Fix a path in the comment.
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.53 2008/06/10 22:30:21 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node, int isnew);
52
53 /*
54  * Red-Black tree support for various structures
55  */
56 int
57 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
58 {
59         if (ip1->obj_id < ip2->obj_id)
60                 return(-1);
61         if (ip1->obj_id > ip2->obj_id)
62                 return(1);
63         if (ip1->obj_asof < ip2->obj_asof)
64                 return(-1);
65         if (ip1->obj_asof > ip2->obj_asof)
66                 return(1);
67         return(0);
68 }
69
70 static int
71 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
72 {
73         if (info->obj_id < ip->obj_id)
74                 return(-1);
75         if (info->obj_id > ip->obj_id)
76                 return(1);
77         if (info->obj_asof < ip->obj_asof)
78                 return(-1);
79         if (info->obj_asof > ip->obj_asof)
80                 return(1);
81         return(0);
82 }
83
84 static int
85 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
86 {
87         if (vol1->vol_no < vol2->vol_no)
88                 return(-1);
89         if (vol1->vol_no > vol2->vol_no)
90                 return(1);
91         return(0);
92 }
93
94 static int
95 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
96 {
97         if (buf1->zoneX_offset < buf2->zoneX_offset)
98                 return(-1);
99         if (buf1->zoneX_offset > buf2->zoneX_offset)
100                 return(1);
101         return(0);
102 }
103
104 static int
105 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
106 {
107         if (node1->node_offset < node2->node_offset)
108                 return(-1);
109         if (node1->node_offset > node2->node_offset)
110                 return(1);
111         return(0);
112 }
113
114 /*
115  * Note: The lookup function for hammer_ino_rb_tree winds up being named
116  * hammer_ino_rb_tree_RB_LOOKUP_INFO(root, info).  The other lookup
117  * functions are normal, e.g. hammer_buf_rb_tree_RB_LOOKUP(root, zone2_offset).
118  */
119 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
120 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
121                 hammer_inode_info_cmp, hammer_inode_info_t);
122 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
123              hammer_vol_rb_compare, int32_t, vol_no);
124 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
125              hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
126 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
127              hammer_nod_rb_compare, hammer_off_t, node_offset);
128
129 /************************************************************************
130  *                              VOLUMES                                 *
131  ************************************************************************
132  *
133  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
134  * code on failure.  Volumes must be loaded at mount time, get_volume() will
135  * not load a new volume.
136  *
137  * Calls made to hammer_load_volume() or single-threaded
138  */
139 int
140 hammer_install_volume(struct hammer_mount *hmp, const char *volname)
141 {
142         struct mount *mp;
143         hammer_volume_t volume;
144         struct hammer_volume_ondisk *ondisk;
145         struct nlookupdata nd;
146         struct buf *bp = NULL;
147         int error;
148         int ronly;
149         int setmp = 0;
150
151         mp = hmp->mp;
152         ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
153
154         /*
155          * Allocate a volume structure
156          */
157         ++hammer_count_volumes;
158         volume = kmalloc(sizeof(*volume), M_HAMMER, M_WAITOK|M_ZERO);
159         volume->vol_name = kstrdup(volname, M_HAMMER);
160         hammer_io_init(&volume->io, hmp, HAMMER_STRUCTURE_VOLUME);
161         volume->io.offset = 0LL;
162
163         /*
164          * Get the device vnode
165          */
166         error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
167         if (error == 0)
168                 error = nlookup(&nd);
169         if (error == 0)
170                 error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
171         nlookup_done(&nd);
172         if (error == 0) {
173                 if (vn_isdisk(volume->devvp, &error)) {
174                         error = vfs_mountedon(volume->devvp);
175                 }
176         }
177         if (error == 0 &&
178             count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
179                 error = EBUSY;
180         }
181         if (error == 0) {
182                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
183                 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
184                 if (error == 0) {
185                         error = VOP_OPEN(volume->devvp, 
186                                          (ronly ? FREAD : FREAD|FWRITE),
187                                          FSCRED, NULL);
188                 }
189                 vn_unlock(volume->devvp);
190         }
191         if (error) {
192                 hammer_free_volume(volume);
193                 return(error);
194         }
195         volume->devvp->v_rdev->si_mountpoint = mp;
196         setmp = 1;
197
198         /*
199          * Extract the volume number from the volume header and do various
200          * sanity checks.
201          */
202         error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
203         if (error)
204                 goto late_failure;
205         ondisk = (void *)bp->b_data;
206         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
207                 kprintf("hammer_mount: volume %s has an invalid header\n",
208                         volume->vol_name);
209                 error = EFTYPE;
210                 goto late_failure;
211         }
212         volume->vol_no = ondisk->vol_no;
213         volume->buffer_base = ondisk->vol_buf_beg;
214         volume->vol_flags = ondisk->vol_flags;
215         volume->nblocks = ondisk->vol_nblocks; 
216         volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
217                                     ondisk->vol_buf_end - ondisk->vol_buf_beg);
218         volume->maxraw_off = ondisk->vol_buf_end;
219
220         if (RB_EMPTY(&hmp->rb_vols_root)) {
221                 hmp->fsid = ondisk->vol_fsid;
222         } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
223                 kprintf("hammer_mount: volume %s's fsid does not match "
224                         "other volumes\n", volume->vol_name);
225                 error = EFTYPE;
226                 goto late_failure;
227         }
228
229         /*
230          * Insert the volume structure into the red-black tree.
