Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69
70 /*
71  *      Virtual memory mapping module.
72  */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/lock.h>
79 #include <sys/vmmeter.h>
80 #include <sys/mman.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/shm.h>
84 #include <sys/tree.h>
85 #include <sys/malloc.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98
99 #include <sys/thread2.h>
100 #include <sys/sysref2.h>
101
102 /*
103  * Virtual memory maps provide for the mapping, protection, and sharing
104  * of virtual memory objects.  In addition, this module provides for an
105  * efficient virtual copy of memory from one map to another.
106  *
107  * Synchronization is required prior to most operations.
108  *
109  * Maps consist of an ordered doubly-linked list of simple entries.
110  * A hint and a RB tree is used to speed-up lookups.
111  *
112  * Callers looking to modify maps specify start/end addresses which cause
113  * the related map entry to be clipped if necessary, and then later
114  * recombined if the pieces remained compatible.
115  *
116  * Virtual copy operations are performed by copying VM object references
117  * from one map to another, and then marking both regions as copy-on-write.
118  */
119 static void vmspace_terminate(struct vmspace *vm);
120 static void vmspace_lock(struct vmspace *vm);
121 static void vmspace_unlock(struct vmspace *vm);
122 static void vmspace_dtor(void *obj, void *private);
123
124 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
125
126 struct sysref_class vmspace_sysref_class = {
127         .name =         "vmspace",
128         .mtype =        M_VMSPACE,
129         .proto =        SYSREF_PROTO_VMSPACE,
130         .offset =       offsetof(struct vmspace, vm_sysref),
131         .objsize =      sizeof(struct vmspace),
132         .mag_capacity = 32,
133         .flags = SRC_MANAGEDINIT,
134         .dtor = vmspace_dtor,
135         .ops = {
136                 .terminate = (sysref_terminate_func_t)vmspace_terminate,
137                 .lock = (sysref_lock_func_t)vmspace_lock,
138                 .unlock = (sysref_lock_func_t)vmspace_unlock
139         }
140 };
141
142 #define VMEPERCPU       2
143
144 static struct vm_zone mapentzone_store, mapzone_store;
145 static vm_zone_t mapentzone, mapzone;
146 static struct vm_object mapentobj, mapobj;
147
148 static struct vm_map_entry map_entry_init[MAX_MAPENT];
149 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
150 static struct vm_map map_init[MAX_KMAP];
151
152 static void vm_map_entry_shadow(vm_map_entry_t entry);
153 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
154 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
155 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
156 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
158 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
159 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
160                 vm_map_entry_t);
161 static void vm_map_split (vm_map_entry_t);
162 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
163
164 /*
165  * Initialize the vm_map module.  Must be called before any other vm_map
166  * routines.
167  *
168  * Map and entry structures are allocated from the general purpose
169  * memory pool with some exceptions:
170  *
171  *      - The kernel map is allocated statically.
172  *      - Initial kernel map entries are allocated out of a static pool.
173  *
174  *      These restrictions are necessary since malloc() uses the
175  *      maps and requires map entries.
176  *
177  * Called from the low level boot code only.
178  */
179 void
180 vm_map_startup(void)
181 {
182         mapzone = &mapzone_store;
183         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
184                 map_init, MAX_KMAP);
185         mapentzone = &mapentzone_store;
186         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
187                 map_entry_init, MAX_MAPENT);
188 }
189
190 /*
191  * Called prior to any vmspace allocations.
192  *
193  * Called from the low level boot code only.
194  */
195 void
196 vm_init2(void) 
197 {
198         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
199                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
200         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
201         pmap_init2();
202         vm_object_init2();
203 }
204
205
206 /*
207  * Red black tree functions
208  *
209  * The caller must hold the related map lock.
210  */
211 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
212 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
213
214 /* a->start is address, and the only field has to be initialized */
215 static int
216 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
217 {
218         if (a->start < b->start)
219                 return(-1);
220         else if (a->start > b->start)
221                 return(1);
222         return(0);
223 }
224
225 /*
226  * Allocate a vmspace structure, including a vm_map and pmap.
227  * Initialize numerous fields.  While the initial allocation is zerod,
228  * subsequence reuse from the objcache leaves elements of the structure
229  * intact (particularly the pmap), so portions must be zerod.
230  *
231  * The structure is not considered activated until we call sysref_activate().
232  *
233  * No requirements.
234  */
235 struct vmspace *
236 vmspace_alloc(vm_offset_t min, vm_offset_t max)
237 {
238         struct vmspace *vm;
239
240         lwkt_gettoken(&vmspace_token);
241         vm = sysref_alloc(&vmspace_sysref_class);
242         bzero(&vm->vm_startcopy,
243               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
244         vm_map_init(&vm->vm_map, min, max, NULL);
245         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
246         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
247         vm->vm_shm = NULL;
248         vm->vm_exitingcnt = 0;
249         cpu_vmspace_alloc(vm);
250         sysref_activate(&vm->vm_sysref);
251         lwkt_reltoken(&vmspace_token);
252
253         return (vm);
254 }
255
256 /*
257  * dtor function - Some elements of the pmap are retained in the
258  * free-cached vmspaces to improve performance.  We have to clean them up
259  * here before returning the vmspace to the memory pool.
260  *
261  * No requirements.
262  */
263 static void
264 vmspace_dtor(void *obj, void *private)
265 {
266         struct vmspace *vm = obj;
267
268         pmap_puninit(vmspace_pmap(vm));
269 }
270
271 /*
272  * Called in two cases: 
273  *
274  * (1) When the last sysref is dropped, but exitingcnt might still be
275  *     non-zero.
276  *
277  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
278  *     exitingcnt becomes zero
279  *
280  * sysref will not scrap the object until we call sysref_put() once more
281  * after the last ref has been dropped.
