Import OpenSSL-1.0.1l.
[dragonfly.git] / crypto / openssl / crypto / ec / ec_mult.c
1 /* crypto/ec/ec_mult.c */
2 /*
3  * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4  */
5 /* ====================================================================
6  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer. 
14  *
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  *
20  * 3. All advertising materials mentioning features or use of this
21  *    software must display the following acknowledgment:
22  *    "This product includes software developed by the OpenSSL Project
23  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24  *
25  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26  *    endorse or promote products derived from this software without
27  *    prior written permission. For written permission, please contact
28  *    openssl-core@openssl.org.
29  *
30  * 5. Products derived from this software may not be called "OpenSSL"
31  *    nor may "OpenSSL" appear in their names without prior written
32  *    permission of the OpenSSL Project.
33  *
34  * 6. Redistributions of any form whatsoever must retain the following
35  *    acknowledgment:
36  *    "This product includes software developed by the OpenSSL Project
37  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50  * OF THE POSSIBILITY OF SUCH DAMAGE.
51  * ====================================================================
52  *
53  * This product includes cryptographic software written by Eric Young
54  * (eay@cryptsoft.com).  This product includes software written by Tim
55  * Hudson (tjh@cryptsoft.com).
56  *
57  */
58 /* ====================================================================
59  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60  * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61  * and contributed to the OpenSSL project.
62  */
63
64 #include <string.h>
65
66 #include <openssl/err.h>
67
68 #include "ec_lcl.h"
69
70
71 /*
72  * This file implements the wNAF-based interleaving multi-exponentation method
73  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
74  * for multiplication with precomputation, we use wNAF splitting
75  * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
76  */
77
78
79
80
81 /* structure for precomputed multiples of the generator */
82 typedef struct ec_pre_comp_st {
83         const EC_GROUP *group; /* parent EC_GROUP object */
84         size_t blocksize;      /* block size for wNAF splitting */
85         size_t numblocks;      /* max. number of blocks for which we have precomputation */
86         size_t w;              /* window size */
87         EC_POINT **points;     /* array with pre-calculated multiples of generator:
88                                 * 'num' pointers to EC_POINT objects followed by a NULL */
89         size_t num;            /* numblocks * 2^(w-1) */
90         int references;
91 } EC_PRE_COMP;
92  
93 /* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
94 static void *ec_pre_comp_dup(void *);
95 static void ec_pre_comp_free(void *);
96 static void ec_pre_comp_clear_free(void *);
97
98 static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
99         {
100         EC_PRE_COMP *ret = NULL;
101
102         if (!group)
103                 return NULL;
104
105         ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
106         if (!ret)
107                 {
108                 ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
109                 return ret;
110                 }
111         ret->group = group;
112         ret->blocksize = 8; /* default */
113         ret->numblocks = 0;
114         ret->w = 4; /* default */
115         ret->points = NULL;
116         ret->num = 0;
117         ret->references = 1;
118         return ret;
119         }
120
121 static void *ec_pre_comp_dup(void *src_)
122         {
123         EC_PRE_COMP *src = src_;
124
125         /* no need to actually copy, these objects never change! */
126
127         CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
128
129         return src_;
130         }
131
132 static void ec_pre_comp_free(void *pre_)
133         {
134         int i;
135         EC_PRE_COMP *pre = pre_;
136
137         if (!pre)
138                 return;
139
140         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
141         if (i > 0)
142                 return;
143
144         if (pre->points)
145                 {
146                 EC_POINT **p;
147
148                 for (p = pre->points; *p != NULL; p++)
149                         EC_POINT_free(*p);
150                 OPENSSL_free(pre->points);
151                 }
152         OPENSSL_free(pre);
153         }
154
155 static void ec_pre_comp_clear_free(void *pre_)
156         {
157         int i;
158         EC_PRE_COMP *pre = pre_;
159
160         if (!pre)
161                 return;
162
163         i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
164         if (i > 0)
165                 return;
166
167         if (pre->points)
168                 {
169                 EC_POINT **p;
170
171                 for (p = pre->points; *p != NULL; p++)
172                         {
173                         EC_POINT_clear_free(*p);
174                         OPENSSL_cleanse(p, sizeof *p);
175                         }
176                 OPENSSL_free(pre->points);
177                 }
178         OPENSSL_cleanse(pre, sizeof *pre);
179         OPENSSL_free(pre);
180         }
181
182
183
184
185 /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
186  * This is an array  r[]  of values that are either zero or odd with an
187  * absolute value less than  2^w  satisfying
188  *     scalar = \sum_j r[j]*2^j
189  * where at most one of any  w+1  consecutive digits is non-zero
190  * with the exception that the most significant digit may be only
191  * w-1 zeros away from that next non-zero digit.
