ath - Reimport fresh from FreeBSD 01-Jan-2014 for re-port
[dragonfly.git] / sys / dev / netif / ath / ath_hal / ar5212 / ar5112.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ah_eeprom_v3.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #define AH_5212_5112
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 struct ar5112State {
36         RF_HAL_FUNCS    base;           /* public state, must be first */
37         uint16_t        pcdacTable[PWR_TABLE_SIZE];
38
39         uint32_t        Bank1Data[N(ar5212Bank1_5112)];
40         uint32_t        Bank2Data[N(ar5212Bank2_5112)];
41         uint32_t        Bank3Data[N(ar5212Bank3_5112)];
42         uint32_t        Bank6Data[N(ar5212Bank6_5112)];
43         uint32_t        Bank7Data[N(ar5212Bank7_5112)];
44 };
45 #define AR5112(ah)      ((struct ar5112State *) AH5212(ah)->ah_rfHal)
46
47 static  void ar5212GetLowerUpperIndex(uint16_t v,
48                 uint16_t *lp, uint16_t listSize,
49                 uint32_t *vlo, uint32_t *vhi);
50 static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
51                 int16_t *power, int16_t maxPower, int16_t *retVals);
52 static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
53                 uint16_t retVals[]);
54 static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
55                 int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
56 static int16_t interpolate_signed(uint16_t target,
57                 uint16_t srcLeft, uint16_t srcRight,
58                 int16_t targetLeft, int16_t targetRight);
59
60 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61                 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
64 ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65         int writes)
66 {
67         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
68         HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
69         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
70 }
71
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80         uint16_t freq = ath_hal_gethwchannel(ah, chan);
81         uint32_t channelSel  = 0;
82         uint32_t bModeSynth  = 0;
83         uint32_t aModeRefSel = 0;
84         uint32_t reg32       = 0;
85
86         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88         if (freq < 4800) {
89                 uint32_t txctl;
90
91                 if (((freq - 2192) % 5) == 0) {
92                         channelSel = ((freq - 672) * 2 - 3040)/10;
93                         bModeSynth = 0;
94                 } else if (((freq - 2224) % 5) == 0) {
95                         channelSel = ((freq - 704) * 2 - 3040) / 10;
96                         bModeSynth = 1;
97                 } else {
98                         HALDEBUG(ah, HAL_DEBUG_ANY,
99                             "%s: invalid channel %u MHz\n",
100                             __func__, freq);
101                         return AH_FALSE;
102                 }
103
104                 channelSel = (channelSel << 2) & 0xff;
105                 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108                 if (freq == 2484) {
109                         /* Enable channel spreading for channel 14 */
110                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112                 } else {
113                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115                 }
116         } else if (((freq % 5) == 2) && (freq <= 5435)) {
117                 freq = freq - 2; /* Align to even 5MHz raster */
118                 channelSel = ath_hal_reverseBits(
119                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120                 aModeRefSel = ath_hal_reverseBits(0, 2);
121         } else if ((freq % 20) == 0 && freq >= 5120) {
122                 channelSel = ath_hal_reverseBits(
123                         ((freq - 4800) / 20 << 2), 8);
124                 aModeRefSel = ath_hal_reverseBits(3, 2);
125         } else if ((freq % 10) == 0) {
126                 channelSel = ath_hal_reverseBits(
127                         ((freq - 4800) / 10 << 1), 8);
128                 aModeRefSel = ath_hal_reverseBits(2, 2);
129         } else if ((freq % 5) == 0) {
130                 channelSel = ath_hal_reverseBits(
131                         (freq - 4800) / 5, 8);
132                 aModeRefSel = ath_hal_reverseBits(1, 2);
133         } else {
134                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135                     __func__, freq);
136                 return AH_FALSE;
137         }
138
139         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140                         (1 << 12) | 0x1;
141         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143         reg32 >>= 8;
144         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146         AH_PRIVATE(ah)->ah_curchan = chan;
147         return AH_TRUE;
148 }
149
150 /*
151  * Return a reference to the requested RF Bank.
