vkernel - Fix a vkernel lockup on startup
[dragonfly.git] / sys / kern / lwkt_ipiq.c
1 /*
2  * Copyright (c) 2003-2016 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 /*
36  * This module implements IPI message queueing and the MI portion of IPI
37  * message processing.
38  */
39
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/proc.h>
46 #include <sys/rtprio.h>
47 #include <sys/queue.h>
48 #include <sys/thread2.h>
49 #include <sys/sysctl.h>
50 #include <sys/ktr.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
64
65 #include <machine/stdarg.h>
66 #include <machine/smp.h>
67 #include <machine/clock.h>
68 #include <machine/atomic.h>
69
70 #ifdef _KERNEL_VIRTUAL
71 #include <pthread.h>
72 #endif
73
74 struct ipiq_stats {
75     int64_t ipiq_count;         /* total calls to lwkt_send_ipiq*() */
76     int64_t ipiq_fifofull;      /* number of fifo full conditions detected */
77     int64_t ipiq_avoided;       /* interlock with target avoids cpu ipi */
78     int64_t ipiq_passive;       /* passive IPI messages */
79     int64_t ipiq_cscount;       /* number of cpu synchronizations */
80 } __cachealign;
81
82 static struct ipiq_stats ipiq_stats_percpu[MAXCPU];
83 #define ipiq_stat(gd)   ipiq_stats_percpu[(gd)->gd_cpuid]
84
85 static int ipiq_debug;          /* set to 1 for debug */
86 #ifdef PANIC_DEBUG
87 static int      panic_ipiq_cpu = -1;
88 static int      panic_ipiq_count = 100;
89 #endif
90
91 SYSCTL_INT(_lwkt, OID_AUTO, ipiq_debug, CTLFLAG_RW, &ipiq_debug, 0,
92     "");
93 #ifdef PANIC_DEBUG
94 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_cpu, CTLFLAG_RW, &panic_ipiq_cpu, 0, "");
95 SYSCTL_INT(_lwkt, OID_AUTO, panic_ipiq_count, CTLFLAG_RW, &panic_ipiq_count, 0, "");
96 #endif
97
98 #define IPIQ_STRING     "func=%p arg1=%p arg2=%d scpu=%d dcpu=%d"
99 #define IPIQ_ARGS       void *func, void *arg1, int arg2, int scpu, int dcpu
100
101 #if !defined(KTR_IPIQ)
102 #define KTR_IPIQ        KTR_ALL
103 #endif
104 KTR_INFO_MASTER(ipiq);
105 KTR_INFO(KTR_IPIQ, ipiq, send_norm, 0, IPIQ_STRING, IPIQ_ARGS);
106 KTR_INFO(KTR_IPIQ, ipiq, send_pasv, 1, IPIQ_STRING, IPIQ_ARGS);
107 KTR_INFO(KTR_IPIQ, ipiq, receive, 4, IPIQ_STRING, IPIQ_ARGS);
108 KTR_INFO(KTR_IPIQ, ipiq, sync_start, 5, "cpumask=%08lx", unsigned long mask);
109 KTR_INFO(KTR_IPIQ, ipiq, sync_end, 6, "cpumask=%08lx", unsigned long mask);
110 KTR_INFO(KTR_IPIQ, ipiq, cpu_send, 7, IPIQ_STRING, IPIQ_ARGS);
111 KTR_INFO(KTR_IPIQ, ipiq, send_end, 8, IPIQ_STRING, IPIQ_ARGS);
112 KTR_INFO(KTR_IPIQ, ipiq, sync_quick, 9, "cpumask=%08lx", unsigned long mask);
113
114 #define logipiq(name, func, arg1, arg2, sgd, dgd)       \
115         KTR_LOG(ipiq_ ## name, func, arg1, arg2, sgd->gd_cpuid, dgd->gd_cpuid)
116 #define logipiq2(name, arg)     \
117         KTR_LOG(ipiq_ ## name, arg)
118
119 static void lwkt_process_ipiq_nested(void);
120 static int lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip, 
121                                   struct intrframe *frame, int limit);
122 static void lwkt_cpusync_remote1(lwkt_cpusync_t cs);
123 static void lwkt_cpusync_remote2(lwkt_cpusync_t cs);
124
125 #define IPIQ_SYSCTL(name)                               \
126 static int                                              \
127 sysctl_##name(SYSCTL_HANDLER_ARGS)                      \
128 {                                                       \
129     int64_t val = 0;                                    \
130     int cpu, error;                                     \
131                                                         \
132     for (cpu = 0; cpu < ncpus; ++cpu)                   \
133         val += ipiq_stats_percpu[cpu].name;             \
134                                                         \
135     error = sysctl_handle_quad(oidp, &val, 0, req);     \
136     if (error || req->newptr == NULL)                   \
137         return error;                                   \
138                                                         \
139     for (cpu = 0; cpu < ncpus; ++cpu)                   \
140         ipiq_stats_percpu[cpu].name = val;              \
141                                                         \
142     return 0;                                           \
143 }
144
145 IPIQ_SYSCTL(ipiq_count);
146 IPIQ_SYSCTL(ipiq_fifofull);
147 IPIQ_SYSCTL(ipiq_avoided);
148 IPIQ_SYSCTL(ipiq_passive);
149 IPIQ_SYSCTL(ipiq_cscount);
150
151 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_count, (CTLTYPE_QUAD | CTLFLAG_RW),
152     0, 0, sysctl_ipiq_count, "Q", "Number of IPI's sent");
153 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_fifofull, (CTLTYPE_QUAD | CTLFLAG_RW),
154     0, 0, sysctl_ipiq_fifofull, "Q",
155     "Number of fifo full conditions detected");
156 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_avoided, (CTLTYPE_QUAD | CTLFLAG_RW),
157     0, 0, sysctl_ipiq_avoided, "Q",
158     "Number of IPI's avoided by interlock with target cpu");
159 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_passive, (CTLTYPE_QUAD | CTLFLAG_RW),
160     0, 0, sysctl_ipiq_passive, "Q",
161     "Number of passive IPI messages sent");
162 SYSCTL_PROC(_lwkt, OID_AUTO, ipiq_cscount, (CTLTYPE_QUAD | CTLFLAG_RW),
163     0, 0, sysctl_ipiq_cscount, "Q",
164     "Number of cpu synchronizations");
165
166 /*
167  * Send a function execution request to another cpu.  The request is queued
168  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
169  * possible target cpu.  The FIFO can be written.
