kernel - Fix crypto boots and rescue boots
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64
65 /*
66  *      Virtual memory mapping module.
67  */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94
95 #include <sys/thread2.h>
96 #include <sys/sysref2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static void vmspace_terminate(struct vmspace *vm);
118 static void vmspace_lock(struct vmspace *vm);
119 static void vmspace_unlock(struct vmspace *vm);
120 static void vmspace_dtor(void *obj, void *private);
121
122 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
123
124 struct sysref_class vmspace_sysref_class = {
125         .name =         "vmspace",
126         .mtype =        M_VMSPACE,
127         .proto =        SYSREF_PROTO_VMSPACE,
128         .offset =       offsetof(struct vmspace, vm_sysref),
129         .objsize =      sizeof(struct vmspace),
130         .nom_cache =    32,
131         .flags = SRC_MANAGEDINIT,
132         .dtor = vmspace_dtor,
133         .ops = {
134                 .terminate = (sysref_terminate_func_t)vmspace_terminate,
135                 .lock = (sysref_lock_func_t)vmspace_lock,
136                 .unlock = (sysref_lock_func_t)vmspace_unlock
137         }
138 };
139
140 /*
141  * per-cpu page table cross mappings are initialized in early boot
142  * and might require a considerable number of vm_map_entry structures.
143  */
144 #define MAPENTRYBSP_CACHE       (MAXCPU+1)
145 #define MAPENTRYAP_CACHE        8
146
147 static struct vm_zone mapentzone_store, mapzone_store;
148 static vm_zone_t mapentzone, mapzone;
149 static struct vm_object mapentobj, mapobj;
150
151 static struct vm_map_entry map_entry_init[MAX_MAPENT];
152 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
153 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
154 static struct vm_map map_init[MAX_KMAP];
155
156 static int randomize_mmap;
157 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
158     "Randomize mmap offsets");
159 static int vm_map_relock_enable = 1;
160 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
161            &vm_map_relock_enable, 0, "Randomize mmap offsets");
162
163 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171                 vm_map_entry_t);
172 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
173
174 /*
175  * Initialize the vm_map module.  Must be called before any other vm_map
176  * routines.
177  *
178  * Map and entry structures are allocated from the general purpose
179  * memory pool with some exceptions:
180  *
181  *      - The kernel map is allocated statically.
182  *      - Initial kernel map entries are allocated out of a static pool.
183  *      - We must set ZONE_SPECIAL here or the early boot code can get
184  *        stuck if there are >63 cores.
185  *
186  *      These restrictions are necessary since malloc() uses the
187  *      maps and requires map entries.
188  *
189  * Called from the low level boot code only.
190  */
191 void
192 vm_map_startup(void)
193 {
194         mapzone = &mapzone_store;
195         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
196                 map_init, MAX_KMAP);
197         mapentzone = &mapentzone_store;
198         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
199                   map_entry_init, MAX_MAPENT);
200         mapentzone_store.zflags |= ZONE_SPECIAL;
201 }
202
203 /*
204  * Called prior to any vmspace allocations.
205  *
206  * Called from the low level boot code only.
207  */
208 void
209 vm_init2(void) 
210 {
211         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
212                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
213         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
214         pmap_init2();
215         vm_object_init2();
216 }
217
218
219 /*
220  * Red black tree functions
221  *
222  * The caller must hold the related map lock.
223  */
224 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
225 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
226
227 /* a->start is address, and the only field has to be initialized */
228 static int
229 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
230 {
231         if (a->start < b->start)
232                 return(-1);
233         else if (a->start > b->start)
234                 return(1);
235         return(0);
236 }
237
238 /*
239  * Allocate a vmspace structure, including a vm_map and pmap.
240  * Initialize numerous fields.  While the initial allocation is zerod,
241  * subsequence reuse from the objcache leaves elements of the structure
242  * intact (particularly the pmap), so portions must be zerod.
243  *
244  * The structure is not considered activated until we call sysref_activate().
245  *
246  * No requirements.
247  */
248 struct vmspace *
249 vmspace_alloc(vm_offset_t min, vm_offset_t max)
250 {
251         struct vmspace *vm;
252
253         vm = sysref_alloc(&vmspace_sysref_class);
254         bzero(&vm->vm_startcopy,
255               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
256         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
257
258         /*
259          * Use a hold to prevent any additional racing hold from terminating
260          * the vmspace before we manage to activate it.  This also acquires
261          * the token for safety.
262          */
263         KKASSERT(vm->vm_holdcount == 0);
264         KKASSERT(vm->vm_exitingcnt == 0);
265         vmspace_hold(vm);
266         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
267         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
268         vm->vm_shm = NULL;
269         vm->vm_flags = 0;
270         cpu_vmspace_alloc(vm);
271         sysref_activate(&vm->vm_sysref);
272         vmspace_drop(vm);
273
274         return (vm);
275 }
276
277 /*
278  * Free a primary reference to a vmspace.  This can trigger a
279  * stage-1 termination.
280  */
281 void
282 vmspace_free(struct vmspace *vm)
283 {
284         /*
285          * We want all finalization to occur via vmspace_drop() so we
286          * need to hold the vm around the put.
287          */
288         vmspace_hold(vm);
289         sysref_put(&vm->vm_sysref);
290         vmspace_drop(vm);
291 }
292
293 void
294 vmspace_ref(struct vmspace *vm)
295 {
296         sysref_get(&vm->vm_sysref);
297 }
298
299 void
300 vmspace_hold(struct vmspace *vm)
301 {
302         refcount_acquire(&vm->vm_holdcount);
303         lwkt_gettoken(&vm->vm_map.token);
304 }
305
306 void
307 vmspace_drop(struct vmspace *vm)
308 {
309         lwkt_reltoken(&vm->vm_map.token);
310         if (refcount_release(&vm->vm_holdcount)) {
311                 if (vm->vm_exitingcnt == 0 &&
312                     sysref_isinactive(&vm->vm_sysref)) {
313                         vmspace_terminate(vm);
314                 }
315         }
316 }
317
318 /*
319  * dtor function - Some elements of the pmap are retained in the
320  * free-cached vmspaces to improve performance.  We have to clean them up
321  * here before returning the vmspace to the memory pool.
322  *
323  * No requirements.
324  */
325 static void
326 vmspace_dtor(void *obj, void *private)
327 {
328         struct vmspace *vm = obj;
329
330         pmap_puninit(vmspace_pmap(vm));
331 }
332
333 /*
334  * Called in three cases:
335  *
336  * (1) When the last sysref is dropped and the vmspace becomes inactive.
337  *     (holdcount will not be 0 because the vmspace is held through the op)
338  *
339  * (2) When exitingcount becomes 0 on the last reap
340  *     (holdcount will not be 0 because the vmspace is held through the op)
341  *
342  * (3) When the holdcount becomes 0 in addition to the above two
343  *
344  * sysref will not scrap the object until we call sysref_put() once more
345  * after the last ref has been dropped.
346  *
347  * VMSPACE_EXIT1 flags the primary deactivation
348  * VMSPACE_EXIT2 flags the last reap
349  */
350 static void
351 vmspace_terminate(struct vmspace *vm)
352 {
353         int count;
354
355         /*
356          *
357          */
358         lwkt_gettoken(&vm->vm_map.token);
359         if ((vm->vm_flags & VMSPACE_EXIT1) == 0) {
360                 vm->vm_flags |= VMSPACE_EXIT1;
361                 shmexit(vm);
362                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
363                                   VM_MAX_USER_ADDRESS);
364                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
365                               VM_MAX_USER_ADDRESS);
366         }
367         if ((vm->vm_flags & VMSPACE_EXIT2) == 0 && vm->vm_exitingcnt == 0) {
368                 vm->vm_flags |= VMSPACE_EXIT2;
369                 cpu_vmspace_free(vm);
370                 shmexit(vm);
371
372                 /*
373                  * Lock the map, to wait out all other references to it.
374                  * Delete all of the mappings and pages they hold, then call
375                  * the pmap module to reclaim anything left.
376                  */
377                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
378                 vm_map_lock(&vm->vm_map);
379                 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
380                               vm->vm_map.max_offset, &count);
381                 vm_map_unlock(&vm->vm_map);
382                 vm_map_entry_release(count);
383
384                 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
385                 pmap_release(vmspace_pmap(vm));
386                 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
387         }
388
389         lwkt_reltoken(&vm->vm_map.token);
390         if (vm->vm_exitingcnt == 0 && vm->vm_holdcount == 0) {
391                 KKASSERT(vm->vm_flags & VMSPACE_EXIT1);
392                 KKASSERT(vm->vm_flags & VMSPACE_EXIT2);
393                 sysref_put(&vm->vm_sysref);
394         }
395 }
396
397 /*
398  * vmspaces are not currently locked.
399  */
400 static void
401 vmspace_lock(struct vmspace *vm __unused)
402 {
403 }
404
405 static void
406 vmspace_unlock(struct vmspace *vm __unused)
407 {
408 }
409
410 /*
411  * This is called during exit indicating that the vmspace is no
412  * longer in used by an exiting process, but the process has not yet
413  * been reaped.
414  *
415  * No requirements.
416  */
417 void
418 vmspace_exitbump(struct vmspace *vm)
419 {
420         vmspace_hold(vm);
421         ++vm->vm_exitingcnt;
422         vmspace_drop(vm);       /* handles termination sequencing */
423 }
424
425 /*
426  * Decrement the exitingcnt and issue the stage-2 termination if it becomes
427  * zero and the stage1 termination has already occured.
428  *
429  * No requirements.
430  */
431 void
432 vmspace_exitfree(struct proc *p)
433 {
434         struct vmspace *vm;
435
436         vm = p->p_vmspace;
437         p->p_vmspace = NULL;
438         vmspace_hold(vm);
439         KKASSERT(vm->vm_exitingcnt > 0);
440         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
441                 vmspace_terminate(vm);
442         vmspace_drop(vm);       /* handles termination sequencing */
443 }
444
445 /*
446  * Swap useage is determined by taking the proportional swap used by
447  * VM objects backing the VM map.  To make up for fractional losses,
448  * if the VM object has any swap use at all the associated map entries
449  * count for at least 1 swap page.
450  *
451  * No requirements.
452  */
453 int
454 vmspace_swap_count(struct vmspace *vm)
455 {
456         vm_map_t map = &vm->vm_map;
457         vm_map_entry_t cur;
458         vm_object_t object;
459         int count = 0;
460         int n;
461
462         vmspace_hold(vm);
463         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
464                 switch(cur->maptype) {
465                 case VM_MAPTYPE_NORMAL:
466                 case VM_MAPTYPE_VPAGETABLE:
467                         if ((object = cur->object.vm_object) == NULL)
468                                 break;
469                         if (object->swblock_count) {
470                                 n = (cur->end - cur->start) / PAGE_SIZE;
471                                 count += object->swblock_count *
472                                     SWAP_META_PAGES * n / object->size + 1;
473                         }
474                         break;
475                 default:
476                         break;
477                 }
478         }
479         vmspace_drop(vm);
480
481         return(count);
482 }
483
484 /*
485  * Calculate the approximate number of anonymous pages in use by
486  * this vmspace.  To make up for fractional losses, we count each
487  * VM object as having at least 1 anonymous page.
488  *
489  * No requirements.
490  */
491 int
492 vmspace_anonymous_count(struct vmspace *vm)
493 {
494         vm_map_t map = &vm->vm_map;
495         vm_map_entry_t cur;
496         vm_object_t object;
497         int count = 0;
498
499         vmspace_hold(vm);
500         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
501                 switch(cur->maptype) {
502                 case VM_MAPTYPE_NORMAL:
503                 case VM_MAPTYPE_VPAGETABLE:
504                         if ((object = cur->object.vm_object) == NULL)
505                                 break;
506                         if (object->type != OBJT_DEFAULT &&
507                             object->type != OBJT_SWAP) {
508                                 break;
509                         }
510                         count += object->resident_page_count;
511                         break;
512                 default:
513                         break;
514                 }
515         }
516         vmspace_drop(vm);
517
518         return(count);
519 }
520
521 /*
522  * Creates and returns a new empty VM map with the given physical map
523  * structure, and having the given lower and upper address bounds.
524  *
525  * No requirements.
526  */
527 vm_map_t
528 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
529 {
530         if (result == NULL)
531                 result = zalloc(mapzone);
532         vm_map_init(result, min, max, pmap);
533         return (result);
534 }
535
536 /*
537  * Initialize an existing vm_map structure such as that in the vmspace
538  * structure.  The pmap is initialized elsewhere.
539  *
540  * No requirements.
541  */
542 void
543 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
544 {
545         map->header.next = map->header.prev = &map->header;
546         RB_INIT(&map->rb_root);
547         map->nentries = 0;
548         map->size = 0;
549         map->system_map = 0;
550         map->min_offset = min;
551         map->max_offset = max;
552         map->pmap = pmap;
553         map->first_free = &map->header;
554         map->hint = &map->header;
555         map->timestamp = 0;
556         map->flags = 0;
557         lwkt_token_init(&map->token, "vm_map");
558         lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
559         TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
560 }
561
562 /*
563  * Shadow the vm_map_entry's object.  This typically needs to be done when
564  * a write fault is taken on an entry which had previously been cloned by
565  * fork().  The shared object (which might be NULL) must become private so
566  * we add a shadow layer above it.
567  *
568  * Object allocation for anonymous mappings is defered as long as possible.
569  * When creating a shadow, however, the underlying object must be instantiated
570  * so it can be shared.
571  *
572  * If the map segment is governed by a virtual page table then it is
573  * possible to address offsets beyond the mapped area.  Just allocate
574  * a maximally sized object for this case.
575  *
576  * The vm_map must be exclusively locked.
577  * No other requirements.
578  */
579 static
580 void
581 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
582 {
583         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
584                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
585                                  0x7FFFFFFF, addref);   /* XXX */
586         } else {
587                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
588                                  atop(entry->end - entry->start), addref);
589         }
590         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
591 }
592
593 /*
594  * Allocate an object for a vm_map_entry.
595  *
596  * Object allocation for anonymous mappings is defered as long as possible.
597  * This function is called when we can defer no longer, generally when a map
598  * entry might be split or forked or takes a page fault.
599  *
600  * If the map segment is governed by a virtual page table then it is
601  * possible to address offsets beyond the mapped area.  Just allocate
602  * a maximally sized object for this case.
603  *
604  * The vm_map must be exclusively locked.
605  * No other requirements.
606  */
607 void 
608 vm_map_entry_allocate_object(vm_map_entry_t entry)
609 {
610         vm_object_t obj;
611
612         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
613                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
614         } else {
615                 obj = vm_object_allocate(OBJT_DEFAULT,
616                                          atop(entry->end - entry->start));
617         }
618         entry->object.vm_object = obj;
619         entry->offset = 0;
620 }
621
622 /*
623  * Set an initial negative count so the first attempt to reserve
624  * space preloads a bunch of vm_map_entry's for this cpu.  Also
625  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
626  * map a new page for vm_map_entry structures.  SMP systems are
627  * particularly sensitive.
628  *
629  * This routine is called in early boot so we cannot just call
630  * vm_map_entry_reserve().
631  *
632  * Called from the low level boot code only (for each cpu)
633  *
634  * WARNING! Take care not to have too-big a static/BSS structure here
635  *          as MAXCPU can be 256+, otherwise the loader's 64MB heap
636  *          can get blown out by the kernel plus the initrd image.
637  */
638 void
639 vm_map_entry_reserve_cpu_init(globaldata_t gd)
640 {
641         vm_map_entry_t entry;
642         int count;
643         int i;
644
645         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
646         if (gd->gd_cpuid == 0) {
647                 entry = &cpu_map_entry_init_bsp[0];
648                 count = MAPENTRYBSP_CACHE;
649         } else {
650                 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
651                 count = MAPENTRYAP_CACHE;
652         }
653         for (i = 0; i < count; ++i, ++entry) {
654                 entry->next = gd->gd_vme_base;
655                 gd->gd_vme_base = entry;
656         }
657 }
658
659 /*
660  * Reserves vm_map_entry structures so code later on can manipulate
661  * map_entry structures within a locked map without blocking trying
662  * to allocate a new vm_map_entry.
