever queue it is currently on.   If NOSYNC is set then do not
1050  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1051  * leaving the object dirty.
1052  *
1053  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1054  * synchronous clustering mode implementation.
1055  *
1056  * Odd semantics: if start == end, we clean everything.
1057  *
1058  * The object must be locked? XXX
1059  */
1060 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1061 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1062
1063 void
1064 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1065                      int flags)
1066 {
1067         struct rb_vm_page_scan_info info;
1068         struct vnode *vp;
1069         int wholescan;
1070         int pagerflags;
1071         int generation;
1072
1073         vm_object_hold(object);
1074         if (object->type != OBJT_VNODE ||
1075             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1076                 vm_object_drop(object);
1077                 return;
1078         }
1079
1080         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1081                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1082         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1083
1084         vp = object->handle;
1085
1086         /*
1087          * Interlock other major object operations.  This allows us to 
1088          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1089          */
1090         vm_object_set_flag(object, OBJ_CLEANING);
1091
1092         /*
1093          * Handle 'entire object' case
1094          */
1095         info.start_pindex = start;
1096         if (end == 0) {
1097                 info.end_pindex = object->size - 1;
1098         } else {
1099                 info.end_pindex = end - 1;
1100         }
1101         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1102         info.limit = flags;
1103         info.pagerflags = pagerflags;
1104         info.object = object;
1105
1106         /*
1107          * If cleaning the entire object do a pass to mark the pages read-only.
1108          * If everything worked out ok, clear OBJ_WRITEABLE and
1109          * OBJ_MIGHTBEDIRTY.
1110          */
1111         if (wholescan) {
1112                 info.error = 0;
1113                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1114                                         vm_object_page_clean_pass1, &info);
1115                 if (info.error == 0) {
1116                         vm_object_clear_flag(object,
1117                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1118                         if (object->type == OBJT_VNODE &&
1119                             (vp = (struct vnode *)object->handle) != NULL) {
1120                                 if (vp->v_flag & VOBJDIRTY) 
1121                                         vclrflags(vp, VOBJDIRTY);
1122                         }
1123                 }
1124         }
1125
1126         /*
1127          * Do a pass to clean all the dirty pages we find.
1128          */
1129         do {
1130                 info.error = 0;
1131                 generation = object->generation;
1132                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1133                                         vm_object_page_clean_pass2, &info);
1134         } while (info.error || generation != object->generation);
1135
1136         vm_object_clear_flag(object, OBJ_CLEANING);
1137         vm_object_drop(object);
1138 }
1139
1140 /*
1141  * The caller must hold the object.
1142  */
1143 static 
1144 int
1145 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1146 {
1147         struct rb_vm_page_scan_info *info = data;
1148
1149         vm_page_flag_set(p, PG_CLEANCHK);
1150         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1151                 info->error = 1;
1152         } else if (vm_page_busy_try(p, FALSE) == 0) {
1153                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
1154                 vm_page_wakeup(p);
1155         } else {
1156                 info->error = 1;
1157         }
1158         lwkt_yield();
1159         return(0);
1160 }
1161
1162 /*
1163  * The caller must hold the object
1164  */
1165 static 
1166 int
1167 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1168 {
1169         struct rb_vm_page_scan_info *info = data;
1170         int generation;
1171
1172         /*
1173          * Do not mess with pages that were inserted after we started
1174          * the cleaning pass.
1175          */
1176         if ((p->flags & PG_CLEANCHK) == 0)
1177                 goto done;
1178
1179         generation = info->object->generation;
1180         vm_page_busy_wait(p, TRUE, "vpcwai");
1181         if (p->object != info->object ||
1182             info->object->generation != generation) {
1183                 info->error = 1;
1184                 vm_page_wakeup(p);
1185                 goto done;
1186         }
1187
1188         /*
1189          * Before wasting time traversing the pmaps, check for trivial
1190          * cases where the page cannot be dirty.
1191          */
1192         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1193                 KKASSERT((p->dirty & p->valid) == 0);
1194                 vm_page_wakeup(p);
1195                 goto done;
1196         }
1197
1198         /*
1199          * Check whether the page is dirty or not.  The page has been set
1200          * to be read-only so the check will not race a user dirtying the
1201          * page.
1202          */
1203         vm_page_test_dirty(p);
1204         if ((p->dirty & p->valid) == 0) {
1205                 vm_page_flag_clear(p, PG_CLEANCHK);
1206                 vm_page_wakeup(p);
1207                 goto done;
1208         }
1209
1210         /*
1211          * If we have been asked to skip nosync pages and this is a
1212          * nosync page, skip it.  Note that the object flags were
1213          * not cleared in this case (because pass1 will have returned an
1214          * error), so we do not have to set them.
1215          */
1216         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1217                 vm_page_flag_clear(p, PG_CLEANCHK);
1218                 vm_page_wakeup(p);
1219                 goto done;
1220         }
1221
1222         /*
1223          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1224          * the pages that get successfully flushed.  Set info->error if
1225          * we raced an object modification.
1226          */
1227         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1228 done:
1229         lwkt_yield();
1230         return(0);
1231 }
1232
1233 /*
1234  * Collect the specified page and nearby pages and flush them out.
1235  * The number of pages flushed is returned.  The passed page is busied
1236  * by the caller and we are responsible for its disposition.
1237  *
1238  * The caller must hold the object.
1239  */
1240 static int
1241 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1242 {
1243         int runlen;
1244         int error;
1245         int maxf;
1246         int chkb;
1247         int maxb;
1248         int i;
1249         vm_pindex_t pi;
1250         vm_page_t maf[vm_pageout_page_count];
1251         vm_page_t mab[vm_pageout_page_count];
1252         vm_page_t ma[vm_pageout_page_count];
1253
1254         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1255
1256         pi = p->pindex;
1257
1258         maxf = 0;
1259         for(i = 1; i < vm_pageout_page_count; i++) {
1260                 vm_page_t tp;
1261
1262                 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1263                 if (error)
1264                         break;
1265                 if (tp == NULL)
1266                         break;
1267                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1268                     (tp->flags & PG_CLEANCHK) == 0) {
1269                         vm_page_wakeup(tp);
1270                         break;
1271                 }
1272                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1273                         vm_page_flag_clear(tp, PG_CLEANCHK);
1274                         vm_page_wakeup(tp);
1275                         break;
1276                 }
1277                 vm_page_test_dirty(tp);
1278                 if ((tp->dirty & tp->valid) == 0) {
1279                         vm_page_flag_clear(tp, PG_CLEANCHK);
1280                         vm_page_wakeup(tp);
1281                         break;
1282                 }
1283                 maf[i - 1] = tp;
1284                 maxf++;
1285         }
1286
1287         maxb = 0;
1288         chkb = vm_pageout_page_count -  maxf;
1289         /*
1290          * NOTE: chkb can be 0
1291          */
1292         for(i = 1; chkb && i < chkb; i++) {
1293                 vm_page_t tp;
1294
1295                 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1296                 if (error)
1297                         break;
1298                 if (tp == NULL)
1299                         break;
1300                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1301                     (tp->flags & PG_CLEANCHK) == 0) {
1302                         vm_page_wakeup(tp);
1303                         break;
1304                 }
1305                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1306                         vm_page_flag_clear(tp, PG_CLEANCHK);
1307                         vm_page_wakeup(tp);
1308                         break;
1309                 }
1310                 vm_page_test_dirty(tp);
1311                 if ((tp->dirty & tp->valid) == 0) {
1312                         vm_page_flag_clear(tp, PG_CLEANCHK);
1313                         vm_page_wakeup(tp);
1314                         break;
1315                 }
1316                 mab[i - 1] = tp;
1317                 maxb++;
1318         }
1319
1320         /*
1321          * All pages in the maf[] and mab[] array are busied.