170  *
171  * If the FIFO fills up we have to enable interrupts to avoid an APIC
172  * deadlock and process pending IPIQs while waiting for it to empty.   
173  * Otherwise we may soft-deadlock with another cpu whos FIFO is also full.
174  *
175  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
176  * end will take care of any pending interrupts.
177  *
178  * The actual hardware IPI is avoided if the target cpu is already processing
179  * the queue from a prior IPI.  It is possible to pipeline IPI messages
180  * very quickly between cpus due to the FIFO hysteresis.
181  *
182  * Need not be called from a critical section.
183  */
184 int
185 lwkt_send_ipiq3(globaldata_t target, ipifunc3_t func, void *arg1, int arg2)
186 {
187     lwkt_ipiq_t ip;
188     int windex;
189     int level1;
190     int level2;
191     long rflags;
192     struct globaldata *gd = mycpu;
193
194     logipiq(send_norm, func, arg1, arg2, gd, target);
195
196     if (target == gd) {
197         func(arg1, arg2, NULL);
198         logipiq(send_end, func, arg1, arg2, gd, target);
199         return(0);
200     }
201     crit_enter();
202     ++gd->gd_intr_nesting_level;
203 #ifdef INVARIANTS
204     if (gd->gd_intr_nesting_level > 20)
205         panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
206 #endif
207     KKASSERT(curthread->td_critcount);
208     ++ipiq_stat(gd).ipiq_count;
209     ip = &gd->gd_ipiq[target->gd_cpuid];
210
211     /*
212      * Do not allow the FIFO to become full.  Interrupts must be physically
213      * enabled while we liveloop to avoid deadlocking the APIC.
214      *
215      * When we are not nested inside a processing loop we allow the FIFO
216      * to get 1/2 full.  Once it exceeds 1/2 full we must wait for it to
217      * drain, executing any incoming IPIs while we wait.
218      *
219      * When we are nested we allow the FIFO to get almost completely full.
220      * This allows us to queue IPIs sent from IPI callbacks.  The processing
221      * code will only process incoming FIFOs that are trying to drain while
222      * we wait, and only to the only-slightly-less-full point, to avoid a
223      * deadlock.
224      *
225      * We are guaranteed
226      */
227
228     if (gd->gd_processing_ipiq == 0) {
229         level1 = MAXCPUFIFO / 2;
230         level2 = MAXCPUFIFO / 4;
231     } else {
232         level1 = MAXCPUFIFO - 3;
233         level2 = MAXCPUFIFO - 5;
234     }
235
236     if (ip->ip_windex - ip->ip_rindex > level1) {
237 #ifndef _KERNEL_VIRTUAL
238         uint64_t tsc_base = rdtsc();
239 #endif
240         int repeating = 0;
241         int olimit;
242
243         rflags = read_rflags();
244         cpu_enable_intr();
245         ++ipiq_stat(gd).ipiq_fifofull;
246         DEBUG_PUSH_INFO("send_ipiq3");
247         olimit = atomic_swap_int(&ip->ip_drain, level2);
248         while (ip->ip_windex - ip->ip_rindex > level2) {
249             KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
250             lwkt_process_ipiq_nested();
251             cpu_pause();
252
253             /*
254              * Check for target not draining issue.  This should be fixed but
255              * leave the code in-place anyway as it can recover an otherwise
256              * dead system.
257              */
258 #ifdef _KERNEL_VIRTUAL
259             if (repeating++ > 10)
260                     pthread_yield();
261 #else
262             if (rdtsc() - tsc_base > tsc_frequency) {
263                 ++repeating;
264                 if (repeating > 10) {
265                         kprintf("send_ipiq %d->%d tgt not draining (%d) sniff=%p,%p\n",
266                                 gd->gd_cpuid, target->gd_cpuid, repeating,
267                                 target->gd_sample_pc, target->gd_sample_sp);
268                         smp_sniff();
269                         ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
270                         cpu_send_ipiq(target->gd_cpuid);
271                 } else {
272                         kprintf("send_ipiq %d->%d tgt not draining (%d)\n",
273                                 gd->gd_cpuid, target->gd_cpuid, repeating);
274                         smp_sniff();
275                 }
276                 tsc_base = rdtsc();
277             }
278 #endif
279         }
280         atomic_swap_int(&ip->ip_drain, olimit);
281         DEBUG_POP_INFO();
282 #if defined(__x86_64__)
283         write_rflags(rflags);
284 #else
285 #error "no write_*flags"
286 #endif
287     }
288
289     /*
290      * Queue the new message and signal the target cpu.  For now we need to
291      * physically disable interrupts because the target will not get signalled
292      * by other cpus once we set target->gd_npoll and we don't want to get
293      * interrupted.
