kernel - Attempt to fix early release panic w/USB's sim.
[dragonfly.git] / sys / bus / cam / cam_xpt.c
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77         struct task     task;
78         void            *data1;
79         uintptr_t       data2;
80 };
81
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87         SLIST_ENTRY(async_node) links;
88         u_int32_t       event_enable;   /* Async Event enables */
89         void            (*callback)(void *arg, u_int32_t code,
90                                     struct cam_path *path, void *args);
91         void            *callback_arg;
92 };
93
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111         cam_pinfo pinfo;
112         struct    cam_ed *device;
113 };
114
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121         TAILQ_ENTRY(cam_ed) links;
122         struct  cam_ed_qinfo alloc_ccb_entry;
123         struct  cam_ed_qinfo send_ccb_entry;
124         struct  cam_et   *target;
125         struct  cam_sim  *sim;
126         lun_id_t         lun_id;
127         struct  camq drvq;              /*
128                                          * Queue of type drivers wanting to do
129                                          * work on this device.
130                                          */
131         struct  cam_ccbq ccbq;          /* Queue of pending ccbs */
132         struct  async_list asyncs;      /* Async callback info for this B/T/L */
133         struct  periph_list periphs;    /* All attached devices */
134         u_int   generation;             /* Generation number */
135         struct  cam_periph *owner;      /* Peripheral driver's ownership tag */
136         struct  xpt_quirk_entry *quirk; /* Oddities about this device */
137                                         /* Storage for the inquiry data */
138         cam_proto        protocol;
139         u_int            protocol_version;
140         cam_xport        transport;
141         u_int            transport_version;
142         struct           scsi_inquiry_data inq_data;
143         u_int8_t         inq_flags;     /*
144                                          * Current settings for inquiry flags.
145                                          * This allows us to override settings
146                                          * like disconnection and tagged
147                                          * queuing for a device.
148                                          */
149         u_int8_t         queue_flags;   /* Queue flags from the control page */
150         u_int8_t         serial_num_len;
151         u_int8_t        *serial_num;
152         u_int32_t        qfrozen_cnt;
153         u_int32_t        flags;
154 #define CAM_DEV_UNCONFIGURED            0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING     0x02
156 #define CAM_DEV_REL_ON_COMPLETE         0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY      0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED     0x10
159 #define CAM_DEV_TAG_AFTER_COUNT         0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID      0x40
161 #define CAM_DEV_IN_DV                   0x80
162 #define CAM_DEV_DV_HIT_BOTTOM           0x100
163         u_int32_t        tag_delay_count;
164 #define CAM_TAG_DELAY_COUNT             5
165         u_int32_t        tag_saved_openings;
166         u_int32_t        refcount;
167         struct callout   callout;
168 };
169
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177         TAILQ_HEAD(, cam_ed) ed_entries;
178         TAILQ_ENTRY(cam_et) links;
179         struct  cam_eb  *bus;
180         target_id_t     target_id;
181         u_int32_t       refcount;
182         u_int           generation;
183         struct          timeval last_reset;     /* uptime of last reset */
184 };
185
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192         TAILQ_HEAD(, cam_et) et_entries;
193         TAILQ_ENTRY(cam_eb)  links;
194         path_id_t            path_id;
195         struct cam_sim       *sim;
196         struct timeval       last_reset;        /* uptime of last reset */
197         u_int32_t            flags;
198 #define CAM_EB_RUNQ_SCHEDULED   0x01
199         u_int32_t            refcount;
200         u_int                generation;
201         int                  counted_to_config; /* busses_to_config */
202 };
203
204 struct cam_path {
205         struct cam_periph *periph;
206         struct cam_eb     *bus;
207         struct cam_et     *target;
208         struct cam_ed     *device;
209 };
210
211 struct xpt_quirk_entry {
212         struct scsi_inquiry_pattern inq_pat;
213         u_int8_t quirks;
214 #define CAM_QUIRK_NOLUNS        0x01
215 #define CAM_QUIRK_NOSERIAL      0x02
216 #define CAM_QUIRK_HILUNS        0x04
217 #define CAM_QUIRK_NOHILUNS      0x08
218         u_int mintags;
219         u_int maxtags;
220 };
221
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228
229 #define CAM_SCSI2_MAXLUN        8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define CAN_SRCH_HI_SPARSE(dv)                          \
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0)      \
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)            \
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241
242 #define CAN_SRCH_HI_DENSE(dv)                           \
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0)      \
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)            \
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246
247 typedef enum {
248         XPT_FLAG_OPEN           = 0x01
249 } xpt_flags;
250
251 struct xpt_softc {
252         xpt_flags               flags;
253         u_int32_t               xpt_generation;
254
255         /* number of high powered commands that can go through right now */
256         STAILQ_HEAD(highpowerlist, ccb_hdr)     highpowerq;
257         int                     num_highpower;
258
259         /* queue for handling async rescan requests. */
260         TAILQ_HEAD(, ccb_hdr)   ccb_scanq;
261         int                     ccb_scanq_running;
262
263         /* Registered busses */
264         TAILQ_HEAD(,cam_eb)     xpt_busses;
265         u_int                   bus_generation;
266
267         struct intr_config_hook *xpt_config_hook;
268
269         struct lock             xpt_topo_lock;
270         struct lock             xpt_lock;
271 };
272
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282         {
283                 /* Reports QUEUE FULL for temporary resource shortages */
284                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
286         },
287         {
288                 /* Reports QUEUE FULL for temporary resource shortages */
289                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
291         },
292         {
293                 /* Reports QUEUE FULL for temporary resource shortages */
294                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
296         },
297         {
298                 /* Broken tagged queuing drive */
299                 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
301         },
302         {
303                 /* Broken tagged queuing drive */
304                 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
306         },
307         {
308                 /* Broken tagged queuing drive */
309                 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
311         },
312         {
313                 /*
314                  * Unfortunately, the Quantum Atlas III has the same
315                  * problem as the Atlas II drives above.
316                  * Reported by: "Johan Granlund" <johan@granlund.nu>
317                  *
318                  * For future reference, the drive with the problem was:
319                  * QUANTUM QM39100TD-SW N1B0
320                  *
321                  * It's possible that Quantum will fix the problem in later
322                  * firmware revisions.  If that happens, the quirk entry
323                  * will need to be made specific to the firmware revisions
324                  * with the problem.
325                  *
326                  */
327                 /* Reports QUEUE FULL for temporary resource shortages */
328                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
330         },
331         {
332                 /*
333                  * 18 Gig Atlas III, same problem as the 9G version.
334                  * Reported by: Andre Albsmeier
335                  *              <andre.albsmeier@mchp.siemens.de>
336                  *
337                  * For future reference, the drive with the problem was:
338                  * QUANTUM QM318000TD-S N491
339                  */
340                 /* Reports QUEUE FULL for temporary resource shortages */
341                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
343         },
344         {
345                 /*
346                  * Broken tagged queuing drive
347                  * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348                  *         and: Martin Renters <martin@tdc.on.ca>
349                  */
350                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
352         },
353                 /*
354                  * The Seagate Medalist Pro drives have very poor write
355                  * performance with anything more than 2 tags.
356                  *
357                  * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358                  * Drive:  <SEAGATE ST36530N 1444>
359                  *
360                  * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361                  * Drive:  <SEAGATE ST34520W 1281>
362                  *
363                  * No one has actually reported that the 9G version
364                  * (ST39140*) of the Medalist Pro has the same problem, but
365                  * we're assuming that it does because the 4G and 6.5G
366                  * versions of the drive are broken.
367                  */
368         {
369                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
371         },
372         {
373                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
375         },
376         {
377                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
379         },
380         {
381                 /*
382                  * Slow when tagged queueing is enabled.  Write performance
383                  * steadily drops off with more and more concurrent
384                  * transactions.  Best sequential write performance with
385                  * tagged queueing turned off and write caching turned on.
386                  *
387                  * PR:  kern/10398
388                  * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389                  * Drive:  DCAS-34330 w/ "S65A" firmware.
390                  *
391                  * The drive with the problem had the "S65A" firmware
392                  * revision, and has also been reported (by Stephen J.
393                  * Roznowski <sjr@home.net>) for a drive with the "S61A"
394                  * firmware revision.
395                  *
396                  * Although no one has reported problems with the 2 gig
397                  * version of the DCAS drive, the assumption is that it
398                  * has the same problems as the 4 gig version.  Therefore
399                  * this quirk entries disables tagged queueing for all
400                  * DCAS drives.
401                  */
402                 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
404         },
405         {
406                 /* Broken tagged queuing drive */
407                 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
409         },
410         {
411                 /* Broken tagged queuing drive */
412                 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
414         },
415         {
416                 /* This does not support other than LUN 0 */
417                 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418                 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419         },
420         {
421                 /*
422                  * Broken tagged queuing drive.
423                  * Submitted by:
424                  * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425                  * in PR kern/9535
426                  */
427                 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
429         },
430         {
431                 /*
432                  * Slow when tagged queueing is enabled. (1.5MB/sec versus
433                  * 8MB/sec.)
434                  * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435                  * Best performance with these drives is achieved with
436                  * tagged queueing turned off, and write caching turned on.
437                  */
438                 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442                 /*
443                  * Slow when tagged queueing is enabled. (1.5MB/sec versus
444                  * 8MB/sec.)
445                  * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446                  * Best performance with these drives is achieved with
447                  * tagged queueing turned off, and write caching turned on.
448                  */
449                 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452         {
453                 /*
454                  * Doesn't handle queue full condition correctly,
455                  * so we need to limit maxtags to what the device
456                  * can handle instead of determining this automatically.
457                  */
458                 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459                 /*quirks*/0, /*mintags*/2, /*maxtags*/32
460         },
461         {
462                 /* Really only one LUN */
463                 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465         },
466         {
467                 /* I can't believe we need a quirk for DPT volumes. */
468                 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469                 CAM_QUIRK_NOLUNS,
470                 /*mintags*/0, /*maxtags*/255
471         },
472         {
473                 /*
474                  * Many Sony CDROM drives don't like multi-LUN probing.
475                  */
476                 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478         },
479         {
480                 /*
481                  * This drive doesn't like multiple LUN probing.
482                  * Submitted by:  Parag Patel <parag@cgt.com>
483                  */
484                 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486         },
487         {
488                 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490         },
491         {
492                 /*
493                  * The 8200 doesn't like multi-lun probing, and probably
494                  * don't like serial number requests either.
495                  */
496                 {
497                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498                         "EXB-8200*", "*"
499                 },
500                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501         },
502         {
503                 /*
504                  * Let's try the same as above, but for a drive that says
505                  * it's an IPL-6860 but is actually an EXB 8200.
506                  */
507                 {
508                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509                         "IPL-6860*", "*"
510                 },
511                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512         },
513         {
514                 /*
515                  * These Hitachi drives don't like multi-lun probing.
516                  * The PR submitter has a DK319H, but says that the Linux
517                  * kernel has a similar work-around for the DK312 and DK314,
518                  * so all DK31* drives are quirked here.
519                  * PR:            misc/18793
520                  * Submitted by:  Paul Haddad <paul@pth.com>
521                  */
522                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523                 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524         },
525         {
526                 /*
527                  * The Hitachi CJ series with J8A8 firmware apparantly has
528                  * problems with tagged commands.
529                  * PR: 23536
530                  * Reported by: amagai@nue.org
531                  */
532                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534         },
535         {
536                 /*
537                  * These are the large storage arrays.
538                  * Submitted by:  William Carrel <william.carrel@infospace.com>
539                  */
540                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541                 CAM_QUIRK_HILUNS, 2, 1024
542         },
543         {
544                 /*
545                  * This old revision of the TDC3600 is also SCSI-1, and
546                  * hangs upon serial number probing.
547                  */
548                 {
549                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550                         " TDC 3600", "U07:"
551                 },
552                 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553         },
554         {
555                 /*
556                  * Would repond to all LUNs if asked for.
557                  */
558                 {
559                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560                         "CP150", "*"
561                 },
562                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563         },
564         {
565                 /*
566                  * Would repond to all LUNs if asked for.
567                  */
568                 {
569                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570                         "96X2*", "*"
571                 },
572                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573         },
574         {
575                 /* Submitted by: Matthew Dodd <winter@jurai.net> */
576                 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578         },
579         {
580                 /* Submitted by: Matthew Dodd <winter@jurai.net> */
581                 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583         },
584         {
585                 /* TeraSolutions special settings for TRC-22 RAID */
586                 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587                   /*quirks*/0, /*mintags*/55, /*maxtags*/255
588         },
589         {
590                 /* Veritas Storage Appliance */
591                 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592                   CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593         },
594         {
595                 /*
596                  * Would respond to all LUNs.  Device type and removable
597                  * flag are jumper-selectable.