231          */
232         if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
233                 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
234                         volume->vol_name, volume->vol_no);
235                 error = EEXIST;
236         }
237
238         /*
239          * Set the root volume .  HAMMER special cases rootvol the structure.
240          * We do not hold a ref because this would prevent related I/O
241          * from being flushed.
242          */
243         if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
244                 hmp->rootvol = volume;
245                 if (bp) {
246                         brelse(bp);
247                         bp = NULL;
248                 }
249                 hmp->fsid_udev = dev2udev(vn_todev(volume->devvp));
250                 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
251                         (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
252                 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
253                         (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
254         }
255 late_failure:
256         if (bp)
257                 brelse(bp);
258         if (error) {
259                 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
260                 if (setmp)
261                         volume->devvp->v_rdev->si_mountpoint = NULL;
262                 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
263                 hammer_free_volume(volume);
264         }
265         return (error);
266 }
267
268 /*
269  * This is called for each volume when updating the mount point from
270  * read-write to read-only or vise-versa.
271  */
272 int
273 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
274 {
275         if (volume->devvp) {
276                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
277                 if (volume->io.hmp->ronly) {
278                         /* do not call vinvalbuf */
279                         VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
280                         VOP_CLOSE(volume->devvp, FREAD|FWRITE);
281                 } else {
282                         /* do not call vinvalbuf */
283                         VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
284                         VOP_CLOSE(volume->devvp, FREAD);
285                 }
286                 vn_unlock(volume->devvp);
287         }
288         return(0);
289 }
290
291 /*
292  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
293  * so returns -1 on failure.
294  */
295 int
296 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
297 {
298         struct hammer_mount *hmp = volume->io.hmp;
299         int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
300
301         /*
302          * Clean up the root volume pointer, which is held unlocked in hmp.
303          */
304         if (hmp->rootvol == volume)
305                 hmp->rootvol = NULL;
306
307         /*
308          * Release our buffer and flush anything left in the buffer cache.
309          */
310         volume->io.waitdep = 1;
311         hammer_io_release(&volume->io, 1);
312         hammer_io_clear_modlist(&volume->io);
313
314         /*
315          * There should be no references on the volume, no clusters, and
316          * no super-clusters.
317          */
318         KKASSERT(volume->io.lock.refs == 0);
319
320         volume->ondisk = NULL;
321         if (volume->devvp) {
322                 if (volume->devvp->v_rdev &&
323                     volume->devvp->v_rdev->si_mountpoint == hmp->mp
324                 ) {
325                         volume->devvp->v_rdev->si_mountpoint = NULL;
326                 }
327                 if (ronly) {
328                         vinvalbuf(volume->devvp, 0, 0, 0);
329                         VOP_CLOSE(volume->devvp, FREAD);
330                 } else {
331                         vinvalbuf(volume->devvp, V_SAVE, 0, 0);
332                         VOP_CLOSE(volume->devvp, FREAD|FWRITE);
333                 }
334         }
335
336         /*
337          * Destroy the structure
338          */
339         RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
340         hammer_free_volume(volume);
341         return(0);
342 }
343
344 static
345 void
346 hammer_free_volume(hammer_volume_t volume)
347 {
348         if (volume->vol_name) {
349                 kfree(volume->vol_name, M_HAMMER);
350                 volume->vol_name = NULL;
351         }
352         if (volume->devvp) {
353                 vrele(volume->devvp);
354                 volume->devvp = NULL;
355         }
356         --hammer_count_volumes;
357         kfree(volume, M_HAMMER);
358 }
359
360 /*
361  * Get a HAMMER volume.  The volume must already exist.
