Use ANSI C and get rid of the __STDC__ and other wrapping.
[dragonfly.git] / lib / msun / src / e_exp.c
1 /* @(#)e_exp.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $FreeBSD: src/lib/msun/src/e_exp.c,v 1.7 1999/08/28 00:06:30 peter Exp $
13  * $DragonFly: src/lib/msun/src/Attic/e_exp.c,v 1.3 2004/12/29 15:22:57 asmodai Exp $
14  */
15
16 /* __ieee754_exp(x)
17  * Returns the exponential of x.
18  *
19  * Method
20  *   1. Argument reduction:
21  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
22  *      Given x, find r and integer k such that
23  *
24  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
25  *
26  *      Here r will be represented as r = hi-lo for better
27  *      accuracy.
28  *
29  *   2. Approximation of exp(r) by a special rational function on
30  *      the interval [0,0.34658]:
31  *      Write
32  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
33  *      We use a special Reme algorithm on [0,0.34658] to generate
34  *      a polynomial of degree 5 to approximate R. The maximum error
35  *      of this polynomial approximation is bounded by 2**-59. In
36  *      other words,
37  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
38  *      (where z=r*r, and the values of P1 to P5 are listed below)
39  *      and
40  *          |                  5          |     -59
41  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
42  *          |                             |
43  *      The computation of exp(r) thus becomes
44  *                             2*r
45  *              exp(r) = 1 + -------
46  *                            R - r
47  *                                 r*R1(r)
48  *                     = 1 + r + ----------- (for better accuracy)
49  *                                2 - R1(r)
50  *      where
51  *                               2       4             10
52  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
53  *
54  *   3. Scale back to obtain exp(x):
55  *      From step 1, we have
56  *         exp(x) = 2^k * exp(r)
57  *
58  * Special cases:
59  *      exp(INF) is INF, exp(NaN) is NaN;
60  *      exp(-INF) is 0, and
61  *      for finite argument, only exp(0)=1 is exact.
62  *
63  * Accuracy:
64  *      according to an error analysis, the error is always less than
65  *      1 ulp (unit in the last place).
66  *
67  * Misc. info.
68  *      For IEEE double
69  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
70  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
71  *
72  * Constants:
73  * The hexadecimal values are the intended ones for the following
74  * constants. The decimal values may be used, provided that the
75  * compiler will convert from decimal to binary accurately enough
76  * to produce the hexadecimal values shown.
77  */
78
79 #include "math.h"
80 #include "math_private.h"
81
82 static const double
83 one     = 1.0,
84 halF[2] = {0.5,-0.5,},
85 huge    = 1.0e+300,
86 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
87 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
88 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
89 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
90              -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
91 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
92              -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
93 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
94 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
95 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
96 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
97 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
98 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
99
100
101 double
102 __generic___ieee754_exp(double x)       /* default IEEE double exp */
103 {
104         double y,hi=0.0,lo=0.0,c,t;
105         int32_t k=0,xsb;
106         u_int32_t hx;
107
108         GET_HIGH_WORD(hx,x);
109         xsb = (hx>>31)&1;               /* sign bit of x */
110         hx &= 0x7fffffff;               /* high word of |x| */
111
112     /* filter out non-finite argument */
113         if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
114             if(hx>=0x7ff00000) {
115                 u_int32_t lx;
116                 GET_LOW_WORD(lx,x);
117                 if(((hx&0xfffff)|lx)!=0)
118                      return x+x;                /* NaN */
119                 else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
120             }
121             if(x > o_threshold) return huge*huge; /* overflow */
122             if(x < u_threshold) return twom1000*twom1000; /* underflow */
123         }
124
125     /* argument reduction */
126         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
127             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
128                 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
129             } else {
130                 k  = invln2*x+halF[xsb];
131                 t  = k;
132                 hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
133                 lo = t*ln2LO[0];
134             }
135             x  = hi - lo;
136         }
137         else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
138             if(huge+x>one) return one+x;/* trigger inexact */
139         }
140         else k = 0;
141
142     /* x is now in primary range */
143         t  = x*x;
144         c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
145         if(k==0)        return one-((x*c)/(c-2.0)-x);
146         else            y = one-((lo-(x*c)/(2.0-c))-hi);
147         if(k >= -1021) {
148             u_int32_t hy;
149             GET_HIGH_WORD(hy,y);
150             SET_HIGH_WORD(y,hy+(k<<20));        /* add k to y's exponent */
151             return y;
152         } else {
153             u_int32_t hy;
154             GET_HIGH_WORD(hy,y);
155             SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
156             return y*twom1000;
157         }
158 }