598                  */
599                 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600                   "Tahiti 1", "*"
601                 },
602                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603         },
604         {
605                 /* EasyRAID E5A aka. areca ARC-6010 */
606                 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607                   CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608         },
609         {
610                 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612         },
613         {
614                 /* Default tagged queuing parameters for all devices */
615                 {
616                   T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617                   /*vendor*/"*", /*product*/"*", /*revision*/"*"
618                 },
619                 /*quirks*/0, /*mintags*/2, /*maxtags*/255
620         },
621 };
622
623 static const int xpt_quirk_table_size =
624         sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
625
626 typedef enum {
627         DM_RET_COPY             = 0x01,
628         DM_RET_FLAG_MASK        = 0x0f,
629         DM_RET_NONE             = 0x00,
630         DM_RET_STOP             = 0x10,
631         DM_RET_DESCEND          = 0x20,
632         DM_RET_ERROR            = 0x30,
633         DM_RET_ACTION_MASK      = 0xf0
634 } dev_match_ret;
635
636 typedef enum {
637         XPT_DEPTH_BUS,
638         XPT_DEPTH_TARGET,
639         XPT_DEPTH_DEVICE,
640         XPT_DEPTH_PERIPH
641 } xpt_traverse_depth;
642
643 struct xpt_traverse_config {
644         xpt_traverse_depth      depth;
645         void                    *tr_func;
646         void                    *tr_arg;
647 };
648
649 typedef int     xpt_busfunc_t (struct cam_eb *bus, void *arg);
650 typedef int     xpt_targetfunc_t (struct cam_et *target, void *arg);
651 typedef int     xpt_devicefunc_t (struct cam_ed *device, void *arg);
652 typedef int     xpt_periphfunc_t (struct cam_periph *periph, void *arg);
653 typedef int     xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
654
655 /* Transport layer configuration information */
656 static struct xpt_softc xsoftc;
657
658 /* Queues for our software interrupt handler */
659 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
660 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
661 static cam_simq_t cam_simq;
662 static struct spinlock cam_simq_spin;
663
664 struct cam_periph *xpt_periph;
665
666 static periph_init_t xpt_periph_init;
667
668 static periph_init_t probe_periph_init;
669
670 static struct periph_driver xpt_driver =
671 {
672         xpt_periph_init, "xpt",
673         TAILQ_HEAD_INITIALIZER(xpt_driver.units)
674 };
675
676 static struct periph_driver probe_driver =
677 {
678         probe_periph_init, "probe",
679         TAILQ_HEAD_INITIALIZER(probe_driver.units)
680 };
681
682 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
683 PERIPHDRIVER_DECLARE(probe, probe_driver);
684
685 static d_open_t xptopen;
686 static d_close_t xptclose;
687 static d_ioctl_t xptioctl;
688
689 static struct dev_ops xpt_ops = {
690         { "xpt", 0, 0 },
691         .d_open = xptopen,
692         .d_close = xptclose,
693         .d_ioctl = xptioctl
694 };
695
696 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
697 static void dead_sim_poll(struct cam_sim *sim);
698
699 /* Dummy SIM that is used when the real one has gone. */
700 static struct cam_sim cam_dead_sim;
701 static struct lock    cam_dead_lock;
702
703 /* Storage for debugging datastructures */
704 #ifdef  CAMDEBUG
705 struct cam_path *cam_dpath;
706 u_int32_t cam_dflags;
707 u_int32_t cam_debug_delay;
708 #endif
709
710 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
711 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
712 #endif
713
714 /*
715  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
716  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
717  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
718  */
719 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
720     || defined(CAM_DEBUG_LUN)
721 #ifdef CAMDEBUG
722 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
723     || !defined(CAM_DEBUG_LUN)
724 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
725         and CAM_DEBUG_LUN"
726 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
727 #else /* !CAMDEBUG */
728 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
729 #endif /* CAMDEBUG */
730 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
731
732 /* Our boot-time initialization hook */
733 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
734
735 static moduledata_t cam_moduledata = {
736         "cam",
737         cam_module_event_handler,
738         NULL
739 };
740
741 static int      xpt_init(void *);
742
743 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
744 MODULE_VERSION(cam, 1);
745
746
747 static cam_status       xpt_compile_path(struct cam_path *new_path,
748                                          struct cam_periph *perph,
749                                          path_id_t path_id,
750                                          target_id_t target_id,
751                                          lun_id_t lun_id);
752
753 static void             xpt_release_path(struct cam_path *path);
754
755 static void             xpt_async_bcast(struct async_list *async_head,
756                                         u_int32_t async_code,
757                                         struct cam_path *path,
758                                         void *async_arg);
759 static void             xpt_dev_async(u_int32_t async_code,
760                                       struct cam_eb *bus,
761                                       struct cam_et *target,
762                                       struct cam_ed *device,
763                                       void *async_arg);
764 static path_id_t xptnextfreepathid(void);
765 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
766 static union ccb *xpt_get_ccb(struct cam_ed *device);
767 static int       xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
768                                   u_int32_t new_priority);
769 static void      xpt_run_dev_allocq(struct cam_eb *bus);
770 static void      xpt_run_dev_sendq(struct cam_eb *bus);
771 static timeout_t xpt_release_devq_timeout;
772 static void      xpt_release_bus(struct cam_eb *bus);
773 static void      xpt_release_devq_device(struct cam_ed *dev, u_int count,
774                                          int run_queue);
775 static struct cam_et*
776                  xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
777 static void      xpt_release_target(struct cam_eb *bus, struct cam_et *target);
778 static struct cam_ed*
779                  xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
780                                   lun_id_t lun_id);
781 static void      xpt_release_device(struct cam_eb *bus, struct cam_et *target,
782                                     struct cam_ed *device);
783 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
784 static struct cam_eb*
785                  xpt_find_bus(path_id_t path_id);
786 static struct cam_et*
787                  xpt_find_target(struct cam_eb *bus, target_id_t target_id);
788 static struct cam_ed*
789                  xpt_find_device(struct cam_et *target, lun_id_t lun_id);
790 static void      xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
791 static void      xpt_scan_lun(struct cam_periph *periph,
792                               struct cam_path *path, cam_flags flags,
793                               union ccb *ccb);
794 static void      xptscandone(struct cam_periph *periph, union ccb *done_ccb);
795 static xpt_busfunc_t    xptconfigbuscountfunc;
796 static xpt_busfunc_t    xptconfigfunc;
797 static void      xpt_config(void *arg);
798 static xpt_devicefunc_t xptpassannouncefunc;
799 static void      xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
800 static void      xpt_uncount_bus (struct cam_eb *bus);
801 static void      xptaction(struct cam_sim *sim, union ccb *work_ccb);
802 static void      xptpoll(struct cam_sim *sim);
803 static inthand2_t swi_cambio;
804 static void      camisr(void *);
805 static void      camisr_runqueue(struct cam_sim *);
806 static dev_match_ret    xptbusmatch(struct dev_match_pattern *patterns,
807                                     u_int num_patterns, struct cam_eb *bus);
808 static dev_match_ret    xptdevicematch(struct dev_match_pattern *patterns,
809                                        u_int num_patterns,
810                                        struct cam_ed *device);
811 static dev_match_ret    xptperiphmatch(struct dev_match_pattern *patterns,
812                                        u_int num_patterns,
813                                        struct cam_periph *periph);
814 static xpt_busfunc_t    xptedtbusfunc;
815 static xpt_targetfunc_t xptedttargetfunc;
816 static xpt_devicefunc_t xptedtdevicefunc;
817 static xpt_periphfunc_t xptedtperiphfunc;
818 static xpt_pdrvfunc_t   xptplistpdrvfunc;
819 static xpt_periphfunc_t xptplistperiphfunc;
820 static int              xptedtmatch(struct ccb_dev_match *cdm);
821 static int              xptperiphlistmatch(struct ccb_dev_match *cdm);
822 static int              xptbustraverse(struct cam_eb *start_bus,
823                                        xpt_busfunc_t *tr_func, void *arg);
824 static int              xpttargettraverse(struct cam_eb *bus,
825                                           struct cam_et *start_target,
826                                           xpt_targetfunc_t *tr_func, void *arg);
827 static int              xptdevicetraverse(struct cam_et *target,
828                                           struct cam_ed *start_device,
829                                           xpt_devicefunc_t *tr_func, void *arg);
830 static int              xptperiphtraverse(struct cam_ed *device,
831                                           struct cam_periph *start_periph,
832                                           xpt_periphfunc_t *tr_func, void *arg);
833 static int              xptpdrvtraverse(struct periph_driver **start_pdrv,
834                                         xpt_pdrvfunc_t *tr_func, void *arg);
835 static int              xptpdperiphtraverse(struct periph_driver **pdrv,
836                                             struct cam_periph *start_periph,
837                                             xpt_periphfunc_t *tr_func,
838                                             void *arg);
839 static xpt_busfunc_t    xptdefbusfunc;
840 static xpt_targetfunc_t xptdeftargetfunc;
841 static xpt_devicefunc_t xptdefdevicefunc;
842 static xpt_periphfunc_t xptdefperiphfunc;
843 static int              xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
844 static int              xpt_for_all_devices(xpt_devicefunc_t *tr_func,
845                                             void *arg);
846 static xpt_devicefunc_t xptsetasyncfunc;
847 static xpt_busfunc_t    xptsetasyncbusfunc;
848 static cam_status       xptregister(struct cam_periph *periph,
849                                     void *arg);
850 static cam_status       proberegister(struct cam_periph *periph,
851                                       void *arg);
852 static void      probeschedule(struct cam_periph *probe_periph);
853 static void      probestart(struct cam_periph *periph, union ccb *start_ccb);
854 static void      proberequestdefaultnegotiation(struct cam_periph *periph);
855 static int       proberequestbackoff(struct cam_periph *periph,
856                                      struct cam_ed *device);
857 static void      probedone(struct cam_periph *periph, union ccb *done_ccb);
858 static void      probecleanup(struct cam_periph *periph);
859 static void      xpt_find_quirk(struct cam_ed *device);
860 static void      xpt_devise_transport(struct cam_path *path);
861 static void      xpt_set_transfer_settings(struct ccb_trans_settings *cts,
862                                            struct cam_ed *device,
863                                            int async_update);
864 static void      xpt_toggle_tags(struct cam_path *path);
865 static void      xpt_start_tags(struct cam_path *path);
866 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
867                                             struct cam_ed *dev);
868 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
869                                            struct cam_ed *dev);
870 static __inline int periph_is_queued(struct cam_periph *periph);
871 static __inline int device_is_alloc_queued(struct cam_ed *device);
872 static __inline int device_is_send_queued(struct cam_ed *device);
873 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
874
875 static __inline int
876 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
877 {
878         int retval;
879
880         if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
881                 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
882                         cam_ccbq_resize(&dev->ccbq,
883                                         dev->ccbq.dev_openings
884                                         + dev->ccbq.dev_active);
885                         dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
886                 }
887                 /*
888                  * The priority of a device waiting for CCB resources
889                  * is that of the the highest priority peripheral driver
890                  * enqueued.
891                  */
892                 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
893                                           &dev->alloc_ccb_entry.pinfo,
894                                           CAMQ_GET_HEAD(&dev->drvq)->priority);
895         } else {
896                 retval = 0;
897         }
898
899         return (retval);
900 }
901
902 static __inline int
903 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
904 {
905         int     retval;
906
907         if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
908                 /*
909                  * The priority of a device waiting for controller
910                  * resources is that of the the highest priority CCB
911                  * enqueued.
912                  */
913                 retval =
914                     xpt_schedule_dev(&bus->sim->devq->send_queue,
915                                      &dev->send_ccb_entry.pinfo,
916                                      CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
917         } else {
918                 retval = 0;
919         }
920         return (retval);
921 }
922
923 static __inline int
924 periph_is_queued(struct cam_periph *periph)
925 {
926         return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
927 }
928
929 static __inline int
930 device_is_alloc_queued(struct cam_ed *device)
931 {
932         return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
933 }
934
935 static __inline int
936 device_is_send_queued(struct cam_ed *device)
937 {
938         return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
939 }
940
941 static __inline int
942 dev_allocq_is_runnable(struct cam_devq *devq)
943 {
944         /*
945          * Have work to do.
946          * Have space to do more work.
947          * Allowed to do work.
948          */
949         return ((devq->alloc_queue.qfrozen_cnt == 0)
950              && (devq->alloc_queue.entries > 0)
951              && (devq->alloc_openings > 0));
952 }
953
954 static void
955 xpt_periph_init(void)
956 {
957         make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
958 }
959
960 static void
961 probe_periph_init(void)
962 {
963 }
964
965
966 static void
967 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 {
969         /* Caller will release the CCB */
970         wakeup(&done_ccb->ccb_h.cbfcnp);
971 }
972
973 static int
974 xptopen(struct dev_open_args *ap)
975 {
976         cdev_t dev = ap->a_head.a_dev;
977
978         /*
979          * Only allow read-write access.
980          */
981         if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
982                 return(EPERM);
983
984         /*
985          * We don't allow nonblocking access.
986          */
987         if ((ap->a_oflags & O_NONBLOCK) != 0) {
988                 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
989                 return(ENODEV);
990         }
991
992         /* Mark ourselves open */
993         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
994         xsoftc.flags |= XPT_FLAG_OPEN;
995         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996
997         return(0);
998 }
999
1000 static int
1001 xptclose(struct dev_close_args *ap)
1002 {
1003
1004         /* Mark ourselves closed */
1005         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1006         xsoftc.flags &= ~XPT_FLAG_OPEN;
1007         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008
1009         return(0);
1010 }
1011
1012 /*
1013  * Don't automatically grab the xpt softc lock here even though this is going
1014  * through the xpt device.  The xpt device is really just a back door for
1015  * accessing other devices and SIMs, so the right thing to do is to grab
1016  * the appropriate SIM lock once the bus/SIM is located.
1017  */
1018 static int
1019 xptioctl(struct dev_ioctl_args *ap)
1020 {
1021         int error;
1022
1023         error = 0;
1024
1025         switch(ap->a_cmd) {
1026         /*
1027          * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028          * to accept CCB types that don't quite make sense to send through a
1029          * passthrough driver.
1030          */
1031         case CAMIOCOMMAND: {
1032                 union ccb *ccb;
1033                 union ccb *inccb;
1034                 struct cam_eb *bus;
1035
1036                 inccb = (union ccb *)ap->a_data;
1037
1038                 bus = xpt_find_bus(inccb->ccb_h.path_id);
1039                 if (bus == NULL) {
1040                         error = EINVAL;
1041                         break;
1042                 }
1043
1044                 switch(inccb->ccb_h.func_code) {
1045                 case XPT_SCAN_BUS:
1046                 case XPT_RESET_BUS:
1047                         if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1048                          || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1049                                 error = EINVAL;
1050                                 break;
1051                         }
1052                         /* FALLTHROUGH */
1053                 case XPT_PATH_INQ:
1054                 case XPT_ENG_INQ:
1055                 case XPT_SCAN_LUN:
1056
1057                         ccb = xpt_alloc_ccb();
1058
1059                         CAM_SIM_LOCK(bus->sim);
1060
1061                         /*
1062                          * Create a path using the bus, target, and lun the
1063                          * user passed in.