362  */
363 hammer_volume_t
364 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
365 {
366         struct hammer_volume *volume;
367
368         /*
369          * Locate the volume structure
370          */
371         volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
372         if (volume == NULL) {
373                 *errorp = ENOENT;
374                 return(NULL);
375         }
376         hammer_ref(&volume->io.lock);
377
378         /*
379          * Deal with on-disk info
380          */
381         if (volume->ondisk == NULL || volume->io.loading) {
382                 *errorp = hammer_load_volume(volume);
383                 if (*errorp) {
384                         hammer_rel_volume(volume, 1);
385                         volume = NULL;
386                 }
387         } else {
388                 *errorp = 0;
389         }
390         return(volume);
391 }
392
393 int
394 hammer_ref_volume(hammer_volume_t volume)
395 {
396         int error;
397
398         hammer_ref(&volume->io.lock);
399
400         /*
401          * Deal with on-disk info
402          */
403         if (volume->ondisk == NULL || volume->io.loading) {
404                 error = hammer_load_volume(volume);
405                 if (error)
406                         hammer_rel_volume(volume, 1);
407         } else {
408                 error = 0;
409         }
410         return (error);
411 }
412
413 hammer_volume_t
414 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
415 {
416         hammer_volume_t volume;
417
418         volume = hmp->rootvol;
419         KKASSERT(volume != NULL);
420         hammer_ref(&volume->io.lock);
421
422         /*
423          * Deal with on-disk info
424          */
425         if (volume->ondisk == NULL || volume->io.loading) {
426                 *errorp = hammer_load_volume(volume);
427                 if (*errorp) {
428                         hammer_rel_volume(volume, 1);
429                         volume = NULL;
430                 }
431         } else {
432                 *errorp = 0;
433         }
434         return (volume);
435 }
436
437 /*
438  * Load a volume's on-disk information.  The volume must be referenced and
439  * not locked.  We temporarily acquire an exclusive lock to interlock
440  * against releases or multiple get's.
441  */
442 static int
443 hammer_load_volume(hammer_volume_t volume)
444 {
445         int error;
446
447         ++volume->io.loading;
448         hammer_lock_ex(&volume->io.lock);
449
450         if (volume->ondisk == NULL) {
451                 error = hammer_io_read(volume->devvp, &volume->io,
452                                        volume->maxraw_off);
453                 if (error == 0)
454                         volume->ondisk = (void *)volume->io.bp->b_data;
455         } else {
456                 error = 0;
457         }
458         --volume->io.loading;
459         hammer_unlock(&volume->io.lock);
460         return(error);
461 }
462
463 /*
464  * Release a volume.  Call hammer_io_release on the last reference.  We have
465  * to acquire an exclusive lock to interlock against volume->ondisk tests
466  * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
467  * lock to be held.
468  *
469  * Volumes are not unloaded from memory during normal operation.
470  */
471 void
472 hammer_rel_volume(hammer_volume_t volume, int flush)
473 {
474         crit_enter();
475         if (volume->io.lock.refs == 1) {
476                 ++volume->io.loading;
477                 hammer_lock_ex(&volume->io.lock);
478                 if (volume->io.lock.refs == 1) {
479                         volume->ondisk = NULL;
480                         hammer_io_release(&volume->io, flush);
481                 }
482                 --volume->io.loading;
483                 hammer_unlock(&volume->io.lock);
484         }
485         hammer_unref(&volume->io.lock);
486         crit_exit();
487 }
488
489 /************************************************************************
490  *                              BUFFERS                                 *
491  ************************************************************************
492  *
493  * Manage buffers.  Currently all blockmap-backed zones are translated
494  * to zone-2 buffer offsets.
495  */
496 hammer_buffer_t
497 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
498                   int isnew, int *errorp)
499 {
500         hammer_buffer_t buffer;
501         hammer_volume_t volume;
502         hammer_off_t    zone2_offset;
503         hammer_io_type_t iotype;
504         int vol_no;
505         int zone;
506
507 again:
508         /*
509          * Shortcut if the buffer is already cached
510          */
511         buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
512                            buf_offset & ~HAMMER_BUFMASK64);
513         if (buffer) {
514                 hammer_ref(&buffer->io.lock);
515                 if (buffer->ondisk && buffer->io.loading == 0) {
516                         *errorp = 0;
517                         return(buffer);
518                 }
519
520                 /*
521                  * The buffer is no longer loose if it has a ref.  Loose
522                  * buffers will never be in a modified state.  This should
523                  * only occur on the 0->1 transition of refs.
524                  */
525                 if (buffer->io.mod_list == &hmp->lose_list) {
526                         TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
527                                      mod_entry);
528                         buffer->io.mod_list = NULL;
529                         KKASSERT(buffer->io.modified == 0);
530                 }
531                 goto found;
532         }
533
534         /*
535          * What is the buffer class?
536          */
537         zone = HAMMER_ZONE_DECODE(buf_offset);
538
539         switch(zone) {
540         case HAMMER_ZONE_LARGE_DATA_INDEX:
541         case HAMMER_ZONE_SMALL_DATA_INDEX:
542                 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
543                 break;
544         case HAMMER_ZONE_UNDO_INDEX:
545                 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
546                 break;
547         default:
548                 iotype = HAMMER_STRUCTURE_META_BUFFER;
549                 break;
550         }
551
552         /*
553          * Handle blockmap offset translations
554          */
555         if (zone >= HAMMER_ZONE_BTREE_INDEX) {
556                 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
557         } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
558                 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
559         } else {
560                 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
561                 zone2_offset = buf_offset;
562                 *errorp = 0;
563         }
564         if (*errorp)
565                 return(NULL);
566
567         /*
568          * Calculate the base zone2-offset and acquire the volume
569          *
570          * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
571          * specifications.