1322          */
1323         for (i = 0; i < maxb; i++) {
1324                 int index = (maxb - i) - 1;
1325                 ma[index] = mab[i];
1326                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1327         }
1328         vm_page_flag_clear(p, PG_CLEANCHK);
1329         ma[maxb] = p;
1330         for(i = 0; i < maxf; i++) {
1331                 int index = (maxb + i) + 1;
1332                 ma[index] = maf[i];
1333                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1334         }
1335         runlen = maxb + maxf + 1;
1336
1337         for (i = 0; i < runlen; i++)
1338                 vm_page_hold(ma[i]);
1339
1340         vm_pageout_flush(ma, runlen, pagerflags);
1341
1342         for (i = 0; i < runlen; i++) {
1343                 if (ma[i]->valid & ma[i]->dirty) {
1344                         vm_page_protect(ma[i], VM_PROT_READ);
1345                         vm_page_flag_set(ma[i], PG_CLEANCHK);
1346
1347                         /*
1348                          * maxf will end up being the actual number of pages
1349                          * we wrote out contiguously, non-inclusive of the
1350                          * first page.  We do not count look-behind pages.
1351                          */
1352                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
1353                                 maxf = i - maxb - 1;
1354                 }
1355                 vm_page_unhold(ma[i]);
1356         }
1357         return(maxf + 1);
1358 }
1359
1360 /*
1361  * Same as vm_object_pmap_copy, except range checking really
1362  * works, and is meant for small sections of an object.
1363  *
1364  * This code protects resident pages by making them read-only
1365  * and is typically called on a fork or split when a page
1366  * is converted to copy-on-write.  
1367  *
1368  * NOTE: If the page is already at VM_PROT_NONE, calling
1369  * vm_page_protect will have no effect.
1370  */
1371 void
1372 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1373 {
1374         vm_pindex_t idx;
1375         vm_page_t p;
1376
1377         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1378                 return;
1379
1380         vm_object_hold(object);
1381         for (idx = start; idx < end; idx++) {
1382                 p = vm_page_lookup(object, idx);
1383                 if (p == NULL)
1384                         continue;
1385                 vm_page_protect(p, VM_PROT_READ);
1386         }
1387         vm_object_drop(object);
1388 }
1389
1390 /*
1391  * Removes all physical pages in the specified object range from all
1392  * physical maps.
1393  *
1394  * The object must *not* be locked.
1395  */
1396
1397 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1398
1399 void
1400 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1401 {
1402         struct rb_vm_page_scan_info info;
1403
1404         if (object == NULL)
1405                 return;
1406         info.start_pindex = start;
1407         info.end_pindex = end - 1;
1408
1409         vm_object_hold(object);
1410         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1411                                 vm_object_pmap_remove_callback, &info);
1412         if (start == 0 && end == object->size)
1413                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1414         vm_object_drop(object);
1415 }
1416
1417 /*
1418  * The caller must hold the object
1419  */
1420 static int
1421 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1422 {
1423         vm_page_protect(p, VM_PROT_NONE);
1424         return(0);
1425 }
1426
1427 /*
1428  * Implements the madvise function at the object/page level.
1429  *
1430  * MADV_WILLNEED        (any object)
1431  *
1432  *      Activate the specified pages if they are resident.
1433  *
1434  * MADV_DONTNEED        (any object)
1435  *
1436  *      Deactivate the specified pages if they are resident.
1437  *
1438  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1439  *
1440  *      Deactivate and clean the specified pages if they are
1441  *      resident.  This permits the process to reuse the pages
1442  *      without faulting or the kernel to reclaim the pages
1443  *      without I/O.
1444  *
1445  * No requirements.
1446  */
1447 void
1448 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1449 {
1450         vm_pindex_t end, tpindex;
1451         vm_object_t tobject;
1452         vm_object_t xobj;
1453         vm_page_t m;
1454         int error;
1455
1456         if (object == NULL)
1457                 return;
1458
1459         end = pindex + count;
1460
1461         vm_object_hold(object);
1462         tobject = object;
1463
1464         /*
1465          * Locate and adjust resident pages
1466          */
1467         for (; pindex < end; pindex += 1) {
1468 relookup:
1469                 if (tobject != object)
1470                         vm_object_drop(tobject);
1471                 tobject = object;
1472                 tpindex = pindex;
1473 shadowlookup:
1474                 /*
1475                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1476                  * and those pages must be OBJ_ONEMAPPING.
1477                  */
1478                 if (advise == MADV_FREE) {
1479                         if ((tobject->type != OBJT_DEFAULT &&
1480                              tobject->type != OBJT_SWAP) ||
1481                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1482                                 continue;
1483                         }
1484                 }
1485
1486                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1487
1488                 if (error) {
1489                         vm_page_sleep_busy(m, TRUE, "madvpo");
1490                         goto relookup;
1491                 }
1492                 if (m == NULL) {
1493                         /*
1494                          * There may be swap even if there is no backing page
1495                          */
1496                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1497                                 swap_pager_freespace(tobject, tpindex, 1);
1498
1499                         /*
1500                          * next object
1501                          */
1502                         while ((xobj = tobject->backing_object) != NULL) {
1503                                 KKASSERT(xobj != object);
1504                                 vm_object_hold(xobj);
1505                                 if (xobj == tobject->backing_object)
1506                                         break;
1507                                 vm_object_drop(xobj);
1508                         }
1509                         if (xobj == NULL)
1510                                 continue;
1511                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1512                         if (tobject != object) {
1513                                 vm_object_lock_swap();
1514                                 vm_object_drop(tobject);
1515                         }
1516                         tobject = xobj;
1517                         goto shadowlookup;
1518                 }
1519
1520                 /*
1521                  * If the page is not in a normal active state, we skip it.
1522                  * If the page is not managed there are no page queues to
1523                  * mess with.  Things can break if we mess with pages in
1524                  * any of the below states.
1525                  */
1526                 if (
1527                     /*m->hold_count ||*/
1528                     m->wire_count ||
1529                     (m->flags & PG_UNMANAGED) ||
1530                     m->valid != VM_PAGE_BITS_ALL
1531                 ) {
1532                         vm_page_wakeup(m);
1533                         continue;
1534                 }
1535
1536                 /*
1537                  * Theoretically once a page is known not to be busy, an
1538                  * interrupt cannot come along and rip it out from under us.
