461252086ad53d67a4337f2525ef10af7f3fb5ca
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.30 2007/02/03 17:05:59 corecode Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178         CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212
213 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
214
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229         if (vm_pages_needed) {
230                 if (vm_load < 1000)
231                         ++vm_load;
232         } else {
233                 if (vm_load > 0)
234                         --vm_load;
235         }
236 }
237
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  * 
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252         vm_object_t object;
253         vm_page_t mc[2*vm_pageout_page_count];
254         int pageout_count;
255         int ib, is, page_base;
256         vm_pindex_t pindex = m->pindex;
257
258         object = m->object;
259
260         /*
261          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262          * with the new swapper, but we could have serious problems paging
263          * out other object types if there is insufficient memory.  
264          *
265          * Unfortunately, checking free memory here is far too late, so the
266          * check has been moved up a procedural level.
267          */
268
269         /*
270          * Don't mess with the page if it's busy, held, or special
271          */
272         if ((m->hold_count != 0) ||
273             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274                 return 0;
275         }
276
277         mc[vm_pageout_page_count] = m;
278         pageout_count = 1;
279         page_base = vm_pageout_page_count;
280         ib = 1;
281         is = 1;
282
283         /*
284          * Scan object for clusterable pages.
285          *
286          * We can cluster ONLY if: ->> the page is NOT
287          * clean, wired, busy, held, or mapped into a
288          * buffer, and one of the following:
289          * 1) The page is inactive, or a seldom used
290          *    active page.
291          * -or-
292          * 2) we force the issue.
293          *
294          * During heavy mmap/modification loads the pageout
295          * daemon can really fragment the underlying file
296          * due to flushing pages out of order and not trying
297          * align the clusters (which leave sporatic out-of-order
298          * holes).  To solve this problem we do the reverse scan
299          * first and attempt to align our cluster, then do a 
300          * forward scan if room remains.
301          */
302
303 more:
304         while (ib && pageout_count < vm_pageout_page_count) {
305                 vm_page_t p;
306
307                 if (ib > pindex) {
308                         ib = 0;
309                         break;
310                 }
311
312                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313                         ib = 0;
314                         break;
315                 }
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         ib = 0;
319                         break;
320                 }
321                 vm_page_test_dirty(p);
322                 if ((p->dirty & p->valid) == 0 ||
323                     p->queue != PQ_INACTIVE ||
324                     p->wire_count != 0 ||       /* may be held by buf cache */
325                     p->hold_count != 0) {       /* may be undergoing I/O */
326                         ib = 0;
327                         break;
328                 }
329                 mc[--page_base] = p;
330                 ++pageout_count;
331                 ++ib;
332                 /*
333                  * alignment boundry, stop here and switch directions.  Do
334                  * not clear ib.
335                  */
336                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337                         break;
338         }
339
340         while (pageout_count < vm_pageout_page_count && 
341             pindex + is < object->size) {
342                 vm_page_t p;
343
344                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345                         break;
346                 if (((p->queue - p->pc) == PQ_CACHE) ||
347                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348                         break;
349                 }
350                 vm_page_test_dirty(p);
351                 if ((p->dirty & p->valid) == 0 ||
352                     p->queue != PQ_INACTIVE ||
353                     p->wire_count != 0 ||       /* may be held by buf cache */
354                     p->hold_count != 0) {       /* may be undergoing I/O */
355                         break;
356                 }
357                 mc[page_base + pageout_count] = p;
358                 ++pageout_count;
359                 ++is;
360         }
361
362         /*
363          * If we exhausted our forward scan, continue with the reverse scan
364          * when possible, even past a page boundry.  This catches boundry
365          * conditions.
366          */
367         if (ib && pageout_count < vm_pageout_page_count)
368                 goto more;
369
370         /*
371          * we allow reads during pageouts...
372          */
373         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *      The given pages are laundered.  Note that we setup for the start of
380  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *      reference count all in here rather then in the parent.  If we want
382  *      the parent to do more sophisticated things we may have to change
383  *      the ordering.
384  */
385
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389         vm_object_t object;
390         int pageout_status[count];
391         int numpagedout = 0;
392         int i;
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter and
396          * mark the pages read-only.
397          *
398          * We do not have to fixup the clean/dirty bits here... we can
399          * allow the pager to do it after the I/O completes.
400          */
401
402         for (i = 0; i < count; i++) {
403                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404                 vm_page_io_start(mc[i]);
405                 vm_page_protect(mc[i], VM_PROT_READ);
406         }
407
408         object = mc[0]->object;
409         vm_object_pip_add(object, count);
410
411         vm_pager_put_pages(object, mc, count,
412             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413             pageout_status);
414
415         for (i = 0; i < count; i++) {
416                 vm_page_t mt = mc[i];
417
418                 switch (pageout_status[i]) {
419                 case VM_PAGER_OK:
420                         numpagedout++;
421                         break;
422                 case VM_PAGER_PEND:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_BAD:
426                         /*
427                          * Page outside of range of object. Right now we
428                          * essentially lose the changes by pretending it
429                          * worked.
