2 * Implementation of the Common Access Method Transport (XPT) layer.
4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification, immediately at the beginning of the file.
14 * 2. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
44 #include <sys/taskqueue.h>
46 #include <sys/thread.h>
48 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
59 #include "cam_periph.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
75 /* Object for defering XPT actions to a taskqueue */
83 * Definition of an async handler callback block. These are used to add
84 * SIMs and peripherals to the async callback lists.
87 SLIST_ENTRY(async_node) links;
88 u_int32_t event_enable; /* Async Event enables */
89 void (*callback)(void *arg, u_int32_t code,
90 struct cam_path *path, void *args);
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
98 * This is the maximum number of high powered commands (e.g. start unit)
99 * that can be outstanding at a particular time.
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER 4
106 * Structure for queueing a device in a run queue.
107 * There is one run queue for allocating new ccbs,
108 * and another for sending ccbs to the controller.
110 struct cam_ed_qinfo {
112 struct cam_ed *device;
116 * The CAM EDT (Existing Device Table) contains the device information for
117 * all devices for all busses in the system. The table contains a
118 * cam_ed structure for each device on the bus.
121 TAILQ_ENTRY(cam_ed) links;
122 struct cam_ed_qinfo alloc_ccb_entry;
123 struct cam_ed_qinfo send_ccb_entry;
124 struct cam_et *target;
128 * Queue of type drivers wanting to do
129 * work on this device.
131 struct cam_ccbq ccbq; /* Queue of pending ccbs */
132 struct async_list asyncs; /* Async callback info for this B/T/L */
133 struct periph_list periphs; /* All attached devices */
134 u_int generation; /* Generation number */
135 struct cam_periph *owner; /* Peripheral driver's ownership tag */
136 struct xpt_quirk_entry *quirk; /* Oddities about this device */
137 /* Storage for the inquiry data */
139 u_int protocol_version;
141 u_int transport_version;
142 struct scsi_inquiry_data inq_data;
143 u_int8_t inq_flags; /*
144 * Current settings for inquiry flags.
145 * This allows us to override settings
146 * like disconnection and tagged
147 * queuing for a device.
149 u_int8_t queue_flags; /* Queue flags from the control page */
150 u_int8_t serial_num_len;
151 u_int8_t *serial_num;
152 u_int32_t qfrozen_cnt;
154 #define CAM_DEV_UNCONFIGURED 0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02
156 #define CAM_DEV_REL_ON_COMPLETE 0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10
159 #define CAM_DEV_TAG_AFTER_COUNT 0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID 0x40
161 #define CAM_DEV_IN_DV 0x80
162 #define CAM_DEV_DV_HIT_BOTTOM 0x100
163 u_int32_t tag_delay_count;
164 #define CAM_TAG_DELAY_COUNT 5
165 u_int32_t tag_saved_openings;
167 struct callout callout;
171 * Each target is represented by an ET (Existing Target). These
172 * entries are created when a target is successfully probed with an
173 * identify, and removed when a device fails to respond after a number
174 * of retries, or a bus rescan finds the device missing.
177 TAILQ_HEAD(, cam_ed) ed_entries;
178 TAILQ_ENTRY(cam_et) links;
180 target_id_t target_id;
183 struct timeval last_reset; /* uptime of last reset */
187 * Each bus is represented by an EB (Existing Bus). These entries
188 * are created by calls to xpt_bus_register and deleted by calls to
189 * xpt_bus_deregister.
192 TAILQ_HEAD(, cam_et) et_entries;
193 TAILQ_ENTRY(cam_eb) links;
196 struct timeval last_reset; /* uptime of last reset */
198 #define CAM_EB_RUNQ_SCHEDULED 0x01
201 int counted_to_config; /* busses_to_config */
205 struct cam_periph *periph;
207 struct cam_et *target;
208 struct cam_ed *device;
211 struct xpt_quirk_entry {
212 struct scsi_inquiry_pattern inq_pat;
214 #define CAM_QUIRK_NOLUNS 0x01
215 #define CAM_QUIRK_NOSERIAL 0x02
216 #define CAM_QUIRK_HILUNS 0x04
217 #define CAM_QUIRK_NOHILUNS 0x08
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226 sysctl_cam_search_luns, "I",
227 "allow search above LUN 7 for SCSI3 and greater devices");
229 #define CAM_SCSI2_MAXLUN 8
231 * If we're not quirked to search <= the first 8 luns
232 * and we are either quirked to search above lun 8,
233 * or we're > SCSI-2 and we've enabled hilun searching,
234 * or we're > SCSI-2 and the last lun was a success,
235 * we can look for luns above lun 8.
237 #define CAN_SRCH_HI_SPARSE(dv) \
238 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
239 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
240 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
242 #define CAN_SRCH_HI_DENSE(dv) \
243 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \
244 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \
245 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
253 u_int32_t xpt_generation;
255 /* number of high powered commands that can go through right now */
256 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
259 /* queue for handling async rescan requests. */
260 TAILQ_HEAD(, ccb_hdr) ccb_scanq;
261 int ccb_scanq_running;
263 /* Registered busses */
264 TAILQ_HEAD(,cam_eb) xpt_busses;
265 u_int bus_generation;
267 struct intr_config_hook *xpt_config_hook;
269 struct lock xpt_topo_lock;
270 struct lock xpt_lock;
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
280 static struct xpt_quirk_entry xpt_quirk_table[] =
283 /* Reports QUEUE FULL for temporary resource shortages */
284 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 /*quirks*/0, /*mintags*/24, /*maxtags*/32
288 /* Reports QUEUE FULL for temporary resource shortages */
289 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 /*quirks*/0, /*mintags*/24, /*maxtags*/32
293 /* Reports QUEUE FULL for temporary resource shortages */
294 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 /*quirks*/0, /*mintags*/24, /*maxtags*/32
298 /* Broken tagged queuing drive */
299 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 /*quirks*/0, /*mintags*/0, /*maxtags*/0
303 /* Broken tagged queuing drive */
304 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 /*quirks*/0, /*mintags*/0, /*maxtags*/0
308 /* Broken tagged queuing drive */
309 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 /*quirks*/0, /*mintags*/0, /*maxtags*/0
314 * Unfortunately, the Quantum Atlas III has the same
315 * problem as the Atlas II drives above.
316 * Reported by: "Johan Granlund" <johan@granlund.nu>
318 * For future reference, the drive with the problem was:
319 * QUANTUM QM39100TD-SW N1B0
321 * It's possible that Quantum will fix the problem in later
322 * firmware revisions. If that happens, the quirk entry
323 * will need to be made specific to the firmware revisions
327 /* Reports QUEUE FULL for temporary resource shortages */
328 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 /*quirks*/0, /*mintags*/24, /*maxtags*/32
333 * 18 Gig Atlas III, same problem as the 9G version.
334 * Reported by: Andre Albsmeier
335 * <andre.albsmeier@mchp.siemens.de>
337 * For future reference, the drive with the problem was:
338 * QUANTUM QM318000TD-S N491
340 /* Reports QUEUE FULL for temporary resource shortages */
341 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 /*quirks*/0, /*mintags*/24, /*maxtags*/32
346 * Broken tagged queuing drive
347 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 * and: Martin Renters <martin@tdc.on.ca>
350 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 /*quirks*/0, /*mintags*/0, /*maxtags*/0
354 * The Seagate Medalist Pro drives have very poor write
355 * performance with anything more than 2 tags.
357 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl>
358 * Drive: <SEAGATE ST36530N 1444>
360 * Reported by: Jeremy Lea <reg@shale.csir.co.za>
361 * Drive: <SEAGATE ST34520W 1281>
363 * No one has actually reported that the 9G version
364 * (ST39140*) of the Medalist Pro has the same problem, but
365 * we're assuming that it does because the 4G and 6.5G
366 * versions of the drive are broken.
369 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 /*quirks*/0, /*mintags*/2, /*maxtags*/2
373 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 /*quirks*/0, /*mintags*/2, /*maxtags*/2
377 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 /*quirks*/0, /*mintags*/2, /*maxtags*/2
382 * Slow when tagged queueing is enabled. Write performance
383 * steadily drops off with more and more concurrent
384 * transactions. Best sequential write performance with
385 * tagged queueing turned off and write caching turned on.
388 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp>
389 * Drive: DCAS-34330 w/ "S65A" firmware.
391 * The drive with the problem had the "S65A" firmware
392 * revision, and has also been reported (by Stephen J.
393 * Roznowski <sjr@home.net>) for a drive with the "S61A"
396 * Although no one has reported problems with the 2 gig
397 * version of the DCAS drive, the assumption is that it
398 * has the same problems as the 4 gig version. Therefore
399 * this quirk entries disables tagged queueing for all
402 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 /*quirks*/0, /*mintags*/0, /*maxtags*/0
406 /* Broken tagged queuing drive */
407 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 /*quirks*/0, /*mintags*/0, /*maxtags*/0
411 /* Broken tagged queuing drive */
412 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 /*quirks*/0, /*mintags*/0, /*maxtags*/0
416 /* This does not support other than LUN 0 */
417 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
422 * Broken tagged queuing drive.
424 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
427 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 /*quirks*/0, /*mintags*/0, /*maxtags*/0
432 * Slow when tagged queueing is enabled. (1.5MB/sec versus
434 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 * Best performance with these drives is achieved with
436 * tagged queueing turned off, and write caching turned on.
438 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 /*quirks*/0, /*mintags*/0, /*maxtags*/0
443 * Slow when tagged queueing is enabled. (1.5MB/sec versus
445 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 * Best performance with these drives is achieved with
447 * tagged queueing turned off, and write caching turned on.
449 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 /*quirks*/0, /*mintags*/0, /*maxtags*/0
454 * Doesn't handle queue full condition correctly,
455 * so we need to limit maxtags to what the device
456 * can handle instead of determining this automatically.
458 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 /*quirks*/0, /*mintags*/2, /*maxtags*/32
462 /* Really only one LUN */
463 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
467 /* I can't believe we need a quirk for DPT volumes. */
468 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
470 /*mintags*/0, /*maxtags*/255
474 * Many Sony CDROM drives don't like multi-LUN probing.
476 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
481 * This drive doesn't like multiple LUN probing.
482 * Submitted by: Parag Patel <parag@cgt.com>
484 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" },
485 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
493 * The 8200 doesn't like multi-lun probing, and probably
494 * don't like serial number requests either.
497 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
500 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
504 * Let's try the same as above, but for a drive that says
505 * it's an IPL-6860 but is actually an EXB 8200.