663  *
664  * No requirements.
665  */
666 int
667 vm_map_entry_reserve(int count)
668 {
669         struct globaldata *gd = mycpu;
670         vm_map_entry_t entry;
671
672         /*
673          * Make sure we have enough structures in gd_vme_base to handle
674          * the reservation request.
675          *
676          * The critical section protects access to the per-cpu gd.
677          */
678         crit_enter();
679         while (gd->gd_vme_avail < count) {
680                 entry = zalloc(mapentzone);
681                 entry->next = gd->gd_vme_base;
682                 gd->gd_vme_base = entry;
683                 ++gd->gd_vme_avail;
684         }
685         gd->gd_vme_avail -= count;
686         crit_exit();
687
688         return(count);
689 }
690
691 /*
692  * Releases previously reserved vm_map_entry structures that were not
693  * used.  If we have too much junk in our per-cpu cache clean some of
694  * it out.
695  *
696  * No requirements.
697  */
698 void
699 vm_map_entry_release(int count)
700 {
701         struct globaldata *gd = mycpu;
702         vm_map_entry_t entry;
703
704         crit_enter();
705         gd->gd_vme_avail += count;
706         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
707                 entry = gd->gd_vme_base;
708                 KKASSERT(entry != NULL);
709                 gd->gd_vme_base = entry->next;
710                 --gd->gd_vme_avail;
711                 crit_exit();
712                 zfree(mapentzone, entry);
713                 crit_enter();
714         }
715         crit_exit();
716 }
717
718 /*
719  * Reserve map entry structures for use in kernel_map itself.  These
720  * entries have *ALREADY* been reserved on a per-cpu basis when the map
721  * was inited.  This function is used by zalloc() to avoid a recursion
722  * when zalloc() itself needs to allocate additional kernel memory.
723  *
724  * This function works like the normal reserve but does not load the
725  * vm_map_entry cache (because that would result in an infinite
726  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
727  *
728  * Any caller of this function must be sure to renormalize after
729  * potentially eating entries to ensure that the reserve supply
730  * remains intact.
731  *
732  * No requirements.
733  */
734 int
735 vm_map_entry_kreserve(int count)
736 {
737         struct globaldata *gd = mycpu;
738
739         crit_enter();
740         gd->gd_vme_avail -= count;
741         crit_exit();
742         KASSERT(gd->gd_vme_base != NULL,
743                 ("no reserved entries left, gd_vme_avail = %d",
744                 gd->gd_vme_avail));
745         return(count);
746 }
747
748 /*
749  * Release previously reserved map entries for kernel_map.  We do not
750  * attempt to clean up like the normal release function as this would
751  * cause an unnecessary (but probably not fatal) deep procedure call.
752  *
753  * No requirements.
754  */
755 void
756 vm_map_entry_krelease(int count)
757 {
758         struct globaldata *gd = mycpu;
759
760         crit_enter();
761         gd->gd_vme_avail += count;
762         crit_exit();
763 }
764
765 /*
766  * Allocates a VM map entry for insertion.  No entry fields are filled in.
767  *
768  * The entries should have previously been reserved.  The reservation count
769  * is tracked in (*countp).
770  *
771  * No requirements.
772  */
773 static vm_map_entry_t
774 vm_map_entry_create(vm_map_t map, int *countp)
775 {
776         struct globaldata *gd = mycpu;
777         vm_map_entry_t entry;
778
779         KKASSERT(*countp > 0);
780         --*countp;
781         crit_enter();
782         entry = gd->gd_vme_base;
783         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
784         gd->gd_vme_base = entry->next;
785         crit_exit();
786
787         return(entry);
788 }
789
790 /*
791  * Dispose of a vm_map_entry that is no longer being referenced.
792  *
793  * No requirements.
794  */
795 static void
796 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
797 {
798         struct globaldata *gd = mycpu;
799
800         KKASSERT(map->hint != entry);
801         KKASSERT(map->first_free != entry);
802
803         ++*countp;
804         crit_enter();
805         entry->next = gd->gd_vme_base;
806         gd->gd_vme_base = entry;
807         crit_exit();
808 }
809
810
811 /*
812  * Insert/remove entries from maps.
813  *
814  * The related map must be exclusively locked.
815  * The caller must hold map->token
816  * No other requirements.
817  */
818 static __inline void
819 vm_map_entry_link(vm_map_t map,
820                   vm_map_entry_t after_where,
821                   vm_map_entry_t entry)
822 {
823         ASSERT_VM_MAP_LOCKED(map);
824
825         map->nentries++;
826         entry->prev = after_where;
827         entry->next = after_where->next;
828         entry->next->prev = entry;
829         after_where->next = entry;
830         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
831                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
832 }
833
834 static __inline void
835 vm_map_entry_unlink(vm_map_t map,
836                     vm_map_entry_t entry)
837 {
838         vm_map_entry_t prev;
839         vm_map_entry_t next;
840
841         ASSERT_VM_MAP_LOCKED(map);
842
843         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
844                 panic("vm_map_entry_unlink: attempt to mess with "
845                       "locked entry! %p", entry);
846         }
847         prev = entry->prev;
848         next = entry->next;
849         next->prev = prev;
850         prev->next = next;
851         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
852         map->nentries--;
853 }
854
855 /*
856  * Finds the map entry containing (or immediately preceding) the specified
857  * address in the given map.  The entry is returned in (*entry).
858  *
859  * The boolean result indicates whether the address is actually contained
860  * in the map.
861  *
862  * The related map must be locked.
863  * No other requirements.
864  */
865 boolean_t
866 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
867 {
868         vm_map_entry_t tmp;
869         vm_map_entry_t last;
870
871         ASSERT_VM_MAP_LOCKED(map);
872 #if 0
873         /*
874          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
875          * the hint code with the red-black lookup meets with system crashes
876          * and lockups.  We do not yet know why.
877          *
878          * It is possible that the problem is related to the setting
879          * of the hint during map_entry deletion, in the code specified
880          * at the GGG comment later on in this file.
881          *
882          * YYY More likely it's because this function can be called with
883          * a shared lock on the map, resulting in map->hint updates possibly
884          * racing.  Fixed now but untested.
885          */
886         /*
887          * Quickly check the cached hint, there's a good chance of a match.
888          */
889         tmp = map->hint;
890         cpu_ccfence();
891         if (tmp != &map->header) {
892                 if (address >= tmp->start && address < tmp->end) {
893                         *entry = tmp;
894                         return(TRUE);
895                 }
896         }
897 #endif
898
899         /*
900          * Locate the record from the top of the tree.  'last' tracks the
901          * closest prior record and is returned if no match is found, which
902          * in binary tree terms means tracking the most recent right-branch
903          * taken.  If there is no prior record, &map->header is returned.
904          */
905         last = &map->header;
906         tmp = RB_ROOT(&map->rb_root);
907
908         while (tmp) {
909                 if (address >= tmp->start) {
910                         if (address < tmp->end) {
911                                 *entry = tmp;
912                                 map->hint = tmp;
913                                 return(TRUE);
914                         }
915                         last = tmp;
916                         tmp = RB_RIGHT(tmp, rb_entry);
917                 } else {
918                         tmp = RB_LEFT(tmp, rb_entry);
919                 }
920         }
921         *entry = last;
922         return (FALSE);
923 }
924
925 /*
926  * Inserts the given whole VM object into the target map at the specified
927  * address range.  The object's size should match that of the address range.
928  *
929  * The map must be exclusively locked.
930  * The object must be held.
931  * The caller must have reserved sufficient vm_map_entry structures.
932  *
933  * If object is non-NULL, ref count must be bumped by caller prior to
934  * making call to account for the new entry.
935  */
936 int
937 vm_map_insert(vm_map_t map, int *countp,
938               vm_object_t object, vm_ooffset_t offset,
939               vm_offset_t start, vm_offset_t end,
940               vm_maptype_t maptype,
941               vm_prot_t prot, vm_prot_t max,
942               int cow)
943 {
944         vm_map_entry_t new_entry;
945         vm_map_entry_t prev_entry;
946         vm_map_entry_t temp_entry;
947         vm_eflags_t protoeflags;
948         int must_drop = 0;
949
950         ASSERT_VM_MAP_LOCKED(map);
951         if (object)
952                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
953
954         /*
955          * Check that the start and end points are not bogus.
956          */
957         if ((start < map->min_offset) || (end > map->max_offset) ||
958             (start >= end))
959                 return (KERN_INVALID_ADDRESS);
960
961         /*
962          * Find the entry prior to the proposed starting address; if it's part
963          * of an existing entry, this range is bogus.
964          */
965         if (vm_map_lookup_entry(map, start, &temp_entry))
966                 return (KERN_NO_SPACE);
967
968         prev_entry = temp_entry;
969
970         /*
971          * Assert that the next entry doesn't overlap the end point.
972          */
973
974         if ((prev_entry->next != &map->header) &&
975             (prev_entry->next->start < end))
976                 return (KERN_NO_SPACE);
977
978         protoeflags = 0;
979
980         if (cow & MAP_COPY_ON_WRITE)
981                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
982
983         if (cow & MAP_NOFAULT) {
984                 protoeflags |= MAP_ENTRY_NOFAULT;
985
986                 KASSERT(object == NULL,
987                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
988         }
989         if (cow & MAP_DISABLE_SYNCER)
990                 protoeflags |= MAP_ENTRY_NOSYNC;
991         if (cow & MAP_DISABLE_COREDUMP)
992                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
993         if (cow & MAP_IS_STACK)
994                 protoeflags |= MAP_ENTRY_STACK;
995         if (cow & MAP_IS_KSTACK)
996                 protoeflags |= MAP_ENTRY_KSTACK;
997
998         lwkt_gettoken(&map->token);
999
1000         if (object) {
1001                 /*
1002                  * When object is non-NULL, it could be shared with another
1003                  * process.  We have to set or clear OBJ_ONEMAPPING 
1004                  * appropriately.
1005                  *
1006                  * NOTE: This flag is only applicable to DEFAULT and SWAP
1007                  *       objects and will already be clear in other types
1008                  *       of objects, so a shared object lock is ok for
1009                  *       VNODE objects.
1010                  */
1011                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1012                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1013                 }
1014         }
1015         else if ((prev_entry != &map->header) &&
1016                  (prev_entry->eflags == protoeflags) &&
1017                  (prev_entry->end == start) &&
1018                  (prev_entry->wired_count == 0) &&
1019                  prev_entry->maptype == maptype &&
1020                  ((prev_entry->object.vm_object == NULL) ||
1021                   vm_object_coalesce(prev_entry->object.vm_object,
1022                                      OFF_TO_IDX(prev_entry->offset),
1023                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1024                                      (vm_size_t)(end - prev_entry->end)))) {
1025                 /*
1026                  * We were able to extend the object.  Determine if we
1027                  * can extend the previous map entry to include the 
1028                  * new range as well.
1029                  */
1030                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1031                     (prev_entry->protection == prot) &&
1032                     (prev_entry->max_protection == max)) {
1033                         map->size += (end - prev_entry->end);
1034                         prev_entry->end = end;
1035                         vm_map_simplify_entry(map, prev_entry, countp);
1036                         lwkt_reltoken(&map->token);
1037                         return (KERN_SUCCESS);
1038                 }
1039
1040                 /*
1041                  * If we can extend the object but cannot extend the
1042                  * map entry, we have to create a new map entry.  We
1043                  * must bump the ref count on the extended object to
1044                  * account for it.  object may be NULL.
1045                  */
1046                 object = prev_entry->object.vm_object;
1047                 offset = prev_entry->offset +
1048                         (prev_entry->end - prev_entry->start);
1049                 if (object) {
1050                         vm_object_hold(object);
1051                         vm_object_chain_wait(object, 0);
1052                         vm_object_reference_locked(object);
1053                         must_drop = 1;
1054                 }
1055         }
1056
1057         /*
1058          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1059          * in things like the buffer map where we manage kva but do not manage
1060          * backing objects.
1061          */
1062
1063         /*
1064          * Create a new entry
1065          */
1066
1067         new_entry = vm_map_entry_create(map, countp);
1068         new_entry->start = start;
1069         new_entry->end = end;
1070
1071         new_entry->maptype = maptype;
1072         new_entry->eflags = protoeflags;
1073         new_entry->object.vm_object = object;
1074         new_entry->offset = offset;
1075         new_entry->aux.master_pde = 0;
1076
1077         new_entry->inheritance = VM_INHERIT_DEFAULT;
1078         new_entry->protection = prot;
1079         new_entry->max_protection = max;
1080         new_entry->wired_count = 0;
1081
1082         /*
1083          * Insert the new entry into the list
1084          */
1085
1086         vm_map_entry_link(map, prev_entry, new_entry);
1087         map->size += new_entry->end - new_entry->start;
1088
1089         /*
1090          * Update the free space hint.  Entries cannot overlap.
1091          * An exact comparison is needed to avoid matching
1092          * against the map->header.
1093          */
1094         if ((map->first_free == prev_entry) &&
1095             (prev_entry->end == new_entry->start)) {
1096                 map->first_free = new_entry;
1097         }
1098
1099 #if 0
1100         /*
1101          * Temporarily removed to avoid MAP_STACK panic, due to
1102          * MAP_STACK being a huge hack.  Will be added back in
1103          * when MAP_STACK (and the user stack mapping) is fixed.
1104          */
1105         /*
1106          * It may be possible to simplify the entry
1107          */
1108         vm_map_simplify_entry(map, new_entry, countp);
1109 #endif
1110
1111         /*
1112          * Try to pre-populate the page table.  Mappings governed by virtual
1113          * page tables cannot be prepopulated without a lot of work, so
1114          * don't try.
1115          */
1116         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1117             maptype != VM_MAPTYPE_VPAGETABLE) {
1118                 int dorelock = 0;
1119                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1120                         dorelock = 1;
1121                         vm_object_lock_swap();
1122                         vm_object_drop(object);
1123                 }
1124                 pmap_object_init_pt(map->pmap, start, prot,
1125                                     object, OFF_TO_IDX(offset), end - start,
1126                                     cow & MAP_PREFAULT_PARTIAL);
1127                 if (dorelock) {
1128                         vm_object_hold(object);
1129                         vm_object_lock_swap();
1130                 }
1131         }
1132         if (must_drop)
1133                 vm_object_drop(object);
1134
1135         lwkt_reltoken(&map->token);
1136         return (KERN_SUCCESS);
1137 }
1138
1139 /*
1140  * Find sufficient space for `length' bytes in the given map, starting at
1141  * `start'.  Returns 0 on success, 1 on no space.
1142  *
1143  * This function will returned an arbitrarily aligned pointer.  If no
1144  * particular alignment is required you should pass align as 1.  Note that
1145  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1146  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1147  * argument.
1148  *
1149  * 'align' should be a power of 2 but is not required to be.
1150  *
1151  * The map must be exclusively locked.
1152  * No other requirements.
1153  */
1154 int
1155 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1156                  vm_size_t align, int flags, vm_offset_t *addr)
1157 {
1158         vm_map_entry_t entry, next;
1159         vm_offset_t end;
1160         vm_offset_t align_mask;
1161
1162         if (start < map->min_offset)
1163                 start = map->min_offset;
1164         if (start > map->max_offset)
1165                 return (1);
1166
1167         /*
1168          * If the alignment is not a power of 2 we will have to use
1169          * a mod/division, set align_mask to a special value.
1170          */
1171         if ((align | (align - 1)) + 1 != (align << 1))
1172                 align_mask = (vm_offset_t)-1;
1173         else
1174                 align_mask = align - 1;
1175
1176         /*
1177          * Look for the first possible address; if there's already something
1178          * at this address, we have to start after it.
