Merge branch 'vendor/BINUTILS221'
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 
128            "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140                         int prot);
141
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148         vm_page_deactivate(fs->m);
149         vm_page_wakeup(fs->m);
150         fs->m = NULL;
151 }
152
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159         if (fs->lookup_still_valid && fs->map) {
160                 vm_map_lookup_done(fs->map, fs->entry, 0);
161                 fs->lookup_still_valid = FALSE;
162         }
163 }
164
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174         if (fs->object != fs->first_object) {
175                 vm_page_free(fs->first_m);
176                 vm_object_pip_wakeup(fs->object);
177                 fs->first_m = NULL;
178         }
179         fs->object = fs->first_object;
180         if (relock && fs->lookup_still_valid == FALSE) {
181                 if (fs->map)
182                         vm_map_lock_read(fs->map);
183                 fs->lookup_still_valid = TRUE;
184         }
185 }
186
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193         vm_object_pip_wakeup(fs->first_object);
194         _cleanup_successful_fault(fs, 0);
195         if (dealloc) {
196                 vm_object_deallocate(fs->first_object);
197                 fs->first_object = NULL;
198         }
199         unlock_map(fs); 
200         if (fs->vp != NULL) { 
201                 vput(fs->vp);
202                 fs->vp = NULL;
203         }
204 }
205
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209
210 /*
211  * TRYPAGER 
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)    \
220                 (fs->object->type != OBJT_DEFAULT && \
221                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242         int result;
243         vm_pindex_t first_pindex;
244         struct faultstate fs;
245         int growstack;
246
247         mycpu->gd_cnt.v_vm_faults++;
248
249         fs.didlimit = 0;
250         fs.hardfault = 0;
251         fs.fault_flags = fault_flags;
252         growstack = 1;
253
254 RetryFault:
255         /*
256          * Find the vm_map_entry representing the backing store and resolve
257          * the top level object and page index.  This may have the side
258          * effect of executing a copy-on-write on the map entry and/or
259          * creating a shadow object, but will not COW any actual VM pages.
260          *
261          * On success fs.map is left read-locked and various other fields 
262          * are initialized but not otherwise referenced or locked.
263          *
264          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265          * VM_FAULT_WRITE if the map entry is a virtual page table and also
266          * writable, so we can set the 'A'accessed bit in the virtual page
267          * table entry.
268          */
269         fs.map = map;
270         result = vm_map_lookup(&fs.map, vaddr, fault_type,
271                                &fs.entry, &fs.first_object,
272                                &first_pindex, &fs.first_prot, &fs.wired);
273
274         /*
275          * If the lookup failed or the map protections are incompatible,
276          * the fault generally fails.  However, if the caller is trying
277          * to do a user wiring we have more work to do.
278          */
279         if (result != KERN_SUCCESS) {
280                 if (result != KERN_PROTECTION_FAILURE ||
281                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282                 {
283                         if (result == KERN_INVALID_ADDRESS && growstack &&
284                             map != &kernel_map && curproc != NULL) {
285                                 result = vm_map_growstack(curproc, vaddr);
286                                 if (result != KERN_SUCCESS)
287                                         return (KERN_FAILURE);
288                                 growstack = 0;
289                                 goto RetryFault;
290                         }
291                         return (result);
292                 }
293
294                 /*
295                  * If we are user-wiring a r/w segment, and it is COW, then
296                  * we need to do the COW operation.  Note that we don't
297                  * currently COW RO sections now, because it is NOT desirable
298                  * to COW .text.  We simply keep .text from ever being COW'ed
299                  * and take the heat that one cannot debug wired .text sections.
300                  */
301                 result = vm_map_lookup(&fs.map, vaddr,
302                                        VM_PROT_READ|VM_PROT_WRITE|
303                                         VM_PROT_OVERRIDE_WRITE,
304                                        &fs.entry, &fs.first_object,
305                                        &first_pindex, &fs.first_prot,
306                                        &fs.wired);
307                 if (result != KERN_SUCCESS)
308                         return result;
309
310                 /*
311                  * If we don't COW now, on a user wire, the user will never
312                  * be able to write to the mapping.  If we don't make this
313                  * restriction, the bookkeeping would be nearly impossible.
314                  */
315                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316                         fs.entry->max_protection &= ~VM_PROT_WRITE;
317         }
318
319         /*
320          * fs.map is read-locked
321          *
322          * Misc checks.  Save the map generation number to detect races.
323          */
324         fs.map_generation = fs.map->timestamp;
325
326         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
327                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
328                         panic("vm_fault: fault on nofault entry, addr: %p",
329                               (void *)vaddr);
330                 }
331                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
332                     vaddr >= fs.entry->start &&
333                     vaddr < fs.entry->start + PAGE_SIZE) {
334                         panic("vm_fault: fault on stack guard, addr: %p",
335                               (void *)vaddr);
336                 }
337         }
338
339         /*
340          * A system map entry may return a NULL object.  No object means
341          * no pager means an unrecoverable kernel fault.
342          */
343         if (fs.first_object == NULL) {
344                 panic("vm_fault: unrecoverable fault at %p in entry %p",
345                         (void *)vaddr, fs.entry);
346         }
347
348         /*
349          * Make a reference to this object to prevent its disposal while we
350          * are messing with it.  Once we have the reference, the map is free
351          * to be diddled.  Since objects reference their shadows (and copies),
352          * they will stay around as well.
353          *
354          * Bump the paging-in-progress count to prevent size changes (e.g.
355          * truncation operations) during I/O.  This must be done after
356          * obtaining the vnode lock in order to avoid possible deadlocks.
357          *
358          * The vm_object must be held before manipulation.
359          */
360         lwkt_gettoken(&vm_token);
361         vm_object_hold(fs.first_object);
362         vm_object_reference(fs.first_object);
363         fs.vp = vnode_pager_lock(fs.first_object);
364         vm_object_pip_add(fs.first_object, 1);
365         vm_object_drop(fs.first_object);
366         lwkt_reltoken(&vm_token);
367
368         fs.lookup_still_valid = TRUE;
369         fs.first_m = NULL;
370         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
371
372         /*
373          * If the entry is wired we cannot change the page protection.
374          */
375         if (fs.wired)
376                 fault_type = fs.first_prot;
377
378         /*
379          * The page we want is at (first_object, first_pindex), but if the
380          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
381          * page table to figure out the actual pindex.
382          *
383          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
384          * ONLY
385          */
386         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
387                 result = vm_fault_vpagetable(&fs, &first_pindex,
388                                              fs.entry->aux.master_pde,
389                                              fault_type);
390                 if (result == KERN_TRY_AGAIN)
391                         goto RetryFault;
392                 if (result != KERN_SUCCESS)
393                         return (result);
394         }
395
396         /*
397          * Now we have the actual (object, pindex), fault in the page.  If
398          * vm_fault_object() fails it will unlock and deallocate the FS
399          * data.   If it succeeds everything remains locked and fs->object
400          * will have an additional PIP count if it is not equal to
401          * fs->first_object
402          *
403          * vm_fault_object will set fs->prot for the pmap operation.  It is
404          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
405          * page can be safely written.  However, it will force a read-only
406          * mapping for a read fault if the memory is managed by a virtual
407          * page table.
408          */
409         /* BEFORE */
410         result = vm_fault_object(&fs, first_pindex, fault_type);
411
412         if (result == KERN_TRY_AGAIN) {
413                 /*lwkt_reltoken(&vm_token);*/
414                 goto RetryFault;
415         }
416         if (result != KERN_SUCCESS) {
417                 /*lwkt_reltoken(&vm_token);*/
418                 return (result);
419         }
420
421         /*
422          * On success vm_fault_object() does not unlock or deallocate, and fs.m
423          * will contain a busied page.
424          *
425          * Enter the page into the pmap and do pmap-related adjustments.
426          */
427         vm_page_flag_set(fs.m, PG_REFERENCED);
428         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
429
430         /*
431          * Burst in a few more pages if possible.  The fs.map should still
432          * be locked.
433          */
434         if (fault_flags & VM_FAULT_BURST) {
435                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
436                     fs.wired == 0) {
437                         vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
438                 }
439         }
440         lwkt_gettoken(&vm_token);
441         unlock_things(&fs);
442
443         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
444         KKASSERT(fs.m->flags & PG_BUSY);
445
446         /*
447          * If the page is not wired down, then put it where the pageout daemon
448          * can find it.