294      *
295      * XXX not sure why this is a problem, the critical section should prevent
296      *     any stalls (incoming interrupts except Xinvltlb and Xsnoop will
297      *     just be made pending).
298      */
299     rflags = read_rflags();
300 #ifndef _KERNEL_VIRTUAL
301     cpu_disable_intr();
302 #endif
303
304     windex = ip->ip_windex & MAXCPUFIFO_MASK;
305     ip->ip_info[windex].func = func;
306     ip->ip_info[windex].arg1 = arg1;
307     ip->ip_info[windex].arg2 = arg2;
308     cpu_sfence();
309     ++ip->ip_windex;
310     ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
311
312     /*
313      * signal the target cpu that there is work pending.
314      */
315     if (atomic_swap_int(&target->gd_npoll, 1) == 0) {
316         logipiq(cpu_send, func, arg1, arg2, gd, target);
317         cpu_send_ipiq(target->gd_cpuid);
318     } else {
319         ++ipiq_stat(gd).ipiq_avoided;
320     }
321     write_rflags(rflags);
322
323     --gd->gd_intr_nesting_level;
324     crit_exit();
325     logipiq(send_end, func, arg1, arg2, gd, target);
326
327     return(ip->ip_windex);
328 }
329
330 /*
331  * Similar to lwkt_send_ipiq() but this function does not actually initiate
332  * the IPI to the target cpu unless the FIFO is greater than 1/4 full.
333  * This function is usually very fast.
334  *
335  * This function is used for non-critical IPI messages, such as memory
336  * deallocations.  The queue will typically be flushed by the target cpu at
337  * the next clock interrupt.
338  *
339  * Need not be called from a critical section.
340  */
341 int
342 lwkt_send_ipiq3_passive(globaldata_t target, ipifunc3_t func,
343                         void *arg1, int arg2)
344 {
345     lwkt_ipiq_t ip;
346     int windex;
347     struct globaldata *gd = mycpu;
348
349     KKASSERT(target != gd);
350     crit_enter_gd(gd);
351     ++gd->gd_intr_nesting_level;
352     ip = &gd->gd_ipiq[target->gd_cpuid];
353
354     /*
355      * If the FIFO is too full send the IPI actively.
356      *
357      * WARNING! This level must be low enough not to trigger a wait loop
358      *          in the active sending code since we are not signalling the
359      *          target cpu.
360      */
361     if (ip->ip_windex - ip->ip_rindex >= MAXCPUFIFO / 4) {
362         --gd->gd_intr_nesting_level;
363         crit_exit_gd(gd);
364         return lwkt_send_ipiq3(target, func, arg1, arg2);
365     }
366
367     /*
368      * Else we can do it passively.
369      */
370     logipiq(send_pasv, func, arg1, arg2, gd, target);
371     ++ipiq_stat(gd).ipiq_count;
372     ++ipiq_stat(gd).ipiq_passive;
373
374     /*
375      * Queue the new message
376      */
377     windex = ip->ip_windex & MAXCPUFIFO_MASK;
378     ip->ip_info[windex].func = func;
379     ip->ip_info[windex].arg1 = arg1;
380     ip->ip_info[windex].arg2 = arg2;
381     cpu_sfence();
382     ++ip->ip_windex;
383     ATOMIC_CPUMASK_ORBIT(target->gd_ipimask, gd->gd_cpuid);
384     --gd->gd_intr_nesting_level;
385
386     /*
387      * Do not signal the target cpu, it will pick up the IPI when it next
388      * polls (typically on the next tick).
389      */
390     crit_exit();
391     logipiq(send_end, func, arg1, arg2, gd, target);
392
393     return(ip->ip_windex);
394 }
395
396 /*
397  * deprecated, used only by fast int forwarding.
398  */
399 int
400 lwkt_send_ipiq3_bycpu(int dcpu, ipifunc3_t func, void *arg1, int arg2)
401 {
402     return(lwkt_send_ipiq3(globaldata_find(dcpu), func, arg1, arg2));
403 }
404
405 /*
406  * Send a message to several target cpus.  Typically used for scheduling.
407  * The message will not be sent to stopped cpus.
408  *
409  * To prevent treating low-numbered cpus as favored sons, the IPIs are
410  * issued in order starting at mycpu upward, then from 0 through mycpu.
411  * This is particularly important to prevent random scheduler pickups
412  * from favoring cpu 0.