430                          */
431                         pmap_clear_modify(mt);
432                         vm_page_undirty(mt);
433                         break;
434                 case VM_PAGER_ERROR:
435                 case VM_PAGER_FAIL:
436                         /*
437                          * If page couldn't be paged out, then reactivate the
438                          * page so it doesn't clog the inactive list.  (We
439                          * will try paging out it again later).
440                          */
441                         vm_page_activate(mt);
442                         break;
443                 case VM_PAGER_AGAIN:
444                         break;
445                 }
446
447                 /*
448                  * If the operation is still going, leave the page busy to
449                  * block all other accesses. Also, leave the paging in
450                  * progress indicator set so that we don't attempt an object
451                  * collapse.
452                  */
453                 if (pageout_status[i] != VM_PAGER_PEND) {
454                         vm_object_pip_wakeup(object);
455                         vm_page_io_finish(mt);
456                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457                                 vm_page_protect(mt, VM_PROT_READ);
458                 }
459         }
460         return numpagedout;
461 }
462
463 #if !defined(NO_SWAPPING)
464 /*
465  *      vm_pageout_object_deactivate_pages
466  *
467  *      deactivate enough pages to satisfy the inactive target
468  *      requirements or if vm_page_proc_limit is set, then
469  *      deactivate all of the pages in the object and its
470  *      backing_objects.
471  *
472  *      The object and map must be locked.
473  */
474 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
475
476 static void
477 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
478         vm_pindex_t desired, int map_remove_only)
479 {
480         struct rb_vm_page_scan_info info;
481         int remove_mode;
482
483         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
484                 return;
485
486         while (object) {
487                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
488                         return;
489                 if (object->paging_in_progress)
490                         return;
491
492                 remove_mode = map_remove_only;
493                 if (object->shadow_count > 1)
494                         remove_mode = 1;
495
496                 /*
497                  * scan the objects entire memory queue.  spl protection is
498                  * required to avoid an interrupt unbusy/free race against
499                  * our busy check.
500                  */
501                 crit_enter();
502                 info.limit = remove_mode;
503                 info.map = map;
504                 info.desired = desired;
505                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
506                                 vm_pageout_object_deactivate_pages_callback,
507                                 &info
508                 );
509                 crit_exit();
510                 object = object->backing_object;
511         }
512 }
513                                         
514 static int
515 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
516 {
517         struct rb_vm_page_scan_info *info = data;
518         int actcount;
519
520         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
521                 return(-1);
522         }
523         mycpu->gd_cnt.v_pdpages++;
524         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
525             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
526             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
527                 return(0);
528         }
529
530         actcount = pmap_ts_referenced(p);
531         if (actcount) {
532                 vm_page_flag_set(p, PG_REFERENCED);
533         } else if (p->flags & PG_REFERENCED) {
534                 actcount = 1;
535         }
536
537         if ((p->queue != PQ_ACTIVE) &&
538                 (p->flags & PG_REFERENCED)) {
539                 vm_page_activate(p);
540                 p->act_count += actcount;
541                 vm_page_flag_clear(p, PG_REFERENCED);
542         } else if (p->queue == PQ_ACTIVE) {
543                 if ((p->flags & PG_REFERENCED) == 0) {
544                         p->act_count -= min(p->act_count, ACT_DECLINE);
545                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
546                                 vm_page_protect(p, VM_PROT_NONE);
547                                 vm_page_deactivate(p);
548                         } else {
549                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
551                         }
552                 } else {
553                         vm_page_activate(p);
554                         vm_page_flag_clear(p, PG_REFERENCED);
555                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
556                                 p->act_count += ACT_ADVANCE;
557                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
558                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
559                 }
560         } else if (p->queue == PQ_INACTIVE) {
561                 vm_page_protect(p, VM_PROT_NONE);
562         }
563         return(0);
564 }
565
566 /*
567  * deactivate some number of pages in a map, try to do it fairly, but
568  * that is really hard to do.
569  */
570 static void
571 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
572 {
573         vm_map_entry_t tmpe;
574         vm_object_t obj, bigobj;
575         int nothingwired;
576
577         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
578                 return;
579         }
580
581         bigobj = NULL;
582         nothingwired = TRUE;
583
584         /*
585          * first, search out the biggest object, and try to free pages from
586          * that.
587          */
588         tmpe = map->header.next;
589         while (tmpe != &map->header) {
590                 switch(tmpe->maptype) {
591                 case VM_MAPTYPE_NORMAL:
592                 case VM_MAPTYPE_VPAGETABLE:
593                         obj = tmpe->object.vm_object;
594                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
595                                 ((bigobj == NULL) ||
596                                  (bigobj->resident_page_count < obj->resident_page_count))) {
597                                 bigobj = obj;
598                         }
599                         break;
600                 default:
601                         break;
602                 }
603                 if (tmpe->wired_count > 0)
604                         nothingwired = FALSE;
605                 tmpe = tmpe->next;
606         }
607
608         if (bigobj)
609                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
610
611         /*
612          * Next, hunt around for other pages to deactivate.  We actually
613          * do this search sort of wrong -- .text first is not the best idea.