572          */
573         zone2_offset &= ~HAMMER_BUFMASK64;
574         KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
575                  HAMMER_ZONE_RAW_BUFFER);
576         vol_no = HAMMER_VOL_DECODE(zone2_offset);
577         volume = hammer_get_volume(hmp, vol_no, errorp);
578         if (volume == NULL)
579                 return(NULL);
580
581         KKASSERT(zone2_offset < volume->maxbuf_off);
582
583         /*
584          * Allocate a new buffer structure.  We will check for races later.
585          */
586         ++hammer_count_buffers;
587         buffer = kmalloc(sizeof(*buffer), M_HAMMER, M_WAITOK|M_ZERO);
588         buffer->zone2_offset = zone2_offset;
589         buffer->zoneX_offset = buf_offset;
590         buffer->volume = volume;
591
592         hammer_io_init(&buffer->io, hmp, iotype);
593         buffer->io.offset = volume->ondisk->vol_buf_beg +
594                             (zone2_offset & HAMMER_OFF_SHORT_MASK);
595         TAILQ_INIT(&buffer->clist);
596         hammer_ref(&buffer->io.lock);
597
598         /*
599          * Insert the buffer into the RB tree and handle late collisions.
600          */
601         if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
602                 hammer_unref(&buffer->io.lock);
603                 --hammer_count_buffers;
604                 kfree(buffer, M_HAMMER);
605                 goto again;
606         }
607 found:
608
609         /*
610          * Deal with on-disk info and loading races.
611          */
612         if (buffer->ondisk == NULL || buffer->io.loading) {
613                 *errorp = hammer_load_buffer(buffer, isnew);
614                 if (*errorp) {
615                         hammer_rel_buffer(buffer, 1);
616                         buffer = NULL;
617                 }
618         } else {
619                 *errorp = 0;
620         }
621         return(buffer);
622 }
623
624 /*
625  * Destroy all buffers covering the specified zoneX offset range.  This
626  * is called when the related blockmap layer2 entry is freed or when
627  * a direct write bypasses our buffer/buffer-cache subsystem.
628  *
629  * The buffers may be referenced by the caller itself.  Setting reclaim
630  * will cause the buffer to be destroyed when it's ref count reaches zero.
631  */
632 void
633 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
634                    hammer_off_t zone2_offset, int bytes)
635 {
636         hammer_buffer_t buffer;
637         hammer_volume_t volume;
638         int vol_no;
639         int error;
640
641         vol_no = HAMMER_VOL_DECODE(zone2_offset);
642         volume = hammer_get_volume(hmp, vol_no, &error);
643         KKASSERT(error == 0);
644
645         while (bytes > 0) {
646                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
647                                    base_offset);
648                 if (buffer) {
649                         KKASSERT(buffer->zone2_offset == zone2_offset);
650                         hammer_io_clear_modify(&buffer->io);
651                         buffer->io.reclaim = 1;
652                         KKASSERT(buffer->volume == volume);
653                         if (buffer->io.lock.refs == 0)
654                                 hammer_unload_buffer(buffer, NULL);
655                 } else {
656                         hammer_io_inval(volume, zone2_offset);
657                 }
658                 base_offset += HAMMER_BUFSIZE;
659                 zone2_offset += HAMMER_BUFSIZE;
660                 bytes -= HAMMER_BUFSIZE;
661         }
662         hammer_rel_volume(volume, 0);
663 }
664
665 static int
666 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
667 {
668         hammer_volume_t volume;
669         int error;
670
671         /*
672          * Load the buffer's on-disk info
673          */
674         volume = buffer->volume;
675         ++buffer->io.loading;
676         hammer_lock_ex(&buffer->io.lock);
677
678         if (hammer_debug_io & 0x0001) {
679                 kprintf("load_buffer %016llx %016llx\n",
680                         buffer->zoneX_offset, buffer->zone2_offset);
681         }
682
683         if (buffer->ondisk == NULL) {
684                 if (isnew) {
685                         error = hammer_io_new(volume->devvp, &buffer->io);
686                 } else {
687                         error = hammer_io_read(volume->devvp, &buffer->io,
688                                                volume->maxraw_off);
689                 }
690                 if (error == 0)
691                         buffer->ondisk = (void *)buffer->io.bp->b_data;
692         } else if (isnew) {
693                 error = hammer_io_new(volume->devvp, &buffer->io);
694         } else {
695                 error = 0;
696         }
697         --buffer->io.loading;
698         hammer_unlock(&buffer->io.lock);
699         return (error);
700 }
701
702 /*
703  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
704  */
705 int
706 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
707 {
708         hammer_ref(&buffer->io.lock);
709         hammer_flush_buffer_nodes(buffer);
710         KKASSERT(buffer->io.lock.refs == 1);
711         hammer_rel_buffer(buffer, 2);
712         return(0);
713 }
714
715 /*
716  * Reference a buffer that is either already referenced or via a specially
717  * handled pointer (aka cursor->buffer).