192  */
193 static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
194         {
195         int window_val;
196         int ok = 0;
197         signed char *r = NULL;
198         int sign = 1;
199         int bit, next_bit, mask;
200         size_t len = 0, j;
201         
202         if (BN_is_zero(scalar))
203                 {
204                 r = OPENSSL_malloc(1);
205                 if (!r)
206                         {
207                         ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
208                         goto err;
209                         }
210                 r[0] = 0;
211                 *ret_len = 1;
212                 return r;
213                 }
214                 
215         if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute values less than 2^7 */
216                 {
217                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
218                 goto err;
219                 }
220         bit = 1 << w; /* at most 128 */
221         next_bit = bit << 1; /* at most 256 */
222         mask = next_bit - 1; /* at most 255 */
223
224         if (BN_is_negative(scalar))
225                 {
226                 sign = -1;
227                 }
228
229         if (scalar->d == NULL || scalar->top == 0)
230                 {
231                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
232                 goto err;
233                 }
234
235         len = BN_num_bits(scalar);
236         r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer than binary representation
237                                       * (*ret_len will be set to the actual length, i.e. at most
238                                       * BN_num_bits(scalar) + 1) */
239         if (r == NULL)
240                 {
241                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
242                 goto err;
243                 }
244         window_val = scalar->d[0] & mask;
245         j = 0;
246         while ((window_val != 0) || (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
247                 {
248                 int digit = 0;
249
250                 /* 0 <= window_val <= 2^(w+1) */
251
252                 if (window_val & 1)
253                         {
254                         /* 0 < window_val < 2^(w+1) */
255
256                         if (window_val & bit)
257                                 {
258                                 digit = window_val - next_bit; /* -2^w < digit < 0 */
259
260 #if 1 /* modified wNAF */
261                                 if (j + w + 1 >= len)
262                                         {
263                                         /* special case for generating modified wNAFs:
264                                          * no new bits will be added into window_val,
265                                          * so using a positive digit here will decrease
266                                          * the total length of the representation */
267                                         
268                                         digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
269                                         }
270 #endif
271                                 }
272                         else
273                                 {
274                                 digit = window_val; /* 0 < digit < 2^w */
275                                 }
276                         
277                         if (digit <= -bit || digit >= bit || !(digit & 1))
278                                 {
279                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
280                                 goto err;
281                                 }
282
283                         window_val -= digit;
284
285                         /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
286                          * for modified window NAFs, it may also be 2^w
287                          */
288                         if (window_val != 0 && window_val != next_bit && window_val != bit)
289                                 {
290                                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
291                                 goto err;
292                                 }
293                         }
294
295                 r[j++] = sign * digit;
296
297                 window_val >>= 1;
298                 window_val += bit * BN_is_bit_set(scalar, j + w);
299
300                 if (window_val > next_bit)
301                         {
302                         ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
303                         goto err;
304                         }
305                 }
306
307         if (j > len + 1)
308                 {
309                 ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
310                 goto err;
311                 }
312         len = j;
313         ok = 1;
314
315  err:
316         if (!ok)
317                 {
318                 OPENSSL_free(r);
319                 r = NULL;
320                 }
321         if (ok)
322                 *ret_len = len;
323         return r;
324         }
325
326
327 /* TODO: table should be optimised for the wNAF-based implementation,
328  *       sometimes smaller windows will give better performance
329  *       (thus the boundaries should be increased)
330  */
331 #define EC_window_bits_for_scalar_size(b) \
332                 ((size_t) \
333                  ((b) >= 2000 ? 6 : \
334                   (b) >=  800 ? 5 : \
335                   (b) >=  300 ? 4 : \
336                   (b) >=   70 ? 3 : \
337                   (b) >=   20 ? 2 : \
338                   1))
339
340 /* Compute
341  *      \sum scalars[i]*points[i],
342  * also including
343  *      scalar*generator
344  * in the addition if scalar != NULL
345  */
346 int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
347         size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx)
348         {
349         BN_CTX *new_ctx = NULL;
350         const EC_POINT *generator = NULL;
351         EC_POINT *tmp = NULL;
352         size_t totalnum;
353         size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
354         size_t pre_points_per_block = 0;
355         size_t i, j;
356         int k;
357         int r_is_inverted = 0;
358         int r_is_at_infinity = 1;
359         size_t *wsize = NULL; /* individual window sizes */
360         signed char **wNAF = NULL; /* individual wNAFs */