1539                  */
1540
1541                 if (advise == MADV_WILLNEED) {
1542                         vm_page_activate(m);
1543                 } else if (advise == MADV_DONTNEED) {
1544                         vm_page_dontneed(m);
1545                 } else if (advise == MADV_FREE) {
1546                         /*
1547                          * Mark the page clean.  This will allow the page
1548                          * to be freed up by the system.  However, such pages
1549                          * are often reused quickly by malloc()/free()
1550                          * so we do not do anything that would cause
1551                          * a page fault if we can help it.
1552                          *
1553                          * Specifically, we do not try to actually free
1554                          * the page now nor do we try to put it in the
1555                          * cache (which would cause a page fault on reuse).
1556                          *
1557                          * But we do make the page is freeable as we
1558                          * can without actually taking the step of unmapping
1559                          * it.
1560                          */
1561                         pmap_clear_modify(m);
1562                         m->dirty = 0;
1563                         m->act_count = 0;
1564                         vm_page_dontneed(m);
1565                         if (tobject->type == OBJT_SWAP)
1566                                 swap_pager_freespace(tobject, tpindex, 1);
1567                 }
1568                 vm_page_wakeup(m);
1569         }       
1570         if (tobject != object)
1571                 vm_object_drop(tobject);
1572         vm_object_drop(object);
1573 }
1574
1575 /*
1576  * Create a new object which is backed by the specified existing object
1577  * range.  Replace the pointer and offset that was pointing at the existing
1578  * object with the pointer/offset for the new object.
1579  *
1580  * No other requirements.
1581  */
1582 void
1583 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1584                  int addref)
1585 {
1586         vm_object_t source;
1587         vm_object_t result;
1588
1589         source = *objectp;
1590
1591         /*
1592          * Don't create the new object if the old object isn't shared.
1593          * We have to chain wait before adding the reference to avoid
1594          * racing a collapse or deallocation.
1595          *
1596          * Add the additional ref to source here to avoid racing a later
1597          * collapse or deallocation. Clear the ONEMAPPING flag whether
1598          * addref is TRUE or not in this case because the original object
1599          * will be shadowed.
1600          */
1601         if (source) {
1602                 vm_object_hold(source);
1603                 vm_object_chain_wait(source);
1604                 if (source->ref_count == 1 &&
1605                     source->handle == NULL &&
1606                     (source->type == OBJT_DEFAULT ||
1607                      source->type == OBJT_SWAP)) {
1608                         vm_object_drop(source);
1609                         if (addref) {
1610                                 vm_object_reference_locked(source);
1611                                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1612                         }
1613                         return;
1614                 }
1615                 vm_object_reference_locked(source);
1616                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1617         }
1618
1619         /*
1620          * Allocate a new object with the given length.  The new object
1621          * is returned referenced but we may have to add another one.
1622          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1623          * (typically because the caller is about to clone a vm_map_entry).
1624          *
1625          * The source object currently has an extra reference to prevent
1626          * collapses into it while we mess with its shadow list, which
1627          * we will remove later in this routine.
1628          */
1629         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1630                 panic("vm_object_shadow: no object for shadowing");
1631         vm_object_hold(result);
1632         if (addref) {
1633                 vm_object_reference_locked(result);
1634                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1635         }
1636
1637         /*
1638          * The new object shadows the source object.  Chain wait before
1639          * adjusting shadow_count or the shadow list to avoid races.
1640          *
1641          * Try to optimize the result object's page color when shadowing
1642          * in order to maintain page coloring consistency in the combined 
1643          * shadowed object.
1644          */
1645         KKASSERT(result->backing_object == NULL);
1646         result->backing_object = source;
1647         if (source) {
1648                 vm_object_chain_wait(source);
1649                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1650                 source->shadow_count++;
1651                 source->generation++;
1652 #ifdef SMP
1653                 /* cpu localization twist */
1654                 result->pg_color = (int)(intptr_t)curthread;
1655 #else
1656                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1657                                    PQ_L2_MASK;
1658 #endif
1659         }
1660
1661         /*
1662          * Adjust the return storage.  Drop the ref on source before
1663          * returning.
1664          */
1665         result->backing_object_offset = *offset;
1666         vm_object_drop(result);
1667         *offset = 0;
1668         if (source) {
1669                 vm_object_deallocate_locked(source);
1670                 vm_object_drop(source);
1671         }
1672
1673         /*
1674          * Return the new things
1675          */
1676         *objectp = result;
1677 }
1678
1679 #define OBSC_TEST_ALL_SHADOWED  0x0001
1680 #define OBSC_COLLAPSE_NOWAIT    0x0002
1681 #define OBSC_COLLAPSE_WAIT      0x0004
1682
1683 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1684
1685 /*
1686  * The caller must hold the object.
1687  */
1688 static __inline int
1689 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1690 {
1691         struct rb_vm_page_scan_info info;
1692
1693         vm_object_assert_held(object);
1694         vm_object_assert_held(backing_object);
1695
1696         KKASSERT(backing_object == object->backing_object);
1697         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1698
1699         /*
1700          * Initial conditions
1701          */
1702         if (op & OBSC_TEST_ALL_SHADOWED) {
1703                 /*
1704                  * We do not want to have to test for the existence of
1705                  * swap pages in the backing object.  XXX but with the
1706                  * new swapper this would be pretty easy to do.
1707                  *
1708                  * XXX what about anonymous MAP_SHARED memory that hasn't
1709                  * been ZFOD faulted yet?  If we do not test for this, the
1710                  * shadow test may succeed! XXX
1711                  */
1712                 if (backing_object->type != OBJT_DEFAULT)
1713                         return(0);
1714         }
1715         if (op & OBSC_COLLAPSE_WAIT) {
1716                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1717                 vm_object_set_flag(backing_object, OBJ_DEAD);
1718                 lwkt_gettoken(&vmobj_token);
1719                 TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1720                 vm_object_count--;
1721                 lwkt_reltoken(&vmobj_token);
1722                 vm_object_dead_wakeup(backing_object);
1723         }
1724
1725         /*
1726          * Our scan.   We have to retry if a negative error code is returned,
1727          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1728          * the scan had to be stopped because the parent does not completely
1729          * shadow the child.
1730          */
1731         info.object = object;
1732         info.backing_object = backing_object;
1733         info.limit = op;
1734         do {
1735                 info.error = 1;
1736                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1737                                         vm_object_backing_scan_callback,
1738                                         &info);
1739         } while (info.error < 0);
1740
1741         return(info.error);
1742 }
1743
1744 /*
1745  * The caller must hold the object.