413  */
414 int
415 lwkt_send_ipiq3_mask(cpumask_t mask, ipifunc3_t func, void *arg1, int arg2)
416 {
417     int cpuid;
418     int count = 0;
419     cpumask_t amask;
420
421     CPUMASK_NANDMASK(mask, stopped_cpus);
422
423     /*
424      * All cpus in mask which are >= mycpu
425      */
426     CPUMASK_ASSBMASK(amask, mycpu->gd_cpuid);
427     CPUMASK_INVMASK(amask);
428     CPUMASK_ANDMASK(amask, mask);
429     while (CPUMASK_TESTNZERO(amask)) {
430         cpuid = BSFCPUMASK(amask);
431         lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
432         CPUMASK_NANDBIT(amask, cpuid);
433         ++count;
434     }
435
436     /*
437      * All cpus in mask which are < mycpu
438      */
439     CPUMASK_ASSBMASK(amask, mycpu->gd_cpuid);
440     CPUMASK_ANDMASK(amask, mask);
441     while (CPUMASK_TESTNZERO(amask)) {
442         cpuid = BSFCPUMASK(amask);
443         lwkt_send_ipiq3(globaldata_find(cpuid), func, arg1, arg2);
444         CPUMASK_NANDBIT(amask, cpuid);
445         ++count;
446     }
447     return(count);
448 }
449
450 /*
451  * Wait for the remote cpu to finish processing a function.
452  *
453  * YYY we have to enable interrupts and process the IPIQ while waiting
454  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
455  * function to do this!  YYY we really should 'block' here.
456  *
457  * MUST be called from a critical section.  This routine may be called
458  * from an interrupt (for example, if an interrupt wakes a foreign thread
459  * up).
460  */
461 void
462 lwkt_wait_ipiq(globaldata_t target, int seq)
463 {
464     lwkt_ipiq_t ip;
465
466     if (target != mycpu) {
467         ip = &mycpu->gd_ipiq[target->gd_cpuid];
468         if ((int)(ip->ip_xindex - seq) < 0) {
469 #if defined(__x86_64__)
470             unsigned long rflags = read_rflags();
471 #else
472 #error "no read_*flags"
473 #endif
474             int64_t time_tgt = tsc_get_target(1000000000LL);
475             int time_loops = 10;
476             int benice = 0;
477 #ifdef _KERNEL_VIRTUAL
478             int repeating = 0;
479 #endif
480
481             cpu_enable_intr();
482             DEBUG_PUSH_INFO("wait_ipiq");
483             while ((int)(ip->ip_xindex - seq) < 0) {
484                 crit_enter();
485                 lwkt_process_ipiq();
486                 crit_exit();
487 #ifdef _KERNEL_VIRTUAL
488                 if (repeating++ > 10)
489                         pthread_yield();
490 #endif
491
492                 /*
493                  * IPIQs must be handled within 10 seconds and this code
494                  * will warn after one second.
495                  */
496                 if ((benice & 255) == 0 && tsc_test_target(time_tgt) > 0) {
497                         kprintf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n",
498                                 mycpu->gd_cpuid, target->gd_cpuid,
499                                 ip->ip_xindex - seq);
500                         if (--time_loops == 0)
501                                 panic("LWKT_WAIT_IPIQ");
502                         time_tgt = tsc_get_target(1000000000LL);
503                 }
504                 ++benice;
505
506                 /*
507                  * xindex may be modified by another cpu, use a load fence
508                  * to ensure that the loop does not use a speculative value
509                  * (which may improve performance).
510                  */
511                 cpu_pause();
512                 cpu_lfence();
513             }
514             DEBUG_POP_INFO();
515 #if defined(__x86_64__)
516             write_rflags(rflags);
517 #else
518 #error "no write_*flags"
519 #endif
520         }
521     }
522 }
523
524 /*
525  * Called from IPI interrupt (like a fast interrupt), which has placed
526  * us in a critical section.  The MP lock may or may not be held.
527  * May also be called from doreti or splz, or be reentrantly called
528  * indirectly through the ip_info[].func we run.
529  *
530  * There are two versions, one where no interrupt frame is available (when
531  * called from the send code and from splz, and one where an interrupt
532  * frame is available.
533  *
534  * When the current cpu is mastering a cpusync we do NOT internally loop
535  * on the cpusyncq poll.  We also do not re-flag a pending ipi due to
536  * the cpusyncq poll because this can cause doreti/splz to loop internally.
537  * The cpusync master's own loop must be allowed to run to avoid a deadlock.
538  */
539 void
540 lwkt_process_ipiq(void)
541 {
542     globaldata_t gd = mycpu;
543     globaldata_t sgd;
544     lwkt_ipiq_t ip;
545     cpumask_t mask;
546     int n;
547
548     ++gd->gd_processing_ipiq;
549 again:
550     mask = gd->gd_ipimask;
551     cpu_ccfence();
552     while (CPUMASK_TESTNZERO(mask)) {
553         n = BSFCPUMASK(mask);
554         if (n != gd->gd_cpuid) {
555             sgd = globaldata_find(n);
556             ip = sgd->gd_ipiq;
557             if (ip != NULL) {
558                 ip += gd->gd_cpuid;
559                 while (lwkt_process_ipiq_core(sgd, ip, NULL, 0))
560                     ;
561                 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
562                 if (ip->ip_rindex != ip->ip_windex)
563                         ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
564             }
565         }
566         CPUMASK_NANDBIT(mask, n);
567     }
568
569     /*
570      * Process pending cpusyncs.  If the current thread has a cpusync
571      * active cpusync we only run the list once and do not re-flag
572      * as the thread itself is processing its interlock.
573      */
574     if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
575         if (gd->gd_curthread->td_cscount == 0)
576             goto again;
577         /* need_ipiq(); do not reflag */
578     }
579
580     /*
581      * Interlock to allow more IPI interrupts.