449          *
450          * We do not really need to get vm_token here but since all the
451          * vm_*() calls have to doing it here improves efficiency.
452          */
453         /*lwkt_gettoken(&vm_token);*/
454
455         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
456                 lwkt_reltoken(&vm_token); /* before wire activate does not */
457                 if (fs.wired)
458                         vm_page_wire(fs.m);
459                 else
460                         vm_page_unwire(fs.m, 1);
461         } else {
462                 vm_page_activate(fs.m);
463                 lwkt_reltoken(&vm_token); /* before wire activate does not */
464         }
465         /*lwkt_reltoken(&vm_token); after wire/activate works */
466
467         if (curthread->td_lwp) {
468                 if (fs.hardfault) {
469                         curthread->td_lwp->lwp_ru.ru_majflt++;
470                 } else {
471                         curthread->td_lwp->lwp_ru.ru_minflt++;
472                 }
473         }
474
475         /*
476          * Unlock everything, and return
477          */
478         vm_page_wakeup(fs.m);
479         vm_object_deallocate(fs.first_object);
480         /*fs.m = NULL; */
481         /*fs.first_object = NULL; */
482         /*lwkt_reltoken(&vm_token);*/
483
484         return (KERN_SUCCESS);
485 }
486
487 /*
488  * Fault in the specified virtual address in the current process map, 
489  * returning a held VM page or NULL.  See vm_fault_page() for more 
490  * information.
491  *
492  * No requirements.
493  */
494 vm_page_t
495 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
496 {
497         struct lwp *lp = curthread->td_lwp;
498         vm_page_t m;
499
500         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
501                           fault_type, VM_FAULT_NORMAL, errorp);
502         return(m);
503 }
504
505 /*
506  * Fault in the specified virtual address in the specified map, doing all
507  * necessary manipulation of the object store and all necessary I/O.  Return
508  * a held VM page or NULL, and set *errorp.  The related pmap is not
509  * updated.
510  *
511  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
512  * and marked PG_REFERENCED as well.
513  *
514  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
515  * error will be returned.
516  *
517  * No requirements.
518  */
519 vm_page_t
520 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
521               int fault_flags, int *errorp)
522 {
523         vm_pindex_t first_pindex;
524         struct faultstate fs;
525         int result;
526         vm_prot_t orig_fault_type = fault_type;
527
528         mycpu->gd_cnt.v_vm_faults++;
529
530         fs.didlimit = 0;
531         fs.hardfault = 0;
532         fs.fault_flags = fault_flags;
533         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
534
535 RetryFault:
536         /*
537          * Find the vm_map_entry representing the backing store and resolve
538          * the top level object and page index.  This may have the side
539          * effect of executing a copy-on-write on the map entry and/or
540          * creating a shadow object, but will not COW any actual VM pages.
541          *
542          * On success fs.map is left read-locked and various other fields 
543          * are initialized but not otherwise referenced or locked.
544          *
545          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
546          * if the map entry is a virtual page table and also writable,
547          * so we can set the 'A'accessed bit in the virtual page table entry.
548          */
549         fs.map = map;
550         result = vm_map_lookup(&fs.map, vaddr, fault_type,
551                                &fs.entry, &fs.first_object,
552                                &first_pindex, &fs.first_prot, &fs.wired);
553
554         if (result != KERN_SUCCESS) {
555                 *errorp = result;
556                 return (NULL);
557         }
558
559         /*
560          * fs.map is read-locked
561          *
562          * Misc checks.  Save the map generation number to detect races.
563          */
564         fs.map_generation = fs.map->timestamp;
565
566         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
567                 panic("vm_fault: fault on nofault entry, addr: %lx",
568                     (u_long)vaddr);
569         }
570
571         /*
572          * A system map entry may return a NULL object.  No object means
573          * no pager means an unrecoverable kernel fault.
574          */
575         if (fs.first_object == NULL) {
576                 panic("vm_fault: unrecoverable fault at %p in entry %p",
577                         (void *)vaddr, fs.entry);
578         }
579
580         /*
581          * Make a reference to this object to prevent its disposal while we
582          * are messing with it.  Once we have the reference, the map is free
583          * to be diddled.  Since objects reference their shadows (and copies),
584          * they will stay around as well.
585          *
586          * Bump the paging-in-progress count to prevent size changes (e.g.
587          * truncation operations) during I/O.  This must be done after
588          * obtaining the vnode lock in order to avoid possible deadlocks.
589          *
590          * The vm_object must be held before manipulation.
591          */
592         lwkt_gettoken(&vm_token);
593         vm_object_hold(fs.first_object);
594         vm_object_reference(fs.first_object);
595         fs.vp = vnode_pager_lock(fs.first_object);
596         vm_object_pip_add(fs.first_object, 1);
597         vm_object_drop(fs.first_object);
598         lwkt_reltoken(&vm_token);
599
600         fs.lookup_still_valid = TRUE;
601         fs.first_m = NULL;
602         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
603
604         /*
605          * If the entry is wired we cannot change the page protection.
606          */
607         if (fs.wired)
608                 fault_type = fs.first_prot;
609
610         /*
611          * The page we want is at (first_object, first_pindex), but if the
612          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
613          * page table to figure out the actual pindex.
614          *
615          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
616          * ONLY
617          */
618         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
619                 result = vm_fault_vpagetable(&fs, &first_pindex,
620                                              fs.entry->aux.master_pde,
621                                              fault_type);
622                 if (result == KERN_TRY_AGAIN)
623                         goto RetryFault;
624                 if (result != KERN_SUCCESS) {
625                         *errorp = result;
626                         return (NULL);
627                 }
628         }
629
630         /*
631          * Now we have the actual (object, pindex), fault in the page.  If
632          * vm_fault_object() fails it will unlock and deallocate the FS
633          * data.   If it succeeds everything remains locked and fs->object
634          * will have an additinal PIP count if it is not equal to
635          * fs->first_object
636          */
637         result = vm_fault_object(&fs, first_pindex, fault_type);
638
639         if (result == KERN_TRY_AGAIN)
640                 goto RetryFault;
641         if (result != KERN_SUCCESS) {
642                 *errorp = result;
643                 return(NULL);
644         }
645
646         if ((orig_fault_type & VM_PROT_WRITE) &&
647             (fs.prot & VM_PROT_WRITE) == 0) {
648                 *errorp = KERN_PROTECTION_FAILURE;
649                 unlock_and_deallocate(&fs);
650                 return(NULL);
651         }
652
653         /*
654          * On success vm_fault_object() does not unlock or deallocate, and fs.m
655          * will contain a busied page.
656          */
657         unlock_things(&fs);
658
659         /*
660          * Return a held page.  We are not doing any pmap manipulation so do
661          * not set PG_MAPPED.  However, adjust the page flags according to
662          * the fault type because the caller may not use a managed pmapping
663          * (so we don't want to lose the fact that the page will be dirtied
664          * if a write fault was specified).
665          */
666         lwkt_gettoken(&vm_token);
667         vm_page_hold(fs.m);
668         if (fault_type & VM_PROT_WRITE)
669                 vm_page_dirty(fs.m);
670
671         /*
672          * Update the pmap.  We really only have to do this if a COW
673          * occured to replace the read-only page with the new page.  For
674          * now just do it unconditionally. XXX
675          */
676         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
677         vm_page_flag_set(fs.m, PG_REFERENCED);
678
679         /*
680          * Unbusy the page by activating it.  It remains held and will not
681          * be reclaimed.
682          */
683         vm_page_activate(fs.m);
684
685         if (curthread->td_lwp) {
686                 if (fs.hardfault) {
687                         curthread->td_lwp->lwp_ru.ru_majflt++;
688                 } else {
689                         curthread->td_lwp->lwp_ru.ru_minflt++;
690                 }
691         }
692
693         /*
694          * Unlock everything, and return the held page.
695          */
696         vm_page_wakeup(fs.m);
697         vm_object_deallocate(fs.first_object);
698         /*fs.first_object = NULL; */
699         lwkt_reltoken(&vm_token);
700
701         *errorp = 0;
702         return(fs.m);
703 }
704
705 /*
706  * Fault in the specified (object,offset), dirty the returned page as
707  * needed.  If the requested fault_type cannot be done NULL and an
708  * error is returned.