718  */
719 int
720 hammer_ref_buffer(hammer_buffer_t buffer)
721 {
722         int error;
723
724         hammer_ref(&buffer->io.lock);
725
726         /*
727          * No longer loose
728          */
729         if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
730                 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
731                 buffer->io.mod_list = NULL;
732         }
733
734         if (buffer->ondisk == NULL || buffer->io.loading) {
735                 error = hammer_load_buffer(buffer, 0);
736                 if (error) {
737                         hammer_rel_buffer(buffer, 1);
738                         /*
739                          * NOTE: buffer pointer can become stale after
740                          * the above release.
741                          */
742                 }
743         } else {
744                 error = 0;
745         }
746         return(error);
747 }
748
749 /*
750  * Release a buffer.  We have to deal with several places where
751  * another thread can ref the buffer.
752  *
753  * Only destroy the structure itself if the related buffer cache buffer
754  * was disassociated from it.  This ties the management of the structure
755  * to the buffer cache subsystem.  buffer->ondisk determines whether the
756  * embedded io is referenced or not.
757  */
758 void
759 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
760 {
761         hammer_volume_t volume;
762         int freeme = 0;
763
764         crit_enter();
765         if (buffer->io.lock.refs == 1) {
766                 ++buffer->io.loading;   /* force interlock check */
767                 hammer_lock_ex(&buffer->io.lock);
768                 if (buffer->io.lock.refs == 1) {
769                         hammer_io_release(&buffer->io, flush);
770                         hammer_flush_buffer_nodes(buffer);
771                         KKASSERT(TAILQ_EMPTY(&buffer->clist));
772
773                         if (buffer->io.bp == NULL &&
774                             buffer->io.lock.refs == 1) {
775                                 /*
776                                  * Final cleanup
777                                  */
778                                 RB_REMOVE(hammer_buf_rb_tree,
779                                           &buffer->io.hmp->rb_bufs_root,
780                                           buffer);
781                                 volume = buffer->volume;
782                                 buffer->volume = NULL; /* sanity */
783                                 hammer_rel_volume(volume, 0);
784                                 hammer_io_clear_modlist(&buffer->io);
785                                 freeme = 1;
786                         }
787                 }
788                 --buffer->io.loading;
789                 hammer_unlock(&buffer->io.lock);
790         }
791         hammer_unref(&buffer->io.lock);
792         crit_exit();
793         if (freeme) {
794                 --hammer_count_buffers;
795                 kfree(buffer, M_HAMMER);
796         }
797 }
798
799 /*
800  * Access the filesystem buffer containing the specified hammer offset.
801  * buf_offset is a conglomeration of the volume number and vol_buf_beg
802  * relative buffer offset.  It must also have bit 55 set to be valid.
803  * (see hammer_off_t in hammer_disk.h).
804  *
805  * Any prior buffer in *bufferp will be released and replaced by the
806  * requested buffer.
807  */
808 void *
809 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int *errorp, 
810              struct hammer_buffer **bufferp)
811 {
812         hammer_buffer_t buffer;
813         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
814
815         buf_offset &= ~HAMMER_BUFMASK64;
816         KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
817
818         buffer = *bufferp;
819         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
820                                buffer->zoneX_offset != buf_offset)) {
821                 if (buffer)
822                         hammer_rel_buffer(buffer, 0);
823                 buffer = hammer_get_buffer(hmp, buf_offset, 0, errorp);
824                 *bufferp = buffer;
825         } else {
826                 *errorp = 0;
827         }
828
829         /*
830          * Return a pointer to the buffer data.
831          */
832         if (buffer == NULL)
833                 return(NULL);
834         else
835                 return((char *)buffer->ondisk + xoff);
836 }
837
838 /*
839  * Access the filesystem buffer containing the specified hammer offset.
840  * No disk read operation occurs.  The result buffer may contain garbage.
841  *
842  * Any prior buffer in *bufferp will be released and replaced by the
843  * requested buffer.
844  *
845  * This function marks the buffer dirty but does not increment its
846  * modify_refs count.
847  */
848 void *
849 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int *errorp, 
850              struct hammer_buffer **bufferp)
851 {
852         hammer_buffer_t buffer;
853         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
854
855         buf_offset &= ~HAMMER_BUFMASK64;
856
857         buffer = *bufferp;
858         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
859                                buffer->zoneX_offset != buf_offset)) {
860                 if (buffer)
861                         hammer_rel_buffer(buffer, 0);
862                 buffer = hammer_get_buffer(hmp, buf_offset, 1, errorp);
863                 *bufferp = buffer;
864         } else {
865                 *errorp = 0;
866         }
867
868         /*
869          * Return a pointer to the buffer data.
870          */
871         if (buffer == NULL)
872                 return(NULL);
873         else
874                 return((char *)buffer->ondisk + xoff);
875 }
876
877 /************************************************************************
878  *                              NODES                                   *
879  ************************************************************************
880  *
881  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
882  * method used by the HAMMER filesystem.