1064                          */
1065                         if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1066                                             inccb->ccb_h.path_id,
1067                                             inccb->ccb_h.target_id,
1068                                             inccb->ccb_h.target_lun) !=
1069                                             CAM_REQ_CMP){
1070                                 error = EINVAL;
1071                                 CAM_SIM_UNLOCK(bus->sim);
1072                                 xpt_free_ccb(ccb);
1073                                 break;
1074                         }
1075                         /* Ensure all of our fields are correct */
1076                         xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1077                                       inccb->ccb_h.pinfo.priority);
1078                         xpt_merge_ccb(ccb, inccb);
1079                         ccb->ccb_h.cbfcnp = xptdone;
1080                         cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1081                         bcopy(ccb, inccb, sizeof(union ccb));
1082                         xpt_free_path(ccb->ccb_h.path);
1083                         xpt_free_ccb(ccb);
1084                         CAM_SIM_UNLOCK(bus->sim);
1085                         break;
1086
1087                 case XPT_DEBUG: {
1088                         union ccb ccb;
1089
1090                         /*
1091                          * This is an immediate CCB, so it's okay to
1092                          * allocate it on the stack.
1093                          */
1094
1095                         CAM_SIM_LOCK(bus->sim);
1096
1097                         /*
1098                          * Create a path using the bus, target, and lun the
1099                          * user passed in.
1100                          */
1101                         if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1102                                             inccb->ccb_h.path_id,
1103                                             inccb->ccb_h.target_id,
1104                                             inccb->ccb_h.target_lun) !=
1105                                             CAM_REQ_CMP){
1106                                 error = EINVAL;
1107                                 CAM_SIM_UNLOCK(bus->sim);
1108                                 break;
1109                         }
1110                         /* Ensure all of our fields are correct */
1111                         xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1112                                       inccb->ccb_h.pinfo.priority);
1113                         xpt_merge_ccb(&ccb, inccb);
1114                         ccb.ccb_h.cbfcnp = xptdone;
1115                         xpt_action(&ccb);
1116                         CAM_SIM_UNLOCK(bus->sim);
1117                         bcopy(&ccb, inccb, sizeof(union ccb));
1118                         xpt_free_path(ccb.ccb_h.path);
1119                         break;
1120
1121                 }
1122                 case XPT_DEV_MATCH: {
1123                         struct cam_periph_map_info mapinfo;
1124                         struct cam_path *old_path;
1125
1126                         /*
1127                          * We can't deal with physical addresses for this
1128                          * type of transaction.
1129                          */
1130                         if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1131                                 error = EINVAL;
1132                                 break;
1133                         }
1134
1135                         /*
1136                          * Save this in case the caller had it set to
1137                          * something in particular.
1138                          */
1139                         old_path = inccb->ccb_h.path;
1140
1141                         /*
1142                          * We really don't need a path for the matching
1143                          * code.  The path is needed because of the
1144                          * debugging statements in xpt_action().  They
1145                          * assume that the CCB has a valid path.
1146                          */
1147                         inccb->ccb_h.path = xpt_periph->path;
1148
1149                         bzero(&mapinfo, sizeof(mapinfo));
1150
1151                         /*
1152                          * Map the pattern and match buffers into kernel
1153                          * virtual address space.
1154                          */
1155                         error = cam_periph_mapmem(inccb, &mapinfo);
1156
1157                         if (error) {
1158                                 inccb->ccb_h.path = old_path;
1159                                 break;
1160                         }
1161
1162                         /*
1163                          * This is an immediate CCB, we can send it on directly.
1164                          */
1165                         xpt_action(inccb);
1166
1167                         /*
1168                          * Map the buffers back into user space.
1169                          */
1170                         cam_periph_unmapmem(inccb, &mapinfo);
1171
1172                         inccb->ccb_h.path = old_path;
1173
1174                         error = 0;
1175                         break;
1176                 }
1177                 default:
1178                         error = ENOTSUP;
1179                         break;
1180                 }
1181                 xpt_release_bus(bus);
1182                 break;
1183         }
1184         /*
1185          * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1186          * with the periphal driver name and unit name filled in.  The other
1187          * fields don't really matter as input.  The passthrough driver name
1188          * ("pass"), and unit number are passed back in the ccb.  The current
1189          * device generation number, and the index into the device peripheral
1190          * driver list, and the status are also passed back.  Note that
1191          * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1192          * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1193          * (or rather should be) impossible for the device peripheral driver
1194          * list to change since we look at the whole thing in one pass, and
1195          * we do it with lock protection.
1196          *
1197          */
1198         case CAMGETPASSTHRU: {
1199                 union ccb *ccb;
1200                 struct cam_periph *periph;
1201                 struct periph_driver **p_drv;
1202                 char   *name;
1203                 u_int unit;
1204                 u_int cur_generation;
1205                 int base_periph_found;
1206                 int splbreaknum;
1207
1208                 ccb = (union ccb *)ap->a_data;
1209                 unit = ccb->cgdl.unit_number;
1210                 name = ccb->cgdl.periph_name;
1211                 /*
1212                  * Every 100 devices, we want to drop our lock protection to
1213                  * give the software interrupt handler a chance to run.
1214                  * Most systems won't run into this check, but this should
1215                  * avoid starvation in the software interrupt handler in
1216                  * large systems.
1217                  */
1218                 splbreaknum = 100;
1219
1220                 ccb = (union ccb *)ap->a_data;
1221
1222                 base_periph_found = 0;
1223
1224                 /*
1225                  * Sanity check -- make sure we don't get a null peripheral
1226                  * driver name.
1227                  */
1228                 if (*ccb->cgdl.periph_name == '\0') {
1229                         error = EINVAL;
1230                         break;
1231                 }
1232
1233                 /* Keep the list from changing while we traverse it */
1234                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1235 ptstartover:
1236                 cur_generation = xsoftc.xpt_generation;
1237
1238                 /* first find our driver in the list of drivers */
1239                 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1240                         if (strcmp((*p_drv)->driver_name, name) == 0)
1241                                 break;
1242                 }
1243
1244                 if (*p_drv == NULL) {
1245                         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1246                         ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1247                         ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1248                         *ccb->cgdl.periph_name = '\0';
1249                         ccb->cgdl.unit_number = 0;
1250                         error = ENOENT;
1251                         break;
1252                 }
1253
1254                 /*
1255                  * Run through every peripheral instance of this driver
1256                  * and check to see whether it matches the unit passed
1257                  * in by the user.  If it does, get out of the loops and
1258                  * find the passthrough driver associated with that
1259                  * peripheral driver.
1260                  */
1261                 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262
1263                         if (periph->unit_number == unit) {
1264                                 break;
1265                         } else if (--splbreaknum == 0) {
1266                                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1267                                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1268                                 splbreaknum = 100;
1269                                 if (cur_generation != xsoftc.xpt_generation)
1270                                        goto ptstartover;
1271                         }
1272                 }
1273                 /*
1274                  * If we found the peripheral driver that the user passed
1275                  * in, go through all of the peripheral drivers for that
1276                  * particular device and look for a passthrough driver.
1277                  */
1278                 if (periph != NULL) {
1279                         struct cam_ed *device;
1280                         int i;
1281
1282                         base_periph_found = 1;
1283                         device = periph->path->device;
1284                         for (i = 0, periph = SLIST_FIRST(&device->periphs);
1285                              periph != NULL;
1286                              periph = SLIST_NEXT(periph, periph_links), i++) {
1287                                 /*
1288                                  * Check to see whether we have a
1289                                  * passthrough device or not.
1290                                  */
1291                                 if (strcmp(periph->periph_name, "pass") == 0) {
1292                                         /*
1293                                          * Fill in the getdevlist fields.
1294                                          */
1295                                         strcpy(ccb->cgdl.periph_name,
1296                                                periph->periph_name);
1297                                         ccb->cgdl.unit_number =
1298                                                 periph->unit_number;
1299                                         if (SLIST_NEXT(periph, periph_links))
1300                                                 ccb->cgdl.status =
1301                                                         CAM_GDEVLIST_MORE_DEVS;
1302                                         else
1303                                                 ccb->cgdl.status =
1304                                                        CAM_GDEVLIST_LAST_DEVICE;
1305                                         ccb->cgdl.generation =
1306                                                 device->generation;
1307                                         ccb->cgdl.index = i;
1308                                         /*
1309                                          * Fill in some CCB header fields
1310                                          * that the user may want.
1311                                          */
1312                                         ccb->ccb_h.path_id =
1313                                                 periph->path->bus->path_id;
1314                                         ccb->ccb_h.target_id =
1315                                                 periph->path->target->target_id;
1316                                         ccb->ccb_h.target_lun =
1317                                                 periph->path->device->lun_id;
1318                                         ccb->ccb_h.status = CAM_REQ_CMP;
1319                                         break;
1320                                 }
1321                         }
1322                 }
1323
1324                 /*
1325                  * If the periph is null here, one of two things has
1326                  * happened.  The first possibility is that we couldn't
1327                  * find the unit number of the particular peripheral driver
1328                  * that the user is asking about.  e.g. the user asks for
1329                  * the passthrough driver for "da11".  We find the list of
1330                  * "da" peripherals all right, but there is no unit 11.
1331                  * The other possibility is that we went through the list
1332                  * of peripheral drivers attached to the device structure,
1333                  * but didn't find one with the name "pass".  Either way,
1334                  * we return ENOENT, since we couldn't find something.
1335                  */
1336                 if (periph == NULL) {
1337                         ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1338                         ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1339                         *ccb->cgdl.periph_name = '\0';
1340                         ccb->cgdl.unit_number = 0;
1341                         error = ENOENT;
1342                         /*
1343                          * It is unfortunate that this is even necessary,
1344                          * but there are many, many clueless users out there.
1345                          * If this is true, the user is looking for the
1346                          * passthrough driver, but doesn't have one in his
1347                          * kernel.
1348                          */
1349                         if (base_periph_found == 1) {
1350                                 kprintf("xptioctl: pass driver is not in the "
1351                                        "kernel\n");
1352                                 kprintf("xptioctl: put \"device pass\" in "
1353                                        "your kernel config file\n");
1354                         }
1355                 }
1356                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1357                 break;
1358                 }
1359         default:
1360                 error = ENOTTY;
1361                 break;
1362         }
1363
1364         return(error);
1365 }
1366
1367 static int
1368 cam_module_event_handler(module_t mod, int what, void *arg)
1369 {
1370         int error;
1371
1372         switch (what) {
1373         case MOD_LOAD:
1374                 if ((error = xpt_init(NULL)) != 0)
1375                         return (error);
1376                 break;
1377         case MOD_UNLOAD:
1378                 return EBUSY;
1379         default:
1380                 return EOPNOTSUPP;
1381         }
1382
1383         return 0;
1384 }
1385
1386 /*
1387  * Thread to handle asynchronous main-context requests.
1388  *
1389  * This function is typically used by drivers to perform complex actions
1390  * such as bus scans and engineering requests in a main context instead
1391  * of an interrupt context.
1392  */
1393 static void
1394 xpt_scanner_thread(void *dummy)
1395 {
1396         union ccb       *ccb;
1397         struct cam_sim  *sim;
1398
1399         get_mplock();
1400
1401         for (;;) {
1402                 xpt_lock_buses();
1403                 xsoftc.ccb_scanq_running = 1;
1404                 while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1405                         TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1406                                      sim_links.tqe);
1407                         xpt_unlock_buses();
1408
1409                         sim = ccb->ccb_h.path->bus->sim;
1410                         CAM_SIM_LOCK(sim);
1411                         xpt_action(ccb);
1412                         CAM_SIM_UNLOCK(sim);
1413
1414                         xpt_lock_buses();
1415                 }
1416                 xsoftc.ccb_scanq_running = 0;
1417                 tsleep_interlock(&xsoftc.ccb_scanq, 0);
1418                 xpt_unlock_buses();
1419                 tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1420         }
1421
1422         rel_mplock();   /* not reached */
1423 }
1424
1425 /*
1426  * Issue an asynchronous asction
1427  */
1428 void
1429 xpt_action_async(union ccb *ccb)
1430 {
1431         xpt_lock_buses();
1432         TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1433         if (xsoftc.ccb_scanq_running == 0) {
1434                 xsoftc.ccb_scanq_running = 1;
1435                 wakeup(&xsoftc.ccb_scanq);
1436         }
1437         xpt_unlock_buses();
1438 }
1439
1440
1441 /* Functions accessed by the peripheral drivers */
1442 static int
1443 xpt_init(void *dummy)
1444 {
1445         struct cam_sim *xpt_sim;
1446         struct cam_path *path;
1447         struct cam_devq *devq;
1448         cam_status status;
1449
1450         TAILQ_INIT(&xsoftc.xpt_busses);
1451         TAILQ_INIT(&cam_simq);
1452         TAILQ_INIT(&xsoftc.ccb_scanq);
1453         STAILQ_INIT(&xsoftc.highpowerq);
1454         xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1455
1456         spin_init(&cam_simq_spin);
1457         lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1458         lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1459
1460         SLIST_INIT(&cam_dead_sim.ccb_freeq);
1461         TAILQ_INIT(&cam_dead_sim.sim_doneq);
1462         spin_init(&cam_dead_sim.sim_spin);
1463         cam_dead_sim.sim_action = dead_sim_action;
1464         cam_dead_sim.sim_poll = dead_sim_poll;
1465         cam_dead_sim.sim_name = "dead_sim";
1466         cam_dead_sim.lock = &cam_dead_lock;
1467         lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1468         cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1469
1470         /*
1471          * The xpt layer is, itself, the equivelent of a SIM.
1472          * Allow 16 ccbs in the ccb pool for it.  This should
1473          * give decent parallelism when we probe busses and
1474          * perform other XPT functions.
1475          */
1476         devq = cam_simq_alloc(16);
1477         xpt_sim = cam_sim_alloc(xptaction,
1478                                 xptpoll,
1479                                 "xpt",
1480                                 /*softc*/NULL,
1481                                 /*unit*/0,
1482                                 /*lock*/&xsoftc.xpt_lock,
1483                                 /*max_dev_transactions*/0,
1484                                 /*max_tagged_dev_transactions*/0,
1485                                 devq);
1486         cam_simq_release(devq);
1487         if (xpt_sim == NULL)
1488                 return (ENOMEM);
1489
1490         xpt_sim->max_ccbs = 16;
1491
1492         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1493         if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1494                 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495                        " failing attach\n", status);
1496                 return (EINVAL);
1497         }
1498
1499         /*
1500          * Looking at the XPT from the SIM layer, the XPT is
1501          * the equivelent of a peripheral driver.  Allocate
1502          * a peripheral driver entry for us.