582      */
583     --gd->gd_processing_ipiq;
584 }
585
586 void
587 lwkt_process_ipiq_frame(struct intrframe *frame)
588 {
589     globaldata_t gd = mycpu;
590     globaldata_t sgd;
591     lwkt_ipiq_t ip;
592     cpumask_t mask;
593     int n;
594
595     ++gd->gd_processing_ipiq;
596 again:
597     mask = gd->gd_ipimask;
598     cpu_ccfence();
599     while (CPUMASK_TESTNZERO(mask)) {
600         n = BSFCPUMASK(mask);
601         if (n != gd->gd_cpuid) {
602             sgd = globaldata_find(n);
603             ip = sgd->gd_ipiq;
604             if (ip != NULL) {
605                 ip += gd->gd_cpuid;
606                 while (lwkt_process_ipiq_core(sgd, ip, frame, 0))
607                     ;
608                 ATOMIC_CPUMASK_NANDBIT(gd->gd_ipimask, n);
609                 if (ip->ip_rindex != ip->ip_windex)
610                         ATOMIC_CPUMASK_ORBIT(gd->gd_ipimask, n);
611             }
612         }
613         CPUMASK_NANDBIT(mask, n);
614     }
615     if (gd->gd_cpusyncq.ip_rindex != gd->gd_cpusyncq.ip_windex) {
616         if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, frame, 0)) {
617             if (gd->gd_curthread->td_cscount == 0)
618                 goto again;
619             /* need_ipiq(); do not reflag */
620         }
621     }
622     --gd->gd_processing_ipiq;
623 }
624
625 /*
626  * Only process incoming IPIQs from draining senders and only process them
627  * to the point where the draining sender is able to continue.  This is
628  * necessary to avoid deadlocking the IPI subsystem because we are acting on
629  * incoming messages and the callback may queue additional messages.
630  *
631  * We only want to have to act on senders that are blocked to limit the
632  * number of additional messages sent.  At the same time, recipients are
633  * trying to drain our own queue.  Theoretically this create a pipeline that
634  * cannot deadlock.
635  */
636 static void
637 lwkt_process_ipiq_nested(void)
638 {
639     globaldata_t gd = mycpu;
640     globaldata_t sgd;
641     lwkt_ipiq_t ip;
642     cpumask_t mask;
643     int n;
644     int limit;
645
646     ++gd->gd_processing_ipiq;
647 again:
648     mask = gd->gd_ipimask;
649     cpu_ccfence();
650     while (CPUMASK_TESTNZERO(mask)) {
651         n = BSFCPUMASK(mask);
652         if (n != gd->gd_cpuid) {
653             sgd = globaldata_find(n);
654             ip = sgd->gd_ipiq;
655
656             /*
657              * NOTE: We do not mess with the cpumask at all, instead we allow
658              *       the top-level ipiq processor deal with it.
659              */
660             if (ip != NULL) {
661                 ip += gd->gd_cpuid;
662                 if ((limit = ip->ip_drain) != 0) {
663                     lwkt_process_ipiq_core(sgd, ip, NULL, limit);
664                     /* no gd_ipimask when doing limited processing */
665                 }
666             }
667         }
668         CPUMASK_NANDBIT(mask, n);
669     }
670
671     /*
672      * Process pending cpusyncs.  If the current thread has a cpusync
673      * active cpusync we only run the list once and do not re-flag
674      * as the thread itself is processing its interlock.
675      */
676     if (lwkt_process_ipiq_core(gd, &gd->gd_cpusyncq, NULL, 0)) {
677         if (gd->gd_curthread->td_cscount == 0)
678             goto again;
679         /* need_ipiq(); do not reflag */
680     }
681     --gd->gd_processing_ipiq;
682 }
683
684 /*
685  * Process incoming IPI requests until only <limit> are left (0 to exhaust
686  * all incoming IPI requests).
687  */
688 static int
689 lwkt_process_ipiq_core(globaldata_t sgd, lwkt_ipiq_t ip, 
690                        struct intrframe *frame, int limit)
691 {
692     globaldata_t mygd = mycpu;
693     int ri;
694     int wi;
695     ipifunc3_t copy_func;
696     void *copy_arg1;
697     int copy_arg2;
698
699     /*
700      * Clear the originating core from our ipimask, we will process all
701      * incoming messages.
702      *
703      * Obtain the current write index, which is modified by a remote cpu.
704      * Issue a load fence to prevent speculative reads of e.g. data written
705      * by the other cpu prior to it updating the index.
706      */
707     KKASSERT(curthread->td_critcount);
708     wi = ip->ip_windex;
709     cpu_lfence();
710     ++mygd->gd_intr_nesting_level;
711
712     /*
713      * NOTE: xindex is only updated after we are sure the function has
714      *       finished execution.  Beware lwkt_process_ipiq() reentrancy!
715      *       The function may send an IPI which may block/drain.
716      *
717      * NOTE: Due to additional IPI operations that the callback function
718      *       may make, it is possible for both rindex and windex to advance and
719      *       thus for rindex to advance passed our cached windex.
720      *
721      * NOTE: A load fence is required to prevent speculative loads prior
722      *       to the loading of ip_rindex.  Even though stores might be
723      *       ordered, loads are probably not.  A memory fence is required
724      *       to prevent reordering of the loads after the ip_rindex update.