883  *
884  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
885  * associated with its buffer, and will only referenced the buffer while
886  * the node itself is referenced.
887  *
888  * A hammer_node can also be passively associated with other HAMMER
889  * structures, such as inodes, while retaining 0 references.  These
890  * associations can be cleared backwards using a pointer-to-pointer in
891  * the hammer_node.
892  *
893  * This allows the HAMMER implementation to cache hammer_nodes long-term
894  * and short-cut a great deal of the infrastructure's complexity.  In
895  * most cases a cached node can be reacquired without having to dip into
896  * either the buffer or cluster management code.
897  *
898  * The caller must pass a referenced cluster on call and will retain
899  * ownership of the reference on return.  The node will acquire its own
900  * additional references, if necessary.
901  */
902 hammer_node_t
903 hammer_get_node(hammer_mount_t hmp, hammer_off_t node_offset,
904                 int isnew, int *errorp)
905 {
906         hammer_node_t node;
907
908         KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
909
910         /*
911          * Locate the structure, allocating one if necessary.
912          */
913 again:
914         node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
915         if (node == NULL) {
916                 ++hammer_count_nodes;
917                 node = kmalloc(sizeof(*node), M_HAMMER, M_WAITOK|M_ZERO);
918                 node->node_offset = node_offset;
919                 node->hmp = hmp;
920                 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
921                         --hammer_count_nodes;
922                         kfree(node, M_HAMMER);
923                         goto again;
924                 }
925         }
926         hammer_ref(&node->lock);
927         if (node->ondisk)
928                 *errorp = 0;
929         else
930                 *errorp = hammer_load_node(node, isnew);
931         if (*errorp) {
932                 hammer_rel_node(node);
933                 node = NULL;
934         }
935         return(node);
936 }
937
938 /*
939  * Reference an already-referenced node.
940  */
941 void
942 hammer_ref_node(hammer_node_t node)
943 {
944         KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
945         hammer_ref(&node->lock);
946 }
947
948 /*
949  * Load a node's on-disk data reference.
950  */
951 static int
952 hammer_load_node(hammer_node_t node, int isnew)
953 {
954         hammer_buffer_t buffer;
955         hammer_off_t buf_offset;
956         int error;
957
958         error = 0;
959         ++node->loading;
960         hammer_lock_ex(&node->lock);
961         if (node->ondisk == NULL) {
962                 /*
963                  * This is a little confusing but the jist is that
964                  * node->buffer determines whether the node is on
965                  * the buffer's clist and node->ondisk determines
966                  * whether the buffer is referenced.
967                  *
968                  * We could be racing a buffer release, in which case
969                  * node->buffer may become NULL while we are blocked
970                  * referencing the buffer.
971                  */
972                 if ((buffer = node->buffer) != NULL) {
973                         error = hammer_ref_buffer(buffer);
974                         if (error == 0 && node->buffer == NULL) {
975                                 TAILQ_INSERT_TAIL(&buffer->clist,
976                                                   node, entry);
977                                 node->buffer = buffer;
978                         }
979                 } else {
980                         buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
981                         buffer = hammer_get_buffer(node->hmp, buf_offset,
982                                                    0, &error);
983                         if (buffer) {
984                                 KKASSERT(error == 0);
985                                 TAILQ_INSERT_TAIL(&buffer->clist,
986                                                   node, entry);
987                                 node->buffer = buffer;
988                         }
989                 }
990                 if (error == 0) {
991                         node->ondisk = (void *)((char *)buffer->ondisk +
992                                (node->node_offset & HAMMER_BUFMASK));
993                         if (isnew == 0 &&
994                             hammer_crc_test_btree(node->ondisk) == 0) {
995                                 Debugger("CRC FAILED: B-TREE NODE");
996                         }
997                 }
998         }
999         --node->loading;
1000         hammer_unlock(&node->lock);
1001         return (error);
1002 }
1003
1004 /*
1005  * Safely reference a node, interlock against flushes via the IO subsystem.
1006  */
1007 hammer_node_t
1008 hammer_ref_node_safe(struct hammer_mount *hmp, struct hammer_node **cache,
1009                      int *errorp)
1010 {
1011         hammer_node_t node;
1012
1013         node = *cache;
1014         if (node != NULL) {
1015                 hammer_ref(&node->lock);
1016                 if (node->ondisk)
1017                         *errorp = 0;
1018                 else
1019                         *errorp = hammer_load_node(node, 0);
1020                 if (*errorp) {
1021                         hammer_rel_node(node);
1022                         node = NULL;
1023                 }
1024         } else {
1025                 *errorp = ENOENT;
1026         }
1027         return(node);
1028 }
1029
1030 /*
1031  * Release a hammer_node.  On the last release the node dereferences
1032  * its underlying buffer and may or may not be destroyed.