508 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
511 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
515 * These Hitachi drives don't like multi-lun probing.
516 * The PR submitter has a DK319H, but says that the Linux
517 * kernel has a similar work-around for the DK312 and DK314,
518 * so all DK31* drives are quirked here.
520 * Submitted by: Paul Haddad <paul@pth.com>
522 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
527 * The Hitachi CJ series with J8A8 firmware apparantly has
528 * problems with tagged commands.
530 * Reported by: amagai@nue.org
532 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
537 * These are the large storage arrays.
538 * Submitted by: William Carrel <william.carrel@infospace.com>
540 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 CAM_QUIRK_HILUNS, 2, 1024
545 * This old revision of the TDC3600 is also SCSI-1, and
546 * hangs upon serial number probing.
549 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
552 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
556 * Would repond to all LUNs if asked for.
559 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
562 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
566 * Would repond to all LUNs if asked for.
569 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
572 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
575 /* Submitted by: Matthew Dodd <winter@jurai.net> */
576 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
580 /* Submitted by: Matthew Dodd <winter@jurai.net> */
581 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
585 /* TeraSolutions special settings for TRC-22 RAID */
586 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 /*quirks*/0, /*mintags*/55, /*maxtags*/255
590 /* Veritas Storage Appliance */
591 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
596 * Would respond to all LUNs. Device type and removable
597 * flag are jumper-selectable.
599 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
602 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
605 /* EasyRAID E5A aka. areca ARC-6010 */
606 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
610 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
614 /* Default tagged queuing parameters for all devices */
616 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 /*vendor*/"*", /*product*/"*", /*revision*/"*"
619 /*quirks*/0, /*mintags*/2, /*maxtags*/255
623 static const int xpt_quirk_table_size =
624 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
628 DM_RET_FLAG_MASK = 0x0f,
631 DM_RET_DESCEND = 0x20,
633 DM_RET_ACTION_MASK = 0xf0
641 } xpt_traverse_depth;
643 struct xpt_traverse_config {
644 xpt_traverse_depth depth;
649 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg);
650 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg);
651 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg);
652 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg);
653 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
655 /* Transport layer configuration information */
656 static struct xpt_softc xsoftc;
658 /* Queues for our software interrupt handler */
659 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
660 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
661 static cam_simq_t cam_simq;
662 static struct spinlock cam_simq_spin;
664 struct cam_periph *xpt_periph;
666 static periph_init_t xpt_periph_init;
668 static periph_init_t probe_periph_init;
670 static struct periph_driver xpt_driver =
672 xpt_periph_init, "xpt",
673 TAILQ_HEAD_INITIALIZER(xpt_driver.units)
676 static struct periph_driver probe_driver =
678 probe_periph_init, "probe",
679 TAILQ_HEAD_INITIALIZER(probe_driver.units)
682 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
683 PERIPHDRIVER_DECLARE(probe, probe_driver);
685 static d_open_t xptopen;
686 static d_close_t xptclose;
687 static d_ioctl_t xptioctl;
689 static struct dev_ops xpt_ops = {
696 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
697 static void dead_sim_poll(struct cam_sim *sim);
699 /* Dummy SIM that is used when the real one has gone. */
700 static struct cam_sim cam_dead_sim;
701 static struct lock cam_dead_lock;
703 /* Storage for debugging datastructures */
705 struct cam_path *cam_dpath;
706 u_int32_t cam_dflags;
707 u_int32_t cam_debug_delay;
710 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
711 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
715 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
716 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS,
717 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
719 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
720 || defined(CAM_DEBUG_LUN)
722 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
723 || !defined(CAM_DEBUG_LUN)
724 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
726 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
727 #else /* !CAMDEBUG */
728 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
729 #endif /* CAMDEBUG */
730 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
732 /* Our boot-time initialization hook */
733 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
735 static moduledata_t cam_moduledata = {
737 cam_module_event_handler,
741 static int xpt_init(void *);
743 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
744 MODULE_VERSION(cam, 1);
747 static cam_status xpt_compile_path(struct cam_path *new_path,
748 struct cam_periph *perph,
750 target_id_t target_id,
753 static void xpt_release_path(struct cam_path *path);
755 static void xpt_async_bcast(struct async_list *async_head,
756 u_int32_t async_code,
757 struct cam_path *path,
759 static void xpt_dev_async(u_int32_t async_code,
761 struct cam_et *target,
762 struct cam_ed *device,
764 static path_id_t xptnextfreepathid(void);
765 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
766 static union ccb *xpt_get_ccb(struct cam_ed *device);
767 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
768 u_int32_t new_priority);
769 static void xpt_run_dev_allocq(struct cam_eb *bus);
770 static void xpt_run_dev_sendq(struct cam_eb *bus);
771 static timeout_t xpt_release_devq_timeout;
772 static void xpt_release_bus(struct cam_eb *bus);
773 static void xpt_release_devq_device(struct cam_ed *dev, u_int count,
775 static struct cam_et*
776 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
777 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target);
778 static struct cam_ed*
779 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
781 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target,
782 struct cam_ed *device);
783 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
784 static struct cam_eb*
785 xpt_find_bus(path_id_t path_id);
786 static struct cam_et*
787 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
788 static struct cam_ed*
789 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
790 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
791 static void xpt_scan_lun(struct cam_periph *periph,
792 struct cam_path *path, cam_flags flags,
794 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb);
795 static xpt_busfunc_t xptconfigbuscountfunc;
796 static xpt_busfunc_t xptconfigfunc;
797 static void xpt_config(void *arg);
798 static xpt_devicefunc_t xptpassannouncefunc;
799 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
800 static void xpt_uncount_bus (struct cam_eb *bus);
801 static void xptaction(struct cam_sim *sim, union ccb *work_ccb);
802 static void xptpoll(struct cam_sim *sim);
803 static inthand2_t swi_cambio;
804 static void camisr(void *);
805 static void camisr_runqueue(struct cam_sim *);
806 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns,
807 u_int num_patterns, struct cam_eb *bus);
808 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns,
810 struct cam_ed *device);
811 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns,
813 struct cam_periph *periph);
814 static xpt_busfunc_t xptedtbusfunc;
815 static xpt_targetfunc_t xptedttargetfunc;
816 static xpt_devicefunc_t xptedtdevicefunc;
817 static xpt_periphfunc_t xptedtperiphfunc;
818 static xpt_pdrvfunc_t xptplistpdrvfunc;
819 static xpt_periphfunc_t xptplistperiphfunc;
820 static int xptedtmatch(struct ccb_dev_match *cdm);
821 static int xptperiphlistmatch(struct ccb_dev_match *cdm);
822 static int xptbustraverse(struct cam_eb *start_bus,
823 xpt_busfunc_t *tr_func, void *arg);
824 static int xpttargettraverse(struct cam_eb *bus,
825 struct cam_et *start_target,
826 xpt_targetfunc_t *tr_func, void *arg);
827 static int xptdevicetraverse(struct cam_et *target,
828 struct cam_ed *start_device,
829 xpt_devicefunc_t *tr_func, void *arg);
830 static int xptperiphtraverse(struct cam_ed *device,
831 struct cam_periph *start_periph,
832 xpt_periphfunc_t *tr_func, void *arg);
833 static int xptpdrvtraverse(struct periph_driver **start_pdrv,
834 xpt_pdrvfunc_t *tr_func, void *arg);
835 static int xptpdperiphtraverse(struct periph_driver **pdrv,
836 struct cam_periph *start_periph,
837 xpt_periphfunc_t *tr_func,
839 static xpt_busfunc_t xptdefbusfunc;
840 static xpt_targetfunc_t xptdeftargetfunc;
841 static xpt_devicefunc_t xptdefdevicefunc;
842 static xpt_periphfunc_t xptdefperiphfunc;
843 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
844 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func,
846 static xpt_devicefunc_t xptsetasyncfunc;
847 static xpt_busfunc_t xptsetasyncbusfunc;
848 static cam_status xptregister(struct cam_periph *periph,
850 static cam_status proberegister(struct cam_periph *periph,
852 static void probeschedule(struct cam_periph *probe_periph);
853 static void probestart(struct cam_periph *periph, union ccb *start_ccb);
854 static void proberequestdefaultnegotiation(struct cam_periph *periph);
855 static int proberequestbackoff(struct cam_periph *periph,
856 struct cam_ed *device);
857 static void probedone(struct cam_periph *periph, union ccb *done_ccb);
858 static void probecleanup(struct cam_periph *periph);
859 static void xpt_find_quirk(struct cam_ed *device);
860 static void xpt_devise_transport(struct cam_path *path);
861 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts,
862 struct cam_ed *device,
864 static void xpt_toggle_tags(struct cam_path *path);
865 static void xpt_start_tags(struct cam_path *path);
866 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
868 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
870 static __inline int periph_is_queued(struct cam_periph *periph);
871 static __inline int device_is_alloc_queued(struct cam_ed *device);
872 static __inline int device_is_send_queued(struct cam_ed *device);
873 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
876 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
880 if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
881 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
882 cam_ccbq_resize(&dev->ccbq,
883 dev->ccbq.dev_openings
884 + dev->ccbq.dev_active);
885 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
888 * The priority of a device waiting for CCB resources
889 * is that of the the highest priority peripheral driver
892 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
893 &dev->alloc_ccb_entry.pinfo,
894 CAMQ_GET_HEAD(&dev->drvq)->priority);
903 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
907 if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
909 * The priority of a device waiting for controller
910 * resources is that of the the highest priority CCB
914 xpt_schedule_dev(&bus->sim->devq->send_queue,
915 &dev->send_ccb_entry.pinfo,
916 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
924 periph_is_queued(struct cam_periph *periph)
926 return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
930 device_is_alloc_queued(struct cam_ed *device)
932 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
936 device_is_send_queued(struct cam_ed *device)
938 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
942 dev_allocq_is_runnable(struct cam_devq *devq)
946 * Have space to do more work.
947 * Allowed to do work.
949 return ((devq->alloc_queue.qfrozen_cnt == 0)
950 && (devq->alloc_queue.entries > 0)
951 && (devq->alloc_openings > 0));
955 xpt_periph_init(void)
957 make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
961 probe_periph_init(void)
967 xptdone(struct cam_periph *periph, union ccb *done_ccb)
969 /* Caller will release the CCB */
970 wakeup(&done_ccb->ccb_h.cbfcnp);
974 xptopen(struct dev_open_args *ap)
976 cdev_t dev = ap->a_head.a_dev;
979 * Only allow read-write access.