725      *
726      * NOTE: Single pass only.  Returns non-zero if the queue is not empty
727      *       on return.
728      */
729     while (wi - (ri = ip->ip_rindex) > limit) {
730         ri &= MAXCPUFIFO_MASK;
731         cpu_lfence();
732         copy_func = ip->ip_info[ri].func;
733         copy_arg1 = ip->ip_info[ri].arg1;
734         copy_arg2 = ip->ip_info[ri].arg2;
735         cpu_mfence();
736         ++ip->ip_rindex;
737         KKASSERT((ip->ip_rindex & MAXCPUFIFO_MASK) ==
738                  ((ri + 1) & MAXCPUFIFO_MASK));
739         logipiq(receive, copy_func, copy_arg1, copy_arg2, sgd, mycpu);
740 #ifdef INVARIANTS
741         if (ipiq_debug && (ip->ip_rindex & 0xFFFFFF) == 0) {
742                 kprintf("cpu %d ipifunc %p %p %d (frame %p)\n",
743                         mycpu->gd_cpuid,
744                         copy_func, copy_arg1, copy_arg2,
745 #if defined(__x86_64__)
746                         (frame ? (void *)frame->if_rip : NULL));
747 #else
748                         NULL);
749 #endif
750         }
751 #endif
752         copy_func(copy_arg1, copy_arg2, frame);
753         cpu_sfence();
754         ip->ip_xindex = ip->ip_rindex;
755
756 #ifdef PANIC_DEBUG
757         /*
758          * Simulate panics during the processing of an IPI
759          */
760         if (mycpu->gd_cpuid == panic_ipiq_cpu && panic_ipiq_count) {
761                 if (--panic_ipiq_count == 0) {
762 #ifdef DDB
763                         Debugger("PANIC_DEBUG");
764 #else
765                         panic("PANIC_DEBUG");
766 #endif
767                 }
768         }
769 #endif
770     }
771     --mygd->gd_intr_nesting_level;
772
773     /*
774      * Return non-zero if there is still more in the queue.  Don't worry
775      * about fencing, we will get another interrupt if necessary.
776      */
777     return (ip->ip_rindex != ip->ip_windex);
778 }
779
780 static void
781 lwkt_sync_ipiq(void *arg)
782 {
783     volatile cpumask_t *cpumask = arg;
784
785     ATOMIC_CPUMASK_NANDBIT(*cpumask, mycpu->gd_cpuid);
786     if (CPUMASK_TESTZERO(*cpumask))
787         wakeup(cpumask);
788 }
789
790 void
791 lwkt_synchronize_ipiqs(const char *wmesg)
792 {
793     volatile cpumask_t other_cpumask;
794
795     other_cpumask = smp_active_mask;
796     CPUMASK_ANDMASK(other_cpumask, mycpu->gd_other_cpus);
797     lwkt_send_ipiq_mask(other_cpumask, lwkt_sync_ipiq,
798                         __DEVOLATILE(void *, &other_cpumask));
799
800     while (CPUMASK_TESTNZERO(other_cpumask)) {
801         tsleep_interlock(&other_cpumask, 0);
802         if (CPUMASK_TESTNZERO(other_cpumask))
803             tsleep(&other_cpumask, PINTERLOCKED, wmesg, 0);
804     }
805 }
806
807 /*
808  * CPU Synchronization Support
809  *
810  * lwkt_cpusync_interlock()     - Place specified cpus in a quiescent state.
811  *                                The current cpu is placed in a hard critical
812  *                                section.
813  *
814  * lwkt_cpusync_deinterlock()   - Execute cs_func on specified cpus, including
815  *                                current cpu if specified, then return.
816  */
817 void
818 lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *arg)
819 {
820     struct lwkt_cpusync cs;
821
822     lwkt_cpusync_init(&cs, mask, func, arg);
823     lwkt_cpusync_interlock(&cs);
824     lwkt_cpusync_deinterlock(&cs);
825 }
826
827
828 void
829 lwkt_cpusync_interlock(lwkt_cpusync_t cs)
830 {
831     globaldata_t gd = mycpu;
832     cpumask_t mask;
833
834     /*
835      * mask acknowledge (cs_mack):  0->mask for stage 1
836      *
837      * mack does not include the current cpu.
838      */
839     mask = cs->cs_mask;
840     CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
841     CPUMASK_ANDMASK(mask, smp_active_mask);
842     CPUMASK_ASSZERO(cs->cs_mack);
843
844     crit_enter_id("cpusync");
845     if (CPUMASK_TESTNZERO(mask)) {
846         DEBUG_PUSH_INFO("cpusync_interlock");
847         ++ipiq_stat(gd).ipiq_cscount;
848         ++gd->gd_curthread->td_cscount;
849         lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote1, cs);
850         logipiq2(sync_start, (long)CPUMASK_LOWMASK(mask));
851         while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
852             lwkt_process_ipiq();
853             cpu_pause();
854 #ifdef _KERNEL_VIRTUAL
855             pthread_yield();
856 #endif
857         }
858         DEBUG_POP_INFO();
859     }
860 }
861
862 /*
863  * Interlocked cpus have executed remote1 and are polling in remote2.
864  * To deinterlock we clear cs_mack and wait for the cpus to execute
865  * the func and set their bit in cs_mack again.