1179          */
1180         if (start == map->min_offset) {
1181                 if ((entry = map->first_free) != &map->header)
1182                         start = entry->end;
1183         } else {
1184                 vm_map_entry_t tmp;
1185
1186                 if (vm_map_lookup_entry(map, start, &tmp))
1187                         start = tmp->end;
1188                 entry = tmp;
1189         }
1190
1191         /*
1192          * Look through the rest of the map, trying to fit a new region in the
1193          * gap between existing regions, or after the very last region.
1194          */
1195         for (;; start = (entry = next)->end) {
1196                 /*
1197                  * Adjust the proposed start by the requested alignment,
1198                  * be sure that we didn't wrap the address.
1199                  */
1200                 if (align_mask == (vm_offset_t)-1)
1201                         end = ((start + align - 1) / align) * align;
1202                 else
1203                         end = (start + align_mask) & ~align_mask;
1204                 if (end < start)
1205                         return (1);
1206                 start = end;
1207                 /*
1208                  * Find the end of the proposed new region.  Be sure we didn't
1209                  * go beyond the end of the map, or wrap around the address.
1210                  * Then check to see if this is the last entry or if the 
1211                  * proposed end fits in the gap between this and the next
1212                  * entry.
1213                  */
1214                 end = start + length;
1215                 if (end > map->max_offset || end < start)
1216                         return (1);
1217                 next = entry->next;
1218
1219                 /*
1220                  * If the next entry's start address is beyond the desired
1221                  * end address we may have found a good entry.
1222                  *
1223                  * If the next entry is a stack mapping we do not map into
1224                  * the stack's reserved space.
1225                  *
1226                  * XXX continue to allow mapping into the stack's reserved
1227                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1228                  * mapping, for backwards compatibility.  But the caller
1229                  * really should use MAP_STACK | MAP_TRYFIXED if they
1230                  * want to do that.
1231                  */
1232                 if (next == &map->header)
1233                         break;
1234                 if (next->start >= end) {
1235                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1236                                 break;
1237                         if (flags & MAP_STACK)
1238                                 break;
1239                         if (next->start - next->aux.avail_ssize >= end)
1240                                 break;
1241                 }
1242         }
1243         map->hint = entry;
1244
1245         /*
1246          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1247          * if it fails.  The kernel_map is locked and nothing can steal
1248          * our address space if pmap_growkernel() blocks.
1249          *
1250          * NOTE: This may be unconditionally called for kldload areas on
1251          *       x86_64 because these do not bump kernel_vm_end (which would
1252          *       fill 128G worth of page tables!).  Therefore we must not
1253          *       retry.
1254          */
1255         if (map == &kernel_map) {
1256                 vm_offset_t kstop;
1257
1258                 kstop = round_page(start + length);
1259                 if (kstop > kernel_vm_end)
1260                         pmap_growkernel(start, kstop);
1261         }
1262         *addr = start;
1263         return (0);
1264 }
1265
1266 /*
1267  * vm_map_find finds an unallocated region in the target address map with
1268  * the given length and allocates it.  The search is defined to be first-fit
1269  * from the specified address; the region found is returned in the same
1270  * parameter.
1271  *
1272  * If object is non-NULL, ref count must be bumped by caller
1273  * prior to making call to account for the new entry.
1274  *
1275  * No requirements.  This function will lock the map temporarily.
1276  */
1277 int
1278 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1279             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1280             boolean_t fitit,
1281             vm_maptype_t maptype,
1282             vm_prot_t prot, vm_prot_t max,
1283             int cow)
1284 {
1285         vm_offset_t start;
1286         int result;
1287         int count;
1288
1289         start = *addr;
1290
1291         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1292         vm_map_lock(map);
1293         if (object)
1294                 vm_object_hold_shared(object);
1295         if (fitit) {
1296                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1297                         if (object)
1298                                 vm_object_drop(object);
1299                         vm_map_unlock(map);
1300                         vm_map_entry_release(count);
1301                         return (KERN_NO_SPACE);
1302                 }
1303                 start = *addr;
1304         }
1305         result = vm_map_insert(map, &count, object, offset,
1306                                start, start + length,
1307                                maptype,
1308                                prot, max,
1309                                cow);
1310         if (object)
1311                 vm_object_drop(object);
1312         vm_map_unlock(map);
1313         vm_map_entry_release(count);
1314
1315         return (result);
1316 }
1317
1318 /*
1319  * Simplify the given map entry by merging with either neighbor.  This
1320  * routine also has the ability to merge with both neighbors.
1321  *
1322  * This routine guarentees that the passed entry remains valid (though
1323  * possibly extended).  When merging, this routine may delete one or
1324  * both neighbors.  No action is taken on entries which have their
1325  * in-transition flag set.
1326  *
1327  * The map must be exclusively locked.
1328  */
1329 void
1330 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1331 {
1332         vm_map_entry_t next, prev;
1333         vm_size_t prevsize, esize;
1334
1335         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1336                 ++mycpu->gd_cnt.v_intrans_coll;
1337                 return;
1338         }
1339
1340         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1341                 return;
1342
1343         prev = entry->prev;
1344         if (prev != &map->header) {
1345                 prevsize = prev->end - prev->start;
1346                 if ( (prev->end == entry->start) &&
1347                      (prev->maptype == entry->maptype) &&
1348                      (prev->object.vm_object == entry->object.vm_object) &&
1349                      (!prev->object.vm_object ||
1350                         (prev->offset + prevsize == entry->offset)) &&
1351                      (prev->eflags == entry->eflags) &&
1352                      (prev->protection == entry->protection) &&
1353                      (prev->max_protection == entry->max_protection) &&
1354                      (prev->inheritance == entry->inheritance) &&
1355                      (prev->wired_count == entry->wired_count)) {
1356                         if (map->first_free == prev)
1357                                 map->first_free = entry;
1358                         if (map->hint == prev)
1359                                 map->hint = entry;
1360                         vm_map_entry_unlink(map, prev);
1361                         entry->start = prev->start;
1362                         entry->offset = prev->offset;
1363                         if (prev->object.vm_object)
1364                                 vm_object_deallocate(prev->object.vm_object);
1365                         vm_map_entry_dispose(map, prev, countp);
1366                 }
1367         }
1368
1369         next = entry->next;
1370         if (next != &map->header) {
1371                 esize = entry->end - entry->start;
1372                 if ((entry->end == next->start) &&
1373                     (next->maptype == entry->maptype) &&
1374                     (next->object.vm_object == entry->object.vm_object) &&
1375                      (!entry->object.vm_object ||
1376                         (entry->offset + esize == next->offset)) &&
1377                     (next->eflags == entry->eflags) &&
1378                     (next->protection == entry->protection) &&
1379                     (next->max_protection == entry->max_protection) &&
1380                     (next->inheritance == entry->inheritance) &&
1381                     (next->wired_count == entry->wired_count)) {
1382                         if (map->first_free == next)
1383                                 map->first_free = entry;
1384                         if (map->hint == next)
1385                                 map->hint = entry;
1386                         vm_map_entry_unlink(map, next);
1387                         entry->end = next->end;
1388                         if (next->object.vm_object)
1389                                 vm_object_deallocate(next->object.vm_object);
1390                         vm_map_entry_dispose(map, next, countp);
1391                 }
1392         }
1393 }
1394
1395 /*
1396  * Asserts that the given entry begins at or after the specified address.
1397  * If necessary, it splits the entry into two.
1398  */
1399 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1400 {                                                                       \
1401         if (startaddr > entry->start)                                   \
1402                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1403 }
1404
1405 /*
1406  * This routine is called only when it is known that the entry must be split.
1407  *
1408  * The map must be exclusively locked.
1409  */
1410 static void
1411 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1412                    int *countp)
1413 {
1414         vm_map_entry_t new_entry;
1415
1416         /*
1417          * Split off the front portion -- note that we must insert the new
1418          * entry BEFORE this one, so that this entry has the specified
1419          * starting address.
1420          */
1421
1422         vm_map_simplify_entry(map, entry, countp);
1423
1424         /*
1425          * If there is no object backing this entry, we might as well create
1426          * one now.  If we defer it, an object can get created after the map
1427          * is clipped, and individual objects will be created for the split-up
1428          * map.  This is a bit of a hack, but is also about the best place to
1429          * put this improvement.
1430          */
1431         if (entry->object.vm_object == NULL && !map->system_map) {
1432                 vm_map_entry_allocate_object(entry);
1433         }
1434
1435         new_entry = vm_map_entry_create(map, countp);
1436         *new_entry = *entry;
1437
1438         new_entry->end = start;
1439         entry->offset += (start - entry->start);
1440         entry->start = start;
1441
1442         vm_map_entry_link(map, entry->prev, new_entry);
1443
1444         switch(entry->maptype) {
1445         case VM_MAPTYPE_NORMAL:
1446         case VM_MAPTYPE_VPAGETABLE:
1447                 if (new_entry->object.vm_object) {
1448                         vm_object_hold(new_entry->object.vm_object);
1449                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1450                         vm_object_reference_locked(new_entry->object.vm_object);
1451                         vm_object_drop(new_entry->object.vm_object);
1452                 }
1453                 break;
1454         default:
1455                 break;
1456         }
1457 }
1458
1459 /*
1460  * Asserts that the given entry ends at or before the specified address.
1461  * If necessary, it splits the entry into two.
1462  *
1463  * The map must be exclusively locked.
1464  */
1465 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1466 {                                                               \
1467         if (endaddr < entry->end)                               \
1468                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1469 }
1470
1471 /*
1472  * This routine is called only when it is known that the entry must be split.
1473  *
1474  * The map must be exclusively locked.
1475  */
1476 static void
1477 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1478                  int *countp)
1479 {
1480         vm_map_entry_t new_entry;
1481
1482         /*
1483          * If there is no object backing this entry, we might as well create
1484          * one now.  If we defer it, an object can get created after the map
1485          * is clipped, and individual objects will be created for the split-up
1486          * map.  This is a bit of a hack, but is also about the best place to
1487          * put this improvement.
1488          */
1489
1490         if (entry->object.vm_object == NULL && !map->system_map) {
1491                 vm_map_entry_allocate_object(entry);
1492         }
1493
1494         /*
1495          * Create a new entry and insert it AFTER the specified entry
1496          */
1497
1498         new_entry = vm_map_entry_create(map, countp);
1499         *new_entry = *entry;
1500
1501         new_entry->start = entry->end = end;
1502         new_entry->offset += (end - entry->start);
1503
1504         vm_map_entry_link(map, entry, new_entry);
1505
1506         switch(entry->maptype) {
1507         case VM_MAPTYPE_NORMAL:
1508         case VM_MAPTYPE_VPAGETABLE:
1509                 if (new_entry->object.vm_object) {
1510                         vm_object_hold(new_entry->object.vm_object);
1511                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1512                         vm_object_reference_locked(new_entry->object.vm_object);
1513                         vm_object_drop(new_entry->object.vm_object);
1514                 }
1515                 break;
1516         default:
1517                 break;
1518         }
1519 }
1520
1521 /*
1522  * Asserts that the starting and ending region addresses fall within the
1523  * valid range for the map.
1524  */
1525 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1526 {                                               \
1527         if (start < vm_map_min(map))            \
1528                 start = vm_map_min(map);        \
1529         if (end > vm_map_max(map))              \
1530                 end = vm_map_max(map);          \
1531         if (start > end)                        \
1532                 start = end;                    \
1533 }
1534
1535 /*
1536  * Used to block when an in-transition collison occurs.  The map
1537  * is unlocked for the sleep and relocked before the return.
1538  */
1539 void
1540 vm_map_transition_wait(vm_map_t map)
1541 {
1542         tsleep_interlock(map, 0);
1543         vm_map_unlock(map);
1544         tsleep(map, PINTERLOCKED, "vment", 0);
1545         vm_map_lock(map);
1546 }
1547
1548 /*
1549  * When we do blocking operations with the map lock held it is
1550  * possible that a clip might have occured on our in-transit entry,
1551  * requiring an adjustment to the entry in our loop.  These macros
1552  * help the pageable and clip_range code deal with the case.  The
1553  * conditional costs virtually nothing if no clipping has occured.
1554  */
1555
1556 #define CLIP_CHECK_BACK(entry, save_start)              \
1557     do {                                                \
1558             while (entry->start != save_start) {        \
1559                     entry = entry->prev;                \
1560                     KASSERT(entry != &map->header, ("bad entry clip")); \
1561             }                                           \
1562     } while(0)
1563
1564 #define CLIP_CHECK_FWD(entry, save_end)                 \
1565     do {                                                \
1566             while (entry->end != save_end) {            \
1567                     entry = entry->next;                \
1568                     KASSERT(entry != &map->header, ("bad entry clip")); \
1569             }                                           \
1570     } while(0)
1571
1572
1573 /*
1574  * Clip the specified range and return the base entry.  The
1575  * range may cover several entries starting at the returned base
1576  * and the first and last entry in the covering sequence will be
1577  * properly clipped to the requested start and end address.
1578  *
1579  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1580  * flag.
1581  *
1582  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1583  * covered by the requested range.
1584  *
1585  * The map must be exclusively locked on entry and will remain locked
1586  * on return. If no range exists or the range contains holes and you
1587  * specified that no holes were allowed, NULL will be returned.  This
1588  * routine may temporarily unlock the map in order avoid a deadlock when
1589  * sleeping.
1590  */
1591 static
1592 vm_map_entry_t
1593 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1594                   int *countp, int flags)
1595 {
1596         vm_map_entry_t start_entry;
1597         vm_map_entry_t entry;
1598
1599         /*
1600          * Locate the entry and effect initial clipping.  The in-transition
1601          * case does not occur very often so do not try to optimize it.
1602          */
1603 again:
1604         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1605                 return (NULL);
1606         entry = start_entry;
1607         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1608                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1609                 ++mycpu->gd_cnt.v_intrans_coll;
1610                 ++mycpu->gd_cnt.v_intrans_wait;
1611                 vm_map_transition_wait(map);
1612                 /*
1613                  * entry and/or start_entry may have been clipped while
1614                  * we slept, or may have gone away entirely.  We have
1615                  * to restart from the lookup.
1616                  */
1617                 goto again;
1618         }
1619
1620         /*
1621          * Since we hold an exclusive map lock we do not have to restart
1622          * after clipping, even though clipping may block in zalloc.
1623          */
1624         vm_map_clip_start(map, entry, start, countp);
1625         vm_map_clip_end(map, entry, end, countp);
1626         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1627
1628         /*
1629          * Scan entries covered by the range.  When working on the next
1630          * entry a restart need only re-loop on the current entry which
1631          * we have already locked, since 'next' may have changed.  Also,
1632          * even though entry is safe, it may have been clipped so we
1633          * have to iterate forwards through the clip after sleeping.
1634          */
1635         while (entry->next != &map->header && entry->next->start < end) {
1636                 vm_map_entry_t next = entry->next;
1637
1638                 if (flags & MAP_CLIP_NO_HOLES) {
1639                         if (next->start > entry->end) {
1640                                 vm_map_unclip_range(map, start_entry,
1641                                         start, entry->end, countp, flags);
1642                                 return(NULL);
1643                         }
1644                 }
1645
1646                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1647                         vm_offset_t save_end = entry->end;
1648                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1649                         ++mycpu->gd_cnt.v_intrans_coll;
1650                         ++mycpu->gd_cnt.v_intrans_wait;
1651                         vm_map_transition_wait(map);
1652
1653                         /*
1654                          * clips might have occured while we blocked.
1655                          */
1656                         CLIP_CHECK_FWD(entry, save_end);
1657                         CLIP_CHECK_BACK(start_entry, start);
1658                         continue;
1659                 }
1660                 /*
1661                  * No restart necessary even though clip_end may block, we
1662                  * are holding the map lock.