981 if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
985 * We don't allow nonblocking access.
987 if ((ap->a_oflags & O_NONBLOCK) != 0) {
988 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
992 /* Mark ourselves open */
993 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
994 xsoftc.flags |= XPT_FLAG_OPEN;
995 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1001 xptclose(struct dev_close_args *ap)
1004 /* Mark ourselves closed */
1005 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1006 xsoftc.flags &= ~XPT_FLAG_OPEN;
1007 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1013 * Don't automatically grab the xpt softc lock here even though this is going
1014 * through the xpt device. The xpt device is really just a back door for
1015 * accessing other devices and SIMs, so the right thing to do is to grab
1016 * the appropriate SIM lock once the bus/SIM is located.
1019 xptioctl(struct dev_ioctl_args *ap)
1027 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028 * to accept CCB types that don't quite make sense to send through a
1029 * passthrough driver.
1031 case CAMIOCOMMAND: {
1036 inccb = (union ccb *)ap->a_data;
1038 bus = xpt_find_bus(inccb->ccb_h.path_id);
1044 switch(inccb->ccb_h.func_code) {
1047 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1048 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1057 ccb = xpt_alloc_ccb();
1059 CAM_SIM_LOCK(bus->sim);
1062 * Create a path using the bus, target, and lun the
1065 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1066 inccb->ccb_h.path_id,
1067 inccb->ccb_h.target_id,
1068 inccb->ccb_h.target_lun) !=
1071 CAM_SIM_UNLOCK(bus->sim);
1075 /* Ensure all of our fields are correct */
1076 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1077 inccb->ccb_h.pinfo.priority);
1078 xpt_merge_ccb(ccb, inccb);
1079 ccb->ccb_h.cbfcnp = xptdone;
1080 cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1081 bcopy(ccb, inccb, sizeof(union ccb));
1082 xpt_free_path(ccb->ccb_h.path);
1084 CAM_SIM_UNLOCK(bus->sim);
1091 * This is an immediate CCB, so it's okay to
1092 * allocate it on the stack.
1095 CAM_SIM_LOCK(bus->sim);
1098 * Create a path using the bus, target, and lun the
1101 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1102 inccb->ccb_h.path_id,
1103 inccb->ccb_h.target_id,
1104 inccb->ccb_h.target_lun) !=
1107 CAM_SIM_UNLOCK(bus->sim);
1110 /* Ensure all of our fields are correct */
1111 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1112 inccb->ccb_h.pinfo.priority);
1113 xpt_merge_ccb(&ccb, inccb);
1114 ccb.ccb_h.cbfcnp = xptdone;
1116 CAM_SIM_UNLOCK(bus->sim);
1117 bcopy(&ccb, inccb, sizeof(union ccb));
1118 xpt_free_path(ccb.ccb_h.path);
1122 case XPT_DEV_MATCH: {
1123 struct cam_periph_map_info mapinfo;
1124 struct cam_path *old_path;
1127 * We can't deal with physical addresses for this
1128 * type of transaction.
1130 if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1136 * Save this in case the caller had it set to
1137 * something in particular.
1139 old_path = inccb->ccb_h.path;
1142 * We really don't need a path for the matching
1143 * code. The path is needed because of the
1144 * debugging statements in xpt_action(). They
1145 * assume that the CCB has a valid path.
1147 inccb->ccb_h.path = xpt_periph->path;
1149 bzero(&mapinfo, sizeof(mapinfo));
1152 * Map the pattern and match buffers into kernel
1153 * virtual address space.
1155 error = cam_periph_mapmem(inccb, &mapinfo);
1158 inccb->ccb_h.path = old_path;
1163 * This is an immediate CCB, we can send it on directly.
1168 * Map the buffers back into user space.
1170 cam_periph_unmapmem(inccb, &mapinfo);
1172 inccb->ccb_h.path = old_path;
1181 xpt_release_bus(bus);
1185 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1186 * with the periphal driver name and unit name filled in. The other
1187 * fields don't really matter as input. The passthrough driver name
1188 * ("pass"), and unit number are passed back in the ccb. The current
1189 * device generation number, and the index into the device peripheral
1190 * driver list, and the status are also passed back. Note that
1191 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1192 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is
1193 * (or rather should be) impossible for the device peripheral driver
1194 * list to change since we look at the whole thing in one pass, and
1195 * we do it with lock protection.
1198 case CAMGETPASSTHRU: {
1200 struct cam_periph *periph;
1201 struct periph_driver **p_drv;
1204 u_int cur_generation;
1205 int base_periph_found;
1208 ccb = (union ccb *)ap->a_data;
1209 unit = ccb->cgdl.unit_number;
1210 name = ccb->cgdl.periph_name;
1212 * Every 100 devices, we want to drop our lock protection to
1213 * give the software interrupt handler a chance to run.
1214 * Most systems won't run into this check, but this should
1215 * avoid starvation in the software interrupt handler in
1220 ccb = (union ccb *)ap->a_data;
1222 base_periph_found = 0;
1225 * Sanity check -- make sure we don't get a null peripheral
1228 if (*ccb->cgdl.periph_name == '\0') {
1233 /* Keep the list from changing while we traverse it */
1234 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1236 cur_generation = xsoftc.xpt_generation;
1238 /* first find our driver in the list of drivers */
1239 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1240 if (strcmp((*p_drv)->driver_name, name) == 0)
1244 if (*p_drv == NULL) {
1245 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1246 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1247 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1248 *ccb->cgdl.periph_name = '\0';
1249 ccb->cgdl.unit_number = 0;
1255 * Run through every peripheral instance of this driver
1256 * and check to see whether it matches the unit passed
1257 * in by the user. If it does, get out of the loops and
1258 * find the passthrough driver associated with that
1259 * peripheral driver.
1261 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1263 if (periph->unit_number == unit) {
1265 } else if (--splbreaknum == 0) {
1266 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1267 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1269 if (cur_generation != xsoftc.xpt_generation)
1274 * If we found the peripheral driver that the user passed
1275 * in, go through all of the peripheral drivers for that
1276 * particular device and look for a passthrough driver.
1278 if (periph != NULL) {
1279 struct cam_ed *device;
1282 base_periph_found = 1;
1283 device = periph->path->device;
1284 for (i = 0, periph = SLIST_FIRST(&device->periphs);
1286 periph = SLIST_NEXT(periph, periph_links), i++) {
1288 * Check to see whether we have a
1289 * passthrough device or not.
1291 if (strcmp(periph->periph_name, "pass") == 0) {
1293 * Fill in the getdevlist fields.
1295 strcpy(ccb->cgdl.periph_name,
1296 periph->periph_name);
1297 ccb->cgdl.unit_number =
1298 periph->unit_number;
1299 if (SLIST_NEXT(periph, periph_links))
1301 CAM_GDEVLIST_MORE_DEVS;
1304 CAM_GDEVLIST_LAST_DEVICE;
1305 ccb->cgdl.generation =
1307 ccb->cgdl.index = i;
1309 * Fill in some CCB header fields
1310 * that the user may want.
1312 ccb->ccb_h.path_id =
1313 periph->path->bus->path_id;
1314 ccb->ccb_h.target_id =
1315 periph->path->target->target_id;
1316 ccb->ccb_h.target_lun =
1317 periph->path->device->lun_id;
1318 ccb->ccb_h.status = CAM_REQ_CMP;
1325 * If the periph is null here, one of two things has
1326 * happened. The first possibility is that we couldn't
1327 * find the unit number of the particular peripheral driver
1328 * that the user is asking about. e.g. the user asks for
1329 * the passthrough driver for "da11". We find the list of
1330 * "da" peripherals all right, but there is no unit 11.
1331 * The other possibility is that we went through the list
1332 * of peripheral drivers attached to the device structure,
1333 * but didn't find one with the name "pass". Either way,
1334 * we return ENOENT, since we couldn't find something.
1336 if (periph == NULL) {
1337 ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1338 ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1339 *ccb->cgdl.periph_name = '\0';
1340 ccb->cgdl.unit_number = 0;
1343 * It is unfortunate that this is even necessary,
1344 * but there are many, many clueless users out there.
1345 * If this is true, the user is looking for the
1346 * passthrough driver, but doesn't have one in his
1349 if (base_periph_found == 1) {
1350 kprintf("xptioctl: pass driver is not in the "
1352 kprintf("xptioctl: put \"device pass\" in "
1353 "your kernel config file\n");
1356 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1368 cam_module_event_handler(module_t mod, int what, void *arg)
1374 if ((error = xpt_init(NULL)) != 0)
1387 * Thread to handle asynchronous main-context requests.
1389 * This function is typically used by drivers to perform complex actions
1390 * such as bus scans and engineering requests in a main context instead
1391 * of an interrupt context.
1394 xpt_scanner_thread(void *dummy)
1397 struct cam_sim *sim;
1403 xsoftc.ccb_scanq_running = 1;
1404 while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1405 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1409 sim = ccb->ccb_h.path->bus->sim;
1412 CAM_SIM_UNLOCK(sim);
1416 xsoftc.ccb_scanq_running = 0;
1417 tsleep_interlock(&xsoftc.ccb_scanq, 0);
1419 tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1422 rel_mplock(); /* not reached */
1426 * Issue an asynchronous asction
1429 xpt_action_async(union ccb *ccb)
1432 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1433 if (xsoftc.ccb_scanq_running == 0) {
1434 xsoftc.ccb_scanq_running = 1;
1435 wakeup(&xsoftc.ccb_scanq);
1441 /* Functions accessed by the peripheral drivers */
1443 xpt_init(void *dummy)
1445 struct cam_sim *xpt_sim;
1446 struct cam_path *path;
1447 struct cam_devq *devq;
1450 TAILQ_INIT(&xsoftc.xpt_busses);
1451 TAILQ_INIT(&cam_simq);
1452 TAILQ_INIT(&xsoftc.ccb_scanq);
1453 STAILQ_INIT(&xsoftc.highpowerq);
1454 xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1456 spin_init(&cam_simq_spin);
1457 lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1458 lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1460 SLIST_INIT(&cam_dead_sim.ccb_freeq);
1461 TAILQ_INIT(&cam_dead_sim.sim_doneq);
1462 spin_init(&cam_dead_sim.sim_spin);
1463 cam_dead_sim.sim_action = dead_sim_action;
1464 cam_dead_sim.sim_poll = dead_sim_poll;
1465 cam_dead_sim.sim_name = "dead_sim";
1466 cam_dead_sim.lock = &cam_dead_lock;
1467 lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1468 cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1471 * The xpt layer is, itself, the equivelent of a SIM.