709  *
710  * A held (but not busied) page is returned.
711  *
712  * No requirements.
713  */
714 vm_page_t
715 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
716                      vm_prot_t fault_type, int fault_flags, int *errorp)
717 {
718         int result;
719         vm_pindex_t first_pindex;
720         struct faultstate fs;
721         struct vm_map_entry entry;
722
723         bzero(&entry, sizeof(entry));
724         entry.object.vm_object = object;
725         entry.maptype = VM_MAPTYPE_NORMAL;
726         entry.protection = entry.max_protection = fault_type;
727
728         fs.didlimit = 0;
729         fs.hardfault = 0;
730         fs.fault_flags = fault_flags;
731         fs.map = NULL;
732         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
733
734 RetryFault:
735         
736         fs.first_object = object;
737         first_pindex = OFF_TO_IDX(offset);
738         fs.entry = &entry;
739         fs.first_prot = fault_type;
740         fs.wired = 0;
741         /*fs.map_generation = 0; unused */
742
743         /*
744          * Make a reference to this object to prevent its disposal while we
745          * are messing with it.  Once we have the reference, the map is free
746          * to be diddled.  Since objects reference their shadows (and copies),
747          * they will stay around as well.
748          *
749          * Bump the paging-in-progress count to prevent size changes (e.g.
750          * truncation operations) during I/O.  This must be done after
751          * obtaining the vnode lock in order to avoid possible deadlocks.
752          */
753         lwkt_gettoken(&vm_token);
754         vm_object_hold(fs.first_object);
755         vm_object_reference(fs.first_object);
756         fs.vp = vnode_pager_lock(fs.first_object);
757         vm_object_pip_add(fs.first_object, 1);
758         vm_object_drop(fs.first_object);
759         lwkt_reltoken(&vm_token);
760
761         fs.lookup_still_valid = TRUE;
762         fs.first_m = NULL;
763         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
764
765 #if 0
766         /* XXX future - ability to operate on VM object using vpagetable */
767         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
768                 result = vm_fault_vpagetable(&fs, &first_pindex,
769                                              fs.entry->aux.master_pde,
770                                              fault_type);
771                 if (result == KERN_TRY_AGAIN)
772                         goto RetryFault;
773                 if (result != KERN_SUCCESS) {
774                         *errorp = result;
775                         return (NULL);
776                 }
777         }
778 #endif
779
780         /*
781          * Now we have the actual (object, pindex), fault in the page.  If
782          * vm_fault_object() fails it will unlock and deallocate the FS
783          * data.   If it succeeds everything remains locked and fs->object
784          * will have an additinal PIP count if it is not equal to
785          * fs->first_object
786          */
787         result = vm_fault_object(&fs, first_pindex, fault_type);
788
789         if (result == KERN_TRY_AGAIN)
790                 goto RetryFault;
791         if (result != KERN_SUCCESS) {
792                 *errorp = result;
793                 return(NULL);
794         }
795
796         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
797                 *errorp = KERN_PROTECTION_FAILURE;
798                 unlock_and_deallocate(&fs);
799                 return(NULL);
800         }
801
802         /*
803          * On success vm_fault_object() does not unlock or deallocate, and fs.m
804          * will contain a busied page.
805          */
806         unlock_things(&fs);
807
808         /*
809          * Return a held page.  We are not doing any pmap manipulation so do
810          * not set PG_MAPPED.  However, adjust the page flags according to
811          * the fault type because the caller may not use a managed pmapping
812          * (so we don't want to lose the fact that the page will be dirtied
813          * if a write fault was specified).
814          */
815         lwkt_gettoken(&vm_token);
816         vm_page_hold(fs.m);
817         if (fault_type & VM_PROT_WRITE)
818                 vm_page_dirty(fs.m);
819
820         if (fault_flags & VM_FAULT_DIRTY)
821                 vm_page_dirty(fs.m);
822         if (fault_flags & VM_FAULT_UNSWAP)
823                 swap_pager_unswapped(fs.m);
824
825         /*
826          * Indicate that the page was accessed.
827          */
828         vm_page_flag_set(fs.m, PG_REFERENCED);
829
830         /*
831          * Unbusy the page by activating it.  It remains held and will not
832          * be reclaimed.
833          */
834         vm_page_activate(fs.m);
835
836         if (curthread->td_lwp) {
837                 if (fs.hardfault) {
838                         mycpu->gd_cnt.v_vm_faults++;
839                         curthread->td_lwp->lwp_ru.ru_majflt++;
840                 } else {
841                         curthread->td_lwp->lwp_ru.ru_minflt++;
842                 }
843         }
844
845         /*
846          * Unlock everything, and return the held page.
847          */
848         vm_page_wakeup(fs.m);
849         vm_object_deallocate(fs.first_object);
850         /*fs.first_object = NULL; */
851         lwkt_reltoken(&vm_token);
852
853         *errorp = 0;
854         return(fs.m);
855 }
856
857 /*
858  * Translate the virtual page number (first_pindex) that is relative
859  * to the address space into a logical page number that is relative to the
860  * backing object.  Use the virtual page table pointed to by (vpte).
861  *
862  * This implements an N-level page table.  Any level can terminate the
863  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
864  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
865  *
866  * No requirements (vm_token need not be held).
867  */
868 static
869 int
870 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
871                     vpte_t vpte, int fault_type)
872 {
873         struct lwbuf *lwb;
874         struct lwbuf lwb_cache;
875         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
876         int result = KERN_SUCCESS;
877         vpte_t *ptep;
878
879         for (;;) {
880                 /*
881                  * We cannot proceed if the vpte is not valid, not readable
882                  * for a read fault, or not writable for a write fault.
883                  */
884                 if ((vpte & VPTE_V) == 0) {
885                         unlock_and_deallocate(fs);
886                         return (KERN_FAILURE);
887                 }
888                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
889                         unlock_and_deallocate(fs);
890                         return (KERN_FAILURE);
891                 }
892                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
893                         unlock_and_deallocate(fs);
894                         return (KERN_FAILURE);
895                 }
896                 if ((vpte & VPTE_PS) || vshift == 0)
897                         break;
898                 KKASSERT(vshift >= VPTE_PAGE_BITS);
899
900                 /*
901                  * Get the page table page.  Nominally we only read the page
902                  * table, but since we are actively setting VPTE_M and VPTE_A,
903                  * tell vm_fault_object() that we are writing it. 
904                  *
905                  * There is currently no real need to optimize this.
906                  */
907                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
908                                          VM_PROT_READ|VM_PROT_WRITE);
909                 if (result != KERN_SUCCESS)
910                         return (result);
911
912                 /*
913                  * Process the returned fs.m and look up the page table
914                  * entry in the page table page.
915                  */
916                 vshift -= VPTE_PAGE_BITS;
917                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
918                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
919                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
920                 vpte = *ptep;
921
922                 /*
923                  * Page table write-back.  If the vpte is valid for the
924                  * requested operation, do a write-back to the page table.
925                  *
926                  * XXX VPTE_M is not set properly for page directory pages.
927                  * It doesn't get set in the page directory if the page table
928                  * is modified during a read access.
929                  */
930                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
931                     (vpte & VPTE_W)) {
932                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
933                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
934                                 vm_page_dirty(fs->m);
935                         }
936                 }
937                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
938                     (vpte & VPTE_R)) {
939                         if ((vpte & VPTE_A) == 0) {
940                                 atomic_set_long(ptep, VPTE_A);
941                                 vm_page_dirty(fs->m);
942                         }
943                 }
944                 lwbuf_free(lwb);
945                 vm_page_flag_set(fs->m, PG_REFERENCED);
946                 vm_page_activate(fs->m);
947                 vm_page_wakeup(fs->m);
948                 fs->m = NULL;
949                 cleanup_successful_fault(fs);
950         }
951         /*
952          * Combine remaining address bits with the vpte.
953          */
954         /* JG how many bits from each? */
955         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
956                   (*pindex & ((1L << vshift) - 1));
957         return (KERN_SUCCESS);
958 }
959
960
961 /*
962  * This is the core of the vm_fault code.
963  *
964  * Do all operations required to fault-in (fs.first_object, pindex).  Run
965  * through the shadow chain as necessary and do required COW or virtual
966  * copy operations.  The caller has already fully resolved the vm_map_entry
967  * and, if appropriate, has created a copy-on-write layer.  All we need to
968  * do is iterate the object chain.