152  */
153 static uint32_t *
154 ar5112GetRfBank(struct ath_hal *ah, int bank)
155 {
156         struct ar5112State *priv = AR5112(ah);
157
158         HALASSERT(priv != AH_NULL);
159         switch (bank) {
160         case 1: return priv->Bank1Data;
161         case 2: return priv->Bank2Data;
162         case 3: return priv->Bank3Data;
163         case 6: return priv->Bank6Data;
164         case 7: return priv->Bank7Data;
165         }
166         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
167             __func__, bank);
168         return AH_NULL;
169 }
170
171 /*
172  * Reads EEPROM header info from device structure and programs
173  * all rf registers
174  *
175  * REQUIRES: Access to the analog rf device
176  */
177 static HAL_BOOL
178 ar5112SetRfRegs(struct ath_hal *ah,
179         const struct ieee80211_channel *chan,
180         uint16_t modesIndex, uint16_t *rfXpdGain)
181 {
182 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
183         int i;                                                              \
184         for (i = 0; i < N(ar5212Bank##_ix##_5112); i++)                     \
185                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
186 } while (0)
187         uint16_t freq = ath_hal_gethwchannel(ah, chan);
188         struct ath_hal_5212 *ahp = AH5212(ah);
189         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
190         uint16_t rfXpdSel, gainI;
191         uint16_t ob5GHz = 0, db5GHz = 0;
192         uint16_t ob2GHz = 0, db2GHz = 0;
193         struct ar5112State *priv = AR5112(ah);
194         GAIN_VALUES *gv = &ahp->ah_gainValues;
195         int regWrites = 0;
196
197         HALASSERT(priv);
198
199         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
200             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
201
202         /* Setup rf parameters */
203         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
204         case IEEE80211_CHAN_A:
205                 if (freq > 4000 && freq < 5260) {
206                         ob5GHz = ee->ee_ob1;
207                         db5GHz = ee->ee_db1;
208                 } else if (freq >= 5260 && freq < 5500) {
209                         ob5GHz = ee->ee_ob2;
210                         db5GHz = ee->ee_db2;
211                 } else if (freq >= 5500 && freq < 5725) {
212                         ob5GHz = ee->ee_ob3;
213                         db5GHz = ee->ee_db3;
214                 } else if (freq >= 5725) {
215                         ob5GHz = ee->ee_ob4;
216                         db5GHz = ee->ee_db4;
217                 } else {
218                         /* XXX else */
219                 }
220                 rfXpdSel = ee->ee_xpd[headerInfo11A];
221                 gainI = ee->ee_gainI[headerInfo11A];
222                 break;
223         case IEEE80211_CHAN_B:
224                 ob2GHz = ee->ee_ob2GHz[0];
225                 db2GHz = ee->ee_db2GHz[0];
226                 rfXpdSel = ee->ee_xpd[headerInfo11B];
227                 gainI = ee->ee_gainI[headerInfo11B];
228                 break;
229         case IEEE80211_CHAN_G:
230         case IEEE80211_CHAN_PUREG:      /* NB: really 108G */
231                 ob2GHz = ee->ee_ob2GHz[1];
232                 db2GHz = ee->ee_ob2GHz[1];
233                 rfXpdSel = ee->ee_xpd[headerInfo11G];
234                 gainI = ee->ee_gainI[headerInfo11G];
235                 break;
236         default:
237                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
238                     __func__, chan->ic_flags);
239                 return AH_FALSE;
240         }
241
242         /* Setup Bank 1 Write */
243         RF_BANK_SETUP(priv, 1, 1);
244
245         /* Setup Bank 2 Write */
246         RF_BANK_SETUP(priv, 2, modesIndex);
247
248         /* Setup Bank 3 Write */
249         RF_BANK_SETUP(priv, 3, modesIndex);
250
251         /* Setup Bank 6 Write */
252         RF_BANK_SETUP(priv, 6, modesIndex);
253
254         ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel,     1, 302, 0);
255
256         ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
257         ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
258
259         if (IEEE80211_IS_CHAN_OFDM(chan)) {
260                 ar5212ModifyRfBuffer(priv->Bank6Data,
261                         gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
262                 ar5212ModifyRfBuffer(priv->Bank6Data,
263                         gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
264                 ar5212ModifyRfBuffer(priv->Bank6Data,
265                         gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
266                 ar5212ModifyRfBuffer(priv->Bank6Data,
267                         gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
268                 ar5212ModifyRfBuffer(priv->Bank6Data,
269                         gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
270                 ar5212ModifyRfBuffer(priv->Bank6Data,
271                         gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
272         }
273
274         /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
275         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
276                 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
277                 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