1472 * Allow 16 ccbs in the ccb pool for it. This should
1473 * give decent parallelism when we probe busses and
1474 * perform other XPT functions.
1476 devq = cam_simq_alloc(16);
1477 xpt_sim = cam_sim_alloc(xptaction,
1482 /*lock*/&xsoftc.xpt_lock,
1483 /*max_dev_transactions*/0,
1484 /*max_tagged_dev_transactions*/0,
1486 cam_simq_release(devq);
1487 if (xpt_sim == NULL)
1490 xpt_sim->max_ccbs = 16;
1492 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1493 if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1494 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 " failing attach\n", status);
1500 * Looking at the XPT from the SIM layer, the XPT is
1501 * the equivelent of a peripheral driver. Allocate
1502 * a peripheral driver entry for us.
1504 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 CAM_TARGET_WILDCARD,
1506 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1508 " failing attach\n", status);
1512 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1513 path, NULL, 0, xpt_sim);
1514 xpt_free_path(path);
1516 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1519 * Register a callback for when interrupts are enabled.
1521 xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1522 M_CAMXPT, M_INTWAIT | M_ZERO);
1523 xsoftc.xpt_config_hook->ich_func = xpt_config;
1524 xsoftc.xpt_config_hook->ich_desc = "xpt";
1525 xsoftc.xpt_config_hook->ich_order = 1000;
1526 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1527 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1528 kprintf("xpt_init: config_intrhook_establish failed "
1529 "- failing attach\n");
1532 /* fire up rescan thread */
1533 if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1534 kprintf("xpt_init: failed to create rescan thread\n");
1536 /* Install our software interrupt handlers */
1537 register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1543 xptregister(struct cam_periph *periph, void *arg)
1545 struct cam_sim *xpt_sim;
1547 if (periph == NULL) {
1548 kprintf("xptregister: periph was NULL!!\n");
1549 return(CAM_REQ_CMP_ERR);
1552 xpt_sim = (struct cam_sim *)arg;
1553 xpt_sim->softc = periph;
1554 xpt_periph = periph;
1555 periph->softc = NULL;
1557 return(CAM_REQ_CMP);
1561 xpt_add_periph(struct cam_periph *periph)
1563 struct cam_ed *device;
1565 struct periph_list *periph_head;
1567 sim_lock_assert_owned(periph->sim->lock);
1569 device = periph->path->device;
1571 periph_head = &device->periphs;
1573 status = CAM_REQ_CMP;
1575 if (device != NULL) {
1577 * Make room for this peripheral
1578 * so it will fit in the queue
1579 * when it's scheduled to run
1581 status = camq_resize(&device->drvq,
1582 device->drvq.array_size + 1);
1584 device->generation++;
1586 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1589 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1590 xsoftc.xpt_generation++;
1591 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1597 xpt_remove_periph(struct cam_periph *periph)
1599 struct cam_ed *device;
1601 sim_lock_assert_owned(periph->sim->lock);
1603 device = periph->path->device;
1605 if (device != NULL) {
1606 struct periph_list *periph_head;
1608 periph_head = &device->periphs;
1610 /* Release the slot for this peripheral */
1611 camq_resize(&device->drvq, device->drvq.array_size - 1);
1613 device->generation++;
1615 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1618 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1619 xsoftc.xpt_generation++;
1620 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1624 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 struct ccb_pathinq cpi;
1627 struct ccb_trans_settings cts;
1628 struct cam_path *path;
1633 sim_lock_assert_owned(periph->sim->lock);
1635 path = periph->path;
1637 /* Report basic attachment and inquiry data */
1638 kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1639 periph->periph_name, periph->unit_number,
1640 path->bus->sim->sim_name,
1641 path->bus->sim->unit_number,
1642 path->bus->sim->bus_id,
1643 path->target->target_id,
1644 path->device->lun_id);
1645 kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1646 scsi_print_inquiry(&path->device->inq_data);
1648 /* Report serial number */
1649 if (path->device->serial_num_len > 0) {
1650 /* Don't wrap the screen - print only the first 60 chars */
1651 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1652 periph->unit_number, path->device->serial_num);
1655 /* Acquire and report transfer speed */
1656 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1657 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1658 cts.type = CTS_TYPE_CURRENT_SETTINGS;
1659 xpt_action((union ccb*)&cts);
1660 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1664 /* Ask the SIM for its base transfer speed */
1665 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1666 cpi.ccb_h.func_code = XPT_PATH_INQ;
1667 xpt_action((union ccb *)&cpi);
1669 speed = cpi.base_transfer_speed;
1671 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1672 struct ccb_trans_settings_spi *spi;
1674 spi = &cts.xport_specific.spi;
1675 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1676 && spi->sync_offset != 0) {
1677 freq = scsi_calc_syncsrate(spi->sync_period);
1681 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1682 speed *= (0x01 << spi->bus_width);
1684 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1685 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1686 if (fc->valid & CTS_FC_VALID_SPEED) {
1687 speed = fc->bitrate;
1691 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1692 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1693 if (sas->valid & CTS_SAS_VALID_SPEED) {
1694 speed = sas->bitrate;
1700 kprintf("%s%d: %d.%03dMB/s transfers",
1701 periph->periph_name, periph->unit_number,
1704 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1705 periph->unit_number, speed);
1707 /* Report additional information about SPI connections */
1708 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1709 struct ccb_trans_settings_spi *spi;
1711 spi = &cts.xport_specific.spi;
1713 kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1715 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1719 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1720 && spi->bus_width > 0) {
1726 kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1727 } else if (freq != 0) {
1731 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1732 struct ccb_trans_settings_fc *fc;
1734 fc = &cts.xport_specific.fc;
1735 if (fc->valid & CTS_FC_VALID_WWNN)
1736 kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1737 if (fc->valid & CTS_FC_VALID_WWPN)
1738 kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1739 if (fc->valid & CTS_FC_VALID_PORT)
1740 kprintf(" PortID 0x%x", fc->port);
1743 if (path->device->inq_flags & SID_CmdQue
1744 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1745 kprintf("\n%s%d: Command Queueing Enabled",
1746 periph->periph_name, periph->unit_number);
1751 * We only want to print the caller's announce string if they've
1754 if (announce_string != NULL)
1755 kprintf("%s%d: %s\n", periph->periph_name,
1756 periph->unit_number, announce_string);
1759 static dev_match_ret
1760 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1763 dev_match_ret retval;
1766 retval = DM_RET_NONE;
1769 * If we aren't given something to match against, that's an error.
1772 return(DM_RET_ERROR);
1775 * If there are no match entries, then this bus matches no
1778 if ((patterns == NULL) || (num_patterns == 0))
1779 return(DM_RET_DESCEND | DM_RET_COPY);
1781 for (i = 0; i < num_patterns; i++) {
1782 struct bus_match_pattern *cur_pattern;
1785 * If the pattern in question isn't for a bus node, we
1786 * aren't interested. However, we do indicate to the
1787 * calling routine that we should continue descending the
1788 * tree, since the user wants to match against lower-level
1791 if (patterns[i].type != DEV_MATCH_BUS) {
1792 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1793 retval |= DM_RET_DESCEND;
1797 cur_pattern = &patterns[i].pattern.bus_pattern;
1800 * If they want to match any bus node, we give them any
1803 if (cur_pattern->flags == BUS_MATCH_ANY) {
1804 /* set the copy flag */
1805 retval |= DM_RET_COPY;
1808 * If we've already decided on an action, go ahead
1811 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1816 * Not sure why someone would do this...
1818 if (cur_pattern->flags == BUS_MATCH_NONE)
1821 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1822 && (cur_pattern->path_id != bus->path_id))
1825 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1826 && (cur_pattern->bus_id != bus->sim->bus_id))
1829 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1830 && (cur_pattern->unit_number != bus->sim->unit_number))
1833 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1834 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1839 * If we get to this point, the user definitely wants
1840 * information on this bus. So tell the caller to copy the
1843 retval |= DM_RET_COPY;
1846 * If the return action has been set to descend, then we
1847 * know that we've already seen a non-bus matching
1848 * expression, therefore we need to further descend the tree.
1849 * This won't change by continuing around the loop, so we
1850 * go ahead and return. If we haven't seen a non-bus
1851 * matching expression, we keep going around the loop until
1852 * we exhaust the matching expressions. We'll set the stop
1853 * flag once we fall out of the loop.
1855 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1860 * If the return action hasn't been set to descend yet, that means
1861 * we haven't seen anything other than bus matching patterns. So
1862 * tell the caller to stop descending the tree -- the user doesn't
1863 * want to match against lower level tree elements.
1865 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1866 retval |= DM_RET_STOP;
1871 static dev_match_ret
1872 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1873 struct cam_ed *device)
1875 dev_match_ret retval;
1878 retval = DM_RET_NONE;
1881 * If we aren't given something to match against, that's an error.
1884 return(DM_RET_ERROR);
1887 * If there are no match entries, then this device matches no
1890 if ((patterns == NULL) || (num_patterns == 0))
1891 return(DM_RET_DESCEND | DM_RET_COPY);
1893 for (i = 0; i < num_patterns; i++) {
1894 struct device_match_pattern *cur_pattern;
1897 * If the pattern in question isn't for a device node, we
1898 * aren't interested.
1900 if (patterns[i].type != DEV_MATCH_DEVICE) {
1901 if ((patterns[i].type == DEV_MATCH_PERIPH)
1902 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1903 retval |= DM_RET_DESCEND;
1907 cur_pattern = &patterns[i].pattern.device_pattern;
1910 * If they want to match any device node, we give them any
1913 if (cur_pattern->flags == DEV_MATCH_ANY) {
1914 /* set the copy flag */
1915 retval |= DM_RET_COPY;
1919 * If we've already decided on an action, go ahead
1922 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1927 * Not sure why someone would do this...
1929 if (cur_pattern->flags == DEV_MATCH_NONE)
1932 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1933 && (cur_pattern->path_id != device->target->bus->path_id))
1936 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1937 && (cur_pattern->target_id != device->target->target_id))
1940 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1941 && (cur_pattern->target_lun != device->lun_id))
1944 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1945 && (cam_quirkmatch((caddr_t)&device->inq_data,
1946 (caddr_t)&cur_pattern->inq_pat,
1947 1, sizeof(cur_pattern->inq_pat),
1948 scsi_static_inquiry_match) == NULL))
1952 * If we get to this point, the user definitely wants
1953 * information on this device. So tell the caller to copy
1956 retval |= DM_RET_COPY;
1959 * If the return action has been set to descend, then we
1960 * know that we've already seen a peripheral matching
1961 * expression, therefore we need to further descend the tree.