361         size_t *wNAF_len = NULL;
362         size_t max_len = 0;
363         size_t num_val;
364         EC_POINT **val = NULL; /* precomputation */
365         EC_POINT **v;
366         EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or 'pre_comp->points' */
367         const EC_PRE_COMP *pre_comp = NULL;
368         int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be treated like other scalars,
369                              * i.e. precomputation is not available */
370         int ret = 0;
371         
372         if (group->meth != r->meth)
373                 {
374                 ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
375                 return 0;
376                 }
377
378         if ((scalar == NULL) && (num == 0))
379                 {
380                 return EC_POINT_set_to_infinity(group, r);
381                 }
382
383         for (i = 0; i < num; i++)
384                 {
385                 if (group->meth != points[i]->meth)
386                         {
387                         ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
388                         return 0;
389                         }
390                 }
391
392         if (ctx == NULL)
393                 {
394                 ctx = new_ctx = BN_CTX_new();
395                 if (ctx == NULL)
396                         goto err;
397                 }
398
399         if (scalar != NULL)
400                 {
401                 generator = EC_GROUP_get0_generator(group);
402                 if (generator == NULL)
403                         {
404                         ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
405                         goto err;
406                         }
407                 
408                 /* look if we can use precomputed multiples of generator */
409
410                 pre_comp = EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
411
412                 if (pre_comp && pre_comp->numblocks && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == 0))
413                         {
414                         blocksize = pre_comp->blocksize;
415
416                         /* determine maximum number of blocks that wNAF splitting may yield
417                          * (NB: maximum wNAF length is bit length plus one) */
418                         numblocks = (BN_num_bits(scalar) / blocksize) + 1;
419
420                         /* we cannot use more blocks than we have precomputation for */
421                         if (numblocks > pre_comp->numblocks)
422                                 numblocks = pre_comp->numblocks;
423
424                         pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
425
426                         /* check that pre_comp looks sane */
427                         if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block))
428                                 {
429                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
430                                 goto err;
431                                 }
432                         }
433                 else
434                         {
435                         /* can't use precomputation */
436                         pre_comp = NULL;
437                         numblocks = 1;
438                         num_scalar = 1; /* treat 'scalar' like 'num'-th element of 'scalars' */
439                         }
440                 }
441         
442         totalnum = num + numblocks;
443
444         wsize    = OPENSSL_malloc(totalnum * sizeof wsize[0]);
445         wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
446         wNAF     = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space for pivot */
447         val_sub  = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
448
449         /* Ensure wNAF is initialised in case we end up going to err */
450         if (wNAF) wNAF[0] = NULL;       /* preliminary pivot */
451
452         if (!wsize || !wNAF_len || !wNAF || !val_sub)
453                 {
454                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
455                 goto err;
456                 }
457
458         /* num_val will be the total number of temporarily precomputed points */
459         num_val = 0;
460
461         for (i = 0; i < num + num_scalar; i++)
462                 {
463                 size_t bits;
464
465                 bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
466                 wsize[i] = EC_window_bits_for_scalar_size(bits);
467                 num_val += (size_t)1 << (wsize[i] - 1);
468                 wNAF[i + 1] = NULL; /* make sure we always have a pivot */
469                 wNAF[i] = compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], &wNAF_len[i]);
470                 if (wNAF[i] == NULL)
471                         goto err;
472                 if (wNAF_len[i] > max_len)
473                         max_len = wNAF_len[i];
474                 }
475
476         if (numblocks)
477                 {
478                 /* we go here iff scalar != NULL */
479                 
480                 if (pre_comp == NULL)
481                         {
482                         if (num_scalar != 1)
483                                 {
484                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
485                                 goto err;
486                                 }
487                         /* we have already generated a wNAF for 'scalar' */
488                         }
489                 else
490                         {
491                         signed char *tmp_wNAF = NULL;
492                         size_t tmp_len = 0;
493                         
494                         if (num_scalar != 0)
495                                 {
496                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
497                                 goto err;
498                                 }
499
500                         /* use the window size for which we have precomputation */
501                         wsize[num] = pre_comp->w;
502                         tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
503                         if (!tmp_wNAF)
504                                 goto err;
505
506                         if (tmp_len <= max_len)
507                                 {
508                                 /* One of the other wNAFs is at least as long