278         } else {
279                 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
280                 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
281         }
282         
283         /* Lower synth voltage for X112 Rev 2.0 only */
284         if (IS_RADX112_REV2(ah)) {
285                 /* Non-Reversed analyg registers - so values are pre-reversed */
286                 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
287                 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
288                 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
289                 ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
290         }
291
292     /* Decrease Power Consumption for 5312/5213 and up */
293     if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
294         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
295         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
296         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
297         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
298         ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
299     }
300
301         /* Setup Bank 7 Setup */
302         RF_BANK_SETUP(priv, 7, modesIndex);
303         if (IEEE80211_IS_CHAN_OFDM(chan))
304                 ar5212ModifyRfBuffer(priv->Bank7Data,
305                         gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
306
307         ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
308
309         /* Adjust params for Derby TX power control */
310         if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
311                 uint32_t        rfDelay, rfPeriod;
312
313                 rfDelay = 0xf;
314                 rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x8 : 0xf;
315                 ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
316                 ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
317         }
318
319 #ifdef notyet
320         /* Analog registers are setup - EAR can modify */
321         if (ar5212IsEarEngaged(pDev, chan))
322                 uint32_t modifier;
323                 ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
324 #endif
325         /* Write Analog registers */
326         HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
327         HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
328         HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
329         HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
330         HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
331
332         /* Now that we have reprogrammed rfgain value, clear the flag. */
333         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
334         return AH_TRUE;
335 #undef  RF_BANK_SETUP
336 }
337
338 /*
339  * Read the transmit power levels from the structures taken from EEPROM
340  * Interpolate read transmit power values for this channel
341  * Organize the transmit power values into a table for writing into the hardware
342  */
343 static HAL_BOOL
344 ar5112SetPowerTable(struct ath_hal *ah,
345         int16_t *pPowerMin, int16_t *pPowerMax,
346         const struct ieee80211_channel *chan,
347         uint16_t *rfXpdGain)
348 {
349         uint16_t freq = ath_hal_gethwchannel(ah, chan);
350         struct ath_hal_5212 *ahp = AH5212(ah);
351         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
352         uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
353         uint32_t    xpdGainMask = 0;
354         int16_t     powerMid, *pPowerMid = &powerMid;
355
356         const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
357         const EEPROM_POWER_EXPN_5112     *pPowerExpn = AH_NULL;
358
359         uint32_t    ii, jj, kk;
360         int16_t     minPwr_t4, maxPwr_t4, Pmin, Pmid;
361
362         uint32_t    chan_idx_L = 0, chan_idx_R = 0;
363         uint16_t    chan_L, chan_R;
364
365         int16_t     pwr_table0[64];
366         int16_t     pwr_table1[64];
367         uint16_t    pcdacs[10];
368         int16_t     powers[10];
369         uint16_t    numPcd;
370         int16_t     powTableLXPD[2][64];
371         int16_t     powTableHXPD[2][64];
372         int16_t     tmpPowerTable[64];
373         uint16_t    xgainList[2];
374         uint16_t    xpdMask;
375
376         switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
377         case IEEE80211_CHAN_A:
378         case IEEE80211_CHAN_ST:
379                 pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
380                 xpdGainMask = ee->ee_xgain[headerInfo11A];
381                 break;
382         case IEEE80211_CHAN_B:
383                 pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
384                 xpdGainMask = ee->ee_xgain[headerInfo11B];
385                 break;
386         case IEEE80211_CHAN_G:
387         case IEEE80211_CHAN_108G:
388                 pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
389                 xpdGainMask = ee->ee_xgain[headerInfo11G];
390                 break;
391         default:
392                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
393                     __func__, chan->ic_flags);
394                 return AH_FALSE;
395         }
396
397         if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