1962 * This won't change by continuing around the loop, so we
1963 * go ahead and return. If we haven't seen a peripheral
1964 * matching expression, we keep going around the loop until
1965 * we exhaust the matching expressions. We'll set the stop
1966 * flag once we fall out of the loop.
1968 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1973 * If the return action hasn't been set to descend yet, that means
1974 * we haven't seen any peripheral matching patterns. So tell the
1975 * caller to stop descending the tree -- the user doesn't want to
1976 * match against lower level tree elements.
1978 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1979 retval |= DM_RET_STOP;
1985 * Match a single peripheral against any number of match patterns.
1987 static dev_match_ret
1988 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1989 struct cam_periph *periph)
1991 dev_match_ret retval;
1995 * If we aren't given something to match against, that's an error.
1998 return(DM_RET_ERROR);
2001 * If there are no match entries, then this peripheral matches no
2004 if ((patterns == NULL) || (num_patterns == 0))
2005 return(DM_RET_STOP | DM_RET_COPY);
2008 * There aren't any nodes below a peripheral node, so there's no
2009 * reason to descend the tree any further.
2011 retval = DM_RET_STOP;
2013 for (i = 0; i < num_patterns; i++) {
2014 struct periph_match_pattern *cur_pattern;
2017 * If the pattern in question isn't for a peripheral, we
2018 * aren't interested.
2020 if (patterns[i].type != DEV_MATCH_PERIPH)
2023 cur_pattern = &patterns[i].pattern.periph_pattern;
2026 * If they want to match on anything, then we will do so.
2028 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2029 /* set the copy flag */
2030 retval |= DM_RET_COPY;
2033 * We've already set the return action to stop,
2034 * since there are no nodes below peripherals in
2041 * Not sure why someone would do this...
2043 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2046 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2047 && (cur_pattern->path_id != periph->path->bus->path_id))
2051 * For the target and lun id's, we have to make sure the
2052 * target and lun pointers aren't NULL. The xpt peripheral
2053 * has a wildcard target and device.
2055 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2056 && ((periph->path->target == NULL)
2057 ||(cur_pattern->target_id != periph->path->target->target_id)))
2060 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2061 && ((periph->path->device == NULL)
2062 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2065 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2066 && (cur_pattern->unit_number != periph->unit_number))
2069 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2070 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2075 * If we get to this point, the user definitely wants
2076 * information on this peripheral. So tell the caller to
2077 * copy the data out.
2079 retval |= DM_RET_COPY;
2082 * The return action has already been set to stop, since
2083 * peripherals don't have any nodes below them in the EDT.
2089 * If we get to this point, the peripheral that was passed in
2090 * doesn't match any of the patterns.
2096 xptedtbusfunc(struct cam_eb *bus, void *arg)
2098 struct ccb_dev_match *cdm;
2099 dev_match_ret retval;
2101 cdm = (struct ccb_dev_match *)arg;
2104 * If our position is for something deeper in the tree, that means
2105 * that we've already seen this node. So, we keep going down.
2107 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2108 && (cdm->pos.cookie.bus == bus)
2109 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2110 && (cdm->pos.cookie.target != NULL))
2111 retval = DM_RET_DESCEND;
2113 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2116 * If we got an error, bail out of the search.
2118 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119 cdm->status = CAM_DEV_MATCH_ERROR;
2124 * If the copy flag is set, copy this bus out.
2126 if (retval & DM_RET_COPY) {
2129 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2130 sizeof(struct dev_match_result));
2133 * If we don't have enough space to put in another
2134 * match result, save our position and tell the
2135 * user there are more devices to check.
2137 if (spaceleft < sizeof(struct dev_match_result)) {
2138 bzero(&cdm->pos, sizeof(cdm->pos));
2139 cdm->pos.position_type =
2140 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2142 cdm->pos.cookie.bus = bus;
2143 cdm->pos.generations[CAM_BUS_GENERATION]=
2144 xsoftc.bus_generation;
2145 cdm->status = CAM_DEV_MATCH_MORE;
2148 j = cdm->num_matches;
2150 cdm->matches[j].type = DEV_MATCH_BUS;
2151 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2152 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2153 cdm->matches[j].result.bus_result.unit_number =
2154 bus->sim->unit_number;
2155 strncpy(cdm->matches[j].result.bus_result.dev_name,
2156 bus->sim->sim_name, DEV_IDLEN);
2160 * If the user is only interested in busses, there's no
2161 * reason to descend to the next level in the tree.
2163 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2167 * If there is a target generation recorded, check it to
2168 * make sure the target list hasn't changed.
2170 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2171 && (bus == cdm->pos.cookie.bus)
2172 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2173 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2174 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2176 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2180 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2181 && (cdm->pos.cookie.bus == bus)
2182 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2183 && (cdm->pos.cookie.target != NULL))
2184 return(xpttargettraverse(bus,
2185 (struct cam_et *)cdm->pos.cookie.target,
2186 xptedttargetfunc, arg));
2188 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2192 xptedttargetfunc(struct cam_et *target, void *arg)
2194 struct ccb_dev_match *cdm;
2196 cdm = (struct ccb_dev_match *)arg;
2199 * If there is a device list generation recorded, check it to
2200 * make sure the device list hasn't changed.
2202 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2203 && (cdm->pos.cookie.bus == target->bus)
2204 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2205 && (cdm->pos.cookie.target == target)
2206 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2207 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2208 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2209 target->generation)) {
2210 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2214 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2215 && (cdm->pos.cookie.bus == target->bus)
2216 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2217 && (cdm->pos.cookie.target == target)
2218 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2219 && (cdm->pos.cookie.device != NULL))
2220 return(xptdevicetraverse(target,
2221 (struct cam_ed *)cdm->pos.cookie.device,
2222 xptedtdevicefunc, arg));
2224 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2228 xptedtdevicefunc(struct cam_ed *device, void *arg)
2231 struct ccb_dev_match *cdm;
2232 dev_match_ret retval;
2234 cdm = (struct ccb_dev_match *)arg;
2237 * If our position is for something deeper in the tree, that means
2238 * that we've already seen this node. So, we keep going down.
2240 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2241 && (cdm->pos.cookie.device == device)
2242 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2243 && (cdm->pos.cookie.periph != NULL))
2244 retval = DM_RET_DESCEND;
2246 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2249 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2250 cdm->status = CAM_DEV_MATCH_ERROR;
2255 * If the copy flag is set, copy this device out.
2257 if (retval & DM_RET_COPY) {
2260 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2261 sizeof(struct dev_match_result));
2264 * If we don't have enough space to put in another
2265 * match result, save our position and tell the
2266 * user there are more devices to check.
2268 if (spaceleft < sizeof(struct dev_match_result)) {
2269 bzero(&cdm->pos, sizeof(cdm->pos));
2270 cdm->pos.position_type =
2271 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2272 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2274 cdm->pos.cookie.bus = device->target->bus;
2275 cdm->pos.generations[CAM_BUS_GENERATION]=
2276 xsoftc.bus_generation;
2277 cdm->pos.cookie.target = device->target;
2278 cdm->pos.generations[CAM_TARGET_GENERATION] =
2279 device->target->bus->generation;
2280 cdm->pos.cookie.device = device;
2281 cdm->pos.generations[CAM_DEV_GENERATION] =
2282 device->target->generation;
2283 cdm->status = CAM_DEV_MATCH_MORE;
2286 j = cdm->num_matches;
2288 cdm->matches[j].type = DEV_MATCH_DEVICE;
2289 cdm->matches[j].result.device_result.path_id =
2290 device->target->bus->path_id;
2291 cdm->matches[j].result.device_result.target_id =
2292 device->target->target_id;
2293 cdm->matches[j].result.device_result.target_lun =
2295 bcopy(&device->inq_data,
2296 &cdm->matches[j].result.device_result.inq_data,
2297 sizeof(struct scsi_inquiry_data));
2299 /* Let the user know whether this device is unconfigured */
2300 if (device->flags & CAM_DEV_UNCONFIGURED)
2301 cdm->matches[j].result.device_result.flags =
2302 DEV_RESULT_UNCONFIGURED;
2304 cdm->matches[j].result.device_result.flags =
2309 * If the user isn't interested in peripherals, don't descend
2310 * the tree any further.
2312 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2316 * If there is a peripheral list generation recorded, make sure
2317 * it hasn't changed.
2319 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2320 && (device->target->bus == cdm->pos.cookie.bus)
2321 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2322 && (device->target == cdm->pos.cookie.target)
2323 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2324 && (device == cdm->pos.cookie.device)
2325 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2326 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2327 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2328 device->generation)){
2329 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2333 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2334 && (cdm->pos.cookie.bus == device->target->bus)
2335 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2336 && (cdm->pos.cookie.target == device->target)
2337 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2338 && (cdm->pos.cookie.device == device)
2339 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2340 && (cdm->pos.cookie.periph != NULL))
2341 return(xptperiphtraverse(device,
2342 (struct cam_periph *)cdm->pos.cookie.periph,
2343 xptedtperiphfunc, arg));
2345 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2349 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2351 struct ccb_dev_match *cdm;
2352 dev_match_ret retval;
2354 cdm = (struct ccb_dev_match *)arg;
2356 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2358 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2359 cdm->status = CAM_DEV_MATCH_ERROR;
2364 * If the copy flag is set, copy this peripheral out.
2366 if (retval & DM_RET_COPY) {
2369 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2370 sizeof(struct dev_match_result));
2373 * If we don't have enough space to put in another
2374 * match result, save our position and tell the
2375 * user there are more devices to check.
2377 if (spaceleft < sizeof(struct dev_match_result)) {
2378 bzero(&cdm->pos, sizeof(cdm->pos));
2379 cdm->pos.position_type =
2380 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2381 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2384 cdm->pos.cookie.bus = periph->path->bus;
2385 cdm->pos.generations[CAM_BUS_GENERATION]=
2386 xsoftc.bus_generation;
2387 cdm->pos.cookie.target = periph->path->target;
2388 cdm->pos.generations[CAM_TARGET_GENERATION] =
2389 periph->path->bus->generation;
2390 cdm->pos.cookie.device = periph->path->device;
2391 cdm->pos.generations[CAM_DEV_GENERATION] =
2392 periph->path->target->generation;
2393 cdm->pos.cookie.periph = periph;
2394 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2395 periph->path->device->generation;
2396 cdm->status = CAM_DEV_MATCH_MORE;
2400 j = cdm->num_matches;
2402 cdm->matches[j].type = DEV_MATCH_PERIPH;
2403 cdm->matches[j].result.periph_result.path_id =
2404 periph->path->bus->path_id;
2405 cdm->matches[j].result.periph_result.target_id =
2406 periph->path->target->target_id;
2407 cdm->matches[j].result.periph_result.target_lun =
2408 periph->path->device->lun_id;
2409 cdm->matches[j].result.periph_result.unit_number =
2410 periph->unit_number;
2411 strncpy(cdm->matches[j].result.periph_result.periph_name,
2412 periph->periph_name, DEV_IDLEN);
2419 xptedtmatch(struct ccb_dev_match *cdm)
2423 cdm->num_matches = 0;
2426 * Check the bus list generation. If it has changed, the user
2427 * needs to reset everything and start over.