614          */
615         tmpe = map->header.next;
616         while (tmpe != &map->header) {
617                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
618                         break;
619                 switch(tmpe->maptype) {
620                 case VM_MAPTYPE_NORMAL:
621                 case VM_MAPTYPE_VPAGETABLE:
622                         obj = tmpe->object.vm_object;
623                         if (obj)
624                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
625                         break;
626                 default:
627                         break;
628                 }
629                 tmpe = tmpe->next;
630         };
631
632         /*
633          * Remove all mappings if a process is swapped out, this will free page
634          * table pages.
635          */
636         if (desired == 0 && nothingwired)
637                 pmap_remove(vm_map_pmap(map),
638                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
639         vm_map_unlock(map);
640 }
641 #endif
642
643 /*
644  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
645  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
646  * be trivially freed.
647  */
648 void
649 vm_pageout_page_free(vm_page_t m) {
650         vm_object_t object = m->object;
651         int type = object->type;
652
653         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
654                 vm_object_reference(object);
655         vm_page_busy(m);
656         vm_page_protect(m, VM_PROT_NONE);
657         vm_page_free(m);
658         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
659                 vm_object_deallocate(object);
660 }
661
662 /*
663  *      vm_pageout_scan does the dirty work for the pageout daemon.
664  */
665
666 struct vm_pageout_scan_info {
667         struct proc *bigproc;
668         vm_offset_t bigsize;
669 };
670
671 static int vm_pageout_scan_callback(struct proc *p, void *data);
672
673 static void
674 vm_pageout_scan(int pass)
675 {
676         struct vm_pageout_scan_info info;
677         vm_page_t m, next;
678         struct vm_page marker;
679         int page_shortage, maxscan, pcount;
680         int addl_page_shortage, addl_page_shortage_init;
681         vm_object_t object;
682         int actcount;
683         int vnodes_skipped = 0;
684         int maxlaunder;
685
686         /*
687          * Do whatever cleanup that the pmap code can.
688          */
689         pmap_collect();
690
691         addl_page_shortage_init = vm_pageout_deficit;
692         vm_pageout_deficit = 0;
693
694         /*
695          * Calculate the number of pages we want to either free or move
696          * to the cache.
697          */
698         page_shortage = vm_paging_target() + addl_page_shortage_init;
699
700         /*
701          * Initialize our marker
702          */
703         bzero(&marker, sizeof(marker));
704         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
705         marker.queue = PQ_INACTIVE;
706         marker.wire_count = 1;
707
708         /*
709          * Start scanning the inactive queue for pages we can move to the
710          * cache or free.  The scan will stop when the target is reached or
711          * we have scanned the entire inactive queue.  Note that m->act_count
712          * is not used to form decisions for the inactive queue, only for the
713          * active queue.
714          *
715          * maxlaunder limits the number of dirty pages we flush per scan.
716          * For most systems a smaller value (16 or 32) is more robust under
717          * extreme memory and disk pressure because any unnecessary writes
718          * to disk can result in extreme performance degredation.  However,
719          * systems with excessive dirty pages (especially when MAP_NOSYNC is
720          * used) will die horribly with limited laundering.  If the pageout
721          * daemon cannot clean enough pages in the first pass, we let it go
722          * all out in succeeding passes.
723          */
724         if ((maxlaunder = vm_max_launder) <= 1)
725                 maxlaunder = 1;
726         if (pass)
727                 maxlaunder = 10000;
728
729         /*
730          * We will generally be in a critical section throughout the 
731          * scan, but we can release it temporarily when we are sitting on a
732          * non-busy page without fear.  this is required to prevent an
733          * interrupt from unbusying or freeing a page prior to our busy
734          * check, leaving us on the wrong queue or checking the wrong
735          * page.
736          */
737         crit_enter();
738 rescan0:
739         addl_page_shortage = addl_page_shortage_init;
740         maxscan = vmstats.v_inactive_count;
741         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
742              m != NULL && maxscan-- > 0 && page_shortage > 0;
743              m = next
744          ) {
745                 mycpu->gd_cnt.v_pdpages++;
746
747                 /*
748                  * Give interrupts a chance
749                  */
750                 crit_exit();
751                 crit_enter();
752
753                 /*
754                  * It's easier for some of the conditions below to just loop
755                  * and catch queue changes here rather then check everywhere
756                  * else.
757                  */
758                 if (m->queue != PQ_INACTIVE)
759                         goto rescan0;
760                 next = TAILQ_NEXT(m, pageq);
761
762                 /*
763                  * skip marker pages
764                  */
765                 if (m->flags & PG_MARKER)
766                         continue;
767
768                 /*
769                  * A held page may be undergoing I/O, so skip it.