969  *
970  * On failure (fs) is unlocked and deallocated and the caller may return or
971  * retry depending on the failure code.  On success (fs) is NOT unlocked or
972  * deallocated, fs.m will contained a resolved, busied page, and fs.object
973  * will have an additional PIP count if it is not equal to fs.first_object.
974  *
975  * No requirements.
976  */
977 static
978 int
979 vm_fault_object(struct faultstate *fs,
980                 vm_pindex_t first_pindex, vm_prot_t fault_type)
981 {
982         vm_object_t next_object;
983         vm_pindex_t pindex;
984
985         fs->prot = fs->first_prot;
986         fs->object = fs->first_object;
987         pindex = first_pindex;
988
989         /* 
990          * If a read fault occurs we try to make the page writable if
991          * possible.  There are three cases where we cannot make the
992          * page mapping writable:
993          *
994          * (1) The mapping is read-only or the VM object is read-only,
995          *     fs->prot above will simply not have VM_PROT_WRITE set.
996          *
997          * (2) If the mapping is a virtual page table we need to be able
998          *     to detect writes so we can set VPTE_M in the virtual page
999          *     table.
1000          *
1001          * (3) If the VM page is read-only or copy-on-write, upgrading would
1002          *     just result in an unnecessary COW fault.
1003          *
1004          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1005          * causes adjustments to the 'M'odify bit to also turn off write
1006          * access to force a re-fault.
1007          */
1008         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1009                 if ((fault_type & VM_PROT_WRITE) == 0)
1010                         fs->prot &= ~VM_PROT_WRITE;
1011         }
1012
1013         lwkt_gettoken(&vm_token);
1014
1015         for (;;) {
1016                 /*
1017                  * If the object is dead, we stop here
1018                  */
1019                 if (fs->object->flags & OBJ_DEAD) {
1020                         unlock_and_deallocate(fs);
1021                         lwkt_reltoken(&vm_token);
1022                         return (KERN_PROTECTION_FAILURE);
1023                 }
1024
1025                 /*
1026                  * See if the page is resident.
1027                  */
1028                 fs->m = vm_page_lookup(fs->object, pindex);
1029                 if (fs->m != NULL) {
1030                         int queue;
1031                         /*
1032                          * Wait/Retry if the page is busy.  We have to do this
1033                          * if the page is busy via either PG_BUSY or 
1034                          * vm_page_t->busy because the vm_pager may be using
1035                          * vm_page_t->busy for pageouts ( and even pageins if
1036                          * it is the vnode pager ), and we could end up trying
1037                          * to pagein and pageout the same page simultaneously.
1038                          *
1039                          * We can theoretically allow the busy case on a read
1040                          * fault if the page is marked valid, but since such
1041                          * pages are typically already pmap'd, putting that
1042                          * special case in might be more effort then it is 
1043                          * worth.  We cannot under any circumstances mess
1044                          * around with a vm_page_t->busy page except, perhaps,
1045                          * to pmap it.
1046                          */
1047                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1048                                 unlock_things(fs);
1049                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1050                                 mycpu->gd_cnt.v_intrans++;
1051                                 vm_object_deallocate(fs->first_object);
1052                                 fs->first_object = NULL;
1053                                 lwkt_reltoken(&vm_token);
1054                                 return (KERN_TRY_AGAIN);
1055                         }
1056
1057                         /*
1058                          * If reactivating a page from PQ_CACHE we may have
1059                          * to rate-limit.
1060                          */
1061                         queue = fs->m->queue;
1062                         vm_page_unqueue_nowakeup(fs->m);
1063
1064                         if ((queue - fs->m->pc) == PQ_CACHE && 
1065                             vm_page_count_severe()) {
1066                                 vm_page_activate(fs->m);
1067                                 unlock_and_deallocate(fs);
1068                                 vm_waitpfault();
1069                                 lwkt_reltoken(&vm_token);
1070                                 return (KERN_TRY_AGAIN);
1071                         }
1072
1073                         /*
1074                          * Mark page busy for other processes, and the 
1075                          * pagedaemon.  If it still isn't completely valid
1076                          * (readable), or if a read-ahead-mark is set on
1077                          * the VM page, jump to readrest, else we found the
1078                          * page and can return.
1079                          *
1080                          * We can release the spl once we have marked the
1081                          * page busy.
1082                          */
1083                         vm_page_busy(fs->m);
1084
1085                         if (fs->m->object != &kernel_object) {
1086                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1087                                     VM_PAGE_BITS_ALL) {
1088                                         goto readrest;
1089                                 }
1090                                 if (fs->m->flags & PG_RAM) {
1091                                         if (debug_cluster)
1092                                                 kprintf("R");
1093                                         vm_page_flag_clear(fs->m, PG_RAM);
1094                                         goto readrest;
1095                                 }
1096                         }
1097                         break; /* break to PAGE HAS BEEN FOUND */
1098                 }
1099
1100                 /*
1101                  * Page is not resident, If this is the search termination
1102                  * or the pager might contain the page, allocate a new page.
1103                  */
1104                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1105                         /*
1106                          * If the page is beyond the object size we fail
1107                          */
1108                         if (pindex >= fs->object->size) {
1109                                 lwkt_reltoken(&vm_token);
1110                                 unlock_and_deallocate(fs);
1111                                 return (KERN_PROTECTION_FAILURE);
1112                         }
1113
1114                         /*
1115                          * Ratelimit.
1116                          */
1117                         if (fs->didlimit == 0 && curproc != NULL) {
1118                                 int limticks;
1119
1120                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1121                                 if (limticks) {
1122                                         lwkt_reltoken(&vm_token);
1123                                         unlock_and_deallocate(fs);
1124                                         tsleep(curproc, 0, "vmrate", limticks);
1125                                         fs->didlimit = 1;
1126                                         return (KERN_TRY_AGAIN);
1127                                 }
1128                         }
1129
1130                         /*
1131                          * Allocate a new page for this object/offset pair.
1132                          */
1133                         fs->m = NULL;
1134                         if (!vm_page_count_severe()) {
1135                                 fs->m = vm_page_alloc(fs->object, pindex,
1136                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1137                         }
1138                         if (fs->m == NULL) {
1139                                 lwkt_reltoken(&vm_token);
1140                                 unlock_and_deallocate(fs);
1141                                 vm_waitpfault();
1142                                 return (KERN_TRY_AGAIN);
1143                         }
1144                 }
1145
1146 readrest:
1147                 /*
1148                  * We have found an invalid or partially valid page, a
1149                  * page with a read-ahead mark which might be partially or
1150                  * fully valid (and maybe dirty too), or we have allocated
1151                  * a new page.
1152                  *
1153                  * Attempt to fault-in the page if there is a chance that the
1154                  * pager has it, and potentially fault in additional pages
1155                  * at the same time.
1156                  *
1157                  * We are NOT in splvm here and if TRYPAGER is true then
1158                  * fs.m will be non-NULL and will be PG_BUSY for us.
1159                  */
1160                 if (TRYPAGER(fs)) {
1161                         int rv;
1162                         int seqaccess;
1163                         u_char behavior = vm_map_entry_behavior(fs->entry);
1164
1165                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1166                                 seqaccess = 0;
1167                         else
1168                                 seqaccess = -1;
1169
1170                         /*
1171                          * If sequential access is detected then attempt
1172                          * to deactivate/cache pages behind the scan to
1173                          * prevent resource hogging.
1174                          *
1175                          * Use of PG_RAM to detect sequential access
1176                          * also simulates multi-zone sequential access
1177                          * detection for free.
1178                          *
1179                          * NOTE: Partially valid dirty pages cannot be
1180                          *       deactivated without causing NFS picemeal
1181                          *       writes to barf.