2429 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2430 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2431 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2432 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2436 if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2437 && (cdm->pos.cookie.bus != NULL))
2438 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2439 xptedtbusfunc, cdm);
2441 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2444 * If we get back 0, that means that we had to stop before fully
2445 * traversing the EDT. It also means that one of the subroutines
2446 * has set the status field to the proper value. If we get back 1,
2447 * we've fully traversed the EDT and copied out any matching entries.
2450 cdm->status = CAM_DEV_MATCH_LAST;
2456 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2458 struct ccb_dev_match *cdm;
2460 cdm = (struct ccb_dev_match *)arg;
2462 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2463 && (cdm->pos.cookie.pdrv == pdrv)
2464 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2465 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2466 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2467 (*pdrv)->generation)) {
2468 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2472 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2473 && (cdm->pos.cookie.pdrv == pdrv)
2474 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2475 && (cdm->pos.cookie.periph != NULL))
2476 return(xptpdperiphtraverse(pdrv,
2477 (struct cam_periph *)cdm->pos.cookie.periph,
2478 xptplistperiphfunc, arg));
2480 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2484 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2486 struct ccb_dev_match *cdm;
2487 dev_match_ret retval;
2489 cdm = (struct ccb_dev_match *)arg;
2491 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2493 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2494 cdm->status = CAM_DEV_MATCH_ERROR;
2499 * If the copy flag is set, copy this peripheral out.
2501 if (retval & DM_RET_COPY) {
2504 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2505 sizeof(struct dev_match_result));
2508 * If we don't have enough space to put in another
2509 * match result, save our position and tell the
2510 * user there are more devices to check.
2512 if (spaceleft < sizeof(struct dev_match_result)) {
2513 struct periph_driver **pdrv;
2516 bzero(&cdm->pos, sizeof(cdm->pos));
2517 cdm->pos.position_type =
2518 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2522 * This may look a bit non-sensical, but it is
2523 * actually quite logical. There are very few
2524 * peripheral drivers, and bloating every peripheral
2525 * structure with a pointer back to its parent
2526 * peripheral driver linker set entry would cost
2527 * more in the long run than doing this quick lookup.
2529 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2530 if (strcmp((*pdrv)->driver_name,
2531 periph->periph_name) == 0)
2535 if (*pdrv == NULL) {
2536 cdm->status = CAM_DEV_MATCH_ERROR;
2540 cdm->pos.cookie.pdrv = pdrv;
2542 * The periph generation slot does double duty, as
2543 * does the periph pointer slot. They are used for
2544 * both edt and pdrv lookups and positioning.
2546 cdm->pos.cookie.periph = periph;
2547 cdm->pos.generations[CAM_PERIPH_GENERATION] =
2548 (*pdrv)->generation;
2549 cdm->status = CAM_DEV_MATCH_MORE;
2553 j = cdm->num_matches;
2555 cdm->matches[j].type = DEV_MATCH_PERIPH;
2556 cdm->matches[j].result.periph_result.path_id =
2557 periph->path->bus->path_id;
2560 * The transport layer peripheral doesn't have a target or
2563 if (periph->path->target)
2564 cdm->matches[j].result.periph_result.target_id =
2565 periph->path->target->target_id;
2567 cdm->matches[j].result.periph_result.target_id = -1;
2569 if (periph->path->device)
2570 cdm->matches[j].result.periph_result.target_lun =
2571 periph->path->device->lun_id;
2573 cdm->matches[j].result.periph_result.target_lun = -1;
2575 cdm->matches[j].result.periph_result.unit_number =
2576 periph->unit_number;
2577 strncpy(cdm->matches[j].result.periph_result.periph_name,
2578 periph->periph_name, DEV_IDLEN);
2585 xptperiphlistmatch(struct ccb_dev_match *cdm)
2589 cdm->num_matches = 0;
2592 * At this point in the edt traversal function, we check the bus
2593 * list generation to make sure that no busses have been added or
2594 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2595 * For the peripheral driver list traversal function, however, we
2596 * don't have to worry about new peripheral driver types coming or
2597 * going; they're in a linker set, and therefore can't change
2598 * without a recompile.
2601 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2602 && (cdm->pos.cookie.pdrv != NULL))
2603 ret = xptpdrvtraverse(
2604 (struct periph_driver **)cdm->pos.cookie.pdrv,
2605 xptplistpdrvfunc, cdm);
2607 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2610 * If we get back 0, that means that we had to stop before fully
2611 * traversing the peripheral driver tree. It also means that one of
2612 * the subroutines has set the status field to the proper value. If
2613 * we get back 1, we've fully traversed the EDT and copied out any
2617 cdm->status = CAM_DEV_MATCH_LAST;
2623 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2625 struct cam_eb *bus, *next_bus;
2630 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2631 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2634 next_bus = TAILQ_NEXT(bus, links);
2636 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2637 CAM_SIM_LOCK(bus->sim);
2638 retval = tr_func(bus, arg);
2639 CAM_SIM_UNLOCK(bus->sim);
2642 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2644 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2650 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2651 xpt_targetfunc_t *tr_func, void *arg)
2653 struct cam_et *target, *next_target;
2657 for (target = (start_target ? start_target :
2658 TAILQ_FIRST(&bus->et_entries));
2659 target != NULL; target = next_target) {
2661 next_target = TAILQ_NEXT(target, links);
2663 retval = tr_func(target, arg);
2673 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2674 xpt_devicefunc_t *tr_func, void *arg)
2676 struct cam_ed *device, *next_device;
2680 for (device = (start_device ? start_device :
2681 TAILQ_FIRST(&target->ed_entries));
2683 device = next_device) {
2685 next_device = TAILQ_NEXT(device, links);
2687 retval = tr_func(device, arg);
2697 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2698 xpt_periphfunc_t *tr_func, void *arg)
2700 struct cam_periph *periph, *next_periph;
2705 for (periph = (start_periph ? start_periph :
2706 SLIST_FIRST(&device->periphs));
2708 periph = next_periph) {
2710 next_periph = SLIST_NEXT(periph, periph_links);
2712 retval = tr_func(periph, arg);
2721 xptpdrvtraverse(struct periph_driver **start_pdrv,
2722 xpt_pdrvfunc_t *tr_func, void *arg)
2724 struct periph_driver **pdrv;
2730 * We don't traverse the peripheral driver list like we do the
2731 * other lists, because it is a linker set, and therefore cannot be
2732 * changed during runtime. If the peripheral driver list is ever
2733 * re-done to be something other than a linker set (i.e. it can
2734 * change while the system is running), the list traversal should
2735 * be modified to work like the other traversal functions.
2737 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2738 *pdrv != NULL; pdrv++) {
2739 retval = tr_func(pdrv, arg);
2749 xptpdperiphtraverse(struct periph_driver **pdrv,
2750 struct cam_periph *start_periph,
2751 xpt_periphfunc_t *tr_func, void *arg)
2753 struct cam_periph *periph, *next_periph;
2758 for (periph = (start_periph ? start_periph :
2759 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2760 periph = next_periph) {
2762 next_periph = TAILQ_NEXT(periph, unit_links);
2764 retval = tr_func(periph, arg);
2772 xptdefbusfunc(struct cam_eb *bus, void *arg)
2774 struct xpt_traverse_config *tr_config;
2776 tr_config = (struct xpt_traverse_config *)arg;
2778 if (tr_config->depth == XPT_DEPTH_BUS) {
2779 xpt_busfunc_t *tr_func;
2781 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2783 return(tr_func(bus, tr_config->tr_arg));
2785 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2789 xptdeftargetfunc(struct cam_et *target, void *arg)
2791 struct xpt_traverse_config *tr_config;
2793 tr_config = (struct xpt_traverse_config *)arg;
2795 if (tr_config->depth == XPT_DEPTH_TARGET) {
2796 xpt_targetfunc_t *tr_func;
2798 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2800 return(tr_func(target, tr_config->tr_arg));
2802 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2806 xptdefdevicefunc(struct cam_ed *device, void *arg)
2808 struct xpt_traverse_config *tr_config;
2810 tr_config = (struct xpt_traverse_config *)arg;
2812 if (tr_config->depth == XPT_DEPTH_DEVICE) {
2813 xpt_devicefunc_t *tr_func;
2815 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2817 return(tr_func(device, tr_config->tr_arg));
2819 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2823 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2825 struct xpt_traverse_config *tr_config;
2826 xpt_periphfunc_t *tr_func;
2828 tr_config = (struct xpt_traverse_config *)arg;
2830 tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2833 * Unlike the other default functions, we don't check for depth
2834 * here. The peripheral driver level is the last level in the EDT,
2835 * so if we're here, we should execute the function in question.
2837 return(tr_func(periph, tr_config->tr_arg));
2841 * Execute the given function for every bus in the EDT.
2844 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2846 struct xpt_traverse_config tr_config;
2848 tr_config.depth = XPT_DEPTH_BUS;
2849 tr_config.tr_func = tr_func;
2850 tr_config.tr_arg = arg;
2852 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2856 * Execute the given function for every device in the EDT.
2859 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2861 struct xpt_traverse_config tr_config;
2863 tr_config.depth = XPT_DEPTH_DEVICE;
2864 tr_config.tr_func = tr_func;
2865 tr_config.tr_arg = arg;
2867 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2871 xptsetasyncfunc(struct cam_ed *device, void *arg)
2873 struct cam_path path;
2874 struct ccb_getdev cgd;
2875 struct async_node *cur_entry;
2877 cur_entry = (struct async_node *)arg;
2880 * Don't report unconfigured devices (Wildcard devs,
2881 * devices only for target mode, device instances
2882 * that have been invalidated but are waiting for
2883 * their last reference count to be released).