770                  */
771                 if (m->hold_count) {
772                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
773                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
774                         addl_page_shortage++;
775                         continue;
776                 }
777
778                 /*
779                  * Dont mess with busy pages, keep in the front of the
780                  * queue, most likely are being paged out.
781                  */
782                 if (m->busy || (m->flags & PG_BUSY)) {
783                         addl_page_shortage++;
784                         continue;
785                 }
786
787                 if (m->object->ref_count == 0) {
788                         /*
789                          * If the object is not being used, we ignore previous 
790                          * references.
791                          */
792                         vm_page_flag_clear(m, PG_REFERENCED);
793                         pmap_clear_reference(m);
794
795                 } else if (((m->flags & PG_REFERENCED) == 0) &&
796                             (actcount = pmap_ts_referenced(m))) {
797                         /*
798                          * Otherwise, if the page has been referenced while 
799                          * in the inactive queue, we bump the "activation
800                          * count" upwards, making it less likely that the
801                          * page will be added back to the inactive queue
802                          * prematurely again.  Here we check the page tables
803                          * (or emulated bits, if any), given the upper level
804                          * VM system not knowing anything about existing 
805                          * references.
806                          */
807                         vm_page_activate(m);
808                         m->act_count += (actcount + ACT_ADVANCE);
809                         continue;
810                 }
811
812                 /*
813                  * If the upper level VM system knows about any page 
814                  * references, we activate the page.  We also set the 
815                  * "activation count" higher than normal so that we will less 
816                  * likely place pages back onto the inactive queue again.
817                  */
818                 if ((m->flags & PG_REFERENCED) != 0) {
819                         vm_page_flag_clear(m, PG_REFERENCED);
820                         actcount = pmap_ts_referenced(m);
821                         vm_page_activate(m);
822                         m->act_count += (actcount + ACT_ADVANCE + 1);
823                         continue;
824                 }
825
826                 /*
827                  * If the upper level VM system doesn't know anything about 
828                  * the page being dirty, we have to check for it again.  As 
829                  * far as the VM code knows, any partially dirty pages are 
830                  * fully dirty.
831                  *
832                  * Pages marked PG_WRITEABLE may be mapped into the user
833                  * address space of a process running on another cpu.  A
834                  * user process (without holding the MP lock) running on
835                  * another cpu may be able to touch the page while we are
836                  * trying to remove it.  To prevent this from occuring we
837                  * must call pmap_remove_all() or otherwise make the page
838                  * read-only.  If the race occured pmap_remove_all() is
839                  * responsible for setting m->dirty.
840                  */
841                 if (m->dirty == 0) {
842                         vm_page_test_dirty(m);
843 #if 0
844                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
845                                 pmap_remove_all(m);
846 #endif
847                 } else {
848                         vm_page_dirty(m);
849                 }
850
851                 if (m->valid == 0) {
852                         /*
853                          * Invalid pages can be easily freed
854                          */
855                         vm_pageout_page_free(m);
856                         mycpu->gd_cnt.v_dfree++;
857                         --page_shortage;
858                 } else if (m->dirty == 0) {
859                         /*
860                          * Clean pages can be placed onto the cache queue.
861                          * This effectively frees them.
862                          */
863                         vm_page_cache(m);
864                         --page_shortage;
865                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
866                         /*
867                          * Dirty pages need to be paged out, but flushing
868                          * a page is extremely expensive verses freeing
869                          * a clean page.  Rather then artificially limiting
870                          * the number of pages we can flush, we instead give
871                          * dirty pages extra priority on the inactive queue
872                          * by forcing them to be cycled through the queue
873                          * twice before being flushed, after which the 
874                          * (now clean) page will cycle through once more
875                          * before being freed.  This significantly extends
876                          * the thrash point for a heavily loaded machine.
877                          */
878                         vm_page_flag_set(m, PG_WINATCFLS);
879                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
880                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
881                 } else if (maxlaunder > 0) {
882                         /*
883                          * We always want to try to flush some dirty pages if
884                          * we encounter them, to keep the system stable.
885                          * Normally this number is small, but under extreme
886                          * pressure where there are insufficient clean pages
887                          * on the inactive queue, we may have to go all out.
888                          */
889                         int swap_pageouts_ok;
890                         struct vnode *vp = NULL;
891
892                         object = m->object;
893
894                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
895                                 swap_pageouts_ok = 1;
896                         } else {
897                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
898                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
899                                 vm_page_count_min());
900                                                                                 
901                         }
902
903                         /*
904                          * We don't bother paging objects that are "dead".  
905                          * Those objects are in a "rundown" state.
906                          */
907                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
908                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
909                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
910                                 continue;
911                         }
912
913                         /*
914                          * The object is already known NOT to be dead.   It
915                          * is possible for the vget() to block the whole
916                          * pageout daemon, but the new low-memory handling
917                          * code should prevent it.