1746  */
1747 static int
1748 vm_object_backing_scan_callback(vm_page_t p, void *data)
1749 {
1750         struct rb_vm_page_scan_info *info = data;
1751         vm_object_t backing_object;
1752         vm_object_t object;
1753         vm_pindex_t pindex;
1754         vm_pindex_t new_pindex;
1755         vm_pindex_t backing_offset_index;
1756         int op;
1757
1758         pindex = p->pindex;
1759         new_pindex = pindex - info->backing_offset_index;
1760         op = info->limit;
1761         object = info->object;
1762         backing_object = info->backing_object;
1763         backing_offset_index = info->backing_offset_index;
1764
1765         if (op & OBSC_TEST_ALL_SHADOWED) {
1766                 vm_page_t pp;
1767
1768                 /*
1769                  * Ignore pages outside the parent object's range
1770                  * and outside the parent object's mapping of the 
1771                  * backing object.
1772                  *
1773                  * note that we do not busy the backing object's
1774                  * page.
1775                  */
1776                 if (pindex < backing_offset_index ||
1777                     new_pindex >= object->size
1778                 ) {
1779                         return(0);
1780                 }
1781
1782                 /*
1783                  * See if the parent has the page or if the parent's
1784                  * object pager has the page.  If the parent has the
1785                  * page but the page is not valid, the parent's
1786                  * object pager must have the page.
1787                  *
1788                  * If this fails, the parent does not completely shadow
1789                  * the object and we might as well give up now.
1790                  */
1791                 pp = vm_page_lookup(object, new_pindex);
1792                 if ((pp == NULL || pp->valid == 0) &&
1793                     !vm_pager_has_page(object, new_pindex)
1794                 ) {
1795                         info->error = 0;        /* problemo */
1796                         return(-1);             /* stop the scan */
1797                 }
1798         }
1799
1800         /*
1801          * Check for busy page.  Note that we may have lost (p) when we
1802          * possibly blocked above.
1803          */
1804         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1805                 vm_page_t pp;
1806
1807                 if (vm_page_busy_try(p, TRUE)) {
1808                         if (op & OBSC_COLLAPSE_NOWAIT) {
1809                                 return(0);
1810                         } else {
1811                                 /*
1812                                  * If we slept, anything could have
1813                                  * happened.   Ask that the scan be restarted.
1814                                  *
1815                                  * Since the object is marked dead, the
1816                                  * backing offset should not have changed.  
1817                                  */
1818                                 vm_page_sleep_busy(p, TRUE, "vmocol");
1819                                 info->error = -1;
1820                                 return(-1);
1821                         }
1822                 }
1823
1824                 /*
1825                  * If (p) is no longer valid restart the scan.
1826                  */
1827                 if (p->object != backing_object || p->pindex != pindex) {
1828                         kprintf("vm_object_backing_scan: Warning: page "
1829                                 "%p ripped out from under us\n", p);
1830                         vm_page_wakeup(p);
1831                         info->error = -1;
1832                         return(-1);
1833                 }
1834
1835                 if (op & OBSC_COLLAPSE_NOWAIT) {
1836                         if (p->valid == 0 /*|| p->hold_count*/ ||
1837                             p->wire_count) {
1838                                 vm_page_wakeup(p);
1839                                 return(0);
1840                         }
1841                 } else {
1842                         /* XXX what if p->valid == 0 , hold_count, etc? */
1843                 }
1844
1845                 KASSERT(
1846                     p->object == backing_object,
1847                     ("vm_object_qcollapse(): object mismatch")
1848                 );
1849
1850                 /*
1851                  * Destroy any associated swap
1852                  */
1853                 if (backing_object->type == OBJT_SWAP)
1854                         swap_pager_freespace(backing_object, p->pindex, 1);
1855
1856                 if (
1857                     p->pindex < backing_offset_index ||
1858                     new_pindex >= object->size
1859                 ) {
1860                         /*
1861                          * Page is out of the parent object's range, we 
1862                          * can simply destroy it. 
1863                          */
1864                         vm_page_protect(p, VM_PROT_NONE);
1865                         vm_page_free(p);
1866                         return(0);
1867                 }
1868
1869                 pp = vm_page_lookup(object, new_pindex);
1870                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1871                         /*
1872                          * page already exists in parent OR swap exists
1873                          * for this location in the parent.  Destroy 
1874                          * the original page from the backing object.
1875                          *
1876                          * Leave the parent's page alone
1877                          */
1878                         vm_page_protect(p, VM_PROT_NONE);
1879                         vm_page_free(p);
1880                         return(0);
1881                 }
1882
1883                 /*
1884                  * Page does not exist in parent, rename the
1885                  * page from the backing object to the main object. 
1886                  *
1887                  * If the page was mapped to a process, it can remain 
1888                  * mapped through the rename.
1889                  */
1890                 if ((p->queue - p->pc) == PQ_CACHE)
1891                         vm_page_deactivate(p);
1892
1893                 vm_page_rename(p, object, new_pindex);
1894                 vm_page_wakeup(p);
1895                 /* page automatically made dirty by rename */
1896         }
1897         return(0);
1898 }
1899
1900 /*
1901  * This version of collapse allows the operation to occur earlier and
1902  * when paging_in_progress is true for an object...  This is not a complete
1903  * operation, but should plug 99.9% of the rest of the leaks.
1904  *
1905  * The caller must hold the object and backing_object and both must be
1906  * chainlocked.
1907  *
1908  * (only called from vm_object_collapse)
1909  */
1910 static void
1911 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1912 {
1913         if (backing_object->ref_count == 1) {
1914                 backing_object->ref_count += 2;
1915                 vm_object_backing_scan(object, backing_object,
1916                                        OBSC_COLLAPSE_NOWAIT);
1917                 backing_object->ref_count -= 2;
1918         }
1919 }
1920
1921 /*
1922  * Collapse an object with the object backing it.  Pages in the backing
1923  * object are moved into the parent, and the backing object is deallocated.
1924  * Any conflict is resolved in favor of the parent's existing pages.
1925  *
1926  * object must be held and chain-locked on call.
1927  *
1928  * The caller must have an extra ref on object to prevent a race from
1929  * destroying it during the collapse.
1930  */
1931 void
1932 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1933 {
1934         struct vm_object_dealloc_list *dlist = NULL;
1935         vm_object_t backing_object;
1936
1937         /*
1938          * Only one thread is attempting a collapse at any given moment.
1939          * There are few restrictions for (object) that callers of this
1940          * function check so reentrancy is likely.
1941          */
1942         KKASSERT(object != NULL);
1943         vm_object_assert_held(object);
1944         KKASSERT(object->flags & OBJ_CHAINLOCK);
1945
1946         for (;;) {
1947                 vm_object_t bbobj;
1948                 int dodealloc;
1949
1950                 /*
1951                  * We have to hold the backing object, check races.
1952                  */
1953                 while ((backing_object = object->backing_object) != NULL) {
1954                         vm_object_hold(backing_object);
1955                         if (backing_object == object->backing_object)
1956                                 break;
1957                         vm_object_drop(backing_object);
1958                 }
1959
1960                 /*
1961                  * No backing object?  Nothing to collapse then.
1962                  */
1963                 if (backing_object == NULL)
1964                         break;
1965
1966                 /*
1967                  * You can't collapse with a non-default/non-swap object.