1503          */
1504         if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505                                       CAM_TARGET_WILDCARD,
1506                                       CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507                 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1508                        " failing attach\n", status);
1509                 return (EINVAL);
1510         }
1511
1512         cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1513                          path, NULL, 0, xpt_sim);
1514         xpt_free_path(path);
1515
1516         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1517
1518         /*
1519          * Register a callback for when interrupts are enabled.
1520          */
1521         xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1522                                   M_CAMXPT, M_INTWAIT | M_ZERO);
1523         xsoftc.xpt_config_hook->ich_func = xpt_config;
1524         xsoftc.xpt_config_hook->ich_desc = "xpt";
1525         xsoftc.xpt_config_hook->ich_order = 1000;
1526         if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1527                 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1528                 kprintf("xpt_init: config_intrhook_establish failed "
1529                        "- failing attach\n");
1530         }
1531
1532         /* fire up rescan thread */
1533         if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1534                 kprintf("xpt_init: failed to create rescan thread\n");
1535         }
1536         /* Install our software interrupt handlers */
1537         register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1538
1539         return (0);
1540 }
1541
1542 static cam_status
1543 xptregister(struct cam_periph *periph, void *arg)
1544 {
1545         struct cam_sim *xpt_sim;
1546
1547         if (periph == NULL) {
1548                 kprintf("xptregister: periph was NULL!!\n");
1549                 return(CAM_REQ_CMP_ERR);
1550         }
1551
1552         xpt_sim = (struct cam_sim *)arg;
1553         xpt_sim->softc = periph;
1554         xpt_periph = periph;
1555         periph->softc = NULL;
1556
1557         return(CAM_REQ_CMP);
1558 }
1559
1560 int32_t
1561 xpt_add_periph(struct cam_periph *periph)
1562 {
1563         struct cam_ed *device;
1564         int32_t  status;
1565         struct periph_list *periph_head;
1566
1567         sim_lock_assert_owned(periph->sim->lock);
1568
1569         device = periph->path->device;
1570
1571         periph_head = &device->periphs;
1572
1573         status = CAM_REQ_CMP;
1574
1575         if (device != NULL) {
1576                 /*
1577                  * Make room for this peripheral
1578                  * so it will fit in the queue
1579                  * when it's scheduled to run
1580                  */
1581                 status = camq_resize(&device->drvq,
1582                                      device->drvq.array_size + 1);
1583
1584                 device->generation++;
1585
1586                 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1587         }
1588
1589         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1590         xsoftc.xpt_generation++;
1591         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1592
1593         return (status);
1594 }
1595
1596 void
1597 xpt_remove_periph(struct cam_periph *periph)
1598 {
1599         struct cam_ed *device;
1600
1601         sim_lock_assert_owned(periph->sim->lock);
1602
1603         device = periph->path->device;
1604
1605         if (device != NULL) {
1606                 struct periph_list *periph_head;
1607
1608                 periph_head = &device->periphs;
1609
1610                 /* Release the slot for this peripheral */
1611                 camq_resize(&device->drvq, device->drvq.array_size - 1);
1612
1613                 device->generation++;
1614
1615                 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1616         }
1617
1618         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1619         xsoftc.xpt_generation++;
1620         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1621 }
1622
1623 void
1624 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1625 {
1626         struct  ccb_pathinq cpi;
1627         struct  ccb_trans_settings cts;
1628         struct  cam_path *path;
1629         u_int   speed;
1630         u_int   freq;
1631         u_int   mb;
1632
1633         sim_lock_assert_owned(periph->sim->lock);
1634
1635         path = periph->path;
1636
1637         /* Report basic attachment and inquiry data */
1638         kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1639                periph->periph_name, periph->unit_number,
1640                path->bus->sim->sim_name,
1641                path->bus->sim->unit_number,
1642                path->bus->sim->bus_id,
1643                path->target->target_id,
1644                path->device->lun_id);
1645         kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1646         scsi_print_inquiry(&path->device->inq_data);
1647
1648         /* Report serial number */
1649         if (path->device->serial_num_len > 0) {
1650                 /* Don't wrap the screen  - print only the first 60 chars */
1651                 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1652                        periph->unit_number, path->device->serial_num);
1653         }
1654
1655         /* Acquire and report transfer speed */
1656         xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1657         cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1658         cts.type = CTS_TYPE_CURRENT_SETTINGS;
1659         xpt_action((union ccb*)&cts);
1660         if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1661                 return;
1662         }
1663
1664         /* Ask the SIM for its base transfer speed */
1665         xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1666         cpi.ccb_h.func_code = XPT_PATH_INQ;
1667         xpt_action((union ccb *)&cpi);
1668
1669         speed = cpi.base_transfer_speed;
1670         freq = 0;
1671         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1672                 struct  ccb_trans_settings_spi *spi;
1673
1674                 spi = &cts.xport_specific.spi;
1675                 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1676                   && spi->sync_offset != 0) {
1677                         freq = scsi_calc_syncsrate(spi->sync_period);
1678                         speed = freq;
1679                 }
1680
1681                 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1682                         speed *= (0x01 << spi->bus_width);
1683         }
1684         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1685                 struct  ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1686                 if (fc->valid & CTS_FC_VALID_SPEED) {
1687                         speed = fc->bitrate;
1688                 }
1689         }
1690
1691         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1692                 struct  ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1693                 if (sas->valid & CTS_SAS_VALID_SPEED) {
1694                         speed = sas->bitrate;
1695                 }
1696         }
1697
1698         mb = speed / 1000;
1699         if (mb > 0)
1700                 kprintf("%s%d: %d.%03dMB/s transfers",
1701                        periph->periph_name, periph->unit_number,
1702                        mb, speed % 1000);
1703         else
1704                 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1705                        periph->unit_number, speed);
1706
1707         /* Report additional information about SPI connections */
1708         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1709                 struct  ccb_trans_settings_spi *spi;
1710
1711                 spi = &cts.xport_specific.spi;
1712                 if (freq != 0) {
1713                         kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1714                                freq % 1000,
1715                                (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1716                              ? " DT" : "",
1717                                spi->sync_offset);
1718                 }
1719                 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1720                  && spi->bus_width > 0) {
1721                         if (freq != 0) {
1722                                 kprintf(", ");
1723                         } else {
1724                                 kprintf(" (");
1725                         }
1726                         kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1727                 } else if (freq != 0) {
1728                         kprintf(")");
1729                 }
1730         }
1731         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1732                 struct  ccb_trans_settings_fc *fc;
1733
1734                 fc = &cts.xport_specific.fc;
1735                 if (fc->valid & CTS_FC_VALID_WWNN)
1736                         kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1737                 if (fc->valid & CTS_FC_VALID_WWPN)
1738                         kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1739                 if (fc->valid & CTS_FC_VALID_PORT)
1740                         kprintf(" PortID 0x%x", fc->port);
1741         }
1742
1743         if (path->device->inq_flags & SID_CmdQue
1744          || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1745                 kprintf("\n%s%d: Command Queueing Enabled",
1746                        periph->periph_name, periph->unit_number);
1747         }
1748         kprintf("\n");
1749
1750         /*
1751          * We only want to print the caller's announce string if they've
1752          * passed one in..
1753          */
1754         if (announce_string != NULL)
1755                 kprintf("%s%d: %s\n", periph->periph_name,
1756                        periph->unit_number, announce_string);
1757 }
1758
1759 static dev_match_ret
1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1761             struct cam_eb *bus)
1762 {
1763         dev_match_ret retval;
1764         int i;
1765
1766         retval = DM_RET_NONE;
1767
1768         /*
1769          * If we aren't given something to match against, that's an error.
1770          */
1771         if (bus == NULL)
1772                 return(DM_RET_ERROR);
1773
1774         /*
1775          * If there are no match entries, then this bus matches no
1776          * matter what.
1777          */
1778         if ((patterns == NULL) || (num_patterns == 0))
1779                 return(DM_RET_DESCEND | DM_RET_COPY);
1780
1781         for (i = 0; i < num_patterns; i++) {
1782                 struct bus_match_pattern *cur_pattern;
1783
1784                 /*
1785                  * If the pattern in question isn't for a bus node, we
1786                  * aren't interested.  However, we do indicate to the
1787                  * calling routine that we should continue descending the
1788                  * tree, since the user wants to match against lower-level
1789                  * EDT elements.
1790                  */
1791                 if (patterns[i].type != DEV_MATCH_BUS) {
1792                         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1793                                 retval |= DM_RET_DESCEND;
1794                         continue;
1795                 }
1796
1797                 cur_pattern = &patterns[i].pattern.bus_pattern;
1798
1799                 /*
1800                  * If they want to match any bus node, we give them any
1801                  * device node.
1802                  */
1803                 if (cur_pattern->flags == BUS_MATCH_ANY) {
1804                         /* set the copy flag */
1805                         retval |= DM_RET_COPY;
1806
1807                         /*
1808                          * If we've already decided on an action, go ahead
1809                          * and return.
1810                          */
1811                         if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1812                                 return(retval);
1813                 }
1814
1815                 /*
1816                  * Not sure why someone would do this...
1817                  */
1818                 if (cur_pattern->flags == BUS_MATCH_NONE)
1819                         continue;
1820
1821                 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1822                  && (cur_pattern->path_id != bus->path_id))
1823                         continue;
1824
1825                 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1826                  && (cur_pattern->bus_id != bus->sim->bus_id))
1827                         continue;
1828
1829                 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1830                  && (cur_pattern->unit_number != bus->sim->unit_number))
1831                         continue;
1832
1833                 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1834                  && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1835                              DEV_IDLEN) != 0))
1836                         continue;
1837
1838                 /*
1839                  * If we get to this point, the user definitely wants
1840                  * information on this bus.  So tell the caller to copy the
1841                  * data out.
1842                  */
1843                 retval |= DM_RET_COPY;
1844
1845                 /*
1846                  * If the return action has been set to descend, then we
1847                  * know that we've already seen a non-bus matching
1848                  * expression, therefore we need to further descend the tree.
1849                  * This won't change by continuing around the loop, so we
1850                  * go ahead and return.  If we haven't seen a non-bus
1851                  * matching expression, we keep going around the loop until
1852                  * we exhaust the matching expressions.  We'll set the stop
1853                  * flag once we fall out of the loop.
1854                  */
1855                 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1856                         return(retval);
1857         }
1858
1859         /*
1860          * If the return action hasn't been set to descend yet, that means
1861          * we haven't seen anything other than bus matching patterns.  So
1862          * tell the caller to stop descending the tree -- the user doesn't
1863          * want to match against lower level tree elements.
1864          */
1865         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1866                 retval |= DM_RET_STOP;
1867
1868         return(retval);
1869 }
1870
1871 static dev_match_ret
1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1873                struct cam_ed *device)
1874 {
1875         dev_match_ret retval;
1876         int i;
1877
1878         retval = DM_RET_NONE;
1879
1880         /*
1881          * If we aren't given something to match against, that's an error.
1882          */
1883         if (device == NULL)
1884                 return(DM_RET_ERROR);
1885
1886         /*
1887          * If there are no match entries, then this device matches no
1888          * matter what.
1889          */
1890         if ((patterns == NULL) || (num_patterns == 0))
1891                 return(DM_RET_DESCEND | DM_RET_COPY);
1892
1893         for (i = 0; i < num_patterns; i++) {
1894                 struct device_match_pattern *cur_pattern;
1895
1896                 /*
1897                  * If the pattern in question isn't for a device node, we
1898                  * aren't interested.
1899                  */
1900                 if (patterns[i].type != DEV_MATCH_DEVICE) {
1901                         if ((patterns[i].type == DEV_MATCH_PERIPH)
1902                          && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1903                                 retval |= DM_RET_DESCEND;
1904                         continue;
1905                 }
1906
1907                 cur_pattern = &patterns[i].pattern.device_pattern;
1908
1909                 /*
1910                  * If they want to match any device node, we give them any
1911                  * device node.
1912                  */
1913                 if (cur_pattern->flags == DEV_MATCH_ANY) {
1914                         /* set the copy flag */
1915                         retval |= DM_RET_COPY;
1916
1917
1918                         /*
1919                          * If we've already decided on an action, go ahead
1920                          * and return.
1921                          */
1922                         if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1923                                 return(retval);
1924                 }
1925
1926                 /*
1927                  * Not sure why someone would do this...
1928                  */
1929                 if (cur_pattern->flags == DEV_MATCH_NONE)
1930                         continue;
1931
1932                 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1933                  && (cur_pattern->path_id != device->target->bus->path_id))
1934                         continue;
1935
1936                 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1937                  && (cur_pattern->target_id != device->target->target_id))
1938                         continue;
1939
1940                 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1941                  && (cur_pattern->target_lun != device->lun_id))
1942                         continue;
1943
1944                 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1945                  && (cam_quirkmatch((caddr_t)&device->inq_data,
1946                                     (caddr_t)&cur_pattern->inq_pat,
1947                                     1, sizeof(cur_pattern->inq_pat),
1948                                     scsi_static_inquiry_match) == NULL))
1949                         continue;
1950
1951                 /*
1952                  * If we get to this point, the user definitely wants
1953                  * information on this device.  So tell the caller to copy
1954                  * the data out.
1955                  */
1956                 retval |= DM_RET_COPY;
1957
1958                 /*
1959                  * If the return action has been set to descend, then we
1960                  * know that we've already seen a peripheral matching
1961                  * expression, therefore we need to further descend the tree.
1962                  * This won't change by continuing around the loop, so we
1963                  * go ahead and return.  If we haven't seen a peripheral
1964                  * matching expression, we keep going around the loop until
1965                  * we exhaust the matching expressions.  We'll set the stop
1966                  * flag once we fall out of the loop.
1967                  */
1968                 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1969                         return(retval);
1970         }
1971
1972         /*
1973          * If the return action hasn't been set to descend yet, that means
1974          * we haven't seen any peripheral matching patterns.  So tell the
1975          * caller to stop descending the tree -- the user doesn't want to
1976          * match against lower level tree elements.