1033  */
1034 void
1035 hammer_rel_node(hammer_node_t node)
1036 {
1037         hammer_buffer_t buffer;
1038
1039         /*
1040          * If this isn't the last ref just decrement the ref count and
1041          * return.
1042          */
1043         if (node->lock.refs > 1) {
1044                 hammer_unref(&node->lock);
1045                 return;
1046         }
1047
1048         /*
1049          * If there is no ondisk info or no buffer the node failed to load,
1050          * remove the last reference and destroy the node.
1051          */
1052         if (node->ondisk == NULL) {
1053                 hammer_unref(&node->lock);
1054                 hammer_flush_node(node);
1055                 /* node is stale now */
1056                 return;
1057         }
1058
1059         /*
1060          * Do final cleanups and then either destroy the node and leave it
1061          * passively cached.  The buffer reference is removed regardless.
1062          */
1063         buffer = node->buffer;
1064         node->ondisk = NULL;
1065
1066         if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1067                 hammer_unref(&node->lock);
1068                 hammer_rel_buffer(buffer, 0);
1069                 return;
1070         }
1071
1072         /*
1073          * Destroy the node.
1074          */
1075         hammer_unref(&node->lock);
1076         hammer_flush_node(node);
1077         /* node is stale */
1078         hammer_rel_buffer(buffer, 0);
1079 }
1080
1081 /*
1082  * Free space on-media associated with a B-Tree node.
1083  */
1084 void
1085 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1086 {
1087         KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1088         node->flags |= HAMMER_NODE_DELETED;
1089         hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1090 }
1091
1092 /*
1093  * Passively cache a referenced hammer_node in *cache.  The caller may
1094  * release the node on return.
1095  */
1096 void
1097 hammer_cache_node(hammer_node_t node, struct hammer_node **cache)
1098 {
1099         hammer_node_t old;
1100
1101         /*
1102          * If the node is being deleted, don't cache it!
1103          */
1104         if (node->flags & HAMMER_NODE_DELETED)
1105                 return;
1106
1107         /*
1108          * Cache the node.  If we previously cached a different node we
1109          * have to give HAMMER a chance to destroy it.
1110          */
1111 again:
1112         if (node->cache1 != cache) {
1113                 if (node->cache2 != cache) {
1114                         if ((old = *cache) != NULL) {
1115                                 KKASSERT(node->lock.refs != 0);
1116                                 hammer_uncache_node(cache);
1117                                 goto again;
1118                         }
1119                         if (node->cache2)
1120                                 *node->cache2 = NULL;
1121                         node->cache2 = node->cache1;
1122                         node->cache1 = cache;
1123                         *cache = node;
1124                 } else {
1125                         struct hammer_node **tmp;
1126                         tmp = node->cache1;
1127                         node->cache1 = node->cache2;
1128                         node->cache2 = tmp;
1129                 }
1130         }
1131 }
1132
1133 void
1134 hammer_uncache_node(struct hammer_node **cache)
1135 {
1136         hammer_node_t node;
1137
1138         if ((node = *cache) != NULL) {
1139                 *cache = NULL;
1140                 if (node->cache1 == cache) {
1141                         node->cache1 = node->cache2;
1142                         node->cache2 = NULL;
1143                 } else if (node->cache2 == cache) {
1144                         node->cache2 = NULL;
1145                 } else {
1146                         panic("hammer_uncache_node: missing cache linkage");
1147                 }
1148                 if (node->cache1 == NULL && node->cache2 == NULL)
1149                         hammer_flush_node(node);
1150         }
1151 }
1152
1153 /*
1154  * Remove a node's cache references and destroy the node if it has no
1155  * other references or backing store.
1156  */
1157 void
1158 hammer_flush_node(hammer_node_t node)
1159 {
1160         hammer_buffer_t buffer;
1161
1162         if (node->cache1)
1163                 *node->cache1 = NULL;
1164         if (node->cache2)
1165                 *node->cache2 = NULL;
1166         if (node->lock.refs == 0 && node->ondisk == NULL) {
1167                 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1168                 if ((buffer = node->buffer) != NULL) {
1169                         node->buffer = NULL;
1170                         TAILQ_REMOVE(&buffer->clist, node, entry);
1171                         /* buffer is unreferenced because ondisk is NULL */
1172                 }
1173                 --hammer_count_nodes;
1174                 kfree(node, M_HAMMER);
1175         }
1176 }
1177
1178 /*
1179  * Flush passively cached B-Tree nodes associated with this buffer.
1180  * This is only called when the buffer is about to be destroyed, so
1181  * none of the nodes should have any references.  The buffer is locked.
1182  *
1183  * We may be interlocked with the buffer.