509                                  * as the wNAF belonging to the generator,
510                                  * so wNAF splitting will not buy us anything. */
511
512                                 numblocks = 1;
513                                 totalnum = num + 1; /* don't use wNAF splitting */
514                                 wNAF[num] = tmp_wNAF;
515                                 wNAF[num + 1] = NULL;
516                                 wNAF_len[num] = tmp_len;
517                                 if (tmp_len > max_len)
518                                         max_len = tmp_len;
519                                 /* pre_comp->points starts with the points that we need here: */
520                                 val_sub[num] = pre_comp->points;
521                                 }
522                         else
523                                 {
524                                 /* don't include tmp_wNAF directly into wNAF array
525                                  * - use wNAF splitting and include the blocks */
526
527                                 signed char *pp;
528                                 EC_POINT **tmp_points;
529                                 
530                                 if (tmp_len < numblocks * blocksize)
531                                         {
532                                         /* possibly we can do with fewer blocks than estimated */
533                                         numblocks = (tmp_len + blocksize - 1) / blocksize;
534                                         if (numblocks > pre_comp->numblocks)
535                                                 {
536                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
537                                                 goto err;
538                                                 }
539                                         totalnum = num + numblocks;
540                                         }
541                                 
542                                 /* split wNAF in 'numblocks' parts */
543                                 pp = tmp_wNAF;
544                                 tmp_points = pre_comp->points;
545
546                                 for (i = num; i < totalnum; i++)
547                                         {
548                                         if (i < totalnum - 1)
549                                                 {
550                                                 wNAF_len[i] = blocksize;
551                                                 if (tmp_len < blocksize)
552                                                         {
553                                                         ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
554                                                         goto err;
555                                                         }
556                                                 tmp_len -= blocksize;
557                                                 }
558                                         else
559                                                 /* last block gets whatever is left
560                                                  * (this could be more or less than 'blocksize'!) */
561                                                 wNAF_len[i] = tmp_len;
562                                         
563                                         wNAF[i + 1] = NULL;
564                                         wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
565                                         if (wNAF[i] == NULL)
566                                                 {
567                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
568                                                 OPENSSL_free(tmp_wNAF);
569                                                 goto err;
570                                                 }
571                                         memcpy(wNAF[i], pp, wNAF_len[i]);
572                                         if (wNAF_len[i] > max_len)
573                                                 max_len = wNAF_len[i];
574
575                                         if (*tmp_points == NULL)
576                                                 {
577                                                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
578                                                 OPENSSL_free(tmp_wNAF);
579                                                 goto err;
580                                                 }
581                                         val_sub[i] = tmp_points;
582                                         tmp_points += pre_points_per_block;
583                                         pp += blocksize;
584                                         }
585                                 OPENSSL_free(tmp_wNAF);
586                                 }
587                         }
588                 }
589
590         /* All points we precompute now go into a single array 'val'.
591          * 'val_sub[i]' is a pointer to the subarray for the i-th point,
592          * or to a subarray of 'pre_comp->points' if we already have precomputation. */
593         val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
594         if (val == NULL)
595                 {
596                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
597                 goto err;
598                 }
599         val[num_val] = NULL; /* pivot element */
600
601         /* allocate points for precomputation */
602         v = val;
603         for (i = 0; i < num + num_scalar; i++)
604                 {
605                 val_sub[i] = v;
606                 for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++)
607                         {
608                         *v = EC_POINT_new(group);
609                         if (*v == NULL) goto err;
610                         v++;
611                         }
612                 }
613         if (!(v == val + num_val))
614                 {
615                 ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
616                 goto err;
617                 }
618
619         if (!(tmp = EC_POINT_new(group)))
620                 goto err;
621
622         /* prepare precomputed values:
623          *    val_sub[i][0] :=     points[i]
624          *    val_sub[i][1] := 3 * points[i]
625          *    val_sub[i][2] := 5 * points[i]
626          *    ...