1663                  */
1664                 vm_map_clip_end(map, next, end, countp);
1665                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1666                 entry = next;
1667         }
1668         if (flags & MAP_CLIP_NO_HOLES) {
1669                 if (entry->end != end) {
1670                         vm_map_unclip_range(map, start_entry,
1671                                 start, entry->end, countp, flags);
1672                         return(NULL);
1673                 }
1674         }
1675         return(start_entry);
1676 }
1677
1678 /*
1679  * Undo the effect of vm_map_clip_range().  You should pass the same
1680  * flags and the same range that you passed to vm_map_clip_range().
1681  * This code will clear the in-transition flag on the entries and
1682  * wake up anyone waiting.  This code will also simplify the sequence
1683  * and attempt to merge it with entries before and after the sequence.
1684  *
1685  * The map must be locked on entry and will remain locked on return.
1686  *
1687  * Note that you should also pass the start_entry returned by
1688  * vm_map_clip_range().  However, if you block between the two calls
1689  * with the map unlocked please be aware that the start_entry may
1690  * have been clipped and you may need to scan it backwards to find
1691  * the entry corresponding with the original start address.  You are
1692  * responsible for this, vm_map_unclip_range() expects the correct
1693  * start_entry to be passed to it and will KASSERT otherwise.
1694  */
1695 static
1696 void
1697 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1698                     vm_offset_t start, vm_offset_t end,
1699                     int *countp, int flags)
1700 {
1701         vm_map_entry_t entry;
1702
1703         entry = start_entry;
1704
1705         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1706         while (entry != &map->header && entry->start < end) {
1707                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1708                         ("in-transition flag not set during unclip on: %p",
1709                         entry));
1710                 KASSERT(entry->end <= end,
1711                         ("unclip_range: tail wasn't clipped"));
1712                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1713                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1714                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1715                         wakeup(map);
1716                 }
1717                 entry = entry->next;
1718         }
1719
1720         /*
1721          * Simplification does not block so there is no restart case.
1722          */
1723         entry = start_entry;
1724         while (entry != &map->header && entry->start < end) {
1725                 vm_map_simplify_entry(map, entry, countp);
1726                 entry = entry->next;
1727         }
1728 }
1729
1730 /*
1731  * Mark the given range as handled by a subordinate map.
1732  *
1733  * This range must have been created with vm_map_find(), and no other
1734  * operations may have been performed on this range prior to calling
1735  * vm_map_submap().
1736  *
1737  * Submappings cannot be removed.
1738  *
1739  * No requirements.
1740  */
1741 int
1742 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1743 {
1744         vm_map_entry_t entry;
1745         int result = KERN_INVALID_ARGUMENT;
1746         int count;
1747
1748         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1749         vm_map_lock(map);
1750
1751         VM_MAP_RANGE_CHECK(map, start, end);
1752
1753         if (vm_map_lookup_entry(map, start, &entry)) {
1754                 vm_map_clip_start(map, entry, start, &count);
1755         } else {
1756                 entry = entry->next;
1757         }
1758
1759         vm_map_clip_end(map, entry, end, &count);
1760
1761         if ((entry->start == start) && (entry->end == end) &&
1762             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1763             (entry->object.vm_object == NULL)) {
1764                 entry->object.sub_map = submap;
1765                 entry->maptype = VM_MAPTYPE_SUBMAP;
1766                 result = KERN_SUCCESS;
1767         }
1768         vm_map_unlock(map);
1769         vm_map_entry_release(count);
1770
1771         return (result);
1772 }
1773
1774 /*
1775  * Sets the protection of the specified address region in the target map. 
1776  * If "set_max" is specified, the maximum protection is to be set;
1777  * otherwise, only the current protection is affected.
1778  *
1779  * The protection is not applicable to submaps, but is applicable to normal
1780  * maps and maps governed by virtual page tables.  For example, when operating
1781  * on a virtual page table our protection basically controls how COW occurs
1782  * on the backing object, whereas the virtual page table abstraction itself
1783  * is an abstraction for userland.
1784  *
1785  * No requirements.
1786  */
1787 int
1788 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1789                vm_prot_t new_prot, boolean_t set_max)
1790 {
1791         vm_map_entry_t current;
1792         vm_map_entry_t entry;
1793         int count;
1794
1795         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1796         vm_map_lock(map);
1797
1798         VM_MAP_RANGE_CHECK(map, start, end);
1799
1800         if (vm_map_lookup_entry(map, start, &entry)) {
1801                 vm_map_clip_start(map, entry, start, &count);
1802         } else {
1803                 entry = entry->next;
1804         }
1805
1806         /*
1807          * Make a first pass to check for protection violations.
1808          */
1809         current = entry;
1810         while ((current != &map->header) && (current->start < end)) {
1811                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1812                         vm_map_unlock(map);
1813                         vm_map_entry_release(count);
1814                         return (KERN_INVALID_ARGUMENT);
1815                 }
1816                 if ((new_prot & current->max_protection) != new_prot) {
1817                         vm_map_unlock(map);
1818                         vm_map_entry_release(count);
1819                         return (KERN_PROTECTION_FAILURE);
1820                 }
1821                 current = current->next;
1822         }
1823
1824         /*
1825          * Go back and fix up protections. [Note that clipping is not
1826          * necessary the second time.]
1827          */
1828         current = entry;
1829
1830         while ((current != &map->header) && (current->start < end)) {
1831                 vm_prot_t old_prot;
1832
1833                 vm_map_clip_end(map, current, end, &count);
1834
1835                 old_prot = current->protection;
1836                 if (set_max) {
1837                         current->protection =
1838                             (current->max_protection = new_prot) &
1839                             old_prot;
1840                 } else {
1841                         current->protection = new_prot;
1842                 }
1843
1844                 /*
1845                  * Update physical map if necessary. Worry about copy-on-write
1846                  * here -- CHECK THIS XXX
1847                  */
1848
1849                 if (current->protection != old_prot) {
1850 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1851                                                         VM_PROT_ALL)
1852
1853                         pmap_protect(map->pmap, current->start,
1854                             current->end,
1855                             current->protection & MASK(current));
1856 #undef  MASK
1857                 }
1858
1859                 vm_map_simplify_entry(map, current, &count);
1860
1861                 current = current->next;
1862         }
1863
1864         vm_map_unlock(map);
1865         vm_map_entry_release(count);
1866         return (KERN_SUCCESS);
1867 }
1868
1869 /*
1870  * This routine traverses a processes map handling the madvise
1871  * system call.  Advisories are classified as either those effecting
1872  * the vm_map_entry structure, or those effecting the underlying
1873  * objects.
1874  *
1875  * The <value> argument is used for extended madvise calls.
1876  *
1877  * No requirements.
1878  */
1879 int
1880 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1881                int behav, off_t value)
1882 {
1883         vm_map_entry_t current, entry;
1884         int modify_map = 0;
1885         int error = 0;
1886         int count;
1887
1888         /*
1889          * Some madvise calls directly modify the vm_map_entry, in which case
1890          * we need to use an exclusive lock on the map and we need to perform 
1891          * various clipping operations.  Otherwise we only need a read-lock
1892          * on the map.
1893          */
1894
1895         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1896
1897         switch(behav) {
1898         case MADV_NORMAL:
1899         case MADV_SEQUENTIAL:
1900         case MADV_RANDOM:
1901         case MADV_NOSYNC:
1902         case MADV_AUTOSYNC:
1903         case MADV_NOCORE:
1904         case MADV_CORE:
1905         case MADV_SETMAP:
1906         case MADV_INVAL:
1907                 modify_map = 1;
1908                 vm_map_lock(map);
1909                 break;
1910         case MADV_WILLNEED:
1911         case MADV_DONTNEED:
1912         case MADV_FREE:
1913                 vm_map_lock_read(map);
1914                 break;
1915         default:
1916                 vm_map_entry_release(count);
1917                 return (EINVAL);
1918         }
1919
1920         /*
1921          * Locate starting entry and clip if necessary.
1922          */
1923
1924         VM_MAP_RANGE_CHECK(map, start, end);
1925
1926         if (vm_map_lookup_entry(map, start, &entry)) {
1927                 if (modify_map)
1928                         vm_map_clip_start(map, entry, start, &count);
1929         } else {
1930                 entry = entry->next;
1931         }
1932
1933         if (modify_map) {
1934                 /*
1935                  * madvise behaviors that are implemented in the vm_map_entry.
1936                  *
1937                  * We clip the vm_map_entry so that behavioral changes are
1938                  * limited to the specified address range.
1939                  */
1940                 for (current = entry;
1941                      (current != &map->header) && (current->start < end);
1942                      current = current->next
1943                 ) {
1944                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1945                                 continue;
1946
1947                         vm_map_clip_end(map, current, end, &count);
1948
1949                         switch (behav) {
1950                         case MADV_NORMAL:
1951                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1952                                 break;
1953                         case MADV_SEQUENTIAL:
1954                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1955                                 break;
1956                         case MADV_RANDOM:
1957                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1958                                 break;
1959                         case MADV_NOSYNC:
1960                                 current->eflags |= MAP_ENTRY_NOSYNC;
1961                                 break;
1962                         case MADV_AUTOSYNC:
1963                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1964                                 break;
1965                         case MADV_NOCORE:
1966                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1967                                 break;
1968                         case MADV_CORE:
1969                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1970                                 break;
1971                         case MADV_INVAL:
1972                                 /*
1973                                  * Invalidate the related pmap entries, used
1974                                  * to flush portions of the real kernel's
1975                                  * pmap when the caller has removed or
1976                                  * modified existing mappings in a virtual
1977                                  * page table.
1978                                  */
1979                                 pmap_remove(map->pmap,
1980                                             current->start, current->end);
1981                                 break;
1982                         case MADV_SETMAP:
1983                                 /*
1984                                  * Set the page directory page for a map
1985                                  * governed by a virtual page table.  Mark
1986                                  * the entry as being governed by a virtual
1987                                  * page table if it is not.
1988                                  *
1989                                  * XXX the page directory page is stored
1990                                  * in the avail_ssize field if the map_entry.
1991                                  *
1992                                  * XXX the map simplification code does not
1993                                  * compare this field so weird things may
1994                                  * happen if you do not apply this function
1995                                  * to the entire mapping governed by the
1996                                  * virtual page table.
1997                                  */
1998                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1999                                         error = EINVAL;
2000                                         break;
2001                                 }
2002                                 current->aux.master_pde = value;
2003                                 pmap_remove(map->pmap,
2004                                             current->start, current->end);
2005                                 break;
2006                         default:
2007                                 error = EINVAL;
2008                                 break;
2009                         }
2010                         vm_map_simplify_entry(map, current, &count);
2011                 }
2012                 vm_map_unlock(map);
2013         } else {
2014                 vm_pindex_t pindex;
2015                 int count;
2016
2017                 /*
2018                  * madvise behaviors that are implemented in the underlying
2019                  * vm_object.
2020                  *
2021                  * Since we don't clip the vm_map_entry, we have to clip
2022                  * the vm_object pindex and count.
2023                  *
2024                  * NOTE!  We currently do not support these functions on
2025                  * virtual page tables.
2026                  */
2027                 for (current = entry;
2028                      (current != &map->header) && (current->start < end);
2029                      current = current->next
2030                 ) {
2031                         vm_offset_t useStart;
2032
2033                         if (current->maptype != VM_MAPTYPE_NORMAL)
2034                                 continue;
2035
2036                         pindex = OFF_TO_IDX(current->offset);
2037                         count = atop(current->end - current->start);
2038                         useStart = current->start;
2039
2040                         if (current->start < start) {
2041                                 pindex += atop(start - current->start);
2042                                 count -= atop(start - current->start);
2043                                 useStart = start;
2044                         }
2045                         if (current->end > end)
2046                                 count -= atop(current->end - end);
2047
2048                         if (count <= 0)
2049                                 continue;
2050
2051                         vm_object_madvise(current->object.vm_object,
2052                                           pindex, count, behav);
2053
2054                         /*
2055                          * Try to populate the page table.  Mappings governed
2056                          * by virtual page tables cannot be pre-populated
2057                          * without a lot of work so don't try.
2058                          */
2059                         if (behav == MADV_WILLNEED &&
2060                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2061                                 pmap_object_init_pt(
2062                                     map->pmap, 
2063                                     useStart,
2064                                     current->protection,
2065                                     current->object.vm_object,
2066                                     pindex, 
2067                                     (count << PAGE_SHIFT),
2068                                     MAP_PREFAULT_MADVISE
2069                                 );
2070                         }
2071                 }
2072                 vm_map_unlock_read(map);
2073         }
2074         vm_map_entry_release(count);
2075         return(error);
2076 }       
2077
2078
2079 /*
2080  * Sets the inheritance of the specified address range in the target map.
2081  * Inheritance affects how the map will be shared with child maps at the
2082  * time of vm_map_fork.
2083  */
2084 int
2085 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2086                vm_inherit_t new_inheritance)
2087 {
2088         vm_map_entry_t entry;
2089         vm_map_entry_t temp_entry;
2090         int count;
2091
2092         switch (new_inheritance) {
2093         case VM_INHERIT_NONE:
2094         case VM_INHERIT_COPY:
2095         case VM_INHERIT_SHARE:
2096                 break;
2097         default:
2098                 return (KERN_INVALID_ARGUMENT);
2099         }
2100
2101         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2102         vm_map_lock(map);
2103
2104         VM_MAP_RANGE_CHECK(map, start, end);
2105
2106         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2107                 entry = temp_entry;
2108                 vm_map_clip_start(map, entry, start, &count);
2109         } else
2110                 entry = temp_entry->next;
2111
2112         while ((entry != &map->header) && (entry->start < end)) {
2113                 vm_map_clip_end(map, entry, end, &count);
2114
2115                 entry->inheritance = new_inheritance;
2116
2117                 vm_map_simplify_entry(map, entry, &count);
2118
2119                 entry = entry->next;
2120         }
2121         vm_map_unlock(map);
2122         vm_map_entry_release(count);
2123         return (KERN_SUCCESS);
2124 }
2125
2126 /*
2127  * Implement the semantics of mlock
2128  */
2129 int
2130 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2131               boolean_t new_pageable)
2132 {
2133         vm_map_entry_t entry;
2134         vm_map_entry_t start_entry;
2135         vm_offset_t end;
2136         int rv = KERN_SUCCESS;
2137         int count;
2138
2139         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2140         vm_map_lock(map);
2141         VM_MAP_RANGE_CHECK(map, start, real_end);
2142         end = real_end;
2143
2144         start_entry = vm_map_clip_range(map, start, end, &count,
2145                                         MAP_CLIP_NO_HOLES);
2146         if (start_entry == NULL) {
2147                 vm_map_unlock(map);
2148                 vm_map_entry_release(count);
2149                 return (KERN_INVALID_ADDRESS);
2150         }
2151
2152         if (new_pageable == 0) {
2153                 entry = start_entry;
2154                 while ((entry != &map->header) && (entry->start < end)) {
2155                         vm_offset_t save_start;
2156                         vm_offset_t save_end;
2157
2158                         /*
2159                          * Already user wired or hard wired (trivial cases)
2160                          */
2161                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2162                                 entry = entry->next;
2163                                 continue;
2164                         }
2165                         if (entry->wired_count != 0) {
2166                                 entry->wired_count++;
2167                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2168                                 entry = entry->next;
2169                                 continue;
2170                         }
2171
2172                         /*
2173                          * A new wiring requires instantiation of appropriate
2174                          * management structures and the faulting in of the
2175                          * page.
2176                          */
2177                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2178                                 int copyflag = entry->eflags &
2179                                                MAP_ENTRY_NEEDS_COPY;
2180                                 if (copyflag && ((entry->protection &
2181                                                   VM_PROT_WRITE) != 0)) {
2182                                         vm_map_entry_shadow(entry, 0);
2183                                 } else if (entry->object.vm_object == NULL &&
2184                                            !map->system_map) {
2185                                         vm_map_entry_allocate_object(entry);
2186                                 }
2187                         }
2188                         entry->wired_count++;
2189                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2190
2191                         /*
2192                          * Now fault in the area.  Note that vm_fault_wire()
2193                          * may release the map lock temporarily, it will be
2194                          * relocked on return.  The in-transition
2195                          * flag protects the entries. 