398                 HALDEBUG(ah, HAL_DEBUG_ANY,
399                     "%s: desired xpdGainMask 0x%x not supported by "
400                     "calibrated xpdMask 0x%x\n", __func__,
401                     xpdGainMask, pPowerExpn->xpdMask);
402                 return AH_FALSE;
403         }
404
405         maxPwr_t4 = (int16_t)(2*(*pPowerMax));  /* pwr_t2 -> pwr_t4 */
406         minPwr_t4 = (int16_t)(2*(*pPowerMin));  /* pwr_t2 -> pwr_t4 */
407
408         xgainList[0] = 0xDEAD;
409         xgainList[1] = 0xDEAD;
410
411         kk = 0;
412         xpdMask = pPowerExpn->xpdMask;
413         for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
414                 if (((xpdMask >> jj) & 1) > 0) {
415                         if (kk > 1) {
416                                 HALDEBUG(ah, HAL_DEBUG_ANY,
417                                     "A maximum of 2 xpdGains supported"
418                                     "in pExpnPower data\n");
419                                 return AH_FALSE;
420                         }
421                         xgainList[kk++] = (uint16_t)jj;
422                 }
423         }
424
425         ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],
426                 pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
427
428         kk = 0;
429         for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
430                 pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
431                 if (xgainList[1] == 0xDEAD) {
432                         jj = xgainList[0];
433                         numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
434                         OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
435                                 numPcd * sizeof(uint16_t));
436                         OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
437                                 numPcd * sizeof(int16_t));
438                         if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
439                                 pRawCh->maxPower_t4, &tmpPowerTable[0])) {
440                                 return AH_FALSE;
441                         }
442                         OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
443                                 64*sizeof(int16_t));
444                 } else {
445                         jj = xgainList[0];
446                         numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
447                         OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
448                                 numPcd*sizeof(uint16_t));
449                         OS_MEMCPY(&powers[0],
450                                 &pRawCh->pDataPerXPD[jj].pwr_t4[0],
451                                 numPcd*sizeof(int16_t));
452                         if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
453                                 pRawCh->maxPower_t4, &tmpPowerTable[0])) {
454                                 return AH_FALSE;
455                         }
456                         OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
457                                 64 * sizeof(int16_t));
458
459                         jj = xgainList[1];
460                         numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
461                         OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
462                                 numPcd * sizeof(uint16_t));
463                         OS_MEMCPY(&powers[0],
464                                 &pRawCh->pDataPerXPD[jj].pwr_t4[0],
465                                 numPcd * sizeof(int16_t));
466                         if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
467                                 pRawCh->maxPower_t4, &tmpPowerTable[0])) {
468                                 return AH_FALSE;
469                         }
470                         OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
471                                 64 * sizeof(int16_t));
472                 }
473                 kk++;
474         }
475
476         chan_L = pPowerExpn->pChannels[chan_idx_L];
477         chan_R = pPowerExpn->pChannels[chan_idx_R];
478         kk = chan_idx_R - chan_idx_L;
479
480         if (xgainList[1] == 0xDEAD) {
481                 for (jj = 0; jj < 64; jj++) {
482                         pwr_table0[jj] = interpolate_signed(
483                                 freq, chan_L, chan_R,
484                                 powTableLXPD[0][jj], powTableLXPD[kk][jj]);
485                 }
486                 Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
487                                 ahp->ah_pcdacTable);
488                 *pPowerMin = (int16_t) (Pmin / 2);
489                 *pPowerMid = (int16_t) (pwr_table0[63] / 2);
490                 *pPowerMax = (int16_t) (pwr_table0[63] / 2);
491                 rfXpdGain[0] = xgainList[0];
492                 rfXpdGain[1] = rfXpdGain[0];
493         } else {
494                 for (jj = 0; jj < 64; jj++) {
495                         pwr_table0[jj] = interpolate_signed(
496                                 freq, chan_L, chan_R,
497                                 powTableLXPD[0][jj], powTableLXPD[kk][jj]);
498                         pwr_table1[jj] = interpolate_signed(
499                                 freq, chan_L, chan_R,