1968                  */
1969                 if (backing_object->type != OBJT_DEFAULT &&
1970                     backing_object->type != OBJT_SWAP) {
1971                         vm_object_drop(backing_object);
1972                         backing_object = NULL;
1973                         break;
1974                 }
1975
1976                 /*
1977                  * Chain-lock the backing object too because if we
1978                  * successfully merge its pages into the top object we
1979                  * will collapse backing_object->backing_object as the
1980                  * new backing_object.  Re-check that it is still our
1981                  * backing object.
1982                  */
1983                 vm_object_chain_acquire(backing_object);
1984                 if (backing_object != object->backing_object) {
1985                         vm_object_chain_release(backing_object);
1986                         vm_object_drop(backing_object);
1987                         continue;
1988                 }
1989
1990                 /*
1991                  * we check the backing object first, because it is most likely
1992                  * not collapsable.
1993                  */
1994                 if (backing_object->handle != NULL ||
1995                     (backing_object->type != OBJT_DEFAULT &&
1996                      backing_object->type != OBJT_SWAP) ||
1997                     (backing_object->flags & OBJ_DEAD) ||
1998                     object->handle != NULL ||
1999                     (object->type != OBJT_DEFAULT &&
2000                      object->type != OBJT_SWAP) ||
2001                     (object->flags & OBJ_DEAD)) {
2002                         break;
2003                 }
2004
2005                 /*
2006                  * If paging is in progress we can't do a normal collapse.
2007                  */
2008                 if (
2009                     object->paging_in_progress != 0 ||
2010                     backing_object->paging_in_progress != 0
2011                 ) {
2012                         vm_object_qcollapse(object, backing_object);
2013                         break;
2014                 }
2015
2016                 /*
2017                  * We know that we can either collapse the backing object (if
2018                  * the parent is the only reference to it) or (perhaps) have
2019                  * the parent bypass the object if the parent happens to shadow
2020                  * all the resident pages in the entire backing object.
2021                  *
2022                  * This is ignoring pager-backed pages such as swap pages.
2023                  * vm_object_backing_scan fails the shadowing test in this
2024                  * case.
2025                  */
2026                 if (backing_object->ref_count == 1) {
2027                         /*
2028                          * If there is exactly one reference to the backing
2029                          * object, we can collapse it into the parent.  
2030                          */
2031                         KKASSERT(object->backing_object == backing_object);
2032                         vm_object_backing_scan(object, backing_object,
2033                                                OBSC_COLLAPSE_WAIT);
2034
2035                         /*
2036                          * Move the pager from backing_object to object.
2037                          */
2038                         if (backing_object->type == OBJT_SWAP) {
2039                                 vm_object_pip_add(backing_object, 1);
2040
2041                                 /*
2042                                  * scrap the paging_offset junk and do a 
2043                                  * discrete copy.  This also removes major 
2044                                  * assumptions about how the swap-pager 
2045                                  * works from where it doesn't belong.  The
2046                                  * new swapper is able to optimize the
2047                                  * destroy-source case.
2048                                  */
2049                                 vm_object_pip_add(object, 1);
2050                                 swap_pager_copy(backing_object, object,
2051                                     OFF_TO_IDX(object->backing_object_offset),
2052                                     TRUE);
2053                                 vm_object_pip_wakeup(object);
2054                                 vm_object_pip_wakeup(backing_object);
2055                         }
2056
2057                         /*
2058                          * Object now shadows whatever backing_object did.
2059                          * Remove object from backing_object's shadow_list.
2060                          */
2061                         LIST_REMOVE(object, shadow_list);
2062                         KKASSERT(object->backing_object == backing_object);
2063                         backing_object->shadow_count--;
2064                         backing_object->generation++;
2065
2066                         /*
2067                          * backing_object->backing_object moves from within
2068                          * backing_object to within object.
2069                          */
2070                         while ((bbobj = backing_object->backing_object) != NULL) {
2071                                 vm_object_hold(bbobj);
2072                                 if (bbobj == backing_object->backing_object)
2073                                         break;
2074                                 vm_object_drop(bbobj);
2075                         }
2076                         if (bbobj) {
2077                                 LIST_REMOVE(backing_object, shadow_list);
2078                                 bbobj->shadow_count--;
2079                                 bbobj->generation++;
2080                                 backing_object->backing_object = NULL;
2081                         }
2082                         object->backing_object = bbobj;
2083                         if (bbobj) {
2084                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2085                                                  object, shadow_list);
2086                                 bbobj->shadow_count++;
2087                                 bbobj->generation++;
2088                         }
2089
2090                         object->backing_object_offset +=
2091                                 backing_object->backing_object_offset;
2092
2093                         vm_object_drop(bbobj);
2094
2095                         /*
2096                          * Discard the old backing_object.  Nothing should be
2097                          * able to ref it, other than a vm_map_split(),
2098                          * and vm_map_split() will stall on our chain lock.
2099                          * And we control the parent so it shouldn't be
2100                          * possible for it to go away either.
2101                          *
2102                          * Since the backing object has no pages, no pager
2103                          * left, and no object references within it, all
2104                          * that is necessary is to dispose of it.
2105                          */
2106                         KASSERT(backing_object->ref_count == 1,
2107                                 ("backing_object %p was somehow "
2108                                  "re-referenced during collapse!",
2109                                  backing_object));
2110                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2111                                 ("backing_object %p somehow has left "
2112                                  "over pages during collapse!",
2113                                  backing_object));
2114
2115                         /*
2116                          * The object can be destroyed.
2117                          *
2118                          * XXX just fall through and dodealloc instead
2119                          *     of forcing destruction?
2120                          */
2121                         --backing_object->ref_count;
2122                         if ((backing_object->flags & OBJ_DEAD) == 0)
2123                                 vm_object_terminate(backing_object);
2124                         object_collapses++;
2125                         dodealloc = 0;
2126                 } else {
2127                         /*
2128                          * If we do not entirely shadow the backing object,
2129                          * there is nothing we can do so we give up.
2130                          */
2131                         if (vm_object_backing_scan(object, backing_object,
2132                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2133                                 break;
2134                         }
2135
2136                         /*
2137                          * bbobj is backing_object->backing_object.  Since
2138                          * object completely shadows backing_object we can
2139                          * bypass it and become backed by bbobj instead.
2140                          */
2141                         while ((bbobj = backing_object->backing_object) != NULL) {
2142                                 vm_object_hold(bbobj);
2143                                 if (bbobj == backing_object->backing_object)
2144                                         break;
2145                                 vm_object_drop(bbobj);
2146                         }
2147
2148                         /*
2149                          * Make object shadow bbobj instead of backing_object.
2150                          * Remove object from backing_object's shadow list.
2151                          *
2152                          * Deallocating backing_object will not remove
2153                          * it, since its reference count is at least 2.
2154                          */
2155                         KKASSERT(object->backing_object == backing_object);
2156                         LIST_REMOVE(object, shadow_list);
2157                         backing_object->shadow_count--;
2158                         backing_object->generation++;
2159
2160                         /*
2161                          * Add a ref to bbobj, bbobj now shadows object.