2196                          */
2197                         save_start = entry->start;
2198                         save_end = entry->end;
2199                         rv = vm_fault_wire(map, entry, TRUE, 0);
2200                         if (rv) {
2201                                 CLIP_CHECK_BACK(entry, save_start);
2202                                 for (;;) {
2203                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2204                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2205                                         entry->wired_count = 0;
2206                                         if (entry->end == save_end)
2207                                                 break;
2208                                         entry = entry->next;
2209                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2210                                 }
2211                                 end = save_start;       /* unwire the rest */
2212                                 break;
2213                         }
2214                         /*
2215                          * note that even though the entry might have been
2216                          * clipped, the USER_WIRED flag we set prevents
2217                          * duplication so we do not have to do a 
2218                          * clip check.
2219                          */
2220                         entry = entry->next;
2221                 }
2222
2223                 /*
2224                  * If we failed fall through to the unwiring section to
2225                  * unwire what we had wired so far.  'end' has already
2226                  * been adjusted.
2227                  */
2228                 if (rv)
2229                         new_pageable = 1;
2230
2231                 /*
2232                  * start_entry might have been clipped if we unlocked the
2233                  * map and blocked.  No matter how clipped it has gotten
2234                  * there should be a fragment that is on our start boundary.
2235                  */
2236                 CLIP_CHECK_BACK(start_entry, start);
2237         }
2238
2239         /*
2240          * Deal with the unwiring case.
2241          */
2242         if (new_pageable) {
2243                 /*
2244                  * This is the unwiring case.  We must first ensure that the
2245                  * range to be unwired is really wired down.  We know there
2246                  * are no holes.
2247                  */
2248                 entry = start_entry;
2249                 while ((entry != &map->header) && (entry->start < end)) {
2250                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2251                                 rv = KERN_INVALID_ARGUMENT;
2252                                 goto done;
2253                         }
2254                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2255                         entry = entry->next;
2256                 }
2257
2258                 /*
2259                  * Now decrement the wiring count for each region. If a region
2260                  * becomes completely unwired, unwire its physical pages and
2261                  * mappings.
2262                  */
2263                 /*
2264                  * The map entries are processed in a loop, checking to
2265                  * make sure the entry is wired and asserting it has a wired
2266                  * count. However, another loop was inserted more-or-less in
2267                  * the middle of the unwiring path. This loop picks up the
2268                  * "entry" loop variable from the first loop without first
2269                  * setting it to start_entry. Naturally, the secound loop
2270                  * is never entered and the pages backing the entries are
2271                  * never unwired. This can lead to a leak of wired pages.
2272                  */
2273                 entry = start_entry;
2274                 while ((entry != &map->header) && (entry->start < end)) {
2275                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2276                                 ("expected USER_WIRED on entry %p", entry));
2277                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2278                         entry->wired_count--;
2279                         if (entry->wired_count == 0)
2280                                 vm_fault_unwire(map, entry);
2281                         entry = entry->next;
2282                 }
2283         }
2284 done:
2285         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2286                 MAP_CLIP_NO_HOLES);
2287         map->timestamp++;
2288         vm_map_unlock(map);
2289         vm_map_entry_release(count);
2290         return (rv);
2291 }
2292
2293 /*
2294  * Sets the pageability of the specified address range in the target map.
2295  * Regions specified as not pageable require locked-down physical
2296  * memory and physical page maps.
2297  *
2298  * The map must not be locked, but a reference must remain to the map
2299  * throughout the call.
2300  *
2301  * This function may be called via the zalloc path and must properly
2302  * reserve map entries for kernel_map.
2303  *
2304  * No requirements.
2305  */
2306 int
2307 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2308 {
2309         vm_map_entry_t entry;
2310         vm_map_entry_t start_entry;
2311         vm_offset_t end;
2312         int rv = KERN_SUCCESS;
2313         int count;
2314
2315         if (kmflags & KM_KRESERVE)
2316                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2317         else
2318                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2319         vm_map_lock(map);
2320         VM_MAP_RANGE_CHECK(map, start, real_end);
2321         end = real_end;
2322
2323         start_entry = vm_map_clip_range(map, start, end, &count,
2324                                         MAP_CLIP_NO_HOLES);
2325         if (start_entry == NULL) {
2326                 vm_map_unlock(map);
2327                 rv = KERN_INVALID_ADDRESS;
2328                 goto failure;
2329         }
2330         if ((kmflags & KM_PAGEABLE) == 0) {
2331                 /*
2332                  * Wiring.  
2333                  *
2334                  * 1.  Holding the write lock, we create any shadow or zero-fill
2335                  * objects that need to be created. Then we clip each map
2336                  * entry to the region to be wired and increment its wiring
2337                  * count.  We create objects before clipping the map entries
2338                  * to avoid object proliferation.
2339                  *
2340                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2341                  * fault in the pages for any newly wired area (wired_count is
2342                  * 1).
2343                  *
2344                  * Downgrading to a read lock for vm_fault_wire avoids a 
2345                  * possible deadlock with another process that may have faulted
2346                  * on one of the pages to be wired (it would mark the page busy,
2347                  * blocking us, then in turn block on the map lock that we
2348                  * hold).  Because of problems in the recursive lock package,
2349                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2350                  * any actions that require the write lock must be done
2351                  * beforehand.  Because we keep the read lock on the map, the
2352                  * copy-on-write status of the entries we modify here cannot
2353                  * change.
2354                  */
2355                 entry = start_entry;
2356                 while ((entry != &map->header) && (entry->start < end)) {
2357                         /*
2358                          * Trivial case if the entry is already wired
2359                          */
2360                         if (entry->wired_count) {
2361                                 entry->wired_count++;
2362                                 entry = entry->next;
2363                                 continue;
2364                         }
2365
2366                         /*
2367                          * The entry is being newly wired, we have to setup
2368                          * appropriate management structures.  A shadow 
2369                          * object is required for a copy-on-write region,
2370                          * or a normal object for a zero-fill region.  We
2371                          * do not have to do this for entries that point to sub
2372                          * maps because we won't hold the lock on the sub map.
2373                          */
2374                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2375                                 int copyflag = entry->eflags &
2376                                                MAP_ENTRY_NEEDS_COPY;
2377                                 if (copyflag && ((entry->protection &
2378                                                   VM_PROT_WRITE) != 0)) {
2379                                         vm_map_entry_shadow(entry, 0);
2380                                 } else if (entry->object.vm_object == NULL &&
2381                                            !map->system_map) {
2382                                         vm_map_entry_allocate_object(entry);
2383                                 }
2384                         }
2385
2386                         entry->wired_count++;
2387                         entry = entry->next;
2388                 }
2389
2390                 /*
2391                  * Pass 2.
2392                  */
2393
2394                 /*
2395                  * HACK HACK HACK HACK
2396                  *
2397                  * vm_fault_wire() temporarily unlocks the map to avoid
2398                  * deadlocks.  The in-transition flag from vm_map_clip_range
2399                  * call should protect us from changes while the map is
2400                  * unlocked.  T
2401                  *
2402                  * NOTE: Previously this comment stated that clipping might
2403                  *       still occur while the entry is unlocked, but from
2404                  *       what I can tell it actually cannot.
2405                  *
2406                  *       It is unclear whether the CLIP_CHECK_*() calls
2407                  *       are still needed but we keep them in anyway.
2408                  *
2409                  * HACK HACK HACK HACK
2410                  */
2411
2412                 entry = start_entry;
2413                 while (entry != &map->header && entry->start < end) {
2414                         /*
2415                          * If vm_fault_wire fails for any page we need to undo
2416                          * what has been done.  We decrement the wiring count
2417                          * for those pages which have not yet been wired (now)
2418                          * and unwire those that have (later).
2419                          */
2420                         vm_offset_t save_start = entry->start;
2421                         vm_offset_t save_end = entry->end;
2422
2423                         if (entry->wired_count == 1)
2424                                 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2425                         if (rv) {
2426                                 CLIP_CHECK_BACK(entry, save_start);
2427                                 for (;;) {
2428                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2429                                         entry->wired_count = 0;
2430                                         if (entry->end == save_end)
2431                                                 break;
2432                                         entry = entry->next;
2433                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2434                                 }
2435                                 end = save_start;
2436                                 break;
2437                         }
2438                         CLIP_CHECK_FWD(entry, save_end);
2439                         entry = entry->next;
2440                 }
2441
2442                 /*
2443                  * If a failure occured undo everything by falling through
2444                  * to the unwiring code.  'end' has already been adjusted
2445                  * appropriately.
2446                  */
2447                 if (rv)
2448                         kmflags |= KM_PAGEABLE;
2449
2450                 /*
2451                  * start_entry is still IN_TRANSITION but may have been 
2452                  * clipped since vm_fault_wire() unlocks and relocks the
2453                  * map.  No matter how clipped it has gotten there should
2454                  * be a fragment that is on our start boundary.
2455                  */
2456                 CLIP_CHECK_BACK(start_entry, start);
2457         }
2458
2459         if (kmflags & KM_PAGEABLE) {
2460                 /*
2461                  * This is the unwiring case.  We must first ensure that the
2462                  * range to be unwired is really wired down.  We know there
2463                  * are no holes.
2464                  */
2465                 entry = start_entry;
2466                 while ((entry != &map->header) && (entry->start < end)) {
2467                         if (entry->wired_count == 0) {
2468                                 rv = KERN_INVALID_ARGUMENT;
2469                                 goto done;
2470                         }
2471                         entry = entry->next;
2472                 }
2473
2474                 /*
2475                  * Now decrement the wiring count for each region. If a region
2476                  * becomes completely unwired, unwire its physical pages and
2477                  * mappings.
2478                  */
2479                 entry = start_entry;
2480                 while ((entry != &map->header) && (entry->start < end)) {
2481                         entry->wired_count--;
2482                         if (entry->wired_count == 0)
2483                                 vm_fault_unwire(map, entry);
2484                         entry = entry->next;
2485                 }
2486         }
2487 done:
2488         vm_map_unclip_range(map, start_entry, start, real_end,
2489                             &count, MAP_CLIP_NO_HOLES);
2490         map->timestamp++;
2491         vm_map_unlock(map);
2492 failure:
2493         if (kmflags & KM_KRESERVE)
2494                 vm_map_entry_krelease(count);
2495         else
2496                 vm_map_entry_release(count);
2497         return (rv);
2498 }
2499
2500 /*
2501  * Mark a newly allocated address range as wired but do not fault in
2502  * the pages.  The caller is expected to load the pages into the object.
2503  *
2504  * The map must be locked on entry and will remain locked on return.
2505  * No other requirements.
2506  */
2507 void
2508 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2509                        int *countp)
2510 {
2511         vm_map_entry_t scan;
2512         vm_map_entry_t entry;
2513
2514         entry = vm_map_clip_range(map, addr, addr + size,
2515                                   countp, MAP_CLIP_NO_HOLES);
2516         for (scan = entry;
2517              scan != &map->header && scan->start < addr + size;
2518              scan = scan->next) {
2519             KKASSERT(scan->wired_count == 0);
2520             scan->wired_count = 1;
2521         }
2522         vm_map_unclip_range(map, entry, addr, addr + size,
2523                             countp, MAP_CLIP_NO_HOLES);
2524 }
2525
2526 /*
2527  * Push any dirty cached pages in the address range to their pager.
2528  * If syncio is TRUE, dirty pages are written synchronously.
2529  * If invalidate is TRUE, any cached pages are freed as well.
2530  *
2531  * This routine is called by sys_msync()
2532  *
2533  * Returns an error if any part of the specified range is not mapped.
2534  *
2535  * No requirements.
2536  */
2537 int
2538 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2539              boolean_t syncio, boolean_t invalidate)
2540 {
2541         vm_map_entry_t current;
2542         vm_map_entry_t entry;
2543         vm_size_t size;
2544         vm_object_t object;
2545         vm_object_t tobj;
2546         vm_ooffset_t offset;
2547
2548         vm_map_lock_read(map);
2549         VM_MAP_RANGE_CHECK(map, start, end);
2550         if (!vm_map_lookup_entry(map, start, &entry)) {
2551                 vm_map_unlock_read(map);
2552                 return (KERN_INVALID_ADDRESS);
2553         }
2554         lwkt_gettoken(&map->token);
2555
2556         /*
2557          * Make a first pass to check for holes.
2558          */
2559         for (current = entry; current->start < end; current = current->next) {
2560                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2561                         lwkt_reltoken(&map->token);
2562                         vm_map_unlock_read(map);
2563                         return (KERN_INVALID_ARGUMENT);
2564                 }
2565                 if (end > current->end &&
2566                     (current->next == &map->header ||
2567                         current->end != current->next->start)) {
2568                         lwkt_reltoken(&map->token);
2569                         vm_map_unlock_read(map);
2570                         return (KERN_INVALID_ADDRESS);
2571                 }
2572         }
2573
2574         if (invalidate)
2575                 pmap_remove(vm_map_pmap(map), start, end);
2576
2577         /*
2578          * Make a second pass, cleaning/uncaching pages from the indicated
2579          * objects as we go.
2580          */
2581         for (current = entry; current->start < end; current = current->next) {
2582                 offset = current->offset + (start - current->start);
2583                 size = (end <= current->end ? end : current->end) - start;
2584                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2585                         vm_map_t smap;
2586                         vm_map_entry_t tentry;
2587                         vm_size_t tsize;
2588
2589                         smap = current->object.sub_map;
2590                         vm_map_lock_read(smap);
2591                         vm_map_lookup_entry(smap, offset, &tentry);
2592                         tsize = tentry->end - offset;
2593                         if (tsize < size)
2594                                 size = tsize;
2595                         object = tentry->object.vm_object;
2596                         offset = tentry->offset + (offset - tentry->start);
2597                         vm_map_unlock_read(smap);
2598                 } else {
2599                         object = current->object.vm_object;
2600                 }
2601
2602                 if (object)
2603                         vm_object_hold(object);
2604
2605                 /*
2606                  * Note that there is absolutely no sense in writing out
2607                  * anonymous objects, so we track down the vnode object
2608                  * to write out.
2609                  * We invalidate (remove) all pages from the address space
2610                  * anyway, for semantic correctness.
2611                  *
2612                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2613                  * may start out with a NULL object.
2614                  */
2615                 while (object && (tobj = object->backing_object) != NULL) {
2616                         vm_object_hold(tobj);
2617                         if (tobj == object->backing_object) {
2618                                 vm_object_lock_swap();
2619                                 offset += object->backing_object_offset;
2620                                 vm_object_drop(object);
2621                                 object = tobj;
2622                                 if (object->size < OFF_TO_IDX(offset + size))
2623                                         size = IDX_TO_OFF(object->size) -
2624                                                offset;
2625                                 break;
2626                         }
2627                         vm_object_drop(tobj);
2628                 }
2629                 if (object && (object->type == OBJT_VNODE) && 
2630                     (current->protection & VM_PROT_WRITE) &&
2631                     (object->flags & OBJ_NOMSYNC) == 0) {
2632                         /*
2633                          * Flush pages if writing is allowed, invalidate them
2634                          * if invalidation requested.  Pages undergoing I/O
2635                          * will be ignored by vm_object_page_remove().
2636                          *
2637                          * We cannot lock the vnode and then wait for paging
2638                          * to complete without deadlocking against vm_fault.
2639                          * Instead we simply call vm_object_page_remove() and
2640                          * allow it to block internally on a page-by-page 
2641                          * basis when it encounters pages undergoing async 
2642                          * I/O.