500                                 powTableHXPD[0][jj], powTableHXPD[kk][jj]);
501                 }
502                 if (numXpdGain == 2) {
503                         Pmin = getPminAndPcdacTableFromTwoPowerTables(
504                                 &pwr_table0[0], &pwr_table1[0],
505                                 ahp->ah_pcdacTable, &Pmid);
506                         *pPowerMin = (int16_t) (Pmin / 2);
507                         *pPowerMid = (int16_t) (Pmid / 2);
508                         *pPowerMax = (int16_t) (pwr_table0[63] / 2);
509                         rfXpdGain[0] = xgainList[0];
510                         rfXpdGain[1] = xgainList[1];
511                 } else if (minPwr_t4 <= pwr_table1[63] &&
512                            maxPwr_t4 <= pwr_table1[63]) {
513                         Pmin = getPminAndPcdacTableFromPowerTable(
514                                 &pwr_table1[0], ahp->ah_pcdacTable);
515                         rfXpdGain[0] = xgainList[1];
516                         rfXpdGain[1] = rfXpdGain[0];
517                         *pPowerMin = (int16_t) (Pmin / 2);
518                         *pPowerMid = (int16_t) (pwr_table1[63] / 2);
519                         *pPowerMax = (int16_t) (pwr_table1[63] / 2);
520                 } else {
521                         Pmin = getPminAndPcdacTableFromPowerTable(
522                                 &pwr_table0[0], ahp->ah_pcdacTable);
523                         rfXpdGain[0] = xgainList[0];
524                         rfXpdGain[1] = rfXpdGain[0];
525                         *pPowerMin = (int16_t) (Pmin/2);
526                         *pPowerMid = (int16_t) (pwr_table0[63] / 2);
527                         *pPowerMax = (int16_t) (pwr_table0[63] / 2);
528                 }
529         }
530
531         /*
532          * Move 5112 rates to match power tables where the max
533          * power table entry corresponds with maxPower.
534          */
535         HALASSERT(*pPowerMax <= PCDAC_STOP);
536         ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
537
538         return AH_TRUE;
539 }
540
541 /*
542  * Returns interpolated or the scaled up interpolated value
543  */
544 static int16_t
545 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
546         int16_t targetLeft, int16_t targetRight)
547 {
548         int16_t rv;
549
550         if (srcRight != srcLeft) {
551                 rv = ((target - srcLeft)*targetRight +
552                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
553         } else {
554                 rv = targetLeft;
555         }
556         return rv;
557 }
558
559 /*
560  * Return indices surrounding the value in sorted integer lists.
561  *
562  * NB: the input list is assumed to be sorted in ascending order
563  */
564 static void
565 ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
566                           uint32_t *vlo, uint32_t *vhi)
567 {
568         uint32_t target = v;
569         uint16_t *ep = lp+listSize;
570         uint16_t *tp;
571
572         /*
573          * Check first and last elements for out-of-bounds conditions.
574          */
575         if (target < lp[0]) {
576                 *vlo = *vhi = 0;
577                 return;
578         }
579         if (target >= ep[-1]) {
580                 *vlo = *vhi = listSize - 1;
581                 return;
582         }
583
584         /* look for value being near or between 2 values in list */
585         for (tp = lp; tp < ep; tp++) {
586                 /*
587                  * If value is close to the current value of the list
588                  * then target is not between values, it is one of the values
589                  */
590                 if (*tp == target) {
591                         *vlo = *vhi = tp - lp;
592                         return;
593                 }
594                 /*
595                  * Look for value being between current value and next value
596                  * if so return these 2 values
597                  */
598                 if (target < tp[1]) {
599                         *vlo = tp - lp;
600                         *vhi = *vlo + 1;
601                         return;
602                 }
603         }
604 }
605
606 static HAL_BOOL
607 getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
608 {
609         uint16_t    ii;
610         uint16_t    idxL = 0;
611         uint16_t    idxR = 1;
612
613         if (numPcdacs < 2) {
614                 HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
615                      "%s: at least 2 pcdac values needed [%d]\n",
616                      __func__, numPcdacs);
617                 return AH_FALSE;
618         }
619         for (ii = 0; ii < 64; ii++) {
620                 if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
621                         idxL++;
622                         idxR++;
623                 }
624                 retVals[ii] = interpolate_signed(ii,
625                         pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
626                 if (retVals[ii] >= maxPower) {
627                         while (ii < 64)
628                                 retVals[ii++] = maxPower;
629                 }
630         }
631         return AH_TRUE;
632 }
633
634 /*
635  * Takes a single calibration curve and creates a power table.