918                          *
919                          * The previous code skipped locked vnodes and, worse,
920                          * reordered pages in the queue.  This results in
921                          * completely non-deterministic operation because,
922                          * quite often, a vm_fault has initiated an I/O and
923                          * is holding a locked vnode at just the point where
924                          * the pageout daemon is woken up.
925                          *
926                          * We can't wait forever for the vnode lock, we might
927                          * deadlock due to a vn_read() getting stuck in
928                          * vm_wait while holding this vnode.  We skip the 
929                          * vnode if we can't get it in a reasonable amount
930                          * of time.
931                          */
932
933                         if (object->type == OBJT_VNODE) {
934                                 vp = object->handle;
935
936                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
937                                         ++pageout_lock_miss;
938                                         if (object->flags & OBJ_MIGHTBEDIRTY)
939                                                     vnodes_skipped++;
940                                         continue;
941                                 }
942
943                                 /*
944                                  * The page might have been moved to another
945                                  * queue during potential blocking in vget()
946                                  * above.  The page might have been freed and
947                                  * reused for another vnode.  The object might
948                                  * have been reused for another vnode.
949                                  */
950                                 if (m->queue != PQ_INACTIVE ||
951                                     m->object != object ||
952                                     object->handle != vp) {
953                                         if (object->flags & OBJ_MIGHTBEDIRTY)
954                                                 vnodes_skipped++;
955                                         vput(vp);
956                                         continue;
957                                 }
958         
959                                 /*
960                                  * The page may have been busied during the
961                                  * blocking in vput();  We don't move the
962                                  * page back onto the end of the queue so that
963                                  * statistics are more correct if we don't.
964                                  */
965                                 if (m->busy || (m->flags & PG_BUSY)) {
966                                         vput(vp);
967                                         continue;
968                                 }
969
970                                 /*
971                                  * If the page has become held it might
972                                  * be undergoing I/O, so skip it
973                                  */
974                                 if (m->hold_count) {
975                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
976                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
977                                         if (object->flags & OBJ_MIGHTBEDIRTY)
978                                                 vnodes_skipped++;
979                                         vput(vp);
980                                         continue;
981                                 }
982                         }
983
984                         /*
985                          * If a page is dirty, then it is either being washed
986                          * (but not yet cleaned) or it is still in the
987                          * laundry.  If it is still in the laundry, then we
988                          * start the cleaning operation. 
989                          *
990                          * This operation may cluster, invalidating the 'next'
991                          * pointer.  To prevent an inordinate number of
992                          * restarts we use our marker to remember our place.
993                          *
994                          * decrement page_shortage on success to account for
995                          * the (future) cleaned page.  Otherwise we could wind
996                          * up laundering or cleaning too many pages.
997                          */
998                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
999                         if (vm_pageout_clean(m) != 0) {
1000                                 --page_shortage;
1001                                 --maxlaunder;
1002                         } 
1003                         next = TAILQ_NEXT(&marker, pageq);
1004                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1005                         if (vp != NULL)
1006                                 vput(vp);
1007                 }
1008         }
1009
1010         /*
1011          * Compute the number of pages we want to try to move from the
1012          * active queue to the inactive queue.
1013          */
1014         page_shortage = vm_paging_target() +
1015             vmstats.v_inactive_target - vmstats.v_inactive_count;
1016         page_shortage += addl_page_shortage;
1017
1018         /*
1019          * Scan the active queue for things we can deactivate. We nominally
1020          * track the per-page activity counter and use it to locate 
1021          * deactivation candidates.
1022          *
1023          * NOTE: we are still in a critical section.
1024          */
1025         pcount = vmstats.v_active_count;
1026         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1027
1028         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1029                 /*
1030                  * Give interrupts a chance.
1031                  */
1032                 crit_exit();
1033                 crit_enter();
1034
1035                 /*
1036                  * If the page was ripped out from under us, just stop.
1037                  */
1038                 if (m->queue != PQ_ACTIVE)
1039                         break;
1040                 next = TAILQ_NEXT(m, pageq);
1041
1042                 /*
1043                  * Don't deactivate pages that are busy.
1044                  */
1045                 if ((m->busy != 0) ||
1046                     (m->flags & PG_BUSY) ||
1047                     (m->hold_count != 0)) {
1048                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1049                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1050                         m = next;
1051                         continue;
1052                 }
1053
1054                 /*
1055                  * The count for pagedaemon pages is done after checking the
1056                  * page for eligibility...
1057                  */
1058                 mycpu->gd_cnt.v_pdpages++;
1059
1060                 /*
1061                  * Check to see "how much" the page has been used.
1062                  */
1063                 actcount = 0;
1064                 if (m->object->ref_count != 0) {
1065                         if (m->flags & PG_REFERENCED) {
1066                                 actcount += 1;
1067                         }
1068                         actcount += pmap_ts_referenced(m);
1069                         if (actcount) {
1070                                 m->act_count += ACT_ADVANCE + actcount;
1071                                 if (m->act_count > ACT_MAX)
1072                                         m->act_count = ACT_MAX;
1073                         }
1074                 }
1075
1076                 /*
1077                  * Since we have "tested" this bit, we need to clear it now.