627          */
628         for (i = 0; i < num + num_scalar; i++)
629                 {
630                 if (i < num)
631                         {
632                         if (!EC_POINT_copy(val_sub[i][0], points[i])) goto err;
633                         }
634                 else
635                         {
636                         if (!EC_POINT_copy(val_sub[i][0], generator)) goto err;
637                         }
638
639                 if (wsize[i] > 1)
640                         {
641                         if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) goto err;
642                         for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++)
643                                 {
644                                 if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) goto err;
645                                 }
646                         }
647                 }
648
649 #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
650         if (!EC_POINTs_make_affine(group, num_val, val, ctx))
651                 goto err;
652 #endif
653
654         r_is_at_infinity = 1;
655
656         for (k = max_len - 1; k >= 0; k--)
657                 {
658                 if (!r_is_at_infinity)
659                         {
660                         if (!EC_POINT_dbl(group, r, r, ctx)) goto err;
661                         }
662                 
663                 for (i = 0; i < totalnum; i++)
664                         {
665                         if (wNAF_len[i] > (size_t)k)
666                                 {
667                                 int digit = wNAF[i][k];
668                                 int is_neg;
669
670                                 if (digit) 
671                                         {
672                                         is_neg = digit < 0;
673
674                                         if (is_neg)
675                                                 digit = -digit;
676
677                                         if (is_neg != r_is_inverted)
678                                                 {
679                                                 if (!r_is_at_infinity)
680                                                         {
681                                                         if (!EC_POINT_invert(group, r, ctx)) goto err;
682                                                         }
683                                                 r_is_inverted = !r_is_inverted;
684                                                 }
685
686                                         /* digit > 0 */
687
688                                         if (r_is_at_infinity)
689                                                 {
690                                                 if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) goto err;
691                                                 r_is_at_infinity = 0;
692                                                 }
693                                         else
694                                                 {
695                                                 if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) goto err;
696                                                 }
697                                         }
698                                 }
699                         }
700                 }
701
702         if (r_is_at_infinity)
703                 {
704                 if (!EC_POINT_set_to_infinity(group, r)) goto err;
705                 }
706         else
707                 {
708                 if (r_is_inverted)
709                         if (!EC_POINT_invert(group, r, ctx)) goto err;
710                 }
711         
712         ret = 1;
713
714  err:
715         if (new_ctx != NULL)
716                 BN_CTX_free(new_ctx);
717         if (tmp != NULL)
718                 EC_POINT_free(tmp);
719         if (wsize != NULL)
720                 OPENSSL_free(wsize);
721         if (wNAF_len != NULL)
722                 OPENSSL_free(wNAF_len);
723         if (wNAF != NULL)
724                 {
725                 signed char **w;
726                 
727                 for (w = wNAF; *w != NULL; w++)
728                         OPENSSL_free(*w);
729                 
730                 OPENSSL_free(wNAF);
731                 }
732         if (val != NULL)
733                 {
734                 for (v = val; *v != NULL; v++)
735                         EC_POINT_clear_free(*v);
736
737                 OPENSSL_free(val);
738                 }
739         if (val_sub != NULL)
740                 {
741                 OPENSSL_free(val_sub);
742                 }
743         return ret;
744         }
745
746
747 /* ec_wNAF_precompute_mult()
748  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
749  * for use with wNAF splitting as implemented in ec_wNAF_mul().
750  * 
751  * 'pre_comp->points' is an array of multiples of the generator
752  * of the following form:
753  * points[0] =     generator;
754  * points[1] = 3 * generator;
755  * ...
756  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
757  * points[2^(w-1)]   =     2^blocksize * generator;
758  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
759  * ...
760  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
761  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
762  * ...