1977          */
1978         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1979                 retval |= DM_RET_STOP;
1980
1981         return(retval);
1982 }
1983
1984 /*
1985  * Match a single peripheral against any number of match patterns.
1986  */
1987 static dev_match_ret
1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1989                struct cam_periph *periph)
1990 {
1991         dev_match_ret retval;
1992         int i;
1993
1994         /*
1995          * If we aren't given something to match against, that's an error.
1996          */
1997         if (periph == NULL)
1998                 return(DM_RET_ERROR);
1999
2000         /*
2001          * If there are no match entries, then this peripheral matches no
2002          * matter what.
2003          */
2004         if ((patterns == NULL) || (num_patterns == 0))
2005                 return(DM_RET_STOP | DM_RET_COPY);
2006
2007         /*
2008          * There aren't any nodes below a peripheral node, so there's no
2009          * reason to descend the tree any further.
2010          */
2011         retval = DM_RET_STOP;
2012
2013         for (i = 0; i < num_patterns; i++) {
2014                 struct periph_match_pattern *cur_pattern;
2015
2016                 /*
2017                  * If the pattern in question isn't for a peripheral, we
2018                  * aren't interested.
2019                  */
2020                 if (patterns[i].type != DEV_MATCH_PERIPH)
2021                         continue;
2022
2023                 cur_pattern = &patterns[i].pattern.periph_pattern;
2024
2025                 /*
2026                  * If they want to match on anything, then we will do so.
2027                  */
2028                 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2029                         /* set the copy flag */
2030                         retval |= DM_RET_COPY;
2031
2032                         /*
2033                          * We've already set the return action to stop,
2034                          * since there are no nodes below peripherals in
2035                          * the tree.
2036                          */
2037                         return(retval);
2038                 }
2039
2040                 /*
2041                  * Not sure why someone would do this...
2042                  */
2043                 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2044                         continue;
2045
2046                 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2047                  && (cur_pattern->path_id != periph->path->bus->path_id))
2048                         continue;
2049
2050                 /*
2051                  * For the target and lun id's, we have to make sure the
2052                  * target and lun pointers aren't NULL.  The xpt peripheral
2053                  * has a wildcard target and device.
2054                  */
2055                 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2056                  && ((periph->path->target == NULL)
2057                  ||(cur_pattern->target_id != periph->path->target->target_id)))
2058                         continue;
2059
2060                 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2061                  && ((periph->path->device == NULL)
2062                  || (cur_pattern->target_lun != periph->path->device->lun_id)))
2063                         continue;
2064
2065                 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2066                  && (cur_pattern->unit_number != periph->unit_number))
2067                         continue;
2068
2069                 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2070                  && (strncmp(cur_pattern->periph_name, periph->periph_name,
2071                              DEV_IDLEN) != 0))
2072                         continue;
2073
2074                 /*
2075                  * If we get to this point, the user definitely wants
2076                  * information on this peripheral.  So tell the caller to
2077                  * copy the data out.
2078                  */
2079                 retval |= DM_RET_COPY;
2080
2081                 /*
2082                  * The return action has already been set to stop, since
2083                  * peripherals don't have any nodes below them in the EDT.
2084                  */
2085                 return(retval);
2086         }
2087
2088         /*
2089          * If we get to this point, the peripheral that was passed in
2090          * doesn't match any of the patterns.
2091          */
2092         return(retval);
2093 }
2094
2095 static int
2096 xptedtbusfunc(struct cam_eb *bus, void *arg)
2097 {
2098         struct ccb_dev_match *cdm;
2099         dev_match_ret retval;
2100
2101         cdm = (struct ccb_dev_match *)arg;
2102
2103         /*
2104          * If our position is for something deeper in the tree, that means
2105          * that we've already seen this node.  So, we keep going down.
2106          */
2107         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2108          && (cdm->pos.cookie.bus == bus)
2109          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2110          && (cdm->pos.cookie.target != NULL))
2111                 retval = DM_RET_DESCEND;
2112         else
2113                 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2114
2115         /*
2116          * If we got an error, bail out of the search.
2117          */
2118         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119                 cdm->status = CAM_DEV_MATCH_ERROR;
2120                 return(0);
2121         }
2122
2123         /*
2124          * If the copy flag is set, copy this bus out.
2125          */
2126         if (retval & DM_RET_COPY) {
2127                 int spaceleft, j;
2128
2129                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130                         sizeof(struct dev_match_result));
2131
2132                 /*
2133                  * If we don't have enough space to put in another
2134                  * match result, save our position and tell the
2135                  * user there are more devices to check.
2136                  */
2137                 if (spaceleft < sizeof(struct dev_match_result)) {
2138                         bzero(&cdm->pos, sizeof(cdm->pos));
2139                         cdm->pos.position_type =
2140                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2141
2142                         cdm->pos.cookie.bus = bus;
2143                         cdm->pos.generations[CAM_BUS_GENERATION]=
2144                                 xsoftc.bus_generation;
2145                         cdm->status = CAM_DEV_MATCH_MORE;
2146                         return(0);
2147                 }
2148                 j = cdm->num_matches;
2149                 cdm->num_matches++;
2150                 cdm->matches[j].type = DEV_MATCH_BUS;
2151                 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2152                 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2153                 cdm->matches[j].result.bus_result.unit_number =
2154                         bus->sim->unit_number;
2155                 strncpy(cdm->matches[j].result.bus_result.dev_name,
2156                         bus->sim->sim_name, DEV_IDLEN);
2157         }
2158
2159         /*
2160          * If the user is only interested in busses, there's no
2161          * reason to descend to the next level in the tree.
2162          */
2163         if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2164                 return(1);
2165
2166         /*
2167          * If there is a target generation recorded, check it to
2168          * make sure the target list hasn't changed.
2169          */
2170         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2171          && (bus == cdm->pos.cookie.bus)
2172          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2173          && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2174          && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2175              bus->generation)) {
2176                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2177                 return(0);
2178         }
2179
2180         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2181          && (cdm->pos.cookie.bus == bus)
2182          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2183          && (cdm->pos.cookie.target != NULL))
2184                 return(xpttargettraverse(bus,
2185                                         (struct cam_et *)cdm->pos.cookie.target,
2186                                          xptedttargetfunc, arg));
2187         else
2188                 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2189 }
2190
2191 static int
2192 xptedttargetfunc(struct cam_et *target, void *arg)
2193 {
2194         struct ccb_dev_match *cdm;
2195
2196         cdm = (struct ccb_dev_match *)arg;
2197
2198         /*
2199          * If there is a device list generation recorded, check it to
2200          * make sure the device list hasn't changed.
2201          */
2202         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2203          && (cdm->pos.cookie.bus == target->bus)
2204          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2205          && (cdm->pos.cookie.target == target)
2206          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2207          && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2208          && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2209              target->generation)) {
2210                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2211                 return(0);
2212         }
2213
2214         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2215          && (cdm->pos.cookie.bus == target->bus)
2216          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2217          && (cdm->pos.cookie.target == target)
2218          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2219          && (cdm->pos.cookie.device != NULL))
2220                 return(xptdevicetraverse(target,
2221                                         (struct cam_ed *)cdm->pos.cookie.device,
2222                                          xptedtdevicefunc, arg));
2223         else
2224                 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2225 }
2226
2227 static int
2228 xptedtdevicefunc(struct cam_ed *device, void *arg)
2229 {
2230
2231         struct ccb_dev_match *cdm;
2232         dev_match_ret retval;
2233
2234         cdm = (struct ccb_dev_match *)arg;
2235
2236         /*
2237          * If our position is for something deeper in the tree, that means
2238          * that we've already seen this node.  So, we keep going down.
2239          */
2240         if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2241          && (cdm->pos.cookie.device == device)
2242          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2243          && (cdm->pos.cookie.periph != NULL))
2244                 retval = DM_RET_DESCEND;
2245         else
2246                 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2247                                         device);
2248
2249         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2250                 cdm->status = CAM_DEV_MATCH_ERROR;
2251                 return(0);
2252         }
2253
2254         /*
2255          * If the copy flag is set, copy this device out.
2256          */
2257         if (retval & DM_RET_COPY) {
2258                 int spaceleft, j;
2259
2260                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2261                         sizeof(struct dev_match_result));
2262
2263                 /*
2264                  * If we don't have enough space to put in another
2265                  * match result, save our position and tell the
2266                  * user there are more devices to check.
2267                  */
2268                 if (spaceleft < sizeof(struct dev_match_result)) {
2269                         bzero(&cdm->pos, sizeof(cdm->pos));
2270                         cdm->pos.position_type =
2271                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2272                                 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2273
2274                         cdm->pos.cookie.bus = device->target->bus;
2275                         cdm->pos.generations[CAM_BUS_GENERATION]=
2276                                 xsoftc.bus_generation;
2277                         cdm->pos.cookie.target = device->target;
2278                         cdm->pos.generations[CAM_TARGET_GENERATION] =
2279                                 device->target->bus->generation;
2280                         cdm->pos.cookie.device = device;
2281                         cdm->pos.generations[CAM_DEV_GENERATION] =
2282                                 device->target->generation;
2283                         cdm->status = CAM_DEV_MATCH_MORE;
2284                         return(0);
2285                 }
2286                 j = cdm->num_matches;
2287                 cdm->num_matches++;
2288                 cdm->matches[j].type = DEV_MATCH_DEVICE;
2289                 cdm->matches[j].result.device_result.path_id =
2290                         device->target->bus->path_id;
2291                 cdm->matches[j].result.device_result.target_id =
2292                         device->target->target_id;
2293                 cdm->matches[j].result.device_result.target_lun =
2294                         device->lun_id;
2295                 bcopy(&device->inq_data,
2296                       &cdm->matches[j].result.device_result.inq_data,
2297                       sizeof(struct scsi_inquiry_data));
2298
2299                 /* Let the user know whether this device is unconfigured */
2300                 if (device->flags & CAM_DEV_UNCONFIGURED)
2301                         cdm->matches[j].result.device_result.flags =
2302                                 DEV_RESULT_UNCONFIGURED;
2303                 else
2304                         cdm->matches[j].result.device_result.flags =
2305                                 DEV_RESULT_NOFLAG;
2306         }
2307
2308         /*
2309          * If the user isn't interested in peripherals, don't descend
2310          * the tree any further.
2311          */
2312         if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2313                 return(1);
2314
2315         /*
2316          * If there is a peripheral list generation recorded, make sure
2317          * it hasn't changed.
2318          */
2319         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2320          && (device->target->bus == cdm->pos.cookie.bus)
2321          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2322          && (device->target == cdm->pos.cookie.target)
2323          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2324          && (device == cdm->pos.cookie.device)
2325          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2326          && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2327          && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2328              device->generation)){
2329                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2330                 return(0);
2331         }
2332
2333         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2334          && (cdm->pos.cookie.bus == device->target->bus)
2335          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2336          && (cdm->pos.cookie.target == device->target)
2337          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2338          && (cdm->pos.cookie.device == device)
2339          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2340          && (cdm->pos.cookie.periph != NULL))
2341                 return(xptperiphtraverse(device,
2342                                 (struct cam_periph *)cdm->pos.cookie.periph,
2343                                 xptedtperiphfunc, arg));
2344         else
2345                 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2346 }
2347
2348 static int
2349 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2350 {
2351         struct ccb_dev_match *cdm;
2352         dev_match_ret retval;
2353
2354         cdm = (struct ccb_dev_match *)arg;
2355
2356         retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2357
2358         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2359                 cdm->status = CAM_DEV_MATCH_ERROR;
2360                 return(0);
2361         }
2362
2363         /*
2364          * If the copy flag is set, copy this peripheral out.
2365          */
2366         if (retval & DM_RET_COPY) {
2367                 int spaceleft, j;
2368
2369                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2370                         sizeof(struct dev_match_result));
2371
2372                 /*
2373                  * If we don't have enough space to put in another
2374                  * match result, save our position and tell the
2375                  * user there are more devices to check.
2376                  */
2377                 if (spaceleft < sizeof(struct dev_match_result)) {
2378                         bzero(&cdm->pos, sizeof(cdm->pos));
2379                         cdm->pos.position_type =
2380                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2381                                 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2382                                 CAM_DEV_POS_PERIPH;
2383
2384                         cdm->pos.cookie.bus = periph->path->bus;
2385                         cdm->pos.generations[CAM_BUS_GENERATION]=
2386                                 xsoftc.bus_generation;
2387                         cdm->pos.cookie.target = periph->path->target;
2388                         cdm->pos.generations[CAM_TARGET_GENERATION] =
2389                                 periph->path->bus->generation;
2390                         cdm->pos.cookie.device = periph->path->device;
2391                         cdm->pos.generations[CAM_DEV_GENERATION] =
2392                                 periph->path->target->generation;
2393                         cdm->pos.cookie.periph = periph;
2394                         cdm->pos.generations[CAM_PERIPH_GENERATION] =
2395                                 periph->path->device->generation;
2396                         cdm->status = CAM_DEV_MATCH_MORE;
2397                         return(0);
2398                 }
2399
2400                 j = cdm->num_matches;
2401                 cdm->num_matches++;
2402                 cdm->matches[j].type = DEV_MATCH_PERIPH;
2403                 cdm->matches[j].result.periph_result.path_id =
2404                         periph->path->bus->path_id;
2405                 cdm->matches[j].result.periph_result.target_id =
2406                         periph->path->target->target_id;
2407                 cdm->matches[j].result.periph_result.target_lun =
2408                         periph->path->device->lun_id;
2409                 cdm->matches[j].result.periph_result.unit_number =
2410                         periph->unit_number;
2411                 strncpy(cdm->matches[j].result.periph_result.periph_name,
2412                         periph->periph_name, DEV_IDLEN);
2413         }
2414
2415         return(1);
2416 }
2417
2418 static int
2419 xptedtmatch(struct ccb_dev_match *cdm)
2420 {
2421         int ret;
2422
2423         cdm->num_matches = 0;
2424
2425         /*
2426          * Check the bus list generation.  If it has changed, the user
2427          * needs to reset everything and start over.