2643                          */
2644                         int flags;
2645
2646                         /* no chain wait needed for vnode objects */
2647                         vm_object_reference_locked(object);
2648                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2649                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2650                         flags |= invalidate ? OBJPC_INVAL : 0;
2651
2652                         /*
2653                          * When operating on a virtual page table just
2654                          * flush the whole object.  XXX we probably ought
2655                          * to 
2656                          */
2657                         switch(current->maptype) {
2658                         case VM_MAPTYPE_NORMAL:
2659                                 vm_object_page_clean(object,
2660                                     OFF_TO_IDX(offset),
2661                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2662                                     flags);
2663                                 break;
2664                         case VM_MAPTYPE_VPAGETABLE:
2665                                 vm_object_page_clean(object, 0, 0, flags);
2666                                 break;
2667                         }
2668                         vn_unlock(((struct vnode *)object->handle));
2669                         vm_object_deallocate_locked(object);
2670                 }
2671                 if (object && invalidate &&
2672                    ((object->type == OBJT_VNODE) ||
2673                     (object->type == OBJT_DEVICE) ||
2674                     (object->type == OBJT_MGTDEVICE))) {
2675                         int clean_only = 
2676                                 ((object->type == OBJT_DEVICE) ||
2677                                 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2678                         /* no chain wait needed for vnode/device objects */
2679                         vm_object_reference_locked(object);
2680                         switch(current->maptype) {
2681                         case VM_MAPTYPE_NORMAL:
2682                                 vm_object_page_remove(object,
2683                                     OFF_TO_IDX(offset),
2684                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2685                                     clean_only);
2686                                 break;
2687                         case VM_MAPTYPE_VPAGETABLE:
2688                                 vm_object_page_remove(object, 0, 0, clean_only);
2689                                 break;
2690                         }
2691                         vm_object_deallocate_locked(object);
2692                 }
2693                 start += size;
2694                 if (object)
2695                         vm_object_drop(object);
2696         }
2697
2698         lwkt_reltoken(&map->token);
2699         vm_map_unlock_read(map);
2700
2701         return (KERN_SUCCESS);
2702 }
2703
2704 /*
2705  * Make the region specified by this entry pageable.
2706  *
2707  * The vm_map must be exclusively locked.
2708  */
2709 static void 
2710 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2711 {
2712         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2713         entry->wired_count = 0;
2714         vm_fault_unwire(map, entry);
2715 }
2716
2717 /*
2718  * Deallocate the given entry from the target map.
2719  *
2720  * The vm_map must be exclusively locked.
2721  */
2722 static void
2723 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2724 {
2725         vm_map_entry_unlink(map, entry);
2726         map->size -= entry->end - entry->start;
2727
2728         switch(entry->maptype) {
2729         case VM_MAPTYPE_NORMAL:
2730         case VM_MAPTYPE_VPAGETABLE:
2731                 vm_object_deallocate(entry->object.vm_object);
2732                 break;
2733         default:
2734                 break;
2735         }
2736
2737         vm_map_entry_dispose(map, entry, countp);
2738 }
2739
2740 /*
2741  * Deallocates the given address range from the target map.
2742  *
2743  * The vm_map must be exclusively locked.
2744  */
2745 int
2746 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2747 {
2748         vm_object_t object;
2749         vm_map_entry_t entry;
2750         vm_map_entry_t first_entry;
2751
2752         ASSERT_VM_MAP_LOCKED(map);
2753         lwkt_gettoken(&map->token);
2754 again:
2755         /*
2756          * Find the start of the region, and clip it.  Set entry to point
2757          * at the first record containing the requested address or, if no
2758          * such record exists, the next record with a greater address.  The
2759          * loop will run from this point until a record beyond the termination
2760          * address is encountered.
2761          *
2762          * map->hint must be adjusted to not point to anything we delete,
2763          * so set it to the entry prior to the one being deleted.
2764          *
2765          * GGG see other GGG comment.
2766          */
2767         if (vm_map_lookup_entry(map, start, &first_entry)) {
2768                 entry = first_entry;
2769                 vm_map_clip_start(map, entry, start, countp);
2770                 map->hint = entry->prev;        /* possible problem XXX */
2771         } else {
2772                 map->hint = first_entry;        /* possible problem XXX */
2773                 entry = first_entry->next;
2774         }
2775
2776         /*
2777          * If a hole opens up prior to the current first_free then
2778          * adjust first_free.  As with map->hint, map->first_free
2779          * cannot be left set to anything we might delete.
2780          */
2781         if (entry == &map->header) {
2782                 map->first_free = &map->header;
2783         } else if (map->first_free->start >= start) {
2784                 map->first_free = entry->prev;
2785         }
2786
2787         /*
2788          * Step through all entries in this region
2789          */
2790         while ((entry != &map->header) && (entry->start < end)) {
2791                 vm_map_entry_t next;
2792                 vm_offset_t s, e;
2793                 vm_pindex_t offidxstart, offidxend, count;
2794
2795                 /*
2796                  * If we hit an in-transition entry we have to sleep and
2797                  * retry.  It's easier (and not really slower) to just retry
2798                  * since this case occurs so rarely and the hint is already
2799                  * pointing at the right place.  We have to reset the
2800                  * start offset so as not to accidently delete an entry
2801                  * another process just created in vacated space.
2802                  */
2803                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2804                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2805                         start = entry->start;
2806                         ++mycpu->gd_cnt.v_intrans_coll;
2807                         ++mycpu->gd_cnt.v_intrans_wait;
2808                         vm_map_transition_wait(map);
2809                         goto again;
2810                 }
2811                 vm_map_clip_end(map, entry, end, countp);
2812
2813                 s = entry->start;
2814                 e = entry->end;
2815                 next = entry->next;
2816
2817                 offidxstart = OFF_TO_IDX(entry->offset);
2818                 count = OFF_TO_IDX(e - s);
2819                 object = entry->object.vm_object;
2820
2821                 /*
2822                  * Unwire before removing addresses from the pmap; otherwise,
2823                  * unwiring will put the entries back in the pmap.
2824                  */
2825                 if (entry->wired_count != 0)
2826                         vm_map_entry_unwire(map, entry);
2827
2828                 offidxend = offidxstart + count;
2829
2830                 if (object == &kernel_object) {
2831                         vm_object_hold(object);
2832                         vm_object_page_remove(object, offidxstart,
2833                                               offidxend, FALSE);
2834                         vm_object_drop(object);
2835                 } else if (object && object->type != OBJT_DEFAULT &&
2836                            object->type != OBJT_SWAP) {
2837                         /*
2838                          * vnode object routines cannot be chain-locked,
2839                          * but since we aren't removing pages from the
2840                          * object here we can use a shared hold.
2841                          */
2842                         vm_object_hold_shared(object);
2843                         pmap_remove(map->pmap, s, e);
2844                         vm_object_drop(object);
2845                 } else if (object) {
2846                         vm_object_hold(object);
2847                         vm_object_chain_acquire(object, 0);
2848                         pmap_remove(map->pmap, s, e);
2849
2850                         if (object != NULL &&
2851                             object->ref_count != 1 &&
2852                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2853                              OBJ_ONEMAPPING &&
2854                             (object->type == OBJT_DEFAULT ||
2855                              object->type == OBJT_SWAP)) {
2856                                 vm_object_collapse(object, NULL);
2857                                 vm_object_page_remove(object, offidxstart,
2858                                                       offidxend, FALSE);
2859                                 if (object->type == OBJT_SWAP) {
2860                                         swap_pager_freespace(object,
2861                                                              offidxstart,
2862                                                              count);
2863                                 }
2864                                 if (offidxend >= object->size &&
2865                                     offidxstart < object->size) {
2866                                         object->size = offidxstart;
2867                                 }
2868                         }
2869                         vm_object_chain_release(object);
2870                         vm_object_drop(object);
2871                 }
2872
2873                 /*
2874                  * Delete the entry (which may delete the object) only after
2875                  * removing all pmap entries pointing to its pages.
2876                  * (Otherwise, its page frames may be reallocated, and any
2877                  * modify bits will be set in the wrong object!)
2878                  */
2879                 vm_map_entry_delete(map, entry, countp);
2880                 entry = next;
2881         }
2882         lwkt_reltoken(&map->token);
2883         return (KERN_SUCCESS);
2884 }
2885
2886 /*
2887  * Remove the given address range from the target map.
2888  * This is the exported form of vm_map_delete.
2889  *
2890  * No requirements.
2891  */
2892 int
2893 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2894 {
2895         int result;
2896         int count;
2897
2898         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2899         vm_map_lock(map);
2900         VM_MAP_RANGE_CHECK(map, start, end);
2901         result = vm_map_delete(map, start, end, &count);
2902         vm_map_unlock(map);
2903         vm_map_entry_release(count);
2904
2905         return (result);
2906 }
2907
2908 /*
2909  * Assert that the target map allows the specified privilege on the
2910  * entire address region given.  The entire region must be allocated.
2911  *
2912  * The caller must specify whether the vm_map is already locked or not.
2913  */
2914 boolean_t
2915 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2916                         vm_prot_t protection, boolean_t have_lock)
2917 {
2918         vm_map_entry_t entry;
2919         vm_map_entry_t tmp_entry;
2920         boolean_t result;
2921
2922         if (have_lock == FALSE)
2923                 vm_map_lock_read(map);
2924
2925         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2926                 if (have_lock == FALSE)
2927                         vm_map_unlock_read(map);
2928                 return (FALSE);
2929         }
2930         entry = tmp_entry;
2931
2932         result = TRUE;
2933         while (start < end) {
2934                 if (entry == &map->header) {
2935                         result = FALSE;
2936                         break;
2937                 }
2938                 /*
2939                  * No holes allowed!
2940                  */
2941
2942                 if (start < entry->start) {
2943                         result = FALSE;
2944                         break;
2945                 }
2946                 /*
2947                  * Check protection associated with entry.
2948                  */
2949
2950                 if ((entry->protection & protection) != protection) {
2951                         result = FALSE;
2952                         break;
2953                 }
2954                 /* go to next entry */
2955
2956                 start = entry->end;
2957                 entry = entry->next;
2958         }
2959         if (have_lock == FALSE)
2960                 vm_map_unlock_read(map);
2961         return (result);
2962 }
2963
2964 /*
2965  * If appropriate this function shadows the original object with a new object
2966  * and moves the VM pages from the original object to the new object.
2967  * The original object will also be collapsed, if possible.
2968  *
2969  * We can only do this for normal memory objects with a single mapping, and
2970  * it only makes sense to do it if there are 2 or more refs on the original
2971  * object.  i.e. typically a memory object that has been extended into
2972  * multiple vm_map_entry's with non-overlapping ranges.
2973  *
2974  * This makes it easier to remove unused pages and keeps object inheritance
2975  * from being a negative impact on memory usage.
2976  *
2977  * On return the (possibly new) entry->object.vm_object will have an
2978  * additional ref on it for the caller to dispose of (usually by cloning
2979  * the vm_map_entry).  The additional ref had to be done in this routine
2980  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
2981  * cleared.
2982  *
2983  * The vm_map must be locked and its token held.
2984  */
2985 static void
2986 vm_map_split(vm_map_entry_t entry)
2987 {
2988         /* OPTIMIZED */
2989         vm_object_t oobject, nobject, bobject;
2990         vm_offset_t s, e;
2991         vm_page_t m;
2992         vm_pindex_t offidxstart, offidxend, idx;
2993         vm_size_t size;
2994         vm_ooffset_t offset;
2995         int useshadowlist;
2996
2997         /*
2998          * Optimize away object locks for vnode objects.  Important exit/exec
2999          * critical path.
3000          *
3001          * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3002          * anyway.
3003          */
3004         oobject = entry->object.vm_object;
3005         if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3006                 vm_object_reference_quick(oobject);
3007                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3008                 return;
3009         }
3010
3011         /*
3012          * Setup.  Chain lock the original object throughout the entire
3013          * routine to prevent new page faults from occuring.
3014          *
3015          * XXX can madvise WILLNEED interfere with us too?
3016          */
3017         vm_object_hold(oobject);
3018         vm_object_chain_acquire(oobject, 0);
3019
3020         /*
3021          * Original object cannot be split?  Might have also changed state.
3022          */
3023         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3024                                         oobject->type != OBJT_SWAP)) {
3025                 vm_object_chain_release(oobject);
3026                 vm_object_reference_locked(oobject);
3027                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3028                 vm_object_drop(oobject);
3029                 return;
3030         }
3031
3032         /*
3033          * Collapse original object with its backing store as an
3034          * optimization to reduce chain lengths when possible.
3035          *
3036          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3037          * for oobject, so there's no point collapsing it.
3038          *
3039          * Then re-check whether the object can be split.
3040          */
3041         vm_object_collapse(oobject, NULL);
3042
3043         if (oobject->ref_count <= 1 ||
3044             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3045             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3046                 vm_object_chain_release(oobject);
3047                 vm_object_reference_locked(oobject);
3048                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3049                 vm_object_drop(oobject);
3050                 return;
3051         }
3052
3053         /*
3054          * Acquire the chain lock on the backing object.
3055          *
3056          * Give bobject an additional ref count for when it will be shadowed
3057          * by nobject.
3058          */
3059         useshadowlist = 0;
3060         if ((bobject = oobject->backing_object) != NULL) {
3061                 if (bobject->type != OBJT_VNODE) {
3062                         useshadowlist = 1;
3063                         vm_object_hold(bobject);
3064                         vm_object_chain_wait(bobject, 0);
3065                         vm_object_reference_locked(bobject);
3066                         vm_object_chain_acquire(bobject, 0);
3067                         KKASSERT(bobject->backing_object == bobject);
3068                         KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3069                 } else {
3070                         vm_object_reference_quick(bobject);
3071                 }
3072         }
3073
3074         /*
3075          * Calculate the object page range and allocate the new object.
3076          */
3077         offset = entry->offset;
3078         s = entry->start;
3079         e = entry->end;
3080
3081         offidxstart = OFF_TO_IDX(offset);
3082         offidxend = offidxstart + OFF_TO_IDX(e - s);
3083         size = offidxend - offidxstart;
3084
3085         switch(oobject->type) {
3086         case OBJT_DEFAULT:
3087                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3088                                               VM_PROT_ALL, 0);
3089                 break;
3090         case OBJT_SWAP:
3091                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3092                                            VM_PROT_ALL, 0);
3093                 break;
3094         default:
3095                 /* not reached */
3096                 nobject = NULL;
3097                 KKASSERT(0);
3098         }
3099
3100         if (nobject == NULL) {
3101                 if (bobject) {
3102                         if (useshadowlist) {
3103                                 vm_object_chain_release(bobject);
3104                                 vm_object_deallocate(bobject);
3105                                 vm_object_drop(bobject);
3106                         } else {
3107                                 vm_object_deallocate(bobject);
3108                         }
3109                 }
3110                 vm_object_chain_release(oobject);
3111                 vm_object_reference_locked(oobject);
3112                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3113                 vm_object_drop(oobject);
3114                 return;
3115         }
3116
3117         /*
3118          * The new object will replace entry->object.vm_object so it needs
3119          * a second reference (the caller expects an additional ref).
3120          */
3121         vm_object_hold(nobject);
3122         vm_object_reference_locked(nobject);
3123         vm_object_chain_acquire(nobject, 0);
3124
3125         /*
3126          * nobject shadows bobject (oobject already shadows bobject).
3127          */
3128         if (bobject) {
3129                 nobject->backing_object_offset =
3130                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3131                 nobject->backing_object = bobject;
3132                 if (useshadowlist) {
3133                         bobject->shadow_count++;
3134                         bobject->generation++;
3135                         LIST_INSERT_HEAD(&bobject->shadow_head,
3136                                          nobject, shadow_list);
3137                         vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3138                         vm_object_chain_release(bobject);
3139                         vm_object_drop(bobject);
3140                         vm_object_set_flag(nobject, OBJ_ONSHADOW);
3141                 }
3142         }
3143
3144         /*
3145          * Move the VM pages from oobject to nobject
3146          */
3147         for (idx = 0; idx < size; idx++) {
3148                 vm_page_t m;
3149
3150                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3151                                              TRUE, "vmpg");
3152                 if (m == NULL)
3153                         continue;
3154
3155                 /*
3156                  * We must wait for pending I/O to complete before we can
3157                  * rename the page.