1078                  */
1079                 vm_page_flag_clear(m, PG_REFERENCED);
1080
1081                 /*
1082                  * Only if an object is currently being used, do we use the
1083                  * page activation count stats.
1084                  */
1085                 if (actcount && (m->object->ref_count != 0)) {
1086                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1087                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1088                 } else {
1089                         m->act_count -= min(m->act_count, ACT_DECLINE);
1090                         if (vm_pageout_algorithm ||
1091                             m->object->ref_count == 0 ||
1092                             m->act_count < pass) {
1093                                 page_shortage--;
1094                                 if (m->object->ref_count == 0) {
1095                                         vm_page_protect(m, VM_PROT_NONE);
1096                                         if (m->dirty == 0)
1097                                                 vm_page_cache(m);
1098                                         else
1099                                                 vm_page_deactivate(m);
1100                                 } else {
1101                                         vm_page_deactivate(m);
1102                                 }
1103                         } else {
1104                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1105                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106                         }
1107                 }
1108                 m = next;
1109         }
1110
1111         /*
1112          * We try to maintain some *really* free pages, this allows interrupt
1113          * code to be guaranteed space.  Since both cache and free queues 
1114          * are considered basically 'free', moving pages from cache to free
1115          * does not effect other calculations.
1116          *
1117          * NOTE: we are still in a critical section.
1118          */
1119
1120         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1121                 static int cache_rover = 0;
1122                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1123                 if (!m)
1124                         break;
1125                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1126                     m->busy || 
1127                     m->hold_count || 
1128                     m->wire_count) {
1129 #ifdef INVARIANTS
1130                         kprintf("Warning: busy page %p found in cache\n", m);
1131 #endif
1132                         vm_page_deactivate(m);
1133                         continue;
1134                 }
1135                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1136                 vm_pageout_page_free(m);
1137                 mycpu->gd_cnt.v_dfree++;
1138         }
1139
1140         crit_exit();
1141
1142 #if !defined(NO_SWAPPING)
1143         /*
1144          * Idle process swapout -- run once per second.
1145          */
1146         if (vm_swap_idle_enabled) {
1147                 static long lsec;
1148                 if (time_second != lsec) {
1149                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1150                         vm_req_vmdaemon();
1151                         lsec = time_second;
1152                 }
1153         }
1154 #endif
1155                 
1156         /*
1157          * If we didn't get enough free pages, and we have skipped a vnode
1158          * in a writeable object, wakeup the sync daemon.  And kick swapout
1159          * if we did not get enough free pages.
1160          */
1161         if (vm_paging_target() > 0) {
1162                 if (vnodes_skipped && vm_page_count_min())
1163                         speedup_syncer();
1164 #if !defined(NO_SWAPPING)
1165                 if (vm_swap_enabled && vm_page_count_target()) {
1166                         vm_req_vmdaemon();
1167                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1168                 }
1169 #endif
1170         }
1171
1172         /*
1173          * If we are out of swap and were not able to reach our paging
1174          * target, kill the largest process.
1175          */
1176         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1177             (swap_pager_full && vm_paging_target() > 0)) {
1178 #if 0
1179         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1180 #endif
1181                 info.bigproc = NULL;
1182                 info.bigsize = 0;
1183                 allproc_scan(vm_pageout_scan_callback, &info);
1184                 if (info.bigproc != NULL) {
1185                         killproc(info.bigproc, "out of swap space");
1186                         info.bigproc->p_nice = PRIO_MIN;
1187                         info.bigproc->p_usched->resetpriority(
1188                                 FIRST_LWP_IN_PROC(info.bigproc));
1189                         wakeup(&vmstats.v_free_count);
1190                         PRELE(info.bigproc);
1191                 }
1192         }
1193 }
1194
1195 static int
1196 vm_pageout_scan_callback(struct proc *p, void *data)
1197 {
1198         struct vm_pageout_scan_info *info = data;
1199         vm_offset_t size;
1200
1201         /*
1202          * if this is a system process, skip it
1203          */
1204         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1205             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1206                 return (0);
1207         }
1208
1209         /*
1210          * if the process is in a non-running type state,
1211          * don't touch it.
1212          */
1213         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1214                 return (0);
1215         }
1216
1217         /*
1218          * get the process size
1219          */
1220         size = vmspace_resident_count(p->p_vmspace) +
1221                 vmspace_swap_count(p->p_vmspace);
1222
1223         /*
1224          * If the this process is bigger than the biggest one
1225          * remember it.
1226          */
1227         if (size > info->bigsize) {
1228                 if (info->bigproc)
1229                         PRELE(info->bigproc);
1230                 PHOLD(p);
1231                 info->bigproc = p;
1232                 info->bigsize = size;
1233         }
1234         return(0);
1235 }
1236
1237 /*
1238  * This routine tries to maintain the pseudo LRU active queue,
1239  * so that during long periods of time where there is no paging,
1240  * that some statistic accumulation still occurs.  This code
1241  * helps the situation where paging just starts to occur.