2428          */
2429         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2430          && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2431          && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2432                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2433                 return(0);
2434         }
2435
2436         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437          && (cdm->pos.cookie.bus != NULL))
2438                 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2439                                      xptedtbusfunc, cdm);
2440         else
2441                 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2442
2443         /*
2444          * If we get back 0, that means that we had to stop before fully
2445          * traversing the EDT.  It also means that one of the subroutines
2446          * has set the status field to the proper value.  If we get back 1,
2447          * we've fully traversed the EDT and copied out any matching entries.
2448          */
2449         if (ret == 1)
2450                 cdm->status = CAM_DEV_MATCH_LAST;
2451
2452         return(ret);
2453 }
2454
2455 static int
2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2457 {
2458         struct ccb_dev_match *cdm;
2459
2460         cdm = (struct ccb_dev_match *)arg;
2461
2462         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2463          && (cdm->pos.cookie.pdrv == pdrv)
2464          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2465          && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2466          && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2467              (*pdrv)->generation)) {
2468                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2469                 return(0);
2470         }
2471
2472         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2473          && (cdm->pos.cookie.pdrv == pdrv)
2474          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2475          && (cdm->pos.cookie.periph != NULL))
2476                 return(xptpdperiphtraverse(pdrv,
2477                                 (struct cam_periph *)cdm->pos.cookie.periph,
2478                                 xptplistperiphfunc, arg));
2479         else
2480                 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2481 }
2482
2483 static int
2484 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2485 {
2486         struct ccb_dev_match *cdm;
2487         dev_match_ret retval;
2488
2489         cdm = (struct ccb_dev_match *)arg;
2490
2491         retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2492
2493         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2494                 cdm->status = CAM_DEV_MATCH_ERROR;
2495                 return(0);
2496         }
2497
2498         /*
2499          * If the copy flag is set, copy this peripheral out.
2500          */
2501         if (retval & DM_RET_COPY) {
2502                 int spaceleft, j;
2503
2504                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2505                         sizeof(struct dev_match_result));
2506
2507                 /*
2508                  * If we don't have enough space to put in another
2509                  * match result, save our position and tell the
2510                  * user there are more devices to check.
2511                  */
2512                 if (spaceleft < sizeof(struct dev_match_result)) {
2513                         struct periph_driver **pdrv;
2514
2515                         pdrv = NULL;
2516                         bzero(&cdm->pos, sizeof(cdm->pos));
2517                         cdm->pos.position_type =
2518                                 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2519                                 CAM_DEV_POS_PERIPH;
2520
2521                         /*
2522                          * This may look a bit non-sensical, but it is
2523                          * actually quite logical.  There are very few
2524                          * peripheral drivers, and bloating every peripheral
2525                          * structure with a pointer back to its parent
2526                          * peripheral driver linker set entry would cost
2527                          * more in the long run than doing this quick lookup.
2528                          */
2529                         for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2530                                 if (strcmp((*pdrv)->driver_name,
2531                                     periph->periph_name) == 0)
2532                                         break;
2533                         }
2534
2535                         if (*pdrv == NULL) {
2536                                 cdm->status = CAM_DEV_MATCH_ERROR;
2537                                 return(0);
2538                         }
2539
2540                         cdm->pos.cookie.pdrv = pdrv;
2541                         /*
2542                          * The periph generation slot does double duty, as
2543                          * does the periph pointer slot.  They are used for
2544                          * both edt and pdrv lookups and positioning.
2545                          */
2546                         cdm->pos.cookie.periph = periph;
2547                         cdm->pos.generations[CAM_PERIPH_GENERATION] =
2548                                 (*pdrv)->generation;
2549                         cdm->status = CAM_DEV_MATCH_MORE;
2550                         return(0);
2551                 }
2552
2553                 j = cdm->num_matches;
2554                 cdm->num_matches++;
2555                 cdm->matches[j].type = DEV_MATCH_PERIPH;
2556                 cdm->matches[j].result.periph_result.path_id =
2557                         periph->path->bus->path_id;
2558
2559                 /*
2560                  * The transport layer peripheral doesn't have a target or
2561                  * lun.
2562                  */
2563                 if (periph->path->target)
2564                         cdm->matches[j].result.periph_result.target_id =
2565                                 periph->path->target->target_id;
2566                 else
2567                         cdm->matches[j].result.periph_result.target_id = -1;
2568
2569                 if (periph->path->device)
2570                         cdm->matches[j].result.periph_result.target_lun =
2571                                 periph->path->device->lun_id;
2572                 else
2573                         cdm->matches[j].result.periph_result.target_lun = -1;
2574
2575                 cdm->matches[j].result.periph_result.unit_number =
2576                         periph->unit_number;
2577                 strncpy(cdm->matches[j].result.periph_result.periph_name,
2578                         periph->periph_name, DEV_IDLEN);
2579         }
2580
2581         return(1);
2582 }
2583
2584 static int
2585 xptperiphlistmatch(struct ccb_dev_match *cdm)
2586 {
2587         int ret;
2588
2589         cdm->num_matches = 0;
2590
2591         /*
2592          * At this point in the edt traversal function, we check the bus
2593          * list generation to make sure that no busses have been added or
2594          * removed since the user last sent a XPT_DEV_MATCH ccb through.
2595          * For the peripheral driver list traversal function, however, we
2596          * don't have to worry about new peripheral driver types coming or
2597          * going; they're in a linker set, and therefore can't change
2598          * without a recompile.
2599          */
2600
2601         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2602          && (cdm->pos.cookie.pdrv != NULL))
2603                 ret = xptpdrvtraverse(
2604                                 (struct periph_driver **)cdm->pos.cookie.pdrv,
2605                                 xptplistpdrvfunc, cdm);
2606         else
2607                 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2608
2609         /*
2610          * If we get back 0, that means that we had to stop before fully
2611          * traversing the peripheral driver tree.  It also means that one of
2612          * the subroutines has set the status field to the proper value.  If
2613          * we get back 1, we've fully traversed the EDT and copied out any
2614          * matching entries.
2615          */
2616         if (ret == 1)
2617                 cdm->status = CAM_DEV_MATCH_LAST;
2618
2619         return(ret);
2620 }
2621
2622 static int
2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2624 {
2625         struct cam_eb *bus, *next_bus;
2626         int retval;
2627
2628         retval = 1;
2629
2630         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2631         for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2632              bus != NULL;
2633              bus = next_bus) {
2634                 next_bus = TAILQ_NEXT(bus, links);
2635
2636                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2637                 CAM_SIM_LOCK(bus->sim);
2638                 retval = tr_func(bus, arg);
2639                 CAM_SIM_UNLOCK(bus->sim);
2640                 if (retval == 0)
2641                         return(retval);
2642                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2643         }
2644         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2645
2646         return(retval);
2647 }
2648
2649 static int
2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2651                   xpt_targetfunc_t *tr_func, void *arg)
2652 {
2653         struct cam_et *target, *next_target;
2654         int retval;
2655
2656         retval = 1;
2657         for (target = (start_target ? start_target :
2658                        TAILQ_FIRST(&bus->et_entries));
2659              target != NULL; target = next_target) {
2660
2661                 next_target = TAILQ_NEXT(target, links);
2662
2663                 retval = tr_func(target, arg);
2664
2665                 if (retval == 0)
2666                         return(retval);
2667         }
2668
2669         return(retval);
2670 }
2671
2672 static int
2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2674                   xpt_devicefunc_t *tr_func, void *arg)
2675 {
2676         struct cam_ed *device, *next_device;
2677         int retval;
2678
2679         retval = 1;
2680         for (device = (start_device ? start_device :
2681                        TAILQ_FIRST(&target->ed_entries));
2682              device != NULL;
2683              device = next_device) {
2684
2685                 next_device = TAILQ_NEXT(device, links);
2686
2687                 retval = tr_func(device, arg);
2688
2689                 if (retval == 0)
2690                         return(retval);
2691         }
2692
2693         return(retval);
2694 }
2695
2696 static int
2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2698                   xpt_periphfunc_t *tr_func, void *arg)
2699 {
2700         struct cam_periph *periph, *next_periph;
2701         int retval;
2702
2703         retval = 1;
2704
2705         for (periph = (start_periph ? start_periph :
2706                        SLIST_FIRST(&device->periphs));
2707              periph != NULL;
2708              periph = next_periph) {
2709
2710                 next_periph = SLIST_NEXT(periph, periph_links);
2711
2712                 retval = tr_func(periph, arg);
2713                 if (retval == 0)
2714                         return(retval);
2715         }
2716
2717         return(retval);
2718 }
2719
2720 static int
2721 xptpdrvtraverse(struct periph_driver **start_pdrv,
2722                 xpt_pdrvfunc_t *tr_func, void *arg)
2723 {
2724         struct periph_driver **pdrv;
2725         int retval;
2726
2727         retval = 1;
2728
2729         /*
2730          * We don't traverse the peripheral driver list like we do the
2731          * other lists, because it is a linker set, and therefore cannot be
2732          * changed during runtime.  If the peripheral driver list is ever
2733          * re-done to be something other than a linker set (i.e. it can
2734          * change while the system is running), the list traversal should
2735          * be modified to work like the other traversal functions.
2736          */
2737         for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2738              *pdrv != NULL; pdrv++) {
2739                 retval = tr_func(pdrv, arg);
2740
2741                 if (retval == 0)
2742                         return(retval);
2743         }
2744
2745         return(retval);
2746 }
2747
2748 static int
2749 xptpdperiphtraverse(struct periph_driver **pdrv,
2750                     struct cam_periph *start_periph,
2751                     xpt_periphfunc_t *tr_func, void *arg)
2752 {
2753         struct cam_periph *periph, *next_periph;
2754         int retval;
2755
2756         retval = 1;
2757
2758         for (periph = (start_periph ? start_periph :
2759              TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2760              periph = next_periph) {
2761
2762                 next_periph = TAILQ_NEXT(periph, unit_links);
2763
2764                 retval = tr_func(periph, arg);
2765                 if (retval == 0)
2766                         return(retval);
2767         }
2768         return(retval);
2769 }
2770
2771 static int
2772 xptdefbusfunc(struct cam_eb *bus, void *arg)
2773 {
2774         struct xpt_traverse_config *tr_config;
2775
2776         tr_config = (struct xpt_traverse_config *)arg;
2777
2778         if (tr_config->depth == XPT_DEPTH_BUS) {
2779                 xpt_busfunc_t *tr_func;
2780
2781                 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2782
2783                 return(tr_func(bus, tr_config->tr_arg));
2784         } else
2785                 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2786 }
2787
2788 static int
2789 xptdeftargetfunc(struct cam_et *target, void *arg)
2790 {
2791         struct xpt_traverse_config *tr_config;
2792
2793         tr_config = (struct xpt_traverse_config *)arg;
2794
2795         if (tr_config->depth == XPT_DEPTH_TARGET) {
2796                 xpt_targetfunc_t *tr_func;
2797
2798                 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2799
2800                 return(tr_func(target, tr_config->tr_arg));
2801         } else
2802                 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2803 }
2804
2805 static int
2806 xptdefdevicefunc(struct cam_ed *device, void *arg)
2807 {
2808         struct xpt_traverse_config *tr_config;
2809
2810         tr_config = (struct xpt_traverse_config *)arg;
2811
2812         if (tr_config->depth == XPT_DEPTH_DEVICE) {
2813                 xpt_devicefunc_t *tr_func;
2814
2815                 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2816
2817                 return(tr_func(device, tr_config->tr_arg));
2818         } else
2819                 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2820 }
2821
2822 static int
2823 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2824 {
2825         struct xpt_traverse_config *tr_config;
2826         xpt_periphfunc_t *tr_func;
2827
2828         tr_config = (struct xpt_traverse_config *)arg;
2829
2830         tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2831
2832         /*
2833          * Unlike the other default functions, we don't check for depth
2834          * here.  The peripheral driver level is the last level in the EDT,
2835          * so if we're here, we should execute the function in question.
2836          */
2837         return(tr_func(periph, tr_config->tr_arg));
2838 }
2839
2840 /*
2841  * Execute the given function for every bus in the EDT.
2842  */
2843 static int
2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2845 {
2846         struct xpt_traverse_config tr_config;
2847
2848         tr_config.depth = XPT_DEPTH_BUS;
2849         tr_config.tr_func = tr_func;
2850         tr_config.tr_arg = arg;
2851
2852         return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2853 }
2854
2855 /*
2856  * Execute the given function for every device in the EDT.
2857  */
2858 static int
2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2860 {
2861         struct xpt_traverse_config tr_config;
2862
2863         tr_config.depth = XPT_DEPTH_DEVICE;
2864         tr_config.tr_func = tr_func;
2865         tr_config.tr_arg = arg;
2866
2867         return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2868 }
2869
2870 static int
2871 xptsetasyncfunc(struct cam_ed *device, void *arg)
2872 {
2873         struct cam_path path;
2874         struct ccb_getdev cgd;
2875         struct async_node *cur_entry;
2876
2877         cur_entry = (struct async_node *)arg;
2878
2879         /*
2880          * Don't report unconfigured devices (Wildcard devs,
2881          * devices only for target mode, device instances
2882          * that have been invalidated but are waiting for
2883          * their last reference count to be released).
2884          */
2885         if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2886                 return (1);
2887
2888         xpt_compile_path(&path,
2889                          NULL,
2890                          device->target->bus->path_id,
2891                          device->target->target_id,
2892                          device->lun_id);
2893         xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2894         cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2895         xpt_action((union ccb *)&cgd);
2896         cur_entry->callback(cur_entry->callback_arg,
2897                             AC_FOUND_DEVICE,
2898                             &path, &cgd);
2899         xpt_release_path(&path);
2900
2901         return(1);
2902 }
2903
2904 static int
2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2906 {
2907         struct cam_path path;
2908         struct ccb_pathinq cpi;
2909         struct async_node *cur_entry;
2910
2911         cur_entry = (struct async_node *)arg;
2912
2913         xpt_compile_path(&path, /*periph*/NULL,
2914                          bus->sim->path_id,
2915                          CAM_TARGET_WILDCARD,
2916                          CAM_LUN_WILDCARD);
2917         xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2918         cpi.ccb_h.func_code = XPT_PATH_INQ;
2919         xpt_action((union ccb *)&cpi);
2920         cur_entry->callback(cur_entry->callback_arg,
2921                             AC_PATH_REGISTERED,
2922                             &path, &cpi);
2923         xpt_release_path(&path);
2924
2925         return(1);
2926 }
2927
2928 static void
2929 xpt_action_sasync_cb(void *context, int pending)
2930 {
2931         struct async_node *cur_entry;
2932         struct xpt_task *task;
2933         uint32_t added;
2934
2935         task = (struct xpt_task *)context;
2936         cur_entry = (struct async_node *)task->data1;
2937         added = task->data2;
2938
2939         if ((added & AC_FOUND_DEVICE) != 0) {
2940                 /*
2941                  * Get this peripheral up to date with all
2942                  * the currently existing devices.