2162                          *
2163                          * NOTE: backing_object->backing_object still points
2164                          *       to bbobj.  That relationship remains intact
2165                          *       because backing_object has > 1 ref, so
2166                          *       someone else is pointing to it (hence why
2167                          *       we can't collapse it into object and can
2168                          *       only handle the all-shadowed bypass case).
2169                          */
2170                         if (bbobj) {
2171                                 vm_object_chain_wait(bbobj);
2172                                 vm_object_reference_locked(bbobj);
2173                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2174                                                  object, shadow_list);
2175                                 bbobj->shadow_count++;
2176                                 bbobj->generation++;
2177                                 object->backing_object_offset +=
2178                                         backing_object->backing_object_offset;
2179                                 object->backing_object = bbobj;
2180                                 vm_object_drop(bbobj);
2181                         } else {
2182                                 object->backing_object = NULL;
2183                         }
2184
2185                         /*
2186                          * Drop the reference count on backing_object.  To
2187                          * handle ref_count races properly we can't assume
2188                          * that the ref_count is still at least 2 so we
2189                          * have to actually call vm_object_deallocate()
2190                          * (after clearing the chainlock).
2191                          */
2192                         object_bypasses++;
2193                         dodealloc = 1;
2194                 }
2195
2196                 /*
2197                  * Ok, we want to loop on the new object->bbobj association,
2198                  * possibly collapsing it further.  However if dodealloc is
2199                  * non-zero we have to deallocate the backing_object which
2200                  * itself can potentially undergo a collapse, creating a
2201                  * recursion depth issue with the LWKT token subsystem.
2202                  *
2203                  * In the case where we must deallocate the backing_object
2204                  * it is possible now that the backing_object has a single
2205                  * shadow count on some other object (not represented here
2206                  * as yet), since it no longer shadows us.  Thus when we
2207                  * call vm_object_deallocate() it may attempt to collapse
2208                  * itself into its remaining parent.
2209                  */
2210                 if (dodealloc) {
2211                         struct vm_object_dealloc_list *dtmp;
2212
2213                         vm_object_chain_release(backing_object);
2214                         vm_object_unlock(backing_object);
2215                         /* backing_object remains held */
2216
2217                         /*
2218                          * Auto-deallocation list for caller convenience.
2219                          */
2220                         if (dlistp == NULL)
2221                                 dlistp = &dlist;
2222
2223                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2224                         dtmp->object = backing_object;
2225                         dtmp->next = *dlistp;
2226                         *dlistp = dtmp;
2227                 } else {
2228                         vm_object_chain_release(backing_object);
2229                         vm_object_drop(backing_object);
2230                 }
2231                 /* backing_object = NULL; not needed */
2232                 /* loop */
2233         }
2234
2235         /*
2236          * Clean up any left over backing_object
2237          */
2238         if (backing_object) {
2239                 vm_object_chain_release(backing_object);
2240                 vm_object_drop(backing_object);
2241         }
2242
2243         /*
2244          * Clean up any auto-deallocation list.  This is a convenience
2245          * for top-level callers so they don't have to pass &dlist.
2246          * Do not clean up any caller-passed dlistp, the caller will
2247          * do that.
2248          */
2249         if (dlist)
2250                 vm_object_deallocate_list(&dlist);
2251
2252 }
2253
2254 /*
2255  * vm_object_collapse() may collect additional objects in need of
2256  * deallocation.  This routine deallocates these objects.  The
2257  * deallocation itself can trigger additional collapses (which the
2258  * deallocate function takes care of).  This procedure is used to
2259  * reduce procedural recursion since these vm_object shadow chains
2260  * can become quite long.
2261  */
2262 void
2263 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2264 {
2265         struct vm_object_dealloc_list *dlist;
2266
2267         while ((dlist = *dlistp) != NULL) {
2268                 *dlistp = dlist->next;
2269                 vm_object_lock(dlist->object);
2270                 vm_object_deallocate_locked(dlist->object);
2271                 vm_object_drop(dlist->object);
2272                 kfree(dlist, M_TEMP);
2273         }
2274 }
2275
2276 /*
2277  * Removes all physical pages in the specified object range from the
2278  * object's list of pages.
2279  *
2280  * No requirements.
2281  */
2282 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2283
2284 void
2285 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2286                       boolean_t clean_only)
2287 {
2288         struct rb_vm_page_scan_info info;
2289         int all;
2290
2291         /*
2292          * Degenerate cases and assertions
2293          */
2294         vm_object_hold(object);
2295         if (object == NULL ||
2296             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2297                 vm_object_drop(object);
2298                 return;
2299         }
2300         KASSERT(object->type != OBJT_PHYS, 
2301                 ("attempt to remove pages from a physical object"));
2302
2303         /*
2304          * Indicate that paging is occuring on the object
2305          */
2306         vm_object_pip_add(object, 1);
2307
2308         /*
2309          * Figure out the actual removal range and whether we are removing
2310          * the entire contents of the object or not.  If removing the entire
2311          * contents, be sure to get all pages, even those that might be 
2312          * beyond the end of the object.
2313          */
2314         info.start_pindex = start;
2315         if (end == 0)
2316                 info.end_pindex = (vm_pindex_t)-1;
2317         else
2318                 info.end_pindex = end - 1;
2319         info.limit = clean_only;
2320         all = (start == 0 && info.end_pindex >= object->size - 1);
2321
2322         /*
2323          * Loop until we are sure we have gotten them all.
2324          */
2325         do {
2326                 info.error = 0;
2327                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2328                                         vm_object_page_remove_callback, &info);
2329         } while (info.error);
2330
2331         /*
2332          * Remove any related swap if throwing away pages, or for
2333          * non-swap objects (the swap is a clean copy in that case).
2334          */
2335         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2336                 if (all)
2337                         swap_pager_freespace_all(object);
2338                 else
2339                         swap_pager_freespace(object, info.start_pindex,
2340                              info.end_pindex - info.start_pindex + 1);
2341         }
2342
2343         /*
2344          * Cleanup
2345          */
2346         vm_object_pip_wakeup(object);
2347         vm_object_drop(object);
2348 }
2349
2350 /*
2351  * The caller must hold the object
2352  */
2353 static int
2354 vm_object_page_remove_callback(vm_page_t p, void *data)
2355 {
2356         struct rb_vm_page_scan_info *info = data;
2357
2358         if (vm_page_busy_try(p, TRUE)) {
2359                 vm_page_sleep_busy(p, TRUE, "vmopar");
2360                 info->error = 1;
2361                 return(0);
2362         }
2363
2364         /*
2365          * Wired pages cannot be destroyed, but they can be invalidated
2366          * and we do so if clean_only (limit) is not set.
2367          *
2368          * WARNING!  The page may be wired due to being part of a buffer
2369          *           cache buffer, and the buffer might be marked B_CACHE.
2370          *           This is fine as part of a truncation but VFSs must be
2371          *           sure to fix the buffer up when re-extending the file.