2885 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2888 xpt_compile_path(&path,
2890 device->target->bus->path_id,
2891 device->target->target_id,
2893 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2894 cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2895 xpt_action((union ccb *)&cgd);
2896 cur_entry->callback(cur_entry->callback_arg,
2899 xpt_release_path(&path);
2905 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2907 struct cam_path path;
2908 struct ccb_pathinq cpi;
2909 struct async_node *cur_entry;
2911 cur_entry = (struct async_node *)arg;
2913 xpt_compile_path(&path, /*periph*/NULL,
2915 CAM_TARGET_WILDCARD,
2917 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2918 cpi.ccb_h.func_code = XPT_PATH_INQ;
2919 xpt_action((union ccb *)&cpi);
2920 cur_entry->callback(cur_entry->callback_arg,
2923 xpt_release_path(&path);
2929 xpt_action_sasync_cb(void *context, int pending)
2931 struct async_node *cur_entry;
2932 struct xpt_task *task;
2935 task = (struct xpt_task *)context;
2936 cur_entry = (struct async_node *)task->data1;
2937 added = task->data2;
2939 if ((added & AC_FOUND_DEVICE) != 0) {
2941 * Get this peripheral up to date with all
2942 * the currently existing devices.
2944 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946 if ((added & AC_PATH_REGISTERED) != 0) {
2948 * Get this peripheral up to date with all
2949 * the currently existing busses.
2951 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2953 kfree(task, M_CAMXPT);
2957 xpt_action(union ccb *start_ccb)
2959 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2961 start_ccb->ccb_h.status = CAM_REQ_INPROG;
2963 switch (start_ccb->ccb_h.func_code) {
2967 struct cam_ed *device;
2969 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2970 struct cam_path *path;
2972 path = start_ccb->ccb_h.path;
2976 * For the sake of compatibility with SCSI-1
2977 * devices that may not understand the identify
2978 * message, we include lun information in the
2979 * second byte of all commands. SCSI-1 specifies
2980 * that luns are a 3 bit value and reserves only 3
2981 * bits for lun information in the CDB. Later
2982 * revisions of the SCSI spec allow for more than 8
2983 * luns, but have deprecated lun information in the
2984 * CDB. So, if the lun won't fit, we must omit.
2986 * Also be aware that during initial probing for devices,
2987 * the inquiry information is unknown but initialized to 0.
2988 * This means that this code will be exercised while probing
2989 * devices with an ANSI revision greater than 2.
2991 device = start_ccb->ccb_h.path->device;
2992 if (device->protocol_version <= SCSI_REV_2
2993 && start_ccb->ccb_h.target_lun < 8
2994 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2996 start_ccb->csio.cdb_io.cdb_bytes[1] |=
2997 start_ccb->ccb_h.target_lun << 5;
2999 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3000 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3001 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3002 &path->device->inq_data),
3003 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3004 cdb_str, sizeof(cdb_str))));
3008 case XPT_CONT_TARGET_IO:
3009 start_ccb->csio.sense_resid = 0;
3010 start_ccb->csio.resid = 0;
3015 struct cam_path *path;
3016 struct cam_sim *sim;
3019 path = start_ccb->ccb_h.path;
3021 sim = path->bus->sim;
3022 if (sim == &cam_dead_sim) {
3023 /* The SIM has gone; just execute the CCB directly. */
3024 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3025 (*(sim->sim_action))(sim, start_ccb);
3029 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3030 if (path->device->qfrozen_cnt == 0)
3031 runq = xpt_schedule_dev_sendq(path->bus, path->device);
3035 xpt_run_dev_sendq(path->bus);
3038 case XPT_SET_TRAN_SETTINGS:
3040 xpt_set_transfer_settings(&start_ccb->cts,
3041 start_ccb->ccb_h.path->device,
3042 /*async_update*/FALSE);
3045 case XPT_CALC_GEOMETRY:
3047 struct cam_sim *sim;
3049 /* Filter out garbage */
3050 if (start_ccb->ccg.block_size == 0
3051 || start_ccb->ccg.volume_size == 0) {
3052 start_ccb->ccg.cylinders = 0;
3053 start_ccb->ccg.heads = 0;
3054 start_ccb->ccg.secs_per_track = 0;
3055 start_ccb->ccb_h.status = CAM_REQ_CMP;
3058 sim = start_ccb->ccb_h.path->bus->sim;
3059 (*(sim->sim_action))(sim, start_ccb);
3064 union ccb* abort_ccb;
3066 abort_ccb = start_ccb->cab.abort_ccb;
3067 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3069 if (abort_ccb->ccb_h.pinfo.index >= 0) {
3070 struct cam_ccbq *ccbq;
3072 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3073 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3074 abort_ccb->ccb_h.status =
3075 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3076 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3077 xpt_done(abort_ccb);
3078 start_ccb->ccb_h.status = CAM_REQ_CMP;
3081 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3082 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3084 * We've caught this ccb en route to
3085 * the SIM. Flag it for abort and the
3086 * SIM will do so just before starting
3087 * real work on the CCB.
3089 abort_ccb->ccb_h.status =
3090 CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3091 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3092 start_ccb->ccb_h.status = CAM_REQ_CMP;
3096 if (XPT_FC_IS_QUEUED(abort_ccb)
3097 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3099 * It's already completed but waiting
3100 * for our SWI to get to it.
3102 start_ccb->ccb_h.status = CAM_UA_ABORT;
3106 * If we weren't able to take care of the abort request
3107 * in the XPT, pass the request down to the SIM for processing.
3111 case XPT_ACCEPT_TARGET_IO:
3113 case XPT_IMMED_NOTIFY:
3114 case XPT_NOTIFY_ACK:
3115 case XPT_GET_TRAN_SETTINGS:
3118 struct cam_sim *sim;
3120 sim = start_ccb->ccb_h.path->bus->sim;
3121 (*(sim->sim_action))(sim, start_ccb);
3126 struct cam_sim *sim;
3128 sim = start_ccb->ccb_h.path->bus->sim;
3129 (*(sim->sim_action))(sim, start_ccb);
3132 case XPT_PATH_STATS:
3133 start_ccb->cpis.last_reset =
3134 start_ccb->ccb_h.path->bus->last_reset;
3135 start_ccb->ccb_h.status = CAM_REQ_CMP;
3141 dev = start_ccb->ccb_h.path->device;
3142 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3143 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3145 struct ccb_getdev *cgd;
3149 cgd = &start_ccb->cgd;
3150 bus = cgd->ccb_h.path->bus;
3151 tar = cgd->ccb_h.path->target;
3152 cgd->inq_data = dev->inq_data;
3153 cgd->ccb_h.status = CAM_REQ_CMP;
3154 cgd->serial_num_len = dev->serial_num_len;
3155 if ((dev->serial_num_len > 0)
3156 && (dev->serial_num != NULL))
3157 bcopy(dev->serial_num, cgd->serial_num,
3158 dev->serial_num_len);
3162 case XPT_GDEV_STATS:
3166 dev = start_ccb->ccb_h.path->device;
3167 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3168 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3170 struct ccb_getdevstats *cgds;
3174 cgds = &start_ccb->cgds;
3175 bus = cgds->ccb_h.path->bus;
3176 tar = cgds->ccb_h.path->target;
3177 cgds->dev_openings = dev->ccbq.dev_openings;
3178 cgds->dev_active = dev->ccbq.dev_active;
3179 cgds->devq_openings = dev->ccbq.devq_openings;
3180 cgds->devq_queued = dev->ccbq.queue.entries;
3181 cgds->held = dev->ccbq.held;
3182 cgds->last_reset = tar->last_reset;
3183 cgds->maxtags = dev->quirk->maxtags;
3184 cgds->mintags = dev->quirk->mintags;
3185 if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3186 cgds->last_reset = bus->last_reset;
3187 cgds->ccb_h.status = CAM_REQ_CMP;
3193 struct cam_periph *nperiph;
3194 struct periph_list *periph_head;
3195 struct ccb_getdevlist *cgdl;
3197 struct cam_ed *device;
3204 * Don't want anyone mucking with our data.
3206 device = start_ccb->ccb_h.path->device;
3207 periph_head = &device->periphs;
3208 cgdl = &start_ccb->cgdl;
3211 * Check and see if the list has changed since the user
3212 * last requested a list member. If so, tell them that the
3213 * list has changed, and therefore they need to start over
3214 * from the beginning.
3216 if ((cgdl->index != 0) &&
3217 (cgdl->generation != device->generation)) {
3218 cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3223 * Traverse the list of peripherals and attempt to find
3224 * the requested peripheral.
3226 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3227 (nperiph != NULL) && (i <= cgdl->index);
3228 nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3229 if (i == cgdl->index) {
3230 strncpy(cgdl->periph_name,
3231 nperiph->periph_name,
3233 cgdl->unit_number = nperiph->unit_number;
3238 cgdl->status = CAM_GDEVLIST_ERROR;
3242 if (nperiph == NULL)
3243 cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3245 cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3248 cgdl->generation = device->generation;
3250 cgdl->ccb_h.status = CAM_REQ_CMP;
3255 dev_pos_type position_type;
3256 struct ccb_dev_match *cdm;
3259 cdm = &start_ccb->cdm;
3262 * There are two ways of getting at information in the EDT.
3263 * The first way is via the primary EDT tree. It starts
3264 * with a list of busses, then a list of targets on a bus,
3265 * then devices/luns on a target, and then peripherals on a
3266 * device/lun. The "other" way is by the peripheral driver
3267 * lists. The peripheral driver lists are organized by
3268 * peripheral driver. (obviously) So it makes sense to
3269 * use the peripheral driver list if the user is looking
3270 * for something like "da1", or all "da" devices. If the
3271 * user is looking for something on a particular bus/target
3272 * or lun, it's generally better to go through the EDT tree.