2943                  */
2944                 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2945         }
2946         if ((added & AC_PATH_REGISTERED) != 0) {
2947                 /*
2948                  * Get this peripheral up to date with all
2949                  * the currently existing busses.
2950                  */
2951                 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2952         }
2953         kfree(task, M_CAMXPT);
2954 }
2955
2956 void
2957 xpt_action(union ccb *start_ccb)
2958 {
2959         CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2960
2961         start_ccb->ccb_h.status = CAM_REQ_INPROG;
2962
2963         switch (start_ccb->ccb_h.func_code) {
2964         case XPT_SCSI_IO:
2965         case XPT_TRIM:
2966         {
2967                 struct cam_ed *device;
2968 #ifdef CAMDEBUG
2969                 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2970                 struct cam_path *path;
2971
2972                 path = start_ccb->ccb_h.path;
2973 #endif
2974
2975                 /*
2976                  * For the sake of compatibility with SCSI-1
2977                  * devices that may not understand the identify
2978                  * message, we include lun information in the
2979                  * second byte of all commands.  SCSI-1 specifies
2980                  * that luns are a 3 bit value and reserves only 3
2981                  * bits for lun information in the CDB.  Later
2982                  * revisions of the SCSI spec allow for more than 8
2983                  * luns, but have deprecated lun information in the
2984                  * CDB.  So, if the lun won't fit, we must omit.
2985                  *
2986                  * Also be aware that during initial probing for devices,
2987                  * the inquiry information is unknown but initialized to 0.
2988                  * This means that this code will be exercised while probing
2989                  * devices with an ANSI revision greater than 2.
2990                  */
2991                 device = start_ccb->ccb_h.path->device;
2992                 if (device->protocol_version <= SCSI_REV_2
2993                  && start_ccb->ccb_h.target_lun < 8
2994                  && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2995
2996                         start_ccb->csio.cdb_io.cdb_bytes[1] |=
2997                             start_ccb->ccb_h.target_lun << 5;
2998                 }
2999                 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3000                 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3001                           scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3002                                        &path->device->inq_data),
3003                           scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3004                                           cdb_str, sizeof(cdb_str))));
3005                 /* FALLTHROUGH */
3006         }
3007         case XPT_TARGET_IO:
3008         case XPT_CONT_TARGET_IO:
3009                 start_ccb->csio.sense_resid = 0;
3010                 start_ccb->csio.resid = 0;
3011                 /* FALLTHROUGH */
3012         case XPT_RESET_DEV:
3013         case XPT_ENG_EXEC:
3014         {
3015                 struct cam_path *path;
3016                 struct cam_sim *sim;
3017                 int runq;
3018
3019                 path = start_ccb->ccb_h.path;
3020
3021                 sim = path->bus->sim;
3022                 if (sim == &cam_dead_sim) {
3023                         /* The SIM has gone; just execute the CCB directly. */
3024                         cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3025                         (*(sim->sim_action))(sim, start_ccb);
3026                         break;
3027                 }
3028
3029                 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3030                 if (path->device->qfrozen_cnt == 0)
3031                         runq = xpt_schedule_dev_sendq(path->bus, path->device);
3032                 else
3033                         runq = 0;
3034                 if (runq != 0)
3035                         xpt_run_dev_sendq(path->bus);
3036                 break;
3037         }
3038         case XPT_SET_TRAN_SETTINGS:
3039         {
3040                 xpt_set_transfer_settings(&start_ccb->cts,
3041                                           start_ccb->ccb_h.path->device,
3042                                           /*async_update*/FALSE);
3043                 break;
3044         }
3045         case XPT_CALC_GEOMETRY:
3046         {
3047                 struct cam_sim *sim;
3048
3049                 /* Filter out garbage */
3050                 if (start_ccb->ccg.block_size == 0
3051                  || start_ccb->ccg.volume_size == 0) {
3052                         start_ccb->ccg.cylinders = 0;
3053                         start_ccb->ccg.heads = 0;
3054                         start_ccb->ccg.secs_per_track = 0;
3055                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3056                         break;
3057                 }
3058                 sim = start_ccb->ccb_h.path->bus->sim;
3059                 (*(sim->sim_action))(sim, start_ccb);
3060                 break;
3061         }
3062         case XPT_ABORT:
3063         {
3064                 union ccb* abort_ccb;
3065
3066                 abort_ccb = start_ccb->cab.abort_ccb;
3067                 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3068
3069                         if (abort_ccb->ccb_h.pinfo.index >= 0) {
3070                                 struct cam_ccbq *ccbq;
3071
3072                                 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3073                                 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3074                                 abort_ccb->ccb_h.status =
3075                                     CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3076                                 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3077                                 xpt_done(abort_ccb);
3078                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3079                                 break;
3080                         }
3081                         if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3082                          && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3083                                 /*
3084                                  * We've caught this ccb en route to
3085                                  * the SIM.  Flag it for abort and the
3086                                  * SIM will do so just before starting
3087                                  * real work on the CCB.
3088                                  */
3089                                 abort_ccb->ccb_h.status =
3090                                     CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3091                                 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3092                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3093                                 break;
3094                         }
3095                 }
3096                 if (XPT_FC_IS_QUEUED(abort_ccb)
3097                  && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3098                         /*
3099                          * It's already completed but waiting
3100                          * for our SWI to get to it.
3101                          */
3102                         start_ccb->ccb_h.status = CAM_UA_ABORT;
3103                         break;
3104                 }
3105                 /*
3106                  * If we weren't able to take care of the abort request
3107                  * in the XPT, pass the request down to the SIM for processing.
3108                  */
3109                 /* FALLTHROUGH */
3110         }
3111         case XPT_ACCEPT_TARGET_IO:
3112         case XPT_EN_LUN:
3113         case XPT_IMMED_NOTIFY:
3114         case XPT_NOTIFY_ACK:
3115         case XPT_GET_TRAN_SETTINGS:
3116         case XPT_RESET_BUS:
3117         {
3118                 struct cam_sim *sim;
3119
3120                 sim = start_ccb->ccb_h.path->bus->sim;
3121                 (*(sim->sim_action))(sim, start_ccb);
3122                 break;
3123         }
3124         case XPT_PATH_INQ:
3125         {
3126                 struct cam_sim *sim;
3127
3128                 sim = start_ccb->ccb_h.path->bus->sim;
3129                 (*(sim->sim_action))(sim, start_ccb);
3130                 break;
3131         }
3132         case XPT_PATH_STATS:
3133                 start_ccb->cpis.last_reset =
3134                         start_ccb->ccb_h.path->bus->last_reset;
3135                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3136                 break;
3137         case XPT_GDEV_TYPE:
3138         {
3139                 struct cam_ed *dev;
3140
3141                 dev = start_ccb->ccb_h.path->device;
3142                 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3143                         start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3144                 } else {
3145                         struct ccb_getdev *cgd;
3146                         struct cam_eb *bus;
3147                         struct cam_et *tar;
3148
3149                         cgd = &start_ccb->cgd;
3150                         bus = cgd->ccb_h.path->bus;
3151                         tar = cgd->ccb_h.path->target;
3152                         cgd->inq_data = dev->inq_data;
3153                         cgd->ccb_h.status = CAM_REQ_CMP;
3154                         cgd->serial_num_len = dev->serial_num_len;
3155                         if ((dev->serial_num_len > 0)
3156                          && (dev->serial_num != NULL))
3157                                 bcopy(dev->serial_num, cgd->serial_num,
3158                                       dev->serial_num_len);
3159                 }
3160                 break;
3161         }
3162         case XPT_GDEV_STATS:
3163         {
3164                 struct cam_ed *dev;
3165
3166                 dev = start_ccb->ccb_h.path->device;
3167                 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3168                         start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3169                 } else {
3170                         struct ccb_getdevstats *cgds;
3171                         struct cam_eb *bus;
3172                         struct cam_et *tar;
3173
3174                         cgds = &start_ccb->cgds;
3175                         bus = cgds->ccb_h.path->bus;
3176                         tar = cgds->ccb_h.path->target;
3177                         cgds->dev_openings = dev->ccbq.dev_openings;
3178                         cgds->dev_active = dev->ccbq.dev_active;
3179                         cgds->devq_openings = dev->ccbq.devq_openings;
3180                         cgds->devq_queued = dev->ccbq.queue.entries;
3181                         cgds->held = dev->ccbq.held;
3182                         cgds->last_reset = tar->last_reset;
3183                         cgds->maxtags = dev->quirk->maxtags;
3184                         cgds->mintags = dev->quirk->mintags;
3185                         if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3186                                 cgds->last_reset = bus->last_reset;
3187                         cgds->ccb_h.status = CAM_REQ_CMP;
3188                 }
3189                 break;
3190         }
3191         case XPT_GDEVLIST:
3192         {
3193                 struct cam_periph       *nperiph;
3194                 struct periph_list      *periph_head;
3195                 struct ccb_getdevlist   *cgdl;
3196                 u_int                   i;
3197                 struct cam_ed           *device;
3198                 int                     found;
3199
3200
3201                 found = 0;
3202
3203                 /*
3204                  * Don't want anyone mucking with our data.
3205                  */
3206                 device = start_ccb->ccb_h.path->device;
3207                 periph_head = &device->periphs;
3208                 cgdl = &start_ccb->cgdl;
3209
3210                 /*
3211                  * Check and see if the list has changed since the user
3212                  * last requested a list member.  If so, tell them that the
3213                  * list has changed, and therefore they need to start over
3214                  * from the beginning.
3215                  */
3216                 if ((cgdl->index != 0) &&
3217                     (cgdl->generation != device->generation)) {
3218                         cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3219                         break;
3220                 }
3221
3222                 /*
3223                  * Traverse the list of peripherals and attempt to find
3224                  * the requested peripheral.
3225                  */
3226                 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3227                      (nperiph != NULL) && (i <= cgdl->index);
3228                      nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3229                         if (i == cgdl->index) {
3230                                 strncpy(cgdl->periph_name,
3231                                         nperiph->periph_name,
3232                                         DEV_IDLEN);
3233                                 cgdl->unit_number = nperiph->unit_number;
3234                                 found = 1;
3235                         }
3236                 }
3237                 if (found == 0) {
3238                         cgdl->status = CAM_GDEVLIST_ERROR;
3239                         break;
3240                 }
3241
3242                 if (nperiph == NULL)
3243                         cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3244                 else
3245                         cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3246
3247                 cgdl->index++;
3248                 cgdl->generation = device->generation;
3249
3250                 cgdl->ccb_h.status = CAM_REQ_CMP;
3251                 break;
3252         }
3253         case XPT_DEV_MATCH:
3254         {
3255                 dev_pos_type position_type;
3256                 struct ccb_dev_match *cdm;
3257                 int ret;
3258
3259                 cdm = &start_ccb->cdm;
3260
3261                 /*
3262                  * There are two ways of getting at information in the EDT.
3263                  * The first way is via the primary EDT tree.  It starts
3264                  * with a list of busses, then a list of targets on a bus,
3265                  * then devices/luns on a target, and then peripherals on a
3266                  * device/lun.  The "other" way is by the peripheral driver
3267                  * lists.  The peripheral driver lists are organized by
3268                  * peripheral driver.  (obviously)  So it makes sense to
3269                  * use the peripheral driver list if the user is looking
3270                  * for something like "da1", or all "da" devices.  If the
3271                  * user is looking for something on a particular bus/target
3272                  * or lun, it's generally better to go through the EDT tree.
3273                  */
3274
3275                 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3276                         position_type = cdm->pos.position_type;
3277                 else {
3278                         u_int i;
3279
3280                         position_type = CAM_DEV_POS_NONE;
3281
3282                         for (i = 0; i < cdm->num_patterns; i++) {
3283                                 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3284                                  ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3285                                         position_type = CAM_DEV_POS_EDT;
3286                                         break;
3287                                 }
3288                         }
3289
3290                         if (cdm->num_patterns == 0)
3291                                 position_type = CAM_DEV_POS_EDT;
3292                         else if (position_type == CAM_DEV_POS_NONE)
3293                                 position_type = CAM_DEV_POS_PDRV;
3294                 }
3295
3296                 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3297                 case CAM_DEV_POS_EDT:
3298                         ret = xptedtmatch(cdm);
3299                         break;
3300                 case CAM_DEV_POS_PDRV:
3301                         ret = xptperiphlistmatch(cdm);
3302                         break;
3303                 default:
3304                         cdm->status = CAM_DEV_MATCH_ERROR;
3305                         break;
3306                 }
3307
3308                 if (cdm->status == CAM_DEV_MATCH_ERROR)
3309                         start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3310                 else
3311                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3312
3313                 break;
3314         }
3315         case XPT_SASYNC_CB:
3316         {
3317                 struct ccb_setasync *csa;
3318                 struct async_node *cur_entry;
3319                 struct async_list *async_head;
3320                 u_int32_t added;
3321
3322                 csa = &start_ccb->csa;
3323                 added = csa->event_enable;
3324                 async_head = &csa->ccb_h.path->device->asyncs;
3325
3326                 /*
3327                  * If there is already an entry for us, simply
3328                  * update it.
3329                  */
3330                 cur_entry = SLIST_FIRST(async_head);
3331                 while (cur_entry != NULL) {
3332                         if ((cur_entry->callback_arg == csa->callback_arg)
3333                          && (cur_entry->callback == csa->callback))
3334                                 break;
3335                         cur_entry = SLIST_NEXT(cur_entry, links);
3336                 }
3337
3338                 if (cur_entry != NULL) {
3339                         /*
3340                          * If the request has no flags set,
3341                          * remove the entry.