866  *
867  */
868 void
869 lwkt_cpusync_deinterlock(lwkt_cpusync_t cs)
870 {
871     globaldata_t gd = mycpu;
872     cpumask_t mask;
873
874     /*
875      * mask acknowledge (cs_mack):  mack->0->mack for stage 2
876      *
877      * Clearing cpu bits for polling cpus in cs_mack will cause them to
878      * execute stage 2, which executes the cs_func(cs_data) and then sets
879      * their bit in cs_mack again.
880      *
881      * mack does not include the current cpu.
882      */
883     mask = cs->cs_mack;
884     cpu_ccfence();
885     CPUMASK_ASSZERO(cs->cs_mack);
886     cpu_ccfence();
887     if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
888             cs->cs_func(cs->cs_data);
889     if (CPUMASK_TESTNZERO(mask)) {
890         DEBUG_PUSH_INFO("cpusync_deinterlock");
891         while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
892             lwkt_process_ipiq();
893             cpu_pause();
894 #ifdef _KERNEL_VIRTUAL
895             pthread_yield();
896 #endif
897         }
898         DEBUG_POP_INFO();
899         /*
900          * cpusyncq ipis may be left queued without the RQF flag set due to
901          * a non-zero td_cscount, so be sure to process any laggards after
902          * decrementing td_cscount.
903          */
904         --gd->gd_curthread->td_cscount;
905         lwkt_process_ipiq();
906         logipiq2(sync_end, (long)CPUMASK_LOWMASK(mask));
907     }
908     crit_exit_id("cpusync");
909 }
910
911 /*
912  * The quick version does not quiesce the target cpu(s) but instead executes
913  * the function on the target cpu(s) and waits for all to acknowledge.  This
914  * avoids spinning on the target cpus.
915  *
916  * This function is typically only used for kernel_pmap updates.  User pmaps
917  * have to be quiesced.
918  */
919 void
920 lwkt_cpusync_quick(lwkt_cpusync_t cs)
921 {
922     globaldata_t gd = mycpu;
923     cpumask_t mask;
924
925     /*
926      * stage-2 cs_mack only.
927      */
928     mask = cs->cs_mask;
929     CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
930     CPUMASK_ANDMASK(mask, smp_active_mask);
931     CPUMASK_ASSZERO(cs->cs_mack);
932
933     crit_enter_id("cpusync");
934     if (CPUMASK_TESTNZERO(mask)) {
935         DEBUG_PUSH_INFO("cpusync_interlock");
936         ++ipiq_stat(gd).ipiq_cscount;
937         ++gd->gd_curthread->td_cscount;
938         lwkt_send_ipiq_mask(mask, (ipifunc1_t)lwkt_cpusync_remote2, cs);
939         logipiq2(sync_quick, (long)CPUMASK_LOWMASK(mask));
940         while (CPUMASK_CMPMASKNEQ(cs->cs_mack, mask)) {
941             lwkt_process_ipiq();
942             cpu_pause();
943 #ifdef _KERNEL_VIRTUAL
944             pthread_yield();
945 #endif
946         }
947
948         /*
949          * cpusyncq ipis may be left queued without the RQF flag set due to
950          * a non-zero td_cscount, so be sure to process any laggards after
951          * decrementing td_cscount.
952          */
953         DEBUG_POP_INFO();
954         --gd->gd_curthread->td_cscount;
955         lwkt_process_ipiq();
956     }
957     if (cs->cs_func && CPUMASK_TESTBIT(cs->cs_mask, gd->gd_cpuid))
958             cs->cs_func(cs->cs_data);
959     crit_exit_id("cpusync");
960 }
961
962 /*
963  * helper IPI remote messaging function.
964  * 
965  * Called on remote cpu when a new cpu synchronization request has been
966  * sent to us.  Execute the run function and adjust cs_count, then requeue
967  * the request so we spin on it.
968  */
969 static void
970 lwkt_cpusync_remote1(lwkt_cpusync_t cs)
971 {
972     globaldata_t gd = mycpu;
973
974     ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
975     lwkt_cpusync_remote2(cs);
976 }
977
978 /*
979  * helper IPI remote messaging function.
980  *
981  * Poll for the originator telling us to finish.  If it hasn't, requeue
982  * our request so we spin on it.
983  */
984 static void
985 lwkt_cpusync_remote2(lwkt_cpusync_t cs)
986 {
987     globaldata_t gd = mycpu;
988
989     if (CPUMASK_TESTMASK(cs->cs_mack, gd->gd_cpumask) == 0) {
990         if (cs->cs_func)
991                 cs->cs_func(cs->cs_data);
992         ATOMIC_CPUMASK_ORBIT(cs->cs_mack, gd->gd_cpuid);
993         /* cs can be ripped out at this point */
994     } else {
995         lwkt_ipiq_t ip;
996         int wi;
997
998         cpu_pause();
999 #ifdef _KERNEL_VIRTUAL
1000         pthread_yield();
1001 #endif
1002         cpu_lfence();
1003
1004         /*
1005          * Requeue our IPI to avoid a deep stack recursion.  If no other
1006          * IPIs are pending we can just loop up, which should help VMs
1007          * better-detect spin loops.