3158                  *
3159                  * We do not have to VM_PROT_NONE the page as mappings should
3160                  * not be changed by this operation.
3161                  *
3162                  * NOTE: The act of renaming a page updates chaingen for both
3163                  *       objects.
3164                  */
3165                 vm_page_rename(m, nobject, idx);
3166                 /* page automatically made dirty by rename and cache handled */
3167                 /* page remains busy */
3168         }
3169
3170         if (oobject->type == OBJT_SWAP) {
3171                 vm_object_pip_add(oobject, 1);
3172                 /*
3173                  * copy oobject pages into nobject and destroy unneeded
3174                  * pages in shadow object.
3175                  */
3176                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3177                 vm_object_pip_wakeup(oobject);
3178         }
3179
3180         /*
3181          * Wakeup the pages we played with.  No spl protection is needed
3182          * for a simple wakeup.
3183          */
3184         for (idx = 0; idx < size; idx++) {
3185                 m = vm_page_lookup(nobject, idx);
3186                 if (m) {
3187                         KKASSERT(m->flags & PG_BUSY);
3188                         vm_page_wakeup(m);
3189                 }
3190         }
3191         entry->object.vm_object = nobject;
3192         entry->offset = 0LL;
3193
3194         /*
3195          * Cleanup
3196          *
3197          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3198          *       related pages were moved and are no longer applicable to the
3199          *       original object.
3200          *
3201          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3202          *       replaced by nobject).
3203          */
3204         vm_object_chain_release(nobject);
3205         vm_object_drop(nobject);
3206         if (bobject && useshadowlist) {
3207                 vm_object_chain_release(bobject);
3208                 vm_object_drop(bobject);
3209         }
3210         vm_object_chain_release(oobject);
3211         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3212         vm_object_deallocate_locked(oobject);
3213         vm_object_drop(oobject);
3214 }
3215
3216 /*
3217  * Copies the contents of the source entry to the destination
3218  * entry.  The entries *must* be aligned properly.
3219  *
3220  * The vm_maps must be exclusively locked.
3221  * The vm_map's token must be held.
3222  *
3223  * Because the maps are locked no faults can be in progress during the
3224  * operation.
3225  */
3226 static void
3227 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3228                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3229 {
3230         vm_object_t src_object;
3231
3232         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3233                 return;
3234         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3235                 return;
3236
3237         if (src_entry->wired_count == 0) {
3238                 /*
3239                  * If the source entry is marked needs_copy, it is already
3240                  * write-protected.
3241                  */
3242                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3243                         pmap_protect(src_map->pmap,
3244                             src_entry->start,
3245                             src_entry->end,
3246                             src_entry->protection & ~VM_PROT_WRITE);
3247                 }
3248
3249                 /*
3250                  * Make a copy of the object.
3251                  *
3252                  * The object must be locked prior to checking the object type
3253                  * and for the call to vm_object_collapse() and vm_map_split().
3254                  * We cannot use *_hold() here because the split code will
3255                  * probably try to destroy the object.  The lock is a pool
3256                  * token and doesn't care.
3257                  *
3258                  * We must bump src_map->timestamp when setting
3259                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3260                  * to retry, otherwise the concurrent fault might improperly
3261                  * install a RW pte when its supposed to be a RO(COW) pte.
3262                  * This race can occur because a vnode-backed fault may have
3263                  * to temporarily release the map lock.
3264                  */
3265                 if (src_entry->object.vm_object != NULL) {
3266                         vm_map_split(src_entry);
3267                         src_object = src_entry->object.vm_object;
3268                         dst_entry->object.vm_object = src_object;
3269                         src_entry->eflags |= (MAP_ENTRY_COW |
3270                                               MAP_ENTRY_NEEDS_COPY);
3271                         dst_entry->eflags |= (MAP_ENTRY_COW |
3272                                               MAP_ENTRY_NEEDS_COPY);
3273                         dst_entry->offset = src_entry->offset;
3274                         ++src_map->timestamp;
3275                 } else {
3276                         dst_entry->object.vm_object = NULL;
3277                         dst_entry->offset = 0;
3278                 }
3279
3280                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3281                     dst_entry->end - dst_entry->start, src_entry->start);
3282         } else {
3283                 /*
3284                  * Of course, wired down pages can't be set copy-on-write.
3285                  * Cause wired pages to be copied into the new map by
3286                  * simulating faults (the new pages are pageable)
3287                  */
3288                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3289         }
3290 }
3291
3292 /*
3293  * vmspace_fork:
3294  * Create a new process vmspace structure and vm_map
3295  * based on those of an existing process.  The new map
3296  * is based on the old map, according to the inheritance
3297  * values on the regions in that map.
3298  *
3299  * The source map must not be locked.
3300  * No requirements.
3301  */
3302 struct vmspace *
3303 vmspace_fork(struct vmspace *vm1)
3304 {
3305         struct vmspace *vm2;
3306         vm_map_t old_map = &vm1->vm_map;
3307         vm_map_t new_map;
3308         vm_map_entry_t old_entry;
3309         vm_map_entry_t new_entry;
3310         vm_object_t object;
3311         int count;
3312
3313         lwkt_gettoken(&vm1->vm_map.token);
3314         vm_map_lock(old_map);
3315
3316         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3317         lwkt_gettoken(&vm2->vm_map.token);
3318         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3319             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3320         new_map = &vm2->vm_map; /* XXX */
3321         new_map->timestamp = 1;
3322
3323         vm_map_lock(new_map);
3324
3325         count = 0;
3326         old_entry = old_map->header.next;
3327         while (old_entry != &old_map->header) {
3328                 ++count;
3329                 old_entry = old_entry->next;
3330         }
3331
3332         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3333
3334         old_entry = old_map->header.next;
3335         while (old_entry != &old_map->header) {
3336                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3337                         panic("vm_map_fork: encountered a submap");
3338
3339                 switch (old_entry->inheritance) {
3340                 case VM_INHERIT_NONE:
3341                         break;
3342                 case VM_INHERIT_SHARE:
3343                         /*
3344                          * Clone the entry, creating the shared object if
3345                          * necessary.
3346                          */
3347                         if (old_entry->object.vm_object == NULL)
3348                                 vm_map_entry_allocate_object(old_entry);
3349
3350                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3351                                 /*
3352                                  * Shadow a map_entry which needs a copy,
3353                                  * replacing its object with a new object
3354                                  * that points to the old one.  Ask the
3355                                  * shadow code to automatically add an
3356                                  * additional ref.  We can't do it afterwords
3357                                  * because we might race a collapse.  The call
3358                                  * to vm_map_entry_shadow() will also clear
3359                                  * OBJ_ONEMAPPING.
3360                                  */
3361                                 vm_map_entry_shadow(old_entry, 1);
3362                         } else if (old_entry->object.vm_object) {
3363                                 /*
3364                                  * We will make a shared copy of the object,
3365                                  * and must clear OBJ_ONEMAPPING.
3366                                  *
3367                                  * Optimize vnode objects.  OBJ_ONEMAPPING
3368                                  * is non-applicable but clear it anyway,
3369                                  * and its terminal so we don'th ave to deal
3370                                  * with chains.  Reduces SMP conflicts.
3371                                  *
3372                                  * XXX assert that object.vm_object != NULL
3373                                  *     since we allocate it above.
3374                                  */
3375                                 object = old_entry->object.vm_object;
3376                                 if (object->type == OBJT_VNODE) {
3377                                         vm_object_reference_quick(object);
3378                                         vm_object_clear_flag(object,
3379                                                              OBJ_ONEMAPPING);
3380                                 } else {
3381                                         vm_object_hold(object);
3382                                         vm_object_chain_wait(object, 0);
3383                                         vm_object_reference_locked(object);
3384                                         vm_object_clear_flag(object,
3385                                                              OBJ_ONEMAPPING);
3386                                         vm_object_drop(object);
3387                                 }
3388                         }
3389
3390                         /*
3391                          * Clone the entry.  We've already bumped the ref on
3392                          * any vm_object.
3393                          */
3394                         new_entry = vm_map_entry_create(new_map, &count);
3395                         *new_entry = *old_entry;
3396                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3397                         new_entry->wired_count = 0;
3398
3399                         /*
3400                          * Insert the entry into the new map -- we know we're
3401                          * inserting at the end of the new map.
3402                          */
3403
3404                         vm_map_entry_link(new_map, new_map->header.prev,
3405                                           new_entry);
3406
3407                         /*
3408                          * Update the physical map
3409                          */
3410                         pmap_copy(new_map->pmap, old_map->pmap,
3411                                   new_entry->start,
3412                                   (old_entry->end - old_entry->start),
3413                                   old_entry->start);
3414                         break;
3415                 case VM_INHERIT_COPY:
3416                         /*
3417                          * Clone the entry and link into the map.
3418                          */
3419                         new_entry = vm_map_entry_create(new_map, &count);
3420                         *new_entry = *old_entry;
3421                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3422                         new_entry->wired_count = 0;
3423                         new_entry->object.vm_object = NULL;
3424                         vm_map_entry_link(new_map, new_map->header.prev,
3425                                           new_entry);
3426                         vm_map_copy_entry(old_map, new_map, old_entry,
3427                                           new_entry);
3428                         break;
3429                 }
3430                 old_entry = old_entry->next;
3431         }
3432
3433         new_map->size = old_map->size;
3434         vm_map_unlock(old_map);
3435         vm_map_unlock(new_map);
3436         vm_map_entry_release(count);
3437
3438         lwkt_reltoken(&vm2->vm_map.token);
3439         lwkt_reltoken(&vm1->vm_map.token);
3440
3441         return (vm2);
3442 }
3443
3444 /*
3445  * Create an auto-grow stack entry
3446  *
3447  * No requirements.
3448  */
3449 int
3450 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3451               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3452 {
3453         vm_map_entry_t  prev_entry;
3454         vm_map_entry_t  new_stack_entry;
3455         vm_size_t       init_ssize;
3456         int             rv;
3457         int             count;
3458         vm_offset_t     tmpaddr;
3459
3460         cow |= MAP_IS_STACK;
3461
3462         if (max_ssize < sgrowsiz)
3463                 init_ssize = max_ssize;
3464         else
3465                 init_ssize = sgrowsiz;
3466
3467         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3468         vm_map_lock(map);
3469
3470         /*
3471          * Find space for the mapping
3472          */
3473         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3474                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3475                                      flags, &tmpaddr)) {
3476                         vm_map_unlock(map);
3477                         vm_map_entry_release(count);
3478                         return (KERN_NO_SPACE);
3479                 }
3480                 addrbos = tmpaddr;
3481         }
3482
3483         /* If addr is already mapped, no go */
3484         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3485                 vm_map_unlock(map);
3486                 vm_map_entry_release(count);
3487                 return (KERN_NO_SPACE);
3488         }
3489
3490 #if 0
3491         /* XXX already handled by kern_mmap() */
3492         /* If we would blow our VMEM resource limit, no go */
3493         if (map->size + init_ssize >
3494             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3495                 vm_map_unlock(map);
3496                 vm_map_entry_release(count);
3497                 return (KERN_NO_SPACE);
3498         }
3499 #endif
3500
3501         /*
3502          * If we can't accomodate max_ssize in the current mapping,
3503          * no go.  However, we need to be aware that subsequent user
3504          * mappings might map into the space we have reserved for
3505          * stack, and currently this space is not protected.  
3506          * 
3507          * Hopefully we will at least detect this condition 
3508          * when we try to grow the stack.
3509          */
3510         if ((prev_entry->next != &map->header) &&
3511             (prev_entry->next->start < addrbos + max_ssize)) {
3512                 vm_map_unlock(map);
3513                 vm_map_entry_release(count);
3514                 return (KERN_NO_SPACE);
3515         }
3516
3517         /*
3518          * We initially map a stack of only init_ssize.  We will
3519          * grow as needed later.  Since this is to be a grow 
3520          * down stack, we map at the top of the range.
3521          *
3522          * Note: we would normally expect prot and max to be
3523          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3524          * eliminate these as input parameters, and just
3525          * pass these values here in the insert call.
3526          */
3527         rv = vm_map_insert(map, &count,
3528                            NULL, 0, addrbos + max_ssize - init_ssize,
3529                            addrbos + max_ssize,
3530                            VM_MAPTYPE_NORMAL,
3531                            prot, max,
3532                            cow);
3533
3534         /* Now set the avail_ssize amount */
3535         if (rv == KERN_SUCCESS) {
3536                 if (prev_entry != &map->header)
3537                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3538                 new_stack_entry = prev_entry->next;
3539                 if (new_stack_entry->end   != addrbos + max_ssize ||
3540                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3541                         panic ("Bad entry start/end for new stack entry");
3542                 else 
3543                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3544         }
3545
3546         vm_map_unlock(map);
3547         vm_map_entry_release(count);
3548         return (rv);
3549 }
3550
3551 /*
3552  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3553  * desired address is already mapped, or if we successfully grow
3554  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3555  * stack range (this is strange, but preserves compatibility with
3556  * the grow function in vm_machdep.c).
3557  *
3558  * No requirements.
3559  */
3560 int
3561 vm_map_growstack (struct proc *p, vm_offset_t addr)
3562 {
3563         vm_map_entry_t prev_entry;
3564         vm_map_entry_t stack_entry;
3565         vm_map_entry_t new_stack_entry;
3566         struct vmspace *vm = p->p_vmspace;
3567         vm_map_t map = &vm->vm_map;
3568         vm_offset_t    end;
3569         int grow_amount;
3570         int rv = KERN_SUCCESS;
3571         int is_procstack;
3572         int use_read_lock = 1;
3573         int count;
3574
3575         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3576 Retry:
3577         if (use_read_lock)
3578                 vm_map_lock_read(map);
3579         else
3580                 vm_map_lock(map);
3581
3582         /* If addr is already in the entry range, no need to grow.*/
3583         if (vm_map_lookup_entry(map, addr, &prev_entry))
3584                 goto done;
3585
3586         if ((stack_entry = prev_entry->next) == &map->header)
3587                 goto done;
3588         if (prev_entry == &map->header) 
3589                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3590         else
3591                 end = prev_entry->end;
3592
3593         /*
3594          * This next test mimics the old grow function in vm_machdep.c.
3595          * It really doesn't quite make sense, but we do it anyway
3596          * for compatibility.
3597          *
3598          * If not growable stack, return success.  This signals the
3599          * caller to proceed as he would normally with normal vm.
3600          */
3601         if (stack_entry->aux.avail_ssize < 1 ||
3602             addr >= stack_entry->start ||
3603             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3604                 goto done;
3605         } 
3606         
3607         /* Find the minimum grow amount */
3608         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3609         if (grow_amount > stack_entry->aux.avail_ssize) {
3610                 rv = KERN_NO_SPACE;
3611                 goto done;
3612         }
3613
3614         /*
3615          * If there is no longer enough space between the entries
3616          * nogo, and adjust the available space.  Note: this 
3617          * should only happen if the user has mapped into the
3618          * stack area after the stack was created, and is
3619          * probably an error.
3620          *
3621          * This also effectively destroys any guard page the user
3622          * might have intended by limiting the stack size.
3623          */
3624         if (grow_amount > stack_entry->start - end) {
3625                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3626                         /* lost lock */
3627                         use_read_lock = 0;
3628                         goto Retry;
3629                 }
3630                 use_read_lock = 0;
3631                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3632                 rv = KERN_NO_SPACE;
3633                 goto done;
3634         }
3635
3636         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3637
3638         /* If this is the main process stack, see if we're over the 
3639          * stack limit.