2372          */
2373         if (p->wire_count != 0) {
2374                 vm_page_protect(p, VM_PROT_NONE);
2375                 if (info->limit == 0)
2376                         p->valid = 0;
2377                 vm_page_wakeup(p);
2378                 return(0);
2379         }
2380
2381         /*
2382          * limit is our clean_only flag.  If set and the page is dirty, do
2383          * not free it.  If set and the page is being held by someone, do
2384          * not free it.
2385          */
2386         if (info->limit && p->valid) {
2387                 vm_page_test_dirty(p);
2388                 if (p->valid & p->dirty) {
2389                         vm_page_wakeup(p);
2390                         return(0);
2391                 }
2392 #if 0
2393                 if (p->hold_count) {
2394                         vm_page_wakeup(p);
2395                         return(0);
2396                 }
2397 #endif
2398         }
2399
2400         /*
2401          * Destroy the page
2402          */
2403         vm_page_protect(p, VM_PROT_NONE);
2404         vm_page_free(p);
2405         return(0);
2406 }
2407
2408 /*
2409  * Coalesces two objects backing up adjoining regions of memory into a
2410  * single object.
2411  *
2412  * returns TRUE if objects were combined.
2413  *
2414  * NOTE: Only works at the moment if the second object is NULL -
2415  *       if it's not, which object do we lock first?
2416  *
2417  * Parameters:
2418  *      prev_object     First object to coalesce
2419  *      prev_offset     Offset into prev_object
2420  *      next_object     Second object into coalesce
2421  *      next_offset     Offset into next_object
2422  *
2423  *      prev_size       Size of reference to prev_object
2424  *      next_size       Size of reference to next_object
2425  *
2426  * The caller does not need to hold (prev_object) but must have a stable
2427  * pointer to it (typically by holding the vm_map locked).
2428  */
2429 boolean_t
2430 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2431                    vm_size_t prev_size, vm_size_t next_size)
2432 {
2433         vm_pindex_t next_pindex;
2434
2435         if (prev_object == NULL)
2436                 return (TRUE);
2437
2438         vm_object_hold(prev_object);
2439
2440         if (prev_object->type != OBJT_DEFAULT &&
2441             prev_object->type != OBJT_SWAP) {
2442                 vm_object_drop(prev_object);
2443                 return (FALSE);
2444         }
2445
2446         /*
2447          * Try to collapse the object first
2448          */
2449         vm_object_chain_acquire(prev_object);
2450         vm_object_collapse(prev_object, NULL);
2451
2452         /*
2453          * Can't coalesce if: . more than one reference . paged out . shadows
2454          * another object . has a copy elsewhere (any of which mean that the
2455          * pages not mapped to prev_entry may be in use anyway)
2456          */
2457
2458         if (prev_object->backing_object != NULL) {
2459                 vm_object_chain_release(prev_object);
2460                 vm_object_drop(prev_object);
2461                 return (FALSE);
2462         }
2463
2464         prev_size >>= PAGE_SHIFT;
2465         next_size >>= PAGE_SHIFT;
2466         next_pindex = prev_pindex + prev_size;
2467
2468         if ((prev_object->ref_count > 1) &&
2469             (prev_object->size != next_pindex)) {
2470                 vm_object_chain_release(prev_object);
2471                 vm_object_drop(prev_object);
2472                 return (FALSE);
2473         }
2474
2475         /*
2476          * Remove any pages that may still be in the object from a previous
2477          * deallocation.
2478          */
2479         if (next_pindex < prev_object->size) {
2480                 vm_object_page_remove(prev_object,
2481                                       next_pindex,
2482                                       next_pindex + next_size, FALSE);
2483                 if (prev_object->type == OBJT_SWAP)
2484                         swap_pager_freespace(prev_object,
2485                                              next_pindex, next_size);
2486         }
2487
2488         /*
2489          * Extend the object if necessary.
2490          */
2491         if (next_pindex + next_size > prev_object->size)
2492                 prev_object->size = next_pindex + next_size;
2493
2494         vm_object_chain_release(prev_object);
2495         vm_object_drop(prev_object);
2496         return (TRUE);
2497 }
2498
2499 /*
2500  * Make the object writable and flag is being possibly dirty.
2501  *
2502  * The caller must hold the object. XXX called from vm_page_dirty(),
2503  * There is currently no requirement to hold the object.
2504  */
2505 void
2506 vm_object_set_writeable_dirty(vm_object_t object)
2507 {
2508         struct vnode *vp;
2509
2510         /*vm_object_assert_held(object);*/
2511         /*
2512          * Avoid contention in vm fault path by checking the state before
2513          * issuing an atomic op on it.
2514          */
2515         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2516             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2517                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2518         }
2519         if (object->type == OBJT_VNODE &&
2520             (vp = (struct vnode *)object->handle) != NULL) {
2521                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2522                         vsetflags(vp, VOBJDIRTY);
2523                 }
2524         }
2525 }
2526
2527 #include "opt_ddb.h"
2528 #ifdef DDB
2529 #include <sys/kernel.h>
2530
2531 #include <sys/cons.h>
2532
2533 #include <ddb/ddb.h>
2534
2535 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2536                                        vm_map_entry_t entry);
2537 static int      vm_object_in_map (vm_object_t object);
2538
2539 /*
2540  * The caller must hold the object.
2541  */
2542 static int
2543 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2544 {
2545         vm_map_t tmpm;
2546         vm_map_entry_t tmpe;
2547         vm_object_t obj, nobj;
2548         int entcount;
2549
2550         if (map == 0)
2551                 return 0;
2552         if (entry == 0) {
2553                 tmpe = map->header.next;
2554                 entcount = map->nentries;
2555                 while (entcount-- && (tmpe != &map->header)) {
2556                         if( _vm_object_in_map(map, object, tmpe)) {
2557                                 return 1;
2558                         }
2559                         tmpe = tmpe->next;
2560                 }
2561                 return (0);
2562         }
2563         switch(entry->maptype) {
2564         case VM_MAPTYPE_SUBMAP:
2565                 tmpm = entry->object.sub_map;
2566                 tmpe = tmpm->header.next;
2567                 entcount = tmpm->nentries;
2568                 while (entcount-- && tmpe != &tmpm->header) {
2569                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2570                                 return 1;
2571                         }
2572                         tmpe = tmpe->next;
2573                 }
2574                 break;
2575         case VM_MAPTYPE_NORMAL:
2576         case VM_MAPTYPE_VPAGETABLE:
2577                 obj = entry->object.vm_object;
2578                 while (obj) {
2579                         if (obj == object) {
2580                                 if (obj != entry->object.vm_object)
2581                                         vm_object_drop(obj);
2582                                 return 1;
2583                         }
2584                         while ((nobj = obj->backing_object) != NULL) {
2585                                 vm_object_hold(nobj);
2586                                 if (nobj == obj->backing_object)
2587                                         break;
2588                                 vm_object_drop(nobj);
2589                         }
2590                         if (obj != entry->object.vm_object) {
2591                                 if (nobj)
2592                                         vm_object_lock_swap();
2593                                 vm_object_drop(obj);
2594                         }
2595                         obj = nobj;
2596                 }
2597                 break;
2598         default:
2599                 break;
2600         }
2601         return 0;
2602 }
2603
2604 static int vm_object_in_map_callback(struct proc *p, void *data);
2605
2606 struct vm_object_in_map_info {
2607         vm_object_t object;
2608         int rv;
2609 };
2610
2611 /*
2612  * Debugging only
2613  */
2614 static int
2615 vm_object_in_map(vm_object_t object)
2616 {
2617         struct vm_object_in_map_info info;
2618
2619         info.rv = 0;
2620         info.object = object;
2621
2622         allproc_scan(vm_object_in_map_callback, &info);
2623         if (info.rv)
2624                 return 1;
2625         if( _vm_object_in_map(&kernel_map, object, 0))
2626                 return 1;
2627         if( _vm_object_in_map(&pager_map, object, 0))
2628                 return 1;
2629         if( _vm_object_in_map(&buffer_map, object, 0))
2630                 return 1;
2631         return 0;
2632 }
2633
2634 /*
2635  * Debugging only
2636  */
2637 static int
2638 vm_object_in_map_callback(struct proc *p, void *data)
2639 {
2640         struct vm_object_in_map_info *info = data;
2641
2642         if (p->p_vmspace) {
2643                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2644                         info->rv = 1;
2645                         return -1;
2646                 }
2647         }
2648         return (0);
2649 }
2650
2651 DB_SHOW_COMMAND(vmochk, vm_object_check)
2652 {
2653         vm_object_t object;
2654
2655         /*
2656          * make sure that internal objs are in a map somewhere
2657          * and none have zero ref counts.