1008          */
1009         ip = &gd->gd_cpusyncq;
1010
1011         wi = ip->ip_windex & MAXCPUFIFO_MASK;
1012         ip->ip_info[wi].func = (ipifunc3_t)(ipifunc1_t)lwkt_cpusync_remote2;
1013         ip->ip_info[wi].arg1 = cs;
1014         ip->ip_info[wi].arg2 = 0;
1015         cpu_sfence();
1016         KKASSERT(ip->ip_windex - ip->ip_rindex < MAXCPUFIFO);
1017         ++ip->ip_windex;
1018         if (ipiq_debug && (ip->ip_windex & 0xFFFFFF) == 0) {
1019                 kprintf("cpu %d cm=%016jx %016jx f=%p\n",
1020                         gd->gd_cpuid,
1021                         (intmax_t)CPUMASK_LOWMASK(cs->cs_mask),
1022                         (intmax_t)CPUMASK_LOWMASK(cs->cs_mack),
1023                         cs->cs_func);
1024         }
1025     }
1026 }
1027
1028 #define LWKT_IPIQ_NLATENCY      8
1029 #define LWKT_IPIQ_NLATENCY_MASK (LWKT_IPIQ_NLATENCY - 1)
1030
1031 struct lwkt_ipiq_latency_log {
1032         int             idx;    /* unmasked index */
1033         int             pad;
1034         uint64_t        latency[LWKT_IPIQ_NLATENCY];
1035 };
1036
1037 static struct lwkt_ipiq_latency_log     lwkt_ipiq_latency_logs[MAXCPU];
1038 static uint64_t save_tsc;
1039
1040 /*
1041  * IPI callback (already in a critical section)
1042  */
1043 static void
1044 lwkt_ipiq_latency_testfunc(void *arg __unused)
1045 {
1046         uint64_t delta_tsc;
1047         struct globaldata *gd;
1048         struct lwkt_ipiq_latency_log *lat;
1049
1050         /*
1051          * Get delta TSC (assume TSCs are synchronized) as quickly as
1052          * possible and then convert to nanoseconds.
1053          */
1054         delta_tsc = rdtsc_ordered() - save_tsc;
1055         delta_tsc = delta_tsc * 1000000000LU / tsc_frequency;
1056
1057         /*
1058          * Record in our save array.
1059          */
1060         gd = mycpu;
1061         lat = &lwkt_ipiq_latency_logs[gd->gd_cpuid];
1062         lat->latency[lat->idx & LWKT_IPIQ_NLATENCY_MASK] = delta_tsc;
1063         ++lat->idx;
1064 }
1065
1066 /*
1067  * Send IPI from cpu0 to other cpus
1068  *
1069  * NOTE: Machine must be idle for test to run dependably, and also probably
1070  *       a good idea not to be running powerd.
1071  *
1072  * NOTE: Caller should use 'usched :1 <command>' to lock itself to cpu 0.
1073  *       See 'ipitest' script in /usr/src/test/sysperf/ipitest
1074  */
1075 static int
1076 lwkt_ipiq_latency_test(SYSCTL_HANDLER_ARGS)
1077 {
1078         struct globaldata *gd;
1079         int cpu = 0, orig_cpu, error;
1080
1081         error = sysctl_handle_int(oidp, &cpu, arg2, req);
1082         if (error || req->newptr == NULL)
1083                 return error;
1084
1085         if (cpu == 0)
1086                 return 0;
1087         else if (cpu >= ncpus || cpu < 0)
1088                 return EINVAL;
1089
1090         orig_cpu = mycpuid;
1091         lwkt_migratecpu(0);
1092
1093         gd = globaldata_find(cpu);
1094
1095         save_tsc = rdtsc_ordered();
1096         lwkt_send_ipiq(gd, lwkt_ipiq_latency_testfunc, NULL);
1097
1098         lwkt_migratecpu(orig_cpu);
1099         return 0;
1100 }
1101
1102 SYSCTL_NODE(_debug, OID_AUTO, ipiq, CTLFLAG_RW, 0, "");
1103 SYSCTL_PROC(_debug_ipiq, OID_AUTO, latency_test, CTLTYPE_INT | CTLFLAG_RW,
1104     NULL, 0, lwkt_ipiq_latency_test, "I",
1105     "ipi latency test, arg: remote cpuid");
1106
1107 static int
1108 lwkt_ipiq_latency(SYSCTL_HANDLER_ARGS)
1109 {
1110         struct lwkt_ipiq_latency_log *latency = arg1;
1111         uint64_t lat[LWKT_IPIQ_NLATENCY];
1112         int i;
1113
1114         for (i = 0; i < LWKT_IPIQ_NLATENCY; ++i)
1115                 lat[i] = latency->latency[i];
1116
1117         return sysctl_handle_opaque(oidp, lat, sizeof(lat), req);
1118 }
1119
1120 static void
1121 lwkt_ipiq_latency_init(void *dummy __unused)
1122 {
1123         int cpu;
1124
1125         for (cpu = 0; cpu < ncpus; ++cpu) {
1126                 char name[32];
1127
1128                 ksnprintf(name, sizeof(name), "latency%d", cpu);
1129                 SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_debug_ipiq),
1130                     OID_AUTO, name, CTLTYPE_OPAQUE | CTLFLAG_RD,
1131                     &lwkt_ipiq_latency_logs[cpu], 0, lwkt_ipiq_latency,
1132                     "LU", "7 latest ipi latency measurement results");
1133         }
1134 }
1135 SYSINIT(lwkt_ipiq_latency, SI_SUB_CONFIGURE, SI_ORDER_ANY,
1136     lwkt_ipiq_latency_init, NULL);