3640          */
3641         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3642                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3643                 rv = KERN_NO_SPACE;
3644                 goto done;
3645         }
3646
3647         /* Round up the grow amount modulo SGROWSIZ */
3648         grow_amount = roundup (grow_amount, sgrowsiz);
3649         if (grow_amount > stack_entry->aux.avail_ssize) {
3650                 grow_amount = stack_entry->aux.avail_ssize;
3651         }
3652         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3653                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3654                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3655                               ctob(vm->vm_ssize);
3656         }
3657
3658         /* If we would blow our VMEM resource limit, no go */
3659         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3660                 rv = KERN_NO_SPACE;
3661                 goto done;
3662         }
3663
3664         if (use_read_lock && vm_map_lock_upgrade(map)) {
3665                 /* lost lock */
3666                 use_read_lock = 0;
3667                 goto Retry;
3668         }
3669         use_read_lock = 0;
3670
3671         /* Get the preliminary new entry start value */
3672         addr = stack_entry->start - grow_amount;
3673
3674         /* If this puts us into the previous entry, cut back our growth
3675          * to the available space.  Also, see the note above.
3676          */
3677         if (addr < end) {
3678                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3679                 addr = end;
3680         }
3681
3682         rv = vm_map_insert(map, &count,
3683                            NULL, 0, addr, stack_entry->start,
3684                            VM_MAPTYPE_NORMAL,
3685                            VM_PROT_ALL, VM_PROT_ALL,
3686                            0);
3687
3688         /* Adjust the available stack space by the amount we grew. */
3689         if (rv == KERN_SUCCESS) {
3690                 if (prev_entry != &map->header)
3691                         vm_map_clip_end(map, prev_entry, addr, &count);
3692                 new_stack_entry = prev_entry->next;
3693                 if (new_stack_entry->end   != stack_entry->start  ||
3694                     new_stack_entry->start != addr)
3695                         panic ("Bad stack grow start/end in new stack entry");
3696                 else {
3697                         new_stack_entry->aux.avail_ssize =
3698                                 stack_entry->aux.avail_ssize -
3699                                 (new_stack_entry->end - new_stack_entry->start);
3700                         if (is_procstack)
3701                                 vm->vm_ssize += btoc(new_stack_entry->end -
3702                                                      new_stack_entry->start);
3703                 }
3704
3705                 if (map->flags & MAP_WIREFUTURE)
3706                         vm_map_unwire(map, new_stack_entry->start,
3707                                       new_stack_entry->end, FALSE);
3708         }
3709
3710 done:
3711         if (use_read_lock)
3712                 vm_map_unlock_read(map);
3713         else
3714                 vm_map_unlock(map);
3715         vm_map_entry_release(count);
3716         return (rv);
3717 }
3718
3719 /*
3720  * Unshare the specified VM space for exec.  If other processes are
3721  * mapped to it, then create a new one.  The new vmspace is null.
3722  *
3723  * No requirements.
3724  */
3725 void
3726 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3727 {
3728         struct vmspace *oldvmspace = p->p_vmspace;
3729         struct vmspace *newvmspace;
3730         vm_map_t map = &p->p_vmspace->vm_map;
3731
3732         /*
3733          * If we are execing a resident vmspace we fork it, otherwise
3734          * we create a new vmspace.  Note that exitingcnt is not
3735          * copied to the new vmspace.
3736          */
3737         lwkt_gettoken(&oldvmspace->vm_map.token);
3738         if (vmcopy)  {
3739                 newvmspace = vmspace_fork(vmcopy);
3740                 lwkt_gettoken(&newvmspace->vm_map.token);
3741         } else {
3742                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3743                 lwkt_gettoken(&newvmspace->vm_map.token);
3744                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3745                       (caddr_t)&oldvmspace->vm_endcopy -
3746                        (caddr_t)&oldvmspace->vm_startcopy);
3747         }
3748
3749         /*
3750          * Finish initializing the vmspace before assigning it
3751          * to the process.  The vmspace will become the current vmspace
3752          * if p == curproc.
3753          */
3754         pmap_pinit2(vmspace_pmap(newvmspace));
3755         pmap_replacevm(p, newvmspace, 0);
3756         lwkt_reltoken(&newvmspace->vm_map.token);
3757         lwkt_reltoken(&oldvmspace->vm_map.token);
3758         vmspace_free(oldvmspace);
3759 }
3760
3761 /*
3762  * Unshare the specified VM space for forcing COW.  This
3763  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3764  */
3765 void
3766 vmspace_unshare(struct proc *p) 
3767 {
3768         struct vmspace *oldvmspace = p->p_vmspace;
3769         struct vmspace *newvmspace;
3770
3771         lwkt_gettoken(&oldvmspace->vm_map.token);
3772         if (oldvmspace->vm_sysref.refcnt == 1) {
3773                 lwkt_reltoken(&oldvmspace->vm_map.token);
3774                 return;
3775         }
3776         newvmspace = vmspace_fork(oldvmspace);
3777         lwkt_gettoken(&newvmspace->vm_map.token);
3778         pmap_pinit2(vmspace_pmap(newvmspace));
3779         pmap_replacevm(p, newvmspace, 0);
3780         lwkt_reltoken(&newvmspace->vm_map.token);
3781         lwkt_reltoken(&oldvmspace->vm_map.token);
3782         vmspace_free(oldvmspace);
3783 }
3784
3785 /*
3786  * vm_map_hint: return the beginning of the best area suitable for
3787  * creating a new mapping with "prot" protection.
3788  *
3789  * No requirements.
3790  */
3791 vm_offset_t
3792 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3793 {
3794         struct vmspace *vms = p->p_vmspace;
3795
3796         if (!randomize_mmap || addr != 0) {
3797                 /*
3798                  * Set a reasonable start point for the hint if it was
3799                  * not specified or if it falls within the heap space.
3800                  * Hinted mmap()s do not allocate out of the heap space.
3801                  */
3802                 if (addr == 0 ||
3803                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3804                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3805                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3806                 }
3807
3808                 return addr;
3809         }
3810
3811 #ifdef notyet
3812 #ifdef __i386__
3813         /*
3814          * If executable skip first two pages, otherwise start
3815          * after data + heap region.
3816          */
3817         if ((prot & VM_PROT_EXECUTE) &&
3818             ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3819                 addr = (PAGE_SIZE * 2) +
3820                     (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3821                 return (round_page(addr));
3822         }
3823 #endif /* __i386__ */
3824 #endif /* notyet */
3825
3826         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3827         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3828
3829         return (round_page(addr));
3830 }
3831
3832 /*
3833  * Finds the VM object, offset, and protection for a given virtual address
3834  * in the specified map, assuming a page fault of the type specified.
3835  *
3836  * Leaves the map in question locked for read; return values are guaranteed
3837  * until a vm_map_lookup_done call is performed.  Note that the map argument
3838  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3839  *
3840  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3841  * that fast.
3842  *
3843  * If a lookup is requested with "write protection" specified, the map may
3844  * be changed to perform virtual copying operations, although the data
3845  * referenced will remain the same.
3846  *
3847  * No requirements.
3848  */
3849 int
3850 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3851               vm_offset_t vaddr,
3852               vm_prot_t fault_typea,
3853               vm_map_entry_t *out_entry,        /* OUT */
3854               vm_object_t *object,              /* OUT */
3855               vm_pindex_t *pindex,              /* OUT */
3856               vm_prot_t *out_prot,              /* OUT */
3857               boolean_t *wired)                 /* OUT */
3858 {
3859         vm_map_entry_t entry;
3860         vm_map_t map = *var_map;
3861         vm_prot_t prot;
3862         vm_prot_t fault_type = fault_typea;
3863         int use_read_lock = 1;
3864         int rv = KERN_SUCCESS;
3865
3866 RetryLookup:
3867         if (use_read_lock)
3868                 vm_map_lock_read(map);
3869         else
3870                 vm_map_lock(map);
3871
3872         /*
3873          * If the map has an interesting hint, try it before calling full
3874          * blown lookup routine.
3875          */
3876         entry = map->hint;
3877         cpu_ccfence();
3878         *out_entry = entry;
3879         *object = NULL;
3880
3881         if ((entry == &map->header) ||
3882             (vaddr < entry->start) || (vaddr >= entry->end)) {
3883                 vm_map_entry_t tmp_entry;
3884
3885                 /*
3886                  * Entry was either not a valid hint, or the vaddr was not
3887                  * contained in the entry, so do a full lookup.
3888                  */
3889                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3890                         rv = KERN_INVALID_ADDRESS;
3891                         goto done;
3892                 }
3893
3894                 entry = tmp_entry;
3895                 *out_entry = entry;
3896         }
3897         
3898         /*
3899          * Handle submaps.
3900          */
3901         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3902                 vm_map_t old_map = map;
3903
3904                 *var_map = map = entry->object.sub_map;
3905                 if (use_read_lock)
3906                         vm_map_unlock_read(old_map);
3907                 else
3908                         vm_map_unlock(old_map);
3909                 use_read_lock = 1;
3910                 goto RetryLookup;
3911         }
3912
3913         /*
3914          * Check whether this task is allowed to have this page.
3915          * Note the special case for MAP_ENTRY_COW
3916          * pages with an override.  This is to implement a forced
3917          * COW for debuggers.
3918          */
3919
3920         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3921                 prot = entry->max_protection;
3922         else
3923                 prot = entry->protection;
3924
3925         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3926         if ((fault_type & prot) != fault_type) {
3927                 rv = KERN_PROTECTION_FAILURE;
3928                 goto done;
3929         }
3930
3931         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3932             (entry->eflags & MAP_ENTRY_COW) &&
3933             (fault_type & VM_PROT_WRITE) &&
3934             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3935                 rv = KERN_PROTECTION_FAILURE;
3936                 goto done;
3937         }
3938
3939         /*
3940          * If this page is not pageable, we have to get it for all possible
3941          * accesses.
3942          */
3943         *wired = (entry->wired_count != 0);
3944         if (*wired)
3945                 prot = fault_type = entry->protection;
3946
3947         /*
3948          * Virtual page tables may need to update the accessed (A) bit
3949          * in a page table entry.  Upgrade the fault to a write fault for
3950          * that case if the map will support it.  If the map does not support
3951          * it the page table entry simply will not be updated.
3952          */
3953         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3954                 if (prot & VM_PROT_WRITE)
3955                         fault_type |= VM_PROT_WRITE;
3956         }
3957
3958         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
3959             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
3960                 if ((prot & VM_PROT_WRITE) == 0)
3961                         fault_type |= VM_PROT_WRITE;
3962         }
3963
3964         /*
3965          * If the entry was copy-on-write, we either ...
3966          */
3967         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3968                 /*
3969                  * If we want to write the page, we may as well handle that
3970                  * now since we've got the map locked.
3971                  *
3972                  * If we don't need to write the page, we just demote the
3973                  * permissions allowed.
3974                  */
3975
3976                 if (fault_type & VM_PROT_WRITE) {
3977                         /*
3978                          * Make a new object, and place it in the object
3979                          * chain.  Note that no new references have appeared
3980                          * -- one just moved from the map to the new
3981                          * object.
3982                          */
3983
3984                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3985                                 /* lost lock */
3986                                 use_read_lock = 0;
3987                                 goto RetryLookup;
3988                         }
3989                         use_read_lock = 0;
3990
3991                         vm_map_entry_shadow(entry, 0);
3992                 } else {
3993                         /*
3994                          * We're attempting to read a copy-on-write page --
3995                          * don't allow writes.
3996                          */
3997
3998                         prot &= ~VM_PROT_WRITE;
3999                 }
4000         }
4001
4002         /*
4003          * Create an object if necessary.
4004          */
4005         if (entry->object.vm_object == NULL && !map->system_map) {
4006                 if (use_read_lock && vm_map_lock_upgrade(map))  {
4007                         /* lost lock */
4008                         use_read_lock = 0;
4009                         goto RetryLookup;
4010                 }
4011                 use_read_lock = 0;
4012                 vm_map_entry_allocate_object(entry);
4013         }
4014
4015         /*
4016          * Return the object/offset from this entry.  If the entry was
4017          * copy-on-write or empty, it has been fixed up.
4018          */
4019
4020         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4021         *object = entry->object.vm_object;
4022
4023         /*
4024          * Return whether this is the only map sharing this data.  On
4025          * success we return with a read lock held on the map.  On failure
4026          * we return with the map unlocked.
4027          */
4028         *out_prot = prot;
4029 done:
4030         if (rv == KERN_SUCCESS) {
4031                 if (use_read_lock == 0)
4032                         vm_map_lock_downgrade(map);
4033         } else if (use_read_lock) {
4034                 vm_map_unlock_read(map);
4035         } else {
4036                 vm_map_unlock(map);
4037         }
4038         return (rv);
4039 }
4040
4041 /*
4042  * Releases locks acquired by a vm_map_lookup()
4043  * (according to the handle returned by that lookup).
4044  *
4045  * No other requirements.
4046  */
4047 void
4048 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4049 {
4050         /*
4051          * Unlock the main-level map
4052          */
4053         vm_map_unlock_read(map);
4054         if (count)
4055                 vm_map_entry_release(count);
4056 }
4057
4058 #include "opt_ddb.h"
4059 #ifdef DDB
4060 #include <sys/kernel.h>
4061
4062 #include <ddb/ddb.h>
4063
4064 /*
4065  * Debugging only
4066  */
4067 DB_SHOW_COMMAND(map, vm_map_print)
4068 {
4069         static int nlines;
4070         /* XXX convert args. */
4071         vm_map_t map = (vm_map_t)addr;
4072         boolean_t full = have_addr;
4073
4074         vm_map_entry_t entry;
4075
4076         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4077             (void *)map,
4078             (void *)map->pmap, map->nentries, map->timestamp);
4079         nlines++;
4080
4081         if (!full && db_indent)
4082                 return;
4083
4084         db_indent += 2;
4085         for (entry = map->header.next; entry != &map->header;
4086             entry = entry->next) {
4087                 db_iprintf("map entry %p: start=%p, end=%p\n",
4088                     (void *)entry, (void *)entry->start, (void *)entry->end);
4089                 nlines++;
4090                 {
4091                         static char *inheritance_name[4] =
4092                         {"share", "copy", "none", "donate_copy"};
4093
4094                         db_iprintf(" prot=%x/%x/%s",
4095                             entry->protection,
4096                             entry->max_protection,
4097                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4098                         if (entry->wired_count != 0)
4099                                 db_printf(", wired");
4100                 }
4101                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4102                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4103                         db_printf(", share=%p, offset=0x%lx\n",
4104                             (void *)entry->object.sub_map,
4105                             (long)entry->offset);
4106                         nlines++;
4107                         if ((entry->prev == &map->header) ||
4108                             (entry->prev->object.sub_map !=
4109                                 entry->object.sub_map)) {
4110                                 db_indent += 2;
4111                                 vm_map_print((db_expr_t)(intptr_t)
4112                                              entry->object.sub_map,
4113                                              full, 0, NULL);
4114                                 db_indent -= 2;
4115                         }
4116                 } else {
4117                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4118                         db_printf(", object=%p, offset=0x%lx",
4119                             (void *)entry->object.vm_object,
4120                             (long)entry->offset);
4121                         if (entry->eflags & MAP_ENTRY_COW)
4122                                 db_printf(", copy (%s)",
4123                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4124                         db_printf("\n");
4125                         nlines++;
4126
4127                         if ((entry->prev == &map->header) ||
4128                             (entry->prev->object.vm_object !=
4129                                 entry->object.vm_object)) {
4130                                 db_indent += 2;
4131                                 vm_object_print((db_expr_t)(intptr_t)
4132                                                 entry->object.vm_object,
4133                                                 full, 0, NULL);
4134                                 nlines += 4;
4135                                 db_indent -= 2;
4136                         }
4137                 }
4138         }
4139         db_indent -= 2;
4140         if (db_indent == 0)
4141                 nlines = 0;
4142 }
4143
4144 /*
4145  * Debugging only
4146  */
4147 DB_SHOW_COMMAND(procvm, procvm)
4148 {
4149         struct proc *p;
4150
4151         if (have_addr) {
4152                 p = (struct proc *) addr;
4153         } else {
4154                 p = curproc;
4155         }
4156
4157         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4158             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4159             (void *)vmspace_pmap(p->p_vmspace));
4160
4161         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4162 }
4163
4164 #endif /* DDB */