1242  */
1243 static void
1244 vm_pageout_page_stats(void)
1245 {
1246         vm_page_t m,next;
1247         int pcount,tpcount;             /* Number of pages to check */
1248         static int fullintervalcount = 0;
1249         int page_shortage;
1250
1251         page_shortage = 
1252             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1253             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1254
1255         if (page_shortage <= 0)
1256                 return;
1257
1258         crit_enter();
1259
1260         pcount = vmstats.v_active_count;
1261         fullintervalcount += vm_pageout_stats_interval;
1262         if (fullintervalcount < vm_pageout_full_stats_interval) {
1263                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1264                 if (pcount > tpcount)
1265                         pcount = tpcount;
1266         } else {
1267                 fullintervalcount = 0;
1268         }
1269
1270         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1271         while ((m != NULL) && (pcount-- > 0)) {
1272                 int actcount;
1273
1274                 if (m->queue != PQ_ACTIVE) {
1275                         break;
1276                 }
1277
1278                 next = TAILQ_NEXT(m, pageq);
1279                 /*
1280                  * Don't deactivate pages that are busy.
1281                  */
1282                 if ((m->busy != 0) ||
1283                     (m->flags & PG_BUSY) ||
1284                     (m->hold_count != 0)) {
1285                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1286                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1287                         m = next;
1288                         continue;
1289                 }
1290
1291                 actcount = 0;
1292                 if (m->flags & PG_REFERENCED) {
1293                         vm_page_flag_clear(m, PG_REFERENCED);
1294                         actcount += 1;
1295                 }
1296
1297                 actcount += pmap_ts_referenced(m);
1298                 if (actcount) {
1299                         m->act_count += ACT_ADVANCE + actcount;
1300                         if (m->act_count > ACT_MAX)
1301                                 m->act_count = ACT_MAX;
1302                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1303                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1304                 } else {
1305                         if (m->act_count == 0) {
1306                                 /*
1307                                  * We turn off page access, so that we have
1308                                  * more accurate RSS stats.  We don't do this
1309                                  * in the normal page deactivation when the
1310                                  * system is loaded VM wise, because the
1311                                  * cost of the large number of page protect
1312                                  * operations would be higher than the value
1313                                  * of doing the operation.
1314                                  */
1315                                 vm_page_protect(m, VM_PROT_NONE);
1316                                 vm_page_deactivate(m);
1317                         } else {
1318                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1319                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1320                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1321                         }
1322                 }
1323
1324                 m = next;
1325         }
1326         crit_exit();
1327 }
1328
1329 static int
1330 vm_pageout_free_page_calc(vm_size_t count)
1331 {
1332         if (count < vmstats.v_page_count)
1333                  return 0;
1334         /*
1335          * free_reserved needs to include enough for the largest swap pager
1336          * structures plus enough for any pv_entry structs when paging.
1337          */
1338         if (vmstats.v_page_count > 1024)
1339                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1340         else
1341                 vmstats.v_free_min = 4;
1342         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1343                 vmstats.v_interrupt_free_min;
1344         vmstats.v_free_reserved = vm_pageout_page_count +
1345                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1346         vmstats.v_free_severe = vmstats.v_free_min / 2;
1347         vmstats.v_free_min += vmstats.v_free_reserved;
1348         vmstats.v_free_severe += vmstats.v_free_reserved;
1349         return 1;
1350 }
1351
1352
1353 /*
1354  *      vm_pageout is the high level pageout daemon.
1355  */
1356 static void
1357 vm_pageout(void)
1358 {
1359         int pass;
1360
1361         /*
1362          * Initialize some paging parameters.
1363          */
1364
1365         vmstats.v_interrupt_free_min = 2;
1366         if (vmstats.v_page_count < 2000)
1367                 vm_pageout_page_count = 8;
1368
1369         vm_pageout_free_page_calc(vmstats.v_page_count);
1370         /*
1371          * v_free_target and v_cache_min control pageout hysteresis.  Note
1372          * that these are more a measure of the VM cache queue hysteresis
1373          * then the VM free queue.  Specifically, v_free_target is the
1374          * high water mark (free+cache pages).
1375          *
1376          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1377          * low water mark, while v_free_min is the stop.  v_cache_min must
1378          * be big enough to handle memory needs while the pageout daemon
1379          * is signalled and run to free more pages.
1380          */
1381         if (vmstats.v_free_count > 6144)
1382                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1383         else
1384                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1385
1386         if (vmstats.v_free_count > 2048) {
1387                 vmstats.v_cache_min = vmstats.v_free_target;
1388                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1389                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1390         } else {
1391                 vmstats.v_cache_min = 0;
1392                 vmstats.v_cache_max = 0;
1393                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1394         }
1395         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1396                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1397
1398         /* XXX does not really belong here */
1399         if (vm_page_max_wired == 0)
1400                 vm_page_max_wired = vmstats.v_free_count / 3;
1401
1402         if (vm_pageout_stats_max == 0)
1403                 vm_pageout_stats_max = vmstats.v_free_target;
1404
1405         /*
1406          * Set interval in seconds for stats scan.