3275 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3276 position_type = cdm->pos.position_type;
3280 position_type = CAM_DEV_POS_NONE;
3282 for (i = 0; i < cdm->num_patterns; i++) {
3283 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3284 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3285 position_type = CAM_DEV_POS_EDT;
3290 if (cdm->num_patterns == 0)
3291 position_type = CAM_DEV_POS_EDT;
3292 else if (position_type == CAM_DEV_POS_NONE)
3293 position_type = CAM_DEV_POS_PDRV;
3296 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3297 case CAM_DEV_POS_EDT:
3298 ret = xptedtmatch(cdm);
3300 case CAM_DEV_POS_PDRV:
3301 ret = xptperiphlistmatch(cdm);
3304 cdm->status = CAM_DEV_MATCH_ERROR;
3308 if (cdm->status == CAM_DEV_MATCH_ERROR)
3309 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3311 start_ccb->ccb_h.status = CAM_REQ_CMP;
3317 struct ccb_setasync *csa;
3318 struct async_node *cur_entry;
3319 struct async_list *async_head;
3322 csa = &start_ccb->csa;
3323 added = csa->event_enable;
3324 async_head = &csa->ccb_h.path->device->asyncs;
3327 * If there is already an entry for us, simply
3330 cur_entry = SLIST_FIRST(async_head);
3331 while (cur_entry != NULL) {
3332 if ((cur_entry->callback_arg == csa->callback_arg)
3333 && (cur_entry->callback == csa->callback))
3335 cur_entry = SLIST_NEXT(cur_entry, links);
3338 if (cur_entry != NULL) {
3340 * If the request has no flags set,
3343 added &= ~cur_entry->event_enable;
3344 if (csa->event_enable == 0) {
3345 SLIST_REMOVE(async_head, cur_entry,
3347 csa->ccb_h.path->device->refcount--;
3348 kfree(cur_entry, M_CAMXPT);
3350 cur_entry->event_enable = csa->event_enable;
3353 cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3355 cur_entry->event_enable = csa->event_enable;
3356 cur_entry->callback_arg = csa->callback_arg;
3357 cur_entry->callback = csa->callback;
3358 SLIST_INSERT_HEAD(async_head, cur_entry, links);
3359 csa->ccb_h.path->device->refcount++;
3363 * Need to decouple this operation via a taskqueue so that
3364 * the locking doesn't become a mess.
3366 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3367 struct xpt_task *task;
3369 task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3372 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3373 task->data1 = cur_entry;
3374 task->data2 = added;
3375 taskqueue_enqueue(taskqueue_thread[mycpuid],
3379 start_ccb->ccb_h.status = CAM_REQ_CMP;
3384 struct ccb_relsim *crs;
3387 crs = &start_ccb->crs;
3388 dev = crs->ccb_h.path->device;
3391 crs->ccb_h.status = CAM_DEV_NOT_THERE;
3395 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3397 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3398 /* Don't ever go below one opening */
3399 if (crs->openings > 0) {
3400 xpt_dev_ccbq_resize(crs->ccb_h.path,
3404 xpt_print(crs->ccb_h.path,
3405 "tagged openings now %d\n",
3412 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3414 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3417 * Just extend the old timeout and decrement
3418 * the freeze count so that a single timeout
3419 * is sufficient for releasing the queue.
3421 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3422 callout_stop(&dev->callout);
3425 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3428 callout_reset(&dev->callout,
3429 (crs->release_timeout * hz) / 1000,
3430 xpt_release_devq_timeout, dev);
3432 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3436 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3438 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3440 * Decrement the freeze count so that a single
3441 * completion is still sufficient to unfreeze
3444 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3447 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3448 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3452 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3454 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3455 || (dev->ccbq.dev_active == 0)) {
3457 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3460 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3461 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3465 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3467 xpt_release_devq(crs->ccb_h.path, /*count*/1,
3470 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3471 start_ccb->ccb_h.status = CAM_REQ_CMP;
3475 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3478 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3479 start_ccb->ccb_h.path, start_ccb->crcn.flags,
3484 #ifdef CAM_DEBUG_DELAY
3485 cam_debug_delay = CAM_DEBUG_DELAY;
3487 cam_dflags = start_ccb->cdbg.flags;
3488 if (cam_dpath != NULL) {
3489 xpt_free_path(cam_dpath);
3493 if (cam_dflags != CAM_DEBUG_NONE) {
3494 if (xpt_create_path(&cam_dpath, xpt_periph,
3495 start_ccb->ccb_h.path_id,
3496 start_ccb->ccb_h.target_id,
3497 start_ccb->ccb_h.target_lun) !=
3499 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3500 cam_dflags = CAM_DEBUG_NONE;
3502 start_ccb->ccb_h.status = CAM_REQ_CMP;
3503 xpt_print(cam_dpath, "debugging flags now %x\n",
3508 start_ccb->ccb_h.status = CAM_REQ_CMP;
3510 #else /* !CAMDEBUG */
3511 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3512 #endif /* CAMDEBUG */
3516 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3517 xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3518 start_ccb->ccb_h.status = CAM_REQ_CMP;
3525 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3531 xpt_polled_action(union ccb *start_ccb)
3534 struct cam_sim *sim;
3535 struct cam_devq *devq;
3538 timeout = start_ccb->ccb_h.timeout;
3539 sim = start_ccb->ccb_h.path->bus->sim;
3541 dev = start_ccb->ccb_h.path->device;
3543 sim_lock_assert_owned(sim->lock);
3546 * Steal an opening so that no other queued requests
3547 * can get it before us while we simulate interrupts.
3549 dev->ccbq.devq_openings--;
3550 dev->ccbq.dev_openings--;
3552 while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3553 && (--timeout > 0)) {
3555 (*(sim->sim_poll))(sim);
3556 camisr_runqueue(sim);
3559 dev->ccbq.devq_openings++;
3560 dev->ccbq.dev_openings++;
3563 xpt_action(start_ccb);
3564 while(--timeout > 0) {
3565 (*(sim->sim_poll))(sim);
3566 camisr_runqueue(sim);
3567 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3574 * XXX Is it worth adding a sim_timeout entry
3575 * point so we can attempt recovery? If
3576 * this is only used for dumps, I don't think
3579 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3582 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3587 * Schedule a peripheral driver to receive a ccb when it's
3588 * target device has space for more transactions.
3591 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3593 struct cam_ed *device;
3594 union ccb *work_ccb;
3597 sim_lock_assert_owned(perph->sim->lock);
3599 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3600 device = perph->path->device;
3601 if (periph_is_queued(perph)) {
3602 /* Simply reorder based on new priority */
3603 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3604 (" change priority to %d\n", new_priority));
3605 if (new_priority < perph->pinfo.priority) {
3606 camq_change_priority(&device->drvq,
3611 } else if (perph->path->bus->sim == &cam_dead_sim) {
3612 /* The SIM is gone so just call periph_start directly. */
3613 work_ccb = xpt_get_ccb(perph->path->device);
3614 if (work_ccb == NULL)
3616 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3617 perph->pinfo.priority = new_priority;
3618 perph->periph_start(perph, work_ccb);
3621 /* New entry on the queue */
3622 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3623 (" added periph to queue\n"));
3624 perph->pinfo.priority = new_priority;
3625 perph->pinfo.generation = ++device->drvq.generation;
3626 camq_insert(&device->drvq, &perph->pinfo);
3627 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3630 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3631 (" calling xpt_run_devq\n"));
3632 xpt_run_dev_allocq(perph->path->bus);
3638 * Schedule a device to run on a given queue.
3639 * If the device was inserted as a new entry on the queue,
3640 * return 1 meaning the device queue should be run. If we
3641 * were already queued, implying someone else has already
3642 * started the queue, return 0 so the caller doesn't attempt
3646 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3647 u_int32_t new_priority)
3650 u_int32_t old_priority;
3652 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3654 old_priority = pinfo->priority;
3657 * Are we already queued?
3659 if (pinfo->index != CAM_UNQUEUED_INDEX) {
3660 /* Simply reorder based on new priority */
3661 if (new_priority < old_priority) {
3662 camq_change_priority(queue, pinfo->index,
3664 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3665 ("changed priority to %d\n",
3670 /* New entry on the queue */
3671 if (new_priority < old_priority)
3672 pinfo->priority = new_priority;
3674 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3675 ("Inserting onto queue\n"));
3676 pinfo->generation = ++queue->generation;
3677 camq_insert(queue, pinfo);
3684 xpt_run_dev_allocq(struct cam_eb *bus)
3686 struct cam_devq *devq;
3688 if ((devq = bus->sim->devq) == NULL) {
3689 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3692 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3694 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3695 (" qfrozen_cnt == 0x%x, entries == %d, "
3696 "openings == %d, active == %d\n",
3697 devq->alloc_queue.qfrozen_cnt,
3698 devq->alloc_queue.entries,
3699 devq->alloc_openings,
3700 devq->alloc_active));
3702 devq->alloc_queue.qfrozen_cnt++;
3703 while ((devq->alloc_queue.entries > 0)
3704 && (devq->alloc_openings > 0)
3705 && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3706 struct cam_ed_qinfo *qinfo;
3707 struct cam_ed *device;
3708 union ccb *work_ccb;
3709 struct cam_periph *drv;
3712 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3714 device = qinfo->device;
3716 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3717 ("running device %p\n", device));
3719 drvq = &device->drvq;
3722 if (drvq->entries <= 0) {
3723 panic("xpt_run_dev_allocq: "
3724 "Device on queue without any work to do");
3727 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3728 devq->alloc_openings--;
3729 devq->alloc_active++;
3730 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3731 xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3732 drv->pinfo.priority);
3733 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3734 ("calling periph start\n"));
3735 drv->periph_start(drv, work_ccb);
3738 * Malloc failure in alloc_ccb
3741 * XXX add us to a list to be run from free_ccb
3742 * if we don't have any ccbs active on this
3743 * device queue otherwise we may never get run
3749 if (drvq->entries > 0) {
3750 /* We have more work. Attempt to reschedule */
3751 xpt_schedule_dev_allocq(bus, device);
3754 devq->alloc_queue.qfrozen_cnt--;
3758 xpt_run_dev_sendq(struct cam_eb *bus)
3760 struct cam_devq *devq;
3762 if ((devq = bus->sim->devq) == NULL) {
3763 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3766 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3768 devq->send_queue.qfrozen_cnt++;
3769 while ((devq->send_queue.entries > 0)
3770 && (devq->send_openings > 0)) {
3771 struct cam_ed_qinfo *qinfo;
3772 struct cam_ed *device;
3773 union ccb *work_ccb;
3774 struct cam_sim *sim;
3776 if (devq->send_queue.qfrozen_cnt > 1) {
3780 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3782 device = qinfo->device;
3785 * If the device has been "frozen", don't attempt
3788 if (device->qfrozen_cnt > 0) {
3792 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3793 ("running device %p\n", device));
3795 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3796 if (work_ccb == NULL) {
3797 kprintf("device on run queue with no ccbs???\n");
3801 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3803 lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3804 if (xsoftc.num_highpower <= 0) {
3806 * We got a high power command, but we
3807 * don't have any available slots. Freeze
3808 * the device queue until we have a slot
3811 device->qfrozen_cnt++;
3812 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,