763  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
764  * points[2^(w-1)*numblocks]       = NULL
765  */
766 int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
767         {
768         const EC_POINT *generator;
769         EC_POINT *tmp_point = NULL, *base = NULL, **var;
770         BN_CTX *new_ctx = NULL;
771         BIGNUM *order;
772         size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
773         EC_POINT **points = NULL;
774         EC_PRE_COMP *pre_comp;
775         int ret = 0;
776
777         /* if there is an old EC_PRE_COMP object, throw it away */
778         EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free);
779
780         if ((pre_comp = ec_pre_comp_new(group)) == NULL)
781                 return 0;
782
783         generator = EC_GROUP_get0_generator(group);
784         if (generator == NULL)
785                 {
786                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
787                 goto err;
788                 }
789
790         if (ctx == NULL)
791                 {
792                 ctx = new_ctx = BN_CTX_new();
793                 if (ctx == NULL)
794                         goto err;
795                 }
796         
797         BN_CTX_start(ctx);
798         order = BN_CTX_get(ctx);
799         if (order == NULL) goto err;
800         
801         if (!EC_GROUP_get_order(group, order, ctx)) goto err;           
802         if (BN_is_zero(order))
803                 {
804                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
805                 goto err;
806                 }
807
808         bits = BN_num_bits(order);
809         /* The following parameters mean we precompute (approximately)
810          * one point per bit.
811          *
812          * TBD: The combination  8, 4  is perfect for 160 bits; for other
813          * bit lengths, other parameter combinations might provide better
814          * efficiency.
815          */
816         blocksize = 8;
817         w = 4;
818         if (EC_window_bits_for_scalar_size(bits) > w)
819                 {
820                 /* let's not make the window too small ... */
821                 w = EC_window_bits_for_scalar_size(bits);
822                 }
823
824         numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks to use for wNAF splitting */
825         
826         pre_points_per_block = (size_t)1 << (w - 1);
827         num = pre_points_per_block * numblocks; /* number of points to compute and store */
828
829         points = OPENSSL_malloc(sizeof (EC_POINT*)*(num + 1));
830         if (!points)
831                 {
832                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
833                 goto err;
834                 }
835
836         var = points;
837         var[num] = NULL; /* pivot */
838         for (i = 0; i < num; i++)
839                 {
840                 if ((var[i] = EC_POINT_new(group)) == NULL)
841                         {
842                         ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
843                         goto err;
844                         }
845                 }
846
847         if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group)))
848                 {
849                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
850                 goto err;
851                 }       
852         
853         if (!EC_POINT_copy(base, generator))
854                 goto err;
855         
856         /* do the precomputation */
857         for (i = 0; i < numblocks; i++)
858                 {
859                 size_t j;
860
861                 if (!EC_POINT_dbl(group, tmp_point, base, ctx))
862                         goto err;
863
864                 if (!EC_POINT_copy(*var++, base))
865                         goto err;
866
867                 for (j = 1; j < pre_points_per_block; j++, var++)
868                         {
869                         /* calculate odd multiples of the current base point */
870                         if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
871                                 goto err;
872                         }
873
874                 if (i < numblocks - 1)
875                         {
876                         /* get the next base (multiply current one by 2^blocksize) */
877                         size_t k;
878
879                         if (blocksize <= 2)
880                                 {
881                                 ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
882                                 goto err;
883                                 }                               
884
885                         if (!EC_POINT_dbl(group, base, tmp_point, ctx))
886                                 goto err;
887                         for (k = 2; k < blocksize; k++)
888                                 {
889                                 if (!EC_POINT_dbl(group,base,base,ctx))
890                                         goto err;
891                                 }
892                         }
893                 }
894
895         if (!EC_POINTs_make_affine(group, num, points, ctx))
896                 goto err;
897         
898         pre_comp->group = group;
899         pre_comp->blocksize = blocksize;
900         pre_comp->numblocks = numblocks;
901         pre_comp->w = w;
902         pre_comp->points = points;
903         points = NULL;
904         pre_comp->num = num;
905
906         if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
907                 ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free))
908                 goto err;
909         pre_comp = NULL;
910
911         ret = 1;
912  err:
913         if (ctx != NULL)
914                 BN_CTX_end(ctx);
915         if (new_ctx != NULL)
916                 BN_CTX_free(new_ctx);
917         if (pre_comp)
918                 ec_pre_comp_free(pre_comp);
919         if (points)
920                 {
921                 EC_POINT **p;
922
923                 for (p = points; *p != NULL; p++)
924                         EC_POINT_free(*p);
925                 OPENSSL_free(points);
926                 }
927         if (tmp_point)
928                 EC_POINT_free(tmp_point);
929         if (base)
930                 EC_POINT_free(base);
931         return ret;
932         }
933
934
935 int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
936         {
937         if (EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup, ec_pre_comp_free, ec_pre_comp_clear_free) != NULL)
938                 return 1;
939         else
940                 return 0;
941         }