1182                          */
1183                         if ((fs->first_object->type != OBJT_DEVICE) &&
1184                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1185                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1186                                  (fs->m->flags & PG_RAM)))
1187                         ) {
1188                                 vm_pindex_t scan_pindex;
1189                                 int scan_count = 16;
1190
1191                                 if (first_pindex < 16) {
1192                                         scan_pindex = 0;
1193                                         scan_count = 0;
1194                                 } else {
1195                                         scan_pindex = first_pindex - 16;
1196                                         if (scan_pindex < 16)
1197                                                 scan_count = scan_pindex;
1198                                         else
1199                                                 scan_count = 16;
1200                                 }
1201
1202                                 while (scan_count) {
1203                                         vm_page_t mt;
1204
1205                                         mt = vm_page_lookup(fs->first_object,
1206                                                             scan_pindex);
1207                                         if (mt == NULL ||
1208                                             (mt->valid != VM_PAGE_BITS_ALL)) {
1209                                                 break;
1210                                         }
1211                                         if (mt->busy ||
1212                                             (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1213                                             mt->hold_count ||
1214                                             mt->wire_count)  {
1215                                                 goto skip;
1216                                         }
1217                                         vm_page_busy(mt);
1218                                         if (mt->dirty == 0)
1219                                                 vm_page_test_dirty(mt);
1220                                         if (mt->dirty) {
1221                                                 vm_page_protect(mt,
1222                                                                 VM_PROT_NONE);
1223                                                 vm_page_deactivate(mt);
1224                                                 vm_page_wakeup(mt);
1225                                         } else {
1226                                                 vm_page_cache(mt);
1227                                         }
1228 skip:
1229                                         --scan_count;
1230                                         --scan_pindex;
1231                                 }
1232
1233                                 seqaccess = 1;
1234                         }
1235
1236                         /*
1237                          * Avoid deadlocking against the map when doing I/O.
1238                          * fs.object and the page is PG_BUSY'd.
1239                          */
1240                         unlock_map(fs);
1241
1242                         /*
1243                          * Acquire the page data.  We still hold a ref on
1244                          * fs.object and the page has been PG_BUSY's.
1245                          *
1246                          * The pager may replace the page (for example, in
1247                          * order to enter a fictitious page into the
1248                          * object).  If it does so it is responsible for
1249                          * cleaning up the passed page and properly setting
1250                          * the new page PG_BUSY.
1251                          *
1252                          * If we got here through a PG_RAM read-ahead
1253                          * mark the page may be partially dirty and thus
1254                          * not freeable.  Don't bother checking to see
1255                          * if the pager has the page because we can't free
1256                          * it anyway.  We have to depend on the get_page
1257                          * operation filling in any gaps whether there is
1258                          * backing store or not.
1259                          */
1260                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1261
1262                         if (rv == VM_PAGER_OK) {
1263                                 /*
1264                                  * Relookup in case pager changed page. Pager
1265                                  * is responsible for disposition of old page
1266                                  * if moved.
1267                                  *
1268                                  * XXX other code segments do relookups too.
1269                                  * It's a bad abstraction that needs to be
1270                                  * fixed/removed.
1271                                  */
1272                                 fs->m = vm_page_lookup(fs->object, pindex);
1273                                 if (fs->m == NULL) {
1274                                         lwkt_reltoken(&vm_token);
1275                                         unlock_and_deallocate(fs);
1276                                         return (KERN_TRY_AGAIN);
1277                                 }
1278
1279                                 ++fs->hardfault;
1280                                 break; /* break to PAGE HAS BEEN FOUND */
1281                         }
1282
1283                         /*
1284                          * Remove the bogus page (which does not exist at this
1285                          * object/offset); before doing so, we must get back
1286                          * our object lock to preserve our invariant.
1287                          *
1288                          * Also wake up any other process that may want to bring
1289                          * in this page.
1290                          *
1291                          * If this is the top-level object, we must leave the
1292                          * busy page to prevent another process from rushing
1293                          * past us, and inserting the page in that object at
1294                          * the same time that we are.
1295                          */
1296                         if (rv == VM_PAGER_ERROR) {
1297                                 if (curproc)
1298                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1299                                 else
1300                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1301                         }
1302
1303                         /*
1304                          * Data outside the range of the pager or an I/O error
1305                          *
1306                          * The page may have been wired during the pagein,
1307                          * e.g. by the buffer cache, and cannot simply be
1308                          * freed.  Call vnode_pager_freepage() to deal with it.
1309                          */
1310                         /*
1311                          * XXX - the check for kernel_map is a kludge to work
1312                          * around having the machine panic on a kernel space
1313                          * fault w/ I/O error.
1314                          */
1315                         if (((fs->map != &kernel_map) &&
1316                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1317                                 vnode_pager_freepage(fs->m);
1318                                 lwkt_reltoken(&vm_token);
1319                                 fs->m = NULL;
1320                                 unlock_and_deallocate(fs);
1321                                 if (rv == VM_PAGER_ERROR)
1322                                         return (KERN_FAILURE);
1323                                 else
1324                                         return (KERN_PROTECTION_FAILURE);
1325                                 /* NOT REACHED */
1326                         }
1327                         if (fs->object != fs->first_object) {
1328                                 vnode_pager_freepage(fs->m);
1329                                 fs->m = NULL;
1330                                 /*
1331                                  * XXX - we cannot just fall out at this
1332                                  * point, m has been freed and is invalid!
1333                                  */
1334                         }
1335                 }
1336
1337                 /*
1338                  * We get here if the object has a default pager (or unwiring) 
1339                  * or the pager doesn't have the page.
1340                  */
1341                 if (fs->object == fs->first_object)
1342                         fs->first_m = fs->m;
1343
1344                 /*
1345                  * Move on to the next object.  Lock the next object before
1346                  * unlocking the current one.
1347                  */
1348                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1349                 next_object = fs->object->backing_object;
1350                 if (next_object == NULL) {
1351                         /*
1352                          * If there's no object left, fill the page in the top
1353                          * object with zeros.
1354                          */
1355                         if (fs->object != fs->first_object) {
1356                                 vm_object_pip_wakeup(fs->object);
1357
1358                                 fs->object = fs->first_object;
1359                                 pindex = first_pindex;
1360                                 fs->m = fs->first_m;
1361                         }
1362                         fs->first_m = NULL;
1363
1364                         /*
1365                          * Zero the page if necessary and mark it valid.
1366                          */
1367                         if ((fs->m->flags & PG_ZERO) == 0) {
1368                                 vm_page_zero_fill(fs->m);
1369                         } else {
1370 #ifdef PMAP_DEBUG
1371                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1372 #endif
1373                                 vm_page_flag_clear(fs->m, PG_ZERO);
1374                                 mycpu->gd_cnt.v_ozfod++;
1375                         }
1376                         mycpu->gd_cnt.v_zfod++;
1377                         fs->m->valid = VM_PAGE_BITS_ALL;
1378                         break;  /* break to PAGE HAS BEEN FOUND */
1379                 }
1380                 if (fs->object != fs->first_object) {
1381                         vm_object_pip_wakeup(fs->object);
1382                 }
1383                 KASSERT(fs->object != next_object,
1384                         ("object loop %p", next_object));
1385                 fs->object = next_object;
1386                 vm_object_pip_add(fs->object, 1);
1387         }
1388
1389         /*
1390          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1391          * is held.]
1392          *
1393          * vm_token is still held
1394          *
1395          * If the page is being written, but isn't already owned by the
1396          * top-level object, we have to copy it into a new page owned by the
1397          * top-level object.
1398          */
1399         KASSERT((fs->m->flags & PG_BUSY) != 0,
1400                 ("vm_fault: not busy after main loop"));
1401
1402         if (fs->object != fs->first_object) {
1403                 /*
1404                  * We only really need to copy if we want to write it.
1405                  */
1406                 if (fault_type & VM_PROT_WRITE) {
1407                         /*
1408                          * This allows pages to be virtually copied from a 
1409                          * backing_object into the first_object, where the 
1410                          * backing object has no other refs to it, and cannot
1411                          * gain any more refs.  Instead of a bcopy, we just 
1412                          * move the page from the backing object to the 
1413                          * first object.  Note that we must mark the page 
1414                          * dirty in the first object so that it will go out 
1415                          * to swap when needed.
