Use ANSI C and get rid of the __STDC__ and other wrapping.
[dragonfly.git] / lib / msun / src / k_tan.c
1 /* @(#)k_tan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $FreeBSD: src/lib/msun/src/k_tan.c,v 1.5 1999/08/28 00:06:42 peter Exp $
13  * $DragonFly: src/lib/msun/src/Attic/k_tan.c,v 1.3 2004/12/29 15:22:57 asmodai Exp $
14  */
15
16 /* __kernel_tan( x, y, k )
17  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
18  * Input x is assumed to be bounded by ~pi/4 in magnitude.
19  * Input y is the tail of x.
20  * Input k indicates whether tan (if k=1) or
21  * -1/tan (if k= -1) is returned.
22  *
23  * Algorithm
24  *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
25  *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
26  *      3. tan(x) is approximated by a odd polynomial of degree 27 on
27  *         [0,0.67434]
28  *                               3             27
29  *              tan(x) ~ x + T1*x + ... + T13*x
30  *         where
31  *
32  *              |tan(x)         2     4            26   |     -59.2
33  *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
34  *              |  x                                    |
35  *
36  *         Note: tan(x+y) = tan(x) + tan'(x)*y
37  *                        ~ tan(x) + (1+x*x)*y
38  *         Therefore, for better accuracy in computing tan(x+y), let
39  *                   3      2      2       2       2
40  *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
41  *         then
42  *                                  3    2
43  *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
44  *
45  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
46  *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
47  *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
48  */
49
50 #include "math.h"
51 #include "math_private.h"
52 static const double
53 one   =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
54 pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
55 pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
56 T[] =  {
57   3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
58   1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
59   5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
60   2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
61   8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
62   3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
63   1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
64   5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
65   2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
66   7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
67   7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
68  -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
69   2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
70 };
71
72 double
73 __kernel_tan(double x, double y, int iy)
74 {
75         double z,r,v,w,s;
76         int32_t ix,hx;
77         GET_HIGH_WORD(hx,x);
78         ix = hx&0x7fffffff;     /* high word of |x| */
79         if(ix<0x3e300000)                       /* x < 2**-28 */
80             {if((int)x==0) {                    /* generate inexact */
81                 u_int32_t low;
82                 GET_LOW_WORD(low,x);
83                 if(((ix|low)|(iy+1))==0) return one/fabs(x);
84                 else return (iy==1)? x: -one/x;
85             }
86             }
87         if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */
88             if(hx<0) {x = -x; y = -y;}
89             z = pio4-x;
90             w = pio4lo-y;
91             x = z+w; y = 0.0;
92         }
93         z       =  x*x;
94         w       =  z*z;
95     /* Break x^5*(T[1]+x^2*T[2]+...) into
96      *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
97      *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
98      */
99         r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
100         v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
101         s = z*x;
102         r = y + z*(s*(r+v)+y);
103         r += T[0]*s;
104         w = x+r;
105         if(ix>=0x3FE59428) {
106             v = (double)iy;
107             return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
108         }
109         if(iy==1) return w;
110         else {          /* if allow error up to 2 ulp,
111                            simply return -1.0/(x+r) here */
112      /*  compute -1.0/(x+r) accurately */
113             double a,t;
114             z  = w;
115             SET_LOW_WORD(z,0);
116             v  = r-(z - x);     /* z+v = r+x */
117             t = a  = -1.0/w;    /* a = -1.0/w */
118             SET_LOW_WORD(t,0);
119             s  = 1.0+t*z;
120             return t+a*(s+t*v);
121         }
122 }