2658          */
2659         for (object = TAILQ_FIRST(&vm_object_list);
2660                         object != NULL;
2661                         object = TAILQ_NEXT(object, object_list)) {
2662                 if (object->type == OBJT_MARKER)
2663                         continue;
2664                 if (object->handle == NULL &&
2665                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2666                         if (object->ref_count == 0) {
2667                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2668                                         (long)object->size);
2669                         }
2670                         if (!vm_object_in_map(object)) {
2671                                 db_printf(
2672                         "vmochk: internal obj is not in a map: "
2673                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2674                                     object->ref_count, (u_long)object->size, 
2675                                     (u_long)object->size,
2676                                     (void *)object->backing_object);
2677                         }
2678                 }
2679         }
2680 }
2681
2682 /*
2683  * Debugging only
2684  */
2685 DB_SHOW_COMMAND(object, vm_object_print_static)
2686 {
2687         /* XXX convert args. */
2688         vm_object_t object = (vm_object_t)addr;
2689         boolean_t full = have_addr;
2690
2691         vm_page_t p;
2692
2693         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2694 #define count   was_count
2695
2696         int count;
2697
2698         if (object == NULL)
2699                 return;
2700
2701         db_iprintf(
2702             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2703             object, (int)object->type, (u_long)object->size,
2704             object->resident_page_count, object->ref_count, object->flags);
2705         /*
2706          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2707          */
2708         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2709             object->shadow_count, 
2710             object->backing_object ? object->backing_object->ref_count : 0,
2711             object->backing_object, (long)object->backing_object_offset);
2712
2713         if (!full)
2714                 return;
2715
2716         db_indent += 2;
2717         count = 0;
2718         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2719                 if (count == 0)
2720                         db_iprintf("memory:=");
2721                 else if (count == 6) {
2722                         db_printf("\n");
2723                         db_iprintf(" ...");
2724                         count = 0;
2725                 } else
2726                         db_printf(",");
2727                 count++;
2728
2729                 db_printf("(off=0x%lx,page=0x%lx)",
2730                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2731         }
2732         if (count != 0)
2733                 db_printf("\n");
2734         db_indent -= 2;
2735 }
2736
2737 /* XXX. */
2738 #undef count
2739
2740 /*
2741  * XXX need this non-static entry for calling from vm_map_print.
2742  *
2743  * Debugging only
2744  */
2745 void
2746 vm_object_print(/* db_expr_t */ long addr,
2747                 boolean_t have_addr,
2748                 /* db_expr_t */ long count,
2749                 char *modif)
2750 {
2751         vm_object_print_static(addr, have_addr, count, modif);
2752 }
2753
2754 /*
2755  * Debugging only
2756  */
2757 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2758 {
2759         vm_object_t object;
2760         int nl = 0;
2761         int c;
2762         for (object = TAILQ_FIRST(&vm_object_list);
2763                         object != NULL;
2764                         object = TAILQ_NEXT(object, object_list)) {
2765                 vm_pindex_t idx, fidx;
2766                 vm_pindex_t osize;
2767                 vm_paddr_t pa = -1, padiff;
2768                 int rcount;
2769                 vm_page_t m;
2770
2771                 if (object->type == OBJT_MARKER)
2772                         continue;
2773                 db_printf("new object: %p\n", (void *)object);
2774                 if ( nl > 18) {
2775                         c = cngetc();
2776                         if (c != ' ')
2777                                 return;
2778                         nl = 0;
2779                 }
2780                 nl++;
2781                 rcount = 0;
2782                 fidx = 0;
2783                 osize = object->size;
2784                 if (osize > 128)
2785                         osize = 128;
2786                 for (idx = 0; idx < osize; idx++) {
2787                         m = vm_page_lookup(object, idx);
2788                         if (m == NULL) {
2789                                 if (rcount) {
2790                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2791                                                 (long)fidx, rcount, (long)pa);
2792                                         if ( nl > 18) {
2793                                                 c = cngetc();
2794                                                 if (c != ' ')
2795                                                         return;
2796                                                 nl = 0;
2797                                         }
2798                                         nl++;
2799                                         rcount = 0;
2800                                 }
2801                                 continue;
2802                         }
2803
2804                                 
2805                         if (rcount &&
2806                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2807                                 ++rcount;
2808                                 continue;
2809                         }
2810                         if (rcount) {
2811                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2812                                 padiff >>= PAGE_SHIFT;
2813                                 padiff &= PQ_L2_MASK;
2814                                 if (padiff == 0) {
2815                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2816                                         ++rcount;
2817                                         continue;
2818                                 }
2819                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2820                                         (long)fidx, rcount, (long)pa);
2821                                 db_printf("pd(%ld)\n", (long)padiff);
2822                                 if ( nl > 18) {
2823                                         c = cngetc();
2824                                         if (c != ' ')
2825                                                 return;
2826                                         nl = 0;
2827                                 }
2828                                 nl++;
2829                         }
2830                         fidx = idx;
2831                         pa = VM_PAGE_TO_PHYS(m);
2832                         rcount = 1;
2833                 }
2834                 if (rcount) {
2835                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2836                                 (long)fidx, rcount, (long)pa);
2837                         if ( nl > 18) {
2838                                 c = cngetc();
2839                                 if (c != ' ')
2840                                         return;
2841                                 nl = 0;
2842                         }
2843                         nl++;
2844                 }
2845         }
2846 }
2847 #endif /* DDB */