1416                          */
1417                         if (
1418                                 /*
1419                                  * Map, if present, has not changed
1420                                  */
1421                                 (fs->map == NULL ||
1422                                 fs->map_generation == fs->map->timestamp) &&
1423                                 /*
1424                                  * Only one shadow object
1425                                  */
1426                                 (fs->object->shadow_count == 1) &&
1427                                 /*
1428                                  * No COW refs, except us
1429                                  */
1430                                 (fs->object->ref_count == 1) &&
1431                                 /*
1432                                  * No one else can look this object up
1433                                  */
1434                                 (fs->object->handle == NULL) &&
1435                                 /*
1436                                  * No other ways to look the object up
1437                                  */
1438                                 ((fs->object->type == OBJT_DEFAULT) ||
1439                                  (fs->object->type == OBJT_SWAP)) &&
1440                                 /*
1441                                  * We don't chase down the shadow chain
1442                                  */
1443                                 (fs->object == fs->first_object->backing_object) &&
1444
1445                                 /*
1446                                  * grab the lock if we need to
1447                                  */
1448                                 (fs->lookup_still_valid ||
1449                                  fs->map == NULL ||
1450                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1451                             ) {
1452                                 
1453                                 fs->lookup_still_valid = 1;
1454                                 /*
1455                                  * get rid of the unnecessary page
1456                                  */
1457                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1458                                 vm_page_free(fs->first_m);
1459                                 fs->first_m = NULL;
1460
1461                                 /*
1462                                  * grab the page and put it into the 
1463                                  * process'es object.  The page is 
1464                                  * automatically made dirty.
1465                                  */
1466                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
1467                                 fs->first_m = fs->m;
1468                                 vm_page_busy(fs->first_m);
1469                                 fs->m = NULL;
1470                                 mycpu->gd_cnt.v_cow_optim++;
1471                         } else {
1472                                 /*
1473                                  * Oh, well, lets copy it.
1474                                  */
1475                                 vm_page_copy(fs->m, fs->first_m);
1476                                 vm_page_event(fs->m, VMEVENT_COW);
1477                         }
1478
1479                         if (fs->m) {
1480                                 /*
1481                                  * We no longer need the old page or object.
1482                                  */
1483                                 release_page(fs);
1484                         }
1485
1486                         /*
1487                          * fs->object != fs->first_object due to above 
1488                          * conditional
1489                          */
1490                         vm_object_pip_wakeup(fs->object);
1491
1492                         /*
1493                          * Only use the new page below...
1494                          */
1495
1496                         mycpu->gd_cnt.v_cow_faults++;
1497                         fs->m = fs->first_m;
1498                         fs->object = fs->first_object;
1499                         pindex = first_pindex;
1500                 } else {
1501                         /*
1502                          * If it wasn't a write fault avoid having to copy
1503                          * the page by mapping it read-only.
1504                          */
1505                         fs->prot &= ~VM_PROT_WRITE;
1506                 }
1507         }
1508
1509         /*
1510          * We may have had to unlock a map to do I/O.  If we did then
1511          * lookup_still_valid will be FALSE.  If the map generation count
1512          * also changed then all sorts of things could have happened while
1513          * we were doing the I/O and we need to retry.
1514          */
1515
1516         if (!fs->lookup_still_valid &&
1517             fs->map != NULL &&
1518             (fs->map->timestamp != fs->map_generation)) {
1519                 release_page(fs);
1520                 lwkt_reltoken(&vm_token);
1521                 unlock_and_deallocate(fs);
1522                 return (KERN_TRY_AGAIN);
1523         }
1524
1525         /*
1526          * If the fault is a write, we know that this page is being
1527          * written NOW so dirty it explicitly to save on pmap_is_modified()
1528          * calls later.
1529          *
1530          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1531          * if the page is already dirty to prevent data written with
1532          * the expectation of being synced from not being synced.
1533          * Likewise if this entry does not request NOSYNC then make
1534          * sure the page isn't marked NOSYNC.  Applications sharing
1535          * data should use the same flags to avoid ping ponging.
1536          *
1537          * Also tell the backing pager, if any, that it should remove
1538          * any swap backing since the page is now dirty.
1539          */
1540         if (fs->prot & VM_PROT_WRITE) {
1541                 vm_object_set_writeable_dirty(fs->m->object);
1542                 vm_set_nosync(fs->m, fs->entry);
1543                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1544                         vm_page_dirty(fs->m);
1545                         swap_pager_unswapped(fs->m);
1546                 }
1547         }
1548
1549         lwkt_reltoken(&vm_token);
1550
1551         /*
1552          * Page had better still be busy.  We are still locked up and 
1553          * fs->object will have another PIP reference if it is not equal
1554          * to fs->first_object.
1555          */
1556         KASSERT(fs->m->flags & PG_BUSY,
1557                 ("vm_fault: page %p not busy!", fs->m));
1558
1559         /*
1560          * Sanity check: page must be completely valid or it is not fit to
1561          * map into user space.  vm_pager_get_pages() ensures this.
1562          */
1563         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1564                 vm_page_zero_invalid(fs->m, TRUE);
1565                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1566         }
1567         vm_page_flag_clear(fs->m, PG_ZERO);
1568
1569         return (KERN_SUCCESS);
1570 }
1571
1572 /*
1573  * Wire down a range of virtual addresses in a map.  The entry in question
1574  * should be marked in-transition and the map must be locked.  We must
1575  * release the map temporarily while faulting-in the page to avoid a
1576  * deadlock.  Note that the entry may be clipped while we are blocked but
1577  * will never be freed.
1578  *
1579  * No requirements.
1580  */
1581 int
1582 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1583 {
1584         boolean_t fictitious;
1585         vm_offset_t start;
1586         vm_offset_t end;
1587         vm_offset_t va;
1588         vm_paddr_t pa;
1589         pmap_t pmap;
1590         int rv;
1591
1592         pmap = vm_map_pmap(map);
1593         start = entry->start;
1594         end = entry->end;
1595         fictitious = entry->object.vm_object &&
1596                         (entry->object.vm_object->type == OBJT_DEVICE);
1597         if (entry->eflags & MAP_ENTRY_KSTACK)
1598                 start += PAGE_SIZE;
1599         lwkt_gettoken(&vm_token);
1600         vm_map_unlock(map);
1601         map->timestamp++;
1602
1603         /*
1604          * We simulate a fault to get the page and enter it in the physical
1605          * map.
1606          */
1607         for (va = start; va < end; va += PAGE_SIZE) {
1608                 if (user_wire) {
1609                         rv = vm_fault(map, va, VM_PROT_READ, 
1610                                         VM_FAULT_USER_WIRE);
1611                 } else {
1612                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1613                                         VM_FAULT_CHANGE_WIRING);
1614                 }
1615                 if (rv) {
1616                         while (va > start) {
1617                                 va -= PAGE_SIZE;
1618                                 if ((pa = pmap_extract(pmap, va)) == 0)
1619                                         continue;
1620                                 pmap_change_wiring(pmap, va, FALSE);
1621                                 if (!fictitious)
1622                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1623                         }
1624                         vm_map_lock(map);
1625                         lwkt_reltoken(&vm_token);
1626                         return (rv);
1627                 }
1628         }
1629         vm_map_lock(map);
1630         lwkt_reltoken(&vm_token);
1631         return (KERN_SUCCESS);
1632 }
1633
1634 /*
1635  * Unwire a range of virtual addresses in a map.  The map should be
1636  * locked.
1637  */
1638 void
1639 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1640 {
1641         boolean_t fictitious;
1642         vm_offset_t start;
1643         vm_offset_t end;
1644         vm_offset_t va;
1645         vm_paddr_t pa;
1646         pmap_t pmap;
1647
1648         pmap = vm_map_pmap(map);
1649         start = entry->start;
1650         end = entry->end;
1651         fictitious = entry->object.vm_object &&
1652                         (entry->object.vm_object->type == OBJT_DEVICE);
1653         if (entry->eflags & MAP_ENTRY_KSTACK)
1654                 start += PAGE_SIZE;
1655
1656         /*
1657          * Since the pages are wired down, we must be able to get their
1658          * mappings from the physical map system.
1659          */
1660         lwkt_gettoken(&vm_token);
1661         for (va = start; va < end; va += PAGE_SIZE) {
1662                 pa = pmap_extract(pmap, va);
1663                 if (pa != 0) {
1664                         pmap_change_wiring(pmap, va, FALSE);
1665                         if (!fictitious)
1666                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1667                 }
1668         }
1669         lwkt_reltoken(&vm_token);
1670 }
1671
1672 /*
1673  * Reduce the rate at which memory is allocated to a process based
1674  * on the perceived load on the VM system. As the load increases
1675  * the allocation burst rate goes down and the delay increases. 