1407          */
1408         if (vm_pageout_stats_interval == 0)
1409                 vm_pageout_stats_interval = 5;
1410         if (vm_pageout_full_stats_interval == 0)
1411                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1412         
1413
1414         /*
1415          * Set maximum free per pass
1416          */
1417         if (vm_pageout_stats_free_max == 0)
1418                 vm_pageout_stats_free_max = 5;
1419
1420         swap_pager_swap_init();
1421         pass = 0;
1422         /*
1423          * The pageout daemon is never done, so loop forever.
1424          */
1425         while (TRUE) {
1426                 int error;
1427
1428                 /*
1429                  * If we have enough free memory, wakeup waiters.  Do
1430                  * not clear vm_pages_needed until we reach our target,
1431                  * otherwise we may be woken up over and over again and
1432                  * waste a lot of cpu.
1433                  */
1434                 crit_enter();
1435                 if (vm_pages_needed && !vm_page_count_min()) {
1436                         if (vm_paging_needed() <= 0)
1437                                 vm_pages_needed = 0;
1438                         wakeup(&vmstats.v_free_count);
1439                 }
1440                 if (vm_pages_needed) {
1441                         /*
1442                          * Still not done, take a second pass without waiting
1443                          * (unlimited dirty cleaning), otherwise sleep a bit
1444                          * and try again.
1445                          */
1446                         ++pass;
1447                         if (pass > 1)
1448                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1449                 } else {
1450                         /*
1451                          * Good enough, sleep & handle stats.  Prime the pass
1452                          * for the next run.
1453                          */
1454                         if (pass > 1)
1455                                 pass = 1;
1456                         else
1457                                 pass = 0;
1458                         error = tsleep(&vm_pages_needed,
1459                                 0, "psleep", vm_pageout_stats_interval * hz);
1460                         if (error && !vm_pages_needed) {
1461                                 crit_exit();
1462                                 pass = 0;
1463                                 vm_pageout_page_stats();
1464                                 continue;
1465                         }
1466                 }
1467
1468                 if (vm_pages_needed)
1469                         mycpu->gd_cnt.v_pdwakeups++;
1470                 crit_exit();
1471                 vm_pageout_scan(pass);
1472                 vm_pageout_deficit = 0;
1473         }
1474 }
1475
1476 void
1477 pagedaemon_wakeup(void)
1478 {
1479         if (!vm_pages_needed && curthread != pagethread) {
1480                 vm_pages_needed++;
1481                 wakeup(&vm_pages_needed);
1482         }
1483 }
1484
1485 #if !defined(NO_SWAPPING)
1486 static void
1487 vm_req_vmdaemon(void)
1488 {
1489         static int lastrun = 0;
1490
1491         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1492                 wakeup(&vm_daemon_needed);
1493                 lastrun = ticks;
1494         }
1495 }
1496
1497 static int vm_daemon_callback(struct proc *p, void *data __unused);
1498
1499 static void
1500 vm_daemon(void)
1501 {
1502         while (TRUE) {
1503                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1504                 if (vm_pageout_req_swapout) {
1505                         swapout_procs(vm_pageout_req_swapout);
1506                         vm_pageout_req_swapout = 0;
1507                 }
1508                 /*
1509                  * scan the processes for exceeding their rlimits or if
1510                  * process is swapped out -- deactivate pages
1511                  */
1512                 allproc_scan(vm_daemon_callback, NULL);
1513         }
1514 }
1515
1516 static int
1517 vm_daemon_callback(struct proc *p, void *data __unused)
1518 {
1519         vm_pindex_t limit, size;
1520
1521         /*
1522          * if this is a system process or if we have already
1523          * looked at this process, skip it.
1524          */
1525         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1526                 return (0);
1527
1528         /*
1529          * if the process is in a non-running type state,
1530          * don't touch it.
1531          */
1532         if (p->p_stat != SRUN && p->p_stat != SSLEEP)
1533                 return (0);
1534
1535         /*
1536          * get a limit
1537          */
1538         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1539                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1540
1541         /*
1542          * let processes that are swapped out really be
1543          * swapped out.  Set the limit to nothing to get as
1544          * many pages out to swap as possible.
1545          */
1546         if (p->p_flag & P_SWAPPEDOUT)
1547                 limit = 0;
1548
1549         size = vmspace_resident_count(p->p_vmspace);
1550         if (limit >= 0 && size >= limit) {
1551                 vm_pageout_map_deactivate_pages(
1552                     &p->p_vmspace->vm_map, limit);
1553         }
1554         return (0);
1555 }
1556
1557 #endif