1184  */
1185 void
1186 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1187 {
1188         hammer_node_t node;
1189
1190         while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1191                 KKASSERT(node->ondisk == NULL);
1192
1193                 if (node->lock.refs == 0) {
1194                         hammer_ref(&node->lock);
1195                         node->flags |= HAMMER_NODE_FLUSH;
1196                         hammer_rel_node(node);
1197                 } else {
1198                         KKASSERT(node->loading != 0);
1199                         KKASSERT(node->buffer != NULL);
1200                         buffer = node->buffer;
1201                         node->buffer = NULL;
1202                         TAILQ_REMOVE(&buffer->clist, node, entry);
1203                         /* buffer is unreferenced because ondisk is NULL */
1204                 }
1205         }
1206 }
1207
1208
1209 /************************************************************************
1210  *                              ALLOCATORS                              *
1211  ************************************************************************/
1212
1213 /*
1214  * Allocate a B-Tree node.
1215  */
1216 hammer_node_t
1217 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1218 {
1219         hammer_buffer_t buffer = NULL;
1220         hammer_node_t node = NULL;
1221         hammer_off_t node_offset;
1222
1223         node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1224                                             sizeof(struct hammer_node_ondisk),
1225                                             errorp);
1226         if (*errorp == 0) {
1227                 node = hammer_get_node(trans->hmp, node_offset, 1, errorp);
1228                 hammer_modify_node_noundo(trans, node);
1229                 bzero(node->ondisk, sizeof(*node->ondisk));
1230                 hammer_modify_node_done(node);
1231         }
1232         if (buffer)
1233                 hammer_rel_buffer(buffer, 0);
1234         return(node);
1235 }
1236
1237 /*
1238  * Allocate data.  If the address of a data buffer is supplied then
1239  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1240  * will be set to the related buffer.  The caller must release it when
1241  * finally done.  The initial *data_bufferp should be set to NULL by
1242  * the caller.
1243  *
1244  * The caller is responsible for making hammer_modify*() calls on the
1245  * *data_bufferp.
1246  */
1247 void *
1248 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len, 
1249                   hammer_off_t *data_offsetp,
1250                   struct hammer_buffer **data_bufferp, int *errorp)
1251 {
1252         void *data;
1253
1254         /*
1255          * Allocate data
1256          */
1257         if (data_len) {
1258                 if (data_len < HAMMER_BUFSIZE) {
1259                         *data_offsetp = hammer_blockmap_alloc(trans,
1260                                                 HAMMER_ZONE_SMALL_DATA_INDEX,
1261                                                 data_len, errorp);
1262                 } else {
1263                         *data_offsetp = hammer_blockmap_alloc(trans,
1264                                                 HAMMER_ZONE_LARGE_DATA_INDEX,
1265                                                 data_len, errorp);
1266                 }
1267         } else {
1268                 *data_offsetp = 0;
1269         }
1270         if (*errorp == 0 && data_bufferp) {
1271                 if (data_len) {
1272                         data = hammer_bread(trans->hmp, *data_offsetp, errorp,
1273                                             data_bufferp);
1274                         KKASSERT(*errorp == 0);
1275                 } else {
1276                         data = NULL;
1277                 }
1278         } else {
1279                 data = NULL;
1280         }
1281         KKASSERT(*errorp == 0);
1282         return(data);
1283 }
1284
1285 /*
1286  * Sync dirty buffers to the media and clean-up any loose ends.
1287  */
1288 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1289 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1290
1291 int
1292 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1293 {
1294         struct hammer_sync_info info;
1295
1296         info.error = 0;
1297         info.waitfor = waitfor;
1298         if (waitfor == MNT_WAIT) {
1299                 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1300                               hammer_sync_scan1, hammer_sync_scan2, &info);
1301         } else {
1302                 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1303                               hammer_sync_scan1, hammer_sync_scan2, &info);
1304         }
1305         return(info.error);
1306 }
1307
1308 int
1309 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1310 {
1311         struct hammer_sync_info info;
1312
1313         info.error = 0;
1314         info.waitfor = waitfor;
1315
1316         vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1317                       hammer_sync_scan1, hammer_sync_scan2, &info);
1318         if (waitfor == MNT_WAIT)
1319                 hammer_flusher_sync(hmp);
1320         else
1321                 hammer_flusher_async(hmp);
1322
1323         return(info.error);
1324 }
1325
1326 static int
1327 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1328 {
1329         struct hammer_inode *ip;
1330
1331         ip = VTOI(vp);
1332         if (vp->v_type == VNON || ip == NULL ||
1333             ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1334              RB_EMPTY(&vp->v_rbdirty_tree))) {
1335                 return(-1);
1336         }
1337         return(0);
1338 }
1339
1340 static int
1341 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1342 {
1343         struct hammer_sync_info *info = data;
1344         struct hammer_inode *ip;
1345         int error;
1346
1347         ip = VTOI(vp);
1348         if (vp->v_type == VNON || vp->v_type == VBAD ||
1349             ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1350              RB_EMPTY(&vp->v_rbdirty_tree))) {
1351                 return(0);
1352         }
1353         error = VOP_FSYNC(vp, info->waitfor);
1354         if (error)
1355                 info->error = error;
1356         return(0);
1357 }
1358