1676  *
1677  * Rate limiting does not apply when faulting active or inactive
1678  * pages.  When faulting 'cache' pages, rate limiting only applies
1679  * if the system currently has a severe page deficit.
1680  *
1681  * XXX vm_pagesupply should be increased when a page is freed.
1682  *
1683  * We sleep up to 1/10 of a second.
1684  */
1685 static int
1686 vm_fault_ratelimit(struct vmspace *vmspace)
1687 {
1688         if (vm_load_enable == 0)
1689                 return(0);
1690         if (vmspace->vm_pagesupply > 0) {
1691                 --vmspace->vm_pagesupply;       /* SMP race ok */
1692                 return(0);
1693         }
1694 #ifdef INVARIANTS
1695         if (vm_load_debug) {
1696                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1697                         vm_load, 
1698                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1699                         curproc->p_pid, curproc->p_comm);
1700         }
1701 #endif
1702         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1703         return(vm_load * hz / 10000);
1704 }
1705
1706 /*
1707  * Copy all of the pages from a wired-down map entry to another.
1708  *
1709  * The source and destination maps must be locked for write.
1710  * The source map entry must be wired down (or be a sharing map
1711  * entry corresponding to a main map entry that is wired down).
1712  *
1713  * No other requirements.
1714  */
1715 void
1716 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1717                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1718 {
1719         vm_object_t dst_object;
1720         vm_object_t src_object;
1721         vm_ooffset_t dst_offset;
1722         vm_ooffset_t src_offset;
1723         vm_prot_t prot;
1724         vm_offset_t vaddr;
1725         vm_page_t dst_m;
1726         vm_page_t src_m;
1727
1728 #ifdef  lint
1729         src_map++;
1730 #endif  /* lint */
1731
1732         src_object = src_entry->object.vm_object;
1733         src_offset = src_entry->offset;
1734
1735         /*
1736          * Create the top-level object for the destination entry. (Doesn't
1737          * actually shadow anything - we copy the pages directly.)
1738          */
1739         vm_map_entry_allocate_object(dst_entry);
1740         dst_object = dst_entry->object.vm_object;
1741
1742         prot = dst_entry->max_protection;
1743
1744         /*
1745          * Loop through all of the pages in the entry's range, copying each
1746          * one from the source object (it should be there) to the destination
1747          * object.
1748          */
1749         for (vaddr = dst_entry->start, dst_offset = 0;
1750             vaddr < dst_entry->end;
1751             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1752
1753                 /*
1754                  * Allocate a page in the destination object
1755                  */
1756                 do {
1757                         dst_m = vm_page_alloc(dst_object,
1758                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1759                         if (dst_m == NULL) {
1760                                 vm_wait(0);
1761                         }
1762                 } while (dst_m == NULL);
1763
1764                 /*
1765                  * Find the page in the source object, and copy it in.
1766                  * (Because the source is wired down, the page will be in
1767                  * memory.)
1768                  */
1769                 src_m = vm_page_lookup(src_object,
1770                                        OFF_TO_IDX(dst_offset + src_offset));
1771                 if (src_m == NULL)
1772                         panic("vm_fault_copy_wired: page missing");
1773
1774                 vm_page_copy(src_m, dst_m);
1775                 vm_page_event(src_m, VMEVENT_COW);
1776
1777                 /*
1778                  * Enter it in the pmap...
1779                  */
1780
1781                 vm_page_flag_clear(dst_m, PG_ZERO);
1782                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1783
1784                 /*
1785                  * Mark it no longer busy, and put it on the active list.
1786                  */
1787                 vm_page_activate(dst_m);
1788                 vm_page_wakeup(dst_m);
1789         }
1790 }
1791
1792 #if 0
1793
1794 /*
1795  * This routine checks around the requested page for other pages that
1796  * might be able to be faulted in.  This routine brackets the viable
1797  * pages for the pages to be paged in.
1798  *
1799  * Inputs:
1800  *      m, rbehind, rahead
1801  *
1802  * Outputs:
1803  *  marray (array of vm_page_t), reqpage (index of requested page)
1804  *
1805  * Return value:
1806  *  number of pages in marray
1807  */
1808 static int
1809 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1810                           vm_page_t *marray, int *reqpage)
1811 {
1812         int i,j;
1813         vm_object_t object;
1814         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1815         vm_page_t rtm;
1816         int cbehind, cahead;
1817
1818         object = m->object;
1819         pindex = m->pindex;
1820
1821         /*
1822          * we don't fault-ahead for device pager
1823          */
1824         if (object->type == OBJT_DEVICE) {
1825                 *reqpage = 0;
1826                 marray[0] = m;
1827                 return 1;
1828         }
1829
1830         /*
1831          * if the requested page is not available, then give up now
1832          */
1833         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1834                 *reqpage = 0;   /* not used by caller, fix compiler warn */
1835                 return 0;
1836         }
1837
1838         if ((cbehind == 0) && (cahead == 0)) {
1839                 *reqpage = 0;
1840                 marray[0] = m;
1841                 return 1;
1842         }
1843
1844         if (rahead > cahead) {
1845                 rahead = cahead;
1846         }
1847
1848         if (rbehind > cbehind) {
1849                 rbehind = cbehind;
1850         }
1851
1852         /*
1853          * Do not do any readahead if we have insufficient free memory.
1854          *
1855          * XXX code was broken disabled before and has instability
1856          * with this conditonal fixed, so shortcut for now.
1857          */
1858         if (burst_fault == 0 || vm_page_count_severe()) {
1859                 marray[0] = m;
1860                 *reqpage = 0;
1861                 return 1;
1862         }
1863
1864         /*
1865          * scan backward for the read behind pages -- in memory 
1866          *
1867          * Assume that if the page is not found an interrupt will not
1868          * create it.  Theoretically interrupts can only remove (busy)
1869          * pages, not create new associations.
1870          */
1871         if (pindex > 0) {
1872                 if (rbehind > pindex) {
1873                         rbehind = pindex;
1874                         startpindex = 0;
1875                 } else {
1876                         startpindex = pindex - rbehind;
1877                 }
1878
1879                 lwkt_gettoken(&vm_token);
1880                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1881                         if (vm_page_lookup(object, tpindex - 1))
1882                                 break;
1883                 }
1884
1885                 i = 0;
1886                 while (tpindex < pindex) {
1887                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1888                         if (rtm == NULL) {
1889                                 lwkt_reltoken(&vm_token);
1890                                 for (j = 0; j < i; j++) {
1891                                         vm_page_free(marray[j]);
1892                                 }
1893                                 marray[0] = m;
1894                                 *reqpage = 0;
1895                                 return 1;
1896                         }
1897                         marray[i] = rtm;
1898                         ++i;
1899                         ++tpindex;
1900                 }
1901                 lwkt_reltoken(&vm_token);
1902         } else {
1903                 i = 0;
1904         }
1905
1906         /*
1907          * Assign requested page
1908          */
1909         marray[i] = m;
1910         *reqpage = i;
1911         ++i;
1912
1913         /*
1914          * Scan forwards for read-ahead pages
1915          */
1916         tpindex = pindex + 1;
1917         endpindex = tpindex + rahead;
1918         if (endpindex > object->size)
1919                 endpindex = object->size;
1920
1921         lwkt_gettoken(&vm_token);
1922         while (tpindex < endpindex) {
1923                 if (vm_page_lookup(object, tpindex))
1924                         break;
1925                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1926                 if (rtm == NULL)
1927                         break;
1928                 marray[i] = rtm;
1929                 ++i;
1930                 ++tpindex;
1931         }
1932         lwkt_reltoken(&vm_token);
1933
1934         return (i);
1935 }
1936
1937 #endif
1938
1939 /*
1940  * vm_prefault() provides a quick way of clustering pagefaults into a
1941  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1942  * except it runs at page fault time instead of mmap time.
1943  *
1944  * This code used to be per-platform pmap_prefault().  It is now
1945  * machine-independent and enhanced to also pre-fault zero-fill pages
1946  * (see vm.fast_fault) as well as make them writable, which greatly
1947  * reduces the number of page faults programs incur.
1948  *
1949  * Application performance when pre-faulting zero-fill pages is heavily
1950  * dependent on the application.  Very tiny applications like /bin/echo
1951  * lose a little performance while applications of any appreciable size
1952  * gain performance.  Prefaulting multiple pages also reduces SMP
1953  * congestion and can improve SMP performance significantly.
