Use ANSI C and get rid of the __STDC__ and other wrapping.
[dragonfly.git] / lib / msun / src / s_log1p.c
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $FreeBSD: src/lib/msun/src/s_log1p.c,v 1.5 1999/08/28 00:06:52 peter Exp $
13  * $DragonFly: src/lib/msun/src/Attic/s_log1p.c,v 1.3 2004/12/29 15:22:57 asmodai Exp $
14  */
15
16 /* double log1p(double x)
17  *
18  * Method :
19  *   1. Argument Reduction: find k and f such that
20  *                      1+x = 2^k * (1+f),
21  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
22  *
23  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
24  *      may not be representable exactly. In that case, a correction
25  *      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
26  *      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
27  *      and add back the correction term c/u.
28  *      (Note: when x > 2**53, one can simply return log(x))
29  *
30  *   2. Approximation of log1p(f).
31  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
32  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
33  *               = 2s + s*R
34  *      We use a special Reme algorithm on [0,0.1716] to generate
35  *      a polynomial of degree 14 to approximate R The maximum error
36  *      of this polynomial approximation is bounded by 2**-58.45. In
37  *      other words,
38  *                      2      4      6      8      10      12      14
39  *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
40  *      (the values of Lp1 to Lp7 are listed in the program)
41  *      and
42  *          |      2          14          |     -58.45
43  *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
44  *          |                             |
45  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
46  *      In order to guarantee error in log below 1ulp, we compute log
47  *      by
48  *              log1p(f) = f - (hfsq - s*(hfsq+R)).
49  *
50  *      3. Finally, log1p(x) = k*ln2 + log1p(f).
51  *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
52  *         Here ln2 is split into two floating point number:
53  *                      ln2_hi + ln2_lo,
54  *         where n*ln2_hi is always exact for |n| < 2000.
55  *
56  * Special cases:
57  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
58  *      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
59  *      log1p(NaN) is that NaN with no signal.
60  *
61  * Accuracy:
62  *      according to an error analysis, the error is always less than
63  *      1 ulp (unit in the last place).
64  *
65  * Constants:
66  * The hexadecimal values are the intended ones for the following
67  * constants. The decimal values may be used, provided that the
68  * compiler will convert from decimal to binary accurately enough
69  * to produce the hexadecimal values shown.
70  *
71  * Note: Assuming log() return accurate answer, the following
72  *       algorithm can be used to compute log1p(x) to within a few ULP:
73  *
74  *              u = 1+x;
75  *              if(u==1.0) return x ; else
76  *                         return log(u)*(x/(u-1.0));
77  *
78  *       See HP-15C Advanced Functions Handbook, p.193.
79  */
80
81 #include "math.h"
82 #include "math_private.h"
83
84 static const double
85 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
86 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
87 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
88 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
89 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
90 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
91 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
92 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
93 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
94 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
95
96 static const double zero = 0.0;
97
98 double
99 log1p(double x)
100 {
101         double hfsq,f,c,s,z,R,u;
102         int32_t k,hx,hu,ax;
103
104         GET_HIGH_WORD(hx,x);
105         ax = hx&0x7fffffff;
106
107         k = 1;
108         if (hx < 0x3FDA827A) {                  /* x < 0.41422  */
109             if(ax>=0x3ff00000) {                /* x <= -1.0 */
110                 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
111                 else return (x-x)/(x-x);        /* log1p(x<-1)=NaN */
112             }
113             if(ax<0x3e200000) {                 /* |x| < 2**-29 */
114                 if(two54+x>zero                 /* raise inexact */
115                     &&ax<0x3c900000)            /* |x| < 2**-54 */
116                     return x;
117                 else
118                     return x - x*x*0.5;
119             }
120             if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
121                 k=0;f=x;hu=1;}  /* -0.2929<x<0.41422 */
122         }
123         if (hx >= 0x7ff00000) return x+x;
124         if(k!=0) {
125             if(hx<0x43400000) {
126                 u  = 1.0+x;
127                 GET_HIGH_WORD(hu,u);
128                 k  = (hu>>20)-1023;
129                 c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
130                 c /= u;
131             } else {
132                 u  = x;
133                 GET_HIGH_WORD(hu,u);
134                 k  = (hu>>20)-1023;
135                 c  = 0;
136             }
137             hu &= 0x000fffff;
138             if(hu<0x6a09e) {
139                 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
140             } else {
141                 k += 1;
142                 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
143                 hu = (0x00100000-hu)>>2;
144             }
145             f = u-1.0;
146         }
147         hfsq=0.5*f*f;
148         if(hu==0) {     /* |f| < 2**-20 */
149             if(f==zero) if(k==0) return zero;
150                         else {c += k*ln2_lo; return k*ln2_hi+c;}
151             R = hfsq*(1.0-0.66666666666666666*f);
152             if(k==0) return f-R; else
153                      return k*ln2_hi-((R-(k*ln2_lo+c))-f);
154         }
155         s = f/(2.0+f);
156         z = s*s;
157         R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
158         if(k==0) return f-(hfsq-s*(hfsq+R)); else
159                  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
160 }