636  * Adjusts the new power table so the max power is relative
637  * to the maximum index in the power table.
638  *
639  * WARNING: rates must be adjusted for this relative power table
640  */
641 static int16_t
642 getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
643 {
644     int16_t ii, jj, jjMax;
645     int16_t pMin, currPower, pMax;
646
647     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
648     if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
649         pMin = pwrTableT4[63] - 126;
650     } else {
651         pMin = pwrTableT4[0];
652     }
653
654     pMax = pwrTableT4[63];
655     jjMax = 63;
656
657     /* Search for highest pcdac 0.25dB below maxPower */
658     while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
659         jjMax--;
660     }
661
662     jj = jjMax;
663     currPower = pMax;
664     for (ii = 63; ii >= 0; ii--) {
665         while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
666             jj--;
667         }
668         if (jj == 0) {
669             while (ii >= 0) {
670                 retVals[ii] = retVals[ii + 1];
671                 ii--;
672             }
673             break;
674         }
675         retVals[ii] = jj;
676         currPower -= 2;  // corresponds to a 0.5dB step
677     }
678     return pMin;
679 }
680
681 /*
682  * Combines the XPD curves from two calibration sets into a single
683  * power table and adjusts the power table so the max power is relative
684  * to the maximum index in the power table
685  *
686  * WARNING: rates must be adjusted for this relative power table
687  */
688 static int16_t
689 getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
690         int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
691 {
692     int16_t     ii, jj, jjMax;
693     int16_t     pMin, pMax, currPower;
694     int16_t     *pwrTableT4;
695     uint16_t    msbFlag = 0x40;  // turns on the 7th bit of the pcdac
696
697     /* If the spread is > 31.5dB, keep the upper 31.5dB range */
698     if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
699         pMin = pwrTableLXpdT4[63] - 126;
700     } else {
701         pMin = pwrTableHXpdT4[0];
702     }
703
704     pMax = pwrTableLXpdT4[63];
705     jjMax = 63;
706     /* Search for highest pcdac 0.25dB below maxPower */
707     while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
708         jjMax--;
709     }
710
711     *pMid = pwrTableHXpdT4[63];
712     jj = jjMax;
713     ii = 63;
714     currPower = pMax;
715     pwrTableT4 = &(pwrTableLXpdT4[0]);
716     while (ii >= 0) {
717         if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
718             msbFlag = 0x00;
719             pwrTableT4 = &(pwrTableHXpdT4[0]);
720             jj = 63;
721         }
722         while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
723             jj--;
724         }
725         if ((jj == 0) && (msbFlag == 0x00)) {
726             while (ii >= 0) {
727                 retVals[ii] = retVals[ii+1];
728                 ii--;
729             }
730             break;
731         }
732         retVals[ii] = jj | msbFlag;
733         currPower -= 2;  // corresponds to a 0.5dB step
734         ii--;
735     }
736     return pMin;
737 }
738
739 static int16_t
740 ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
741 {
742         int i, minIndex;
743         int16_t minGain,minPwr,minPcdac,retVal;
744
745         /* Assume NUM_POINTS_XPD0 > 0 */
746         minGain = data->pDataPerXPD[0].xpd_gain;
747         for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
748                 if (data->pDataPerXPD[i].xpd_gain < minGain) {
749                         minIndex = i;
750                         minGain = data->pDataPerXPD[i].xpd_gain;
751                 }
752         }
753         minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
754         minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
755         for (i=1; i<NUM_POINTS_XPD0; i++) {
756                 if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
757                         minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
758                         minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
759                 }
760         }
761         retVal = minPwr - (minPcdac*2);
762         return(retVal);
763 }
764         
765 static HAL_BOOL
766 ar5112GetChannelMaxMinPower(struct ath_hal *ah,
767         const struct ieee80211_channel *chan,
768         int16_t *maxPow, int16_t *minPow)
769 {
770         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
771         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
772         int numChannels=0,i,last;
773         int totalD, totalF,totalMin;
774         const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