1954  *
1955  * NOTE!  prot may allow writing but this only applies to the top level
1956  *        object.  If we wind up mapping a page extracted from a backing
1957  *        object we have to make sure it is read-only.
1958  *
1959  * NOTE!  The caller has already handled any COW operations on the
1960  *        vm_map_entry via the normal fault code.  Do NOT call this
1961  *        shortcut unless the normal fault code has run on this entry.
1962  *
1963  * No other requirements.
1964  */
1965 #define PFBAK 4
1966 #define PFFOR 4
1967 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1968
1969 static int vm_prefault_pageorder[] = {
1970         -PAGE_SIZE, PAGE_SIZE,
1971         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
1972         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
1973         -4 * PAGE_SIZE, 4 * PAGE_SIZE
1974 };
1975
1976 /*
1977  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1978  * is not already dirty by other means.  This will prevent passive
1979  * filesystem syncing as well as 'sync' from writing out the page.
1980  */
1981 static void
1982 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1983 {
1984         if (entry->eflags & MAP_ENTRY_NOSYNC) {
1985                 if (m->dirty == 0)
1986                         vm_page_flag_set(m, PG_NOSYNC);
1987         } else {
1988                 vm_page_flag_clear(m, PG_NOSYNC);
1989         }
1990 }
1991
1992 static void
1993 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1994 {
1995         struct lwp *lp;
1996         vm_page_t m;
1997         vm_offset_t starta;
1998         vm_offset_t addr;
1999         vm_pindex_t index;
2000         vm_pindex_t pindex;
2001         vm_object_t object;
2002         int pprot;
2003         int i;
2004
2005         /*
2006          * We do not currently prefault mappings that use virtual page
2007          * tables.  We do not prefault foreign pmaps.
2008          */
2009         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2010                 return;
2011         lp = curthread->td_lwp;
2012         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2013                 return;
2014
2015         lwkt_gettoken(&vm_token);
2016
2017         object = entry->object.vm_object;
2018         KKASSERT(object != NULL);
2019         vm_object_hold(object);
2020
2021         starta = addra - PFBAK * PAGE_SIZE;
2022         if (starta < entry->start)
2023                 starta = entry->start;
2024         else if (starta > addra)
2025                 starta = 0;
2026
2027         KKASSERT(object == entry->object.vm_object);
2028         for (i = 0; i < PAGEORDER_SIZE; i++) {
2029                 vm_object_t lobject;
2030                 vm_object_t nobject;
2031                 int allocated = 0;
2032
2033                 addr = addra + vm_prefault_pageorder[i];
2034                 if (addr > addra + (PFFOR * PAGE_SIZE))
2035                         addr = 0;
2036
2037                 if (addr < starta || addr >= entry->end)
2038                         continue;
2039
2040                 if (pmap_prefault_ok(pmap, addr) == 0)
2041                         continue;
2042
2043                 /*
2044                  * Follow the VM object chain to obtain the page to be mapped
2045                  * into the pmap.
2046                  *
2047                  * If we reach the terminal object without finding a page
2048                  * and we determine it would be advantageous, then allocate
2049                  * a zero-fill page for the base object.  The base object
2050                  * is guaranteed to be OBJT_DEFAULT for this case.
2051                  *
2052                  * In order to not have to check the pager via *haspage*()
2053                  * we stop if any non-default object is encountered.  e.g.
2054                  * a vnode or swap object would stop the loop.
2055                  *
2056                  * XXX It is unclear whether hold chaining is sufficient
2057                  *     to maintain the validity of the backing object chain.
2058                  */
2059                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2060                 lobject = object;
2061                 pindex = index;
2062                 pprot = prot;
2063
2064                 KKASSERT(lobject == entry->object.vm_object);
2065                 vm_object_hold(lobject);
2066
2067                 while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2068                         if (lobject->type != OBJT_DEFAULT)
2069                                 break;
2070                         if (lobject->backing_object == NULL) {
2071                                 if (vm_fast_fault == 0)
2072                                         break;
2073                                 if (vm_prefault_pageorder[i] < 0 ||
2074                                     (prot & VM_PROT_WRITE) == 0 ||
2075                                     vm_page_count_min(0)) {
2076                                         break;
2077                                 }
2078
2079                                 /* NOTE: allocated from base object */
2080                                 m = vm_page_alloc(object, index,
2081                                               VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2082
2083                                 if ((m->flags & PG_ZERO) == 0) {
2084                                         vm_page_zero_fill(m);
2085                                 } else {
2086 #ifdef PMAP_DEBUG
2087                                         pmap_page_assertzero(
2088                                                         VM_PAGE_TO_PHYS(m));
2089 #endif
2090                                         vm_page_flag_clear(m, PG_ZERO);
2091                                         mycpu->gd_cnt.v_ozfod++;
2092                                 }
2093                                 mycpu->gd_cnt.v_zfod++;
2094                                 m->valid = VM_PAGE_BITS_ALL;
2095                                 allocated = 1;
2096                                 pprot = prot;
2097                                 /* lobject = object .. not needed */
2098                                 break;
2099                         }
2100                         if (lobject->backing_object_offset & PAGE_MASK)
2101                                 break;
2102                         while ((nobject = lobject->backing_object) != NULL) {
2103                                 vm_object_hold(nobject);
2104                                 if (nobject == lobject->backing_object) {
2105                                         pindex +=
2106                                             lobject->backing_object_offset >>
2107                                             PAGE_SHIFT;
2108                                         vm_object_lock_swap();
2109                                         vm_object_drop(lobject);
2110                                         lobject = nobject;
2111                                         break;
2112                                 }
2113                                 vm_object_drop(nobject);
2114                         }
2115                         if (nobject == NULL) {
2116                                 kprintf("vm_prefault: Warning, backing object "
2117                                         "race averted lobject %p\n",
2118                                         lobject);
2119                                 continue;
2120                         }
2121                         pprot &= ~VM_PROT_WRITE;
2122                 }
2123                 vm_object_drop(lobject);
2124
2125                 /*
2126                  * NOTE: lobject now invalid (if we did a zero-fill we didn't
2127                  *       bother assigning lobject = object).
2128                  *
2129                  * Give-up if the page is not available.
2130                  */
2131                 if (m == NULL)
2132                         break;
2133
2134                 /*
2135                  * Do not conditionalize on PG_RAM.  If pages are present in
2136                  * the VM system we assume optimal caching.  If caching is
2137                  * not optimal the I/O gravy train will be restarted when we
2138                  * hit an unavailable page.  We do not want to try to restart
2139                  * the gravy train now because we really don't know how much
2140                  * of the object has been cached.  The cost for restarting
2141                  * the gravy train should be low (since accesses will likely
2142                  * be I/O bound anyway).
2143                  *
2144                  * The object must be marked dirty if we are mapping a
2145                  * writable page.
2146                  */
2147                 if (pprot & VM_PROT_WRITE)
2148                         vm_object_set_writeable_dirty(m->object);
2149
2150                 /*
2151                  * Enter the page into the pmap if appropriate.  If we had
2152                  * allocated the page we have to place it on a queue.  If not
2153                  * we just have to make sure it isn't on the cache queue
2154                  * (pages on the cache queue are not allowed to be mapped).
2155                  */
2156                 if (allocated) {
2157                         if (pprot & VM_PROT_WRITE)
2158                                 vm_set_nosync(m, entry);
2159                         pmap_enter(pmap, addr, m, pprot, 0);
2160                         vm_page_deactivate(m);
2161                         vm_page_wakeup(m);
2162                 } else if (
2163                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2164                     (m->busy == 0) &&
2165                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2166                         /*
2167                          * A fully valid page not undergoing soft I/O can
2168                          * be immediately entered into the pmap.
2169                          */
2170                         vm_page_busy(m);
2171                         if ((m->queue - m->pc) == PQ_CACHE) {
2172                                 vm_page_deactivate(m);
2173                         }
2174                         if (pprot & VM_PROT_WRITE)
2175                                 vm_set_nosync(m, entry);
2176                         pmap_enter(pmap, addr, m, pprot, 0);
2177                         vm_page_wakeup(m);
2178                 }
2179         }
2180         vm_object_drop(object);
2181         lwkt_reltoken(&vm_token);
2182 }