3342                          */
3343                         added &= ~cur_entry->event_enable;
3344                         if (csa->event_enable == 0) {
3345                                 SLIST_REMOVE(async_head, cur_entry,
3346                                              async_node, links);
3347                                 csa->ccb_h.path->device->refcount--;
3348                                 kfree(cur_entry, M_CAMXPT);
3349                         } else {
3350                                 cur_entry->event_enable = csa->event_enable;
3351                         }
3352                 } else {
3353                         cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3354                                            M_INTWAIT);
3355                         cur_entry->event_enable = csa->event_enable;
3356                         cur_entry->callback_arg = csa->callback_arg;
3357                         cur_entry->callback = csa->callback;
3358                         SLIST_INSERT_HEAD(async_head, cur_entry, links);
3359                         csa->ccb_h.path->device->refcount++;
3360                 }
3361
3362                 /*
3363                  * Need to decouple this operation via a taskqueue so that
3364                  * the locking doesn't become a mess.
3365                  */
3366                 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3367                         struct xpt_task *task;
3368
3369                         task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3370                                       M_INTWAIT);
3371
3372                         TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3373                         task->data1 = cur_entry;
3374                         task->data2 = added;
3375                         taskqueue_enqueue(taskqueue_thread[mycpuid],
3376                                           &task->task);
3377                 }
3378
3379                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3380                 break;
3381         }
3382         case XPT_REL_SIMQ:
3383         {
3384                 struct ccb_relsim *crs;
3385                 struct cam_ed *dev;
3386
3387                 crs = &start_ccb->crs;
3388                 dev = crs->ccb_h.path->device;
3389                 if (dev == NULL) {
3390
3391                         crs->ccb_h.status = CAM_DEV_NOT_THERE;
3392                         break;
3393                 }
3394
3395                 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3396
3397                         if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3398                                 /* Don't ever go below one opening */
3399                                 if (crs->openings > 0) {
3400                                         xpt_dev_ccbq_resize(crs->ccb_h.path,
3401                                                             crs->openings);
3402
3403                                         if (bootverbose) {
3404                                                 xpt_print(crs->ccb_h.path,
3405                                                     "tagged openings now %d\n",
3406                                                     crs->openings);
3407                                         }
3408                                 }
3409                         }
3410                 }
3411
3412                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3413
3414                         if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3415
3416                                 /*
3417                                  * Just extend the old timeout and decrement
3418                                  * the freeze count so that a single timeout
3419                                  * is sufficient for releasing the queue.
3420                                  */
3421                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3422                                 callout_stop(&dev->callout);
3423                         } else {
3424
3425                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3426                         }
3427
3428                         callout_reset(&dev->callout,
3429                                       (crs->release_timeout * hz) / 1000, 
3430                                       xpt_release_devq_timeout, dev);
3431
3432                         dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3433
3434                 }
3435
3436                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3437
3438                         if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3439                                 /*
3440                                  * Decrement the freeze count so that a single
3441                                  * completion is still sufficient to unfreeze
3442                                  * the queue.
3443                                  */
3444                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3445                         } else {
3446
3447                                 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3448                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3449                         }
3450                 }
3451
3452                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3453
3454                         if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3455                          || (dev->ccbq.dev_active == 0)) {
3456
3457                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3458                         } else {
3459
3460                                 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3461                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3462                         }
3463                 }
3464                 
3465                 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3466
3467                         xpt_release_devq(crs->ccb_h.path, /*count*/1,
3468                                          /*run_queue*/TRUE);
3469                 }
3470                 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3471                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3472                 break;
3473         }
3474         case XPT_SCAN_BUS:
3475                 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3476                 break;
3477         case XPT_SCAN_LUN:
3478                 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3479                              start_ccb->ccb_h.path, start_ccb->crcn.flags,
3480                              start_ccb);
3481                 break;
3482         case XPT_DEBUG: {
3483 #ifdef CAMDEBUG
3484 #ifdef CAM_DEBUG_DELAY
3485                 cam_debug_delay = CAM_DEBUG_DELAY;
3486 #endif
3487                 cam_dflags = start_ccb->cdbg.flags;
3488                 if (cam_dpath != NULL) {
3489                         xpt_free_path(cam_dpath);
3490                         cam_dpath = NULL;
3491                 }
3492
3493                 if (cam_dflags != CAM_DEBUG_NONE) {
3494                         if (xpt_create_path(&cam_dpath, xpt_periph,
3495                                             start_ccb->ccb_h.path_id,
3496                                             start_ccb->ccb_h.target_id,
3497                                             start_ccb->ccb_h.target_lun) !=
3498                                             CAM_REQ_CMP) {
3499                                 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3500                                 cam_dflags = CAM_DEBUG_NONE;
3501                         } else {
3502                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3503                                 xpt_print(cam_dpath, "debugging flags now %x\n",
3504                                     cam_dflags);
3505                         }
3506                 } else {
3507                         cam_dpath = NULL;
3508                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3509                 }
3510 #else /* !CAMDEBUG */
3511                 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3512 #endif /* CAMDEBUG */
3513                 break;
3514         }
3515         case XPT_NOOP:
3516                 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3517                         xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3518                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3519                 break;
3520         default:
3521         case XPT_SDEV_TYPE:
3522         case XPT_TERM_IO:
3523         case XPT_ENG_INQ:
3524                 /* XXX Implement */
3525                 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3526                 break;
3527         }
3528 }
3529
3530 void
3531 xpt_polled_action(union ccb *start_ccb)
3532 {
3533         u_int32_t timeout;
3534         struct    cam_sim *sim;
3535         struct    cam_devq *devq;
3536         struct    cam_ed *dev;
3537
3538         timeout = start_ccb->ccb_h.timeout;
3539         sim = start_ccb->ccb_h.path->bus->sim;
3540         devq = sim->devq;
3541         dev = start_ccb->ccb_h.path->device;
3542
3543         sim_lock_assert_owned(sim->lock);
3544
3545         /*
3546          * Steal an opening so that no other queued requests
3547          * can get it before us while we simulate interrupts.
3548          */
3549         dev->ccbq.devq_openings--;
3550         dev->ccbq.dev_openings--;
3551
3552         while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3553            && (--timeout > 0)) {
3554                 DELAY(1000);
3555                 (*(sim->sim_poll))(sim);
3556                 camisr_runqueue(sim);
3557         }
3558
3559         dev->ccbq.devq_openings++;
3560         dev->ccbq.dev_openings++;
3561
3562         if (timeout != 0) {
3563                 xpt_action(start_ccb);
3564                 while(--timeout > 0) {
3565                         (*(sim->sim_poll))(sim);
3566                         camisr_runqueue(sim);
3567                         if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3568                             != CAM_REQ_INPROG)
3569                                 break;
3570                         DELAY(1000);
3571                 }
3572                 if (timeout == 0) {
3573                         /*
3574                          * XXX Is it worth adding a sim_timeout entry
3575                          * point so we can attempt recovery?  If
3576                          * this is only used for dumps, I don't think
3577                          * it is.
3578                          */
3579                         start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3580                 }
3581         } else {
3582                 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3583         }
3584 }
3585
3586 /*
3587  * Schedule a peripheral driver to receive a ccb when it's
3588  * target device has space for more transactions.
3589  */
3590 void
3591 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3592 {
3593         struct cam_ed *device;
3594         union ccb *work_ccb;
3595         int runq;
3596
3597         sim_lock_assert_owned(perph->sim->lock);
3598
3599         CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3600         device = perph->path->device;
3601         if (periph_is_queued(perph)) {
3602                 /* Simply reorder based on new priority */
3603                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3604                           ("   change priority to %d\n", new_priority));
3605                 if (new_priority < perph->pinfo.priority) {
3606                         camq_change_priority(&device->drvq,
3607                                              perph->pinfo.index,
3608                                              new_priority);
3609                 }
3610                 runq = 0;
3611         } else if (perph->path->bus->sim == &cam_dead_sim) {
3612                 /* The SIM is gone so just call periph_start directly. */
3613                 work_ccb = xpt_get_ccb(perph->path->device);
3614                 if (work_ccb == NULL)
3615                         return; /* XXX */
3616                 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3617                 perph->pinfo.priority = new_priority;
3618                 perph->periph_start(perph, work_ccb);
3619                 return;
3620         } else {
3621                 /* New entry on the queue */
3622                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3623                           ("   added periph to queue\n"));
3624                 perph->pinfo.priority = new_priority;
3625                 perph->pinfo.generation = ++device->drvq.generation;
3626                 camq_insert(&device->drvq, &perph->pinfo);
3627                 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3628         }
3629         if (runq != 0) {
3630                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3631                           ("   calling xpt_run_devq\n"));
3632                 xpt_run_dev_allocq(perph->path->bus);
3633         }
3634 }
3635
3636
3637 /*
3638  * Schedule a device to run on a given queue.
3639  * If the device was inserted as a new entry on the queue,
3640  * return 1 meaning the device queue should be run. If we
3641  * were already queued, implying someone else has already
3642  * started the queue, return 0 so the caller doesn't attempt
3643  * to run the queue.
3644  */
3645 static int
3646 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3647                  u_int32_t new_priority)
3648 {
3649         int retval;
3650         u_int32_t old_priority;
3651
3652         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3653
3654         old_priority = pinfo->priority;
3655
3656         /*
3657          * Are we already queued?
3658          */
3659         if (pinfo->index != CAM_UNQUEUED_INDEX) {
3660                 /* Simply reorder based on new priority */
3661                 if (new_priority < old_priority) {
3662                         camq_change_priority(queue, pinfo->index,
3663                                              new_priority);
3664                         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3665                                         ("changed priority to %d\n",
3666                                          new_priority));
3667                 }
3668                 retval = 0;
3669         } else {
3670                 /* New entry on the queue */
3671                 if (new_priority < old_priority)
3672                         pinfo->priority = new_priority;
3673
3674                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3675                                 ("Inserting onto queue\n"));
3676                 pinfo->generation = ++queue->generation;
3677                 camq_insert(queue, pinfo);
3678                 retval = 1;
3679         }
3680         return (retval);
3681 }
3682
3683 static void
3684 xpt_run_dev_allocq(struct cam_eb *bus)
3685 {
3686         struct  cam_devq *devq;
3687
3688         if ((devq = bus->sim->devq) == NULL) {
3689                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3690                 return;
3691         }
3692         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3693
3694         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3695                         ("   qfrozen_cnt == 0x%x, entries == %d, "
3696                          "openings == %d, active == %d\n",
3697                          devq->alloc_queue.qfrozen_cnt,
3698                          devq->alloc_queue.entries,
3699                          devq->alloc_openings,
3700                          devq->alloc_active));
3701
3702         devq->alloc_queue.qfrozen_cnt++;
3703         while ((devq->alloc_queue.entries > 0)
3704             && (devq->alloc_openings > 0)
3705             && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3706                 struct  cam_ed_qinfo *qinfo;
3707                 struct  cam_ed *device;
3708                 union   ccb *work_ccb;
3709                 struct  cam_periph *drv;
3710                 struct  camq *drvq;
3711
3712                 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3713                                                            CAMQ_HEAD);
3714                 device = qinfo->device;
3715
3716                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3717                                 ("running device %p\n", device));
3718
3719                 drvq = &device->drvq;
3720
3721 #ifdef CAMDEBUG
3722                 if (drvq->entries <= 0) {
3723                         panic("xpt_run_dev_allocq: "
3724                               "Device on queue without any work to do");
3725                 }
3726 #endif
3727                 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3728                         devq->alloc_openings--;
3729                         devq->alloc_active++;
3730                         drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3731                         xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3732                                       drv->pinfo.priority);
3733                         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3734                                         ("calling periph start\n"));
3735                         drv->periph_start(drv, work_ccb);
3736                 } else {
3737                         /*
3738                          * Malloc failure in alloc_ccb
3739                          */
3740                         /*
3741                          * XXX add us to a list to be run from free_ccb
3742                          * if we don't have any ccbs active on this
3743                          * device queue otherwise we may never get run
3744                          * again.
3745                          */
3746                         break;
3747                 }
3748
3749                 if (drvq->entries > 0) {
3750                         /* We have more work.  Attempt to reschedule */
3751                         xpt_schedule_dev_allocq(bus, device);
3752                 }
3753         }
3754         devq->alloc_queue.qfrozen_cnt--;
3755 }
3756
3757 static void
3758 xpt_run_dev_sendq(struct cam_eb *bus)
3759 {
3760         struct  cam_devq *devq;
3761
3762         if ((devq = bus->sim->devq) == NULL) {
3763                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3764                 return;
3765         }
3766         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3767
3768         devq->send_queue.qfrozen_cnt++;
3769         while ((devq->send_queue.entries > 0)
3770             && (devq->send_openings > 0)) {
3771                 struct  cam_ed_qinfo *qinfo;
3772                 struct  cam_ed *device;
3773                 union ccb *work_ccb;
3774                 struct  cam_sim *sim;
3775
3776                 if (devq->send_queue.qfrozen_cnt > 1) {
3777                         break;
3778                 }
3779
3780                 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3781                                                            CAMQ_HEAD);
3782                 device = qinfo->device;
3783
3784                 /*
3785                  * If the device has been "frozen", don't attempt
3786                  * to run it.
3787                  */
3788                 if (device->qfrozen_cnt > 0) {
3789                         continue;
3790                 }
3791
3792                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3793                                 ("running device %p\n", device));
3794
3795                 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3796                 if (work_ccb == NULL) {
3797                         kprintf("device on run queue with no ccbs???\n");
3798                         continue;
3799                 }
3800
3801                 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3802
3803                         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3804                         if (xsoftc.num_highpower <= 0) {
3805                                 /*
3806                                  * We got a high power command, but we
3807                                  * don't have any available slots.  Freeze
3808                                  * the device queue until we have a slot
3809                                  * available.
3810                                  */
3811                                 device->qfrozen_cnt++;
3812                                 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3813                                                    &work_ccb->ccb_h,
3814                                                    xpt_links.stqe);
3815
3816                            &