775         const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
776
777         *maxPow = 0;
778         if (IEEE80211_IS_CHAN_A(chan)) {
779                 powerArray = ee->ee_modePowerArray5112;
780                 data = powerArray[headerInfo11A].pDataPerChannel;
781                 numChannels = powerArray[headerInfo11A].numChannels;
782         } else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {
783                 /* XXX - is this correct? Should we also use the same power for turbo G? */
784                 powerArray = ee->ee_modePowerArray5112;
785                 data = powerArray[headerInfo11G].pDataPerChannel;
786                 numChannels = powerArray[headerInfo11G].numChannels;
787         } else if (IEEE80211_IS_CHAN_B(chan)) {
788                 powerArray = ee->ee_modePowerArray5112;
789                 data = powerArray[headerInfo11B].pDataPerChannel;
790                 numChannels = powerArray[headerInfo11B].numChannels;
791         } else {
792                 return (AH_TRUE);
793         }
794         /* Make sure the channel is in the range of the TP values 
795          *  (freq piers)
796          */
797         if (numChannels < 1)
798                 return(AH_FALSE);
799
800         if ((freq < data[0].channelValue) ||
801             (freq > data[numChannels-1].channelValue)) {
802                 if (freq < data[0].channelValue) {
803                         *maxPow = data[0].maxPower_t4;
804                         *minPow = ar5112GetMinPower(ah, &data[0]);
805                         return(AH_TRUE);
806                 } else {
807                         *maxPow = data[numChannels - 1].maxPower_t4;
808                         *minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
809                         return(AH_TRUE);
810                 }
811         }
812
813         /* Linearly interpolate the power value now */
814         for (last=0,i=0;
815              (i<numChannels) && (freq > data[i].channelValue);
816              last=i++);
817         totalD = data[i].channelValue - data[last].channelValue;
818         if (totalD > 0) {
819                 totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
820                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
821
822                 totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
823                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
824                 return (AH_TRUE);
825         } else {
826                 if (freq == data[i].channelValue) {
827                         *maxPow = data[i].maxPower_t4;
828                         *minPow = ar5112GetMinPower(ah, &data[i]);
829                         return(AH_TRUE);
830                 } else
831                         return(AH_FALSE);
832         }
833 }
834
835 /*
836  * Free memory for analog bank scratch buffers
837  */
838 static void
839 ar5112RfDetach(struct ath_hal *ah)
840 {
841         struct ath_hal_5212 *ahp = AH5212(ah);
842
843         HALASSERT(ahp->ah_rfHal != AH_NULL);
844         ath_hal_free(ahp->ah_rfHal);
845         ahp->ah_rfHal = AH_NULL;
846 }
847
848 /*
849  * Allocate memory for analog bank scratch buffers
850  * Scratch Buffer will be reinitialized every reset so no need to zero now
851  */
852 static HAL_BOOL
853 ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
854 {
855         struct ath_hal_5212 *ahp = AH5212(ah);
856         struct ar5112State *priv;
857
858         HALASSERT(ah->ah_magic == AR5212_MAGIC);
859
860         HALASSERT(ahp->ah_rfHal == AH_NULL);
861         priv = ath_hal_malloc(sizeof(struct ar5112State));
862         if (priv == AH_NULL) {
863                 HALDEBUG(ah, HAL_DEBUG_ANY,
864                     "%s: cannot allocate private state\n", __func__);
865                 *status = HAL_ENOMEM;           /* XXX */
866                 return AH_FALSE;
867         }
868         priv->base.rfDetach             = ar5112RfDetach;
869         priv->base.writeRegs            = ar5112WriteRegs;
870         priv->base.getRfBank            = ar5112GetRfBank;
871         priv->base.setChannel           = ar5112SetChannel;
872         priv->base.setRfRegs            = ar5112SetRfRegs;
873         priv->base.setPowerTable        = ar5112SetPowerTable;
874         priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
875         priv->base.getNfAdjust          = ar5212GetNfAdjust;
876
877         ahp->ah_pcdacTable = priv->pcdacTable;
878         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
879         ahp->ah_rfHal = &priv->base;
880
881         return AH_TRUE;
882 }
883
884 static HAL_BOOL
885 ar5112Probe(struct ath_hal *ah)
886 {
887         return IS_RAD5112(ah);
888 }
889 AH_RF(RF5112, ar5112Probe, ar5112RfAttach);