282  *
283  * Interlocked by the sysref API.
284  */
285 static void
286 vmspace_terminate(struct vmspace *vm)
287 {
288         int count;
289
290         /*
291          * If exitingcnt is non-zero we can't get rid of the entire vmspace
292          * yet, but we can scrap user memory.
293          */
294         lwkt_gettoken(&vmspace_token);
295         if (vm->vm_exitingcnt) {
296                 shmexit(vm);
297                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
298                                   VM_MAX_USER_ADDRESS);
299                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
300                               VM_MAX_USER_ADDRESS);
301                 lwkt_reltoken(&vmspace_token);
302                 return;
303         }
304         cpu_vmspace_free(vm);
305
306         /*
307          * Make sure any SysV shm is freed, it might not have in
308          * exit1()
309          */
310         shmexit(vm);
311
312         KKASSERT(vm->vm_upcalls == NULL);
313
314         /*
315          * Lock the map, to wait out all other references to it.
316          * Delete all of the mappings and pages they hold, then call
317          * the pmap module to reclaim anything left.
318          */
319         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
320         vm_map_lock(&vm->vm_map);
321         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
322                 vm->vm_map.max_offset, &count);
323         vm_map_unlock(&vm->vm_map);
324         vm_map_entry_release(count);
325
326         pmap_release(vmspace_pmap(vm));
327         sysref_put(&vm->vm_sysref);
328         lwkt_reltoken(&vmspace_token);
329 }
330
331 /*
332  * vmspaces are not currently locked.
333  */
334 static void
335 vmspace_lock(struct vmspace *vm __unused)
336 {
337 }
338
339 static void
340 vmspace_unlock(struct vmspace *vm __unused)
341 {
342 }
343
344 /*
345  * This is called during exit indicating that the vmspace is no
346  * longer in used by an exiting process, but the process has not yet
347  * been cleaned up.
348  *
349  * No requirements.
350  */
351 void
352 vmspace_exitbump(struct vmspace *vm)
353 {
354         lwkt_gettoken(&vmspace_token);
355         ++vm->vm_exitingcnt;
356         lwkt_reltoken(&vmspace_token);
357 }
358
359 /*
360  * This is called in the wait*() handling code.  The vmspace can be terminated
361  * after the last wait is finished using it.
362  *
363  * No requirements.
364  */
365 void
366 vmspace_exitfree(struct proc *p)
367 {
368         struct vmspace *vm;
369
370         lwkt_gettoken(&vmspace_token);
371         vm = p->p_vmspace;
372         p->p_vmspace = NULL;
373
374         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
375                 vmspace_terminate(vm);
376         lwkt_reltoken(&vmspace_token);
377 }
378
379 /*
380  * Swap useage is determined by taking the proportional swap used by
381  * VM objects backing the VM map.  To make up for fractional losses,
382  * if the VM object has any swap use at all the associated map entries
383  * count for at least 1 swap page.
384  *
385  * No requirements.
386  */
387 int
388 vmspace_swap_count(struct vmspace *vmspace)
389 {
390         vm_map_t map = &vmspace->vm_map;
391         vm_map_entry_t cur;
392         vm_object_t object;
393         int count = 0;
394         int n;
395
396         lwkt_gettoken(&vmspace_token);
397         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
398                 switch(cur->maptype) {
399                 case VM_MAPTYPE_NORMAL:
400                 case VM_MAPTYPE_VPAGETABLE:
401                         if ((object = cur->object.vm_object) == NULL)
402                                 break;
403                         if (object->swblock_count) {
404                                 n = (cur->end - cur->start) / PAGE_SIZE;
405                                 count += object->swblock_count *
406                                     SWAP_META_PAGES * n / object->size + 1;
407                         }
408                         break;
409                 default:
410                         break;
411                 }
412         }
413         lwkt_reltoken(&vmspace_token);
414         return(count);
415 }
416
417 /*
418  * Calculate the approximate number of anonymous pages in use by
419  * this vmspace.  To make up for fractional losses, we count each
420  * VM object as having at least 1 anonymous page.
421  *
422  * No requirements.
423  */
424 int
425 vmspace_anonymous_count(struct vmspace *vmspace)
426 {
427         vm_map_t map = &vmspace->vm_map;
428         vm_map_entry_t cur;
429         vm_object_t object;
430         int count = 0;
431
432         lwkt_gettoken(&vmspace_token);
433         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
434                 switch(cur->maptype) {
435                 case VM_MAPTYPE_NORMAL:
436                 case VM_MAPTYPE_VPAGETABLE:
437                         if ((object = cur->object.vm_object) == NULL)
438                                 break;
439                         if (object->type != OBJT_DEFAULT &&
440                             object->type != OBJT_SWAP) {
441                                 break;
442                         }
443                         count += object->resident_page_count;
444                         break;
445                 default:
446                         break;
447                 }
448         }
449         lwkt_reltoken(&vmspace_token);
450         return(count);
451 }
452
453 /*
454  * Creates and returns a new empty VM map with the given physical map
455  * structure, and having the given lower and upper address bounds.
456  *
457  * No requirements.
458  */
459 vm_map_t
460 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
461 {
462         if (result == NULL)
463                 result = zalloc(mapzone);
464         vm_map_init(result, min, max, pmap);
465         return (result);
466 }
467
468 /*
469  * Initialize an existing vm_map structure such as that in the vmspace
470  * structure.  The pmap is initialized elsewhere.
471  *
472  * No requirements.
473  */
474 void
475 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
476 {
477         map->header.next = map->header.prev = &map->header;
478         RB_INIT(&map->rb_root);
479         map->nentries = 0;
480         map->size = 0;
481         map->system_map = 0;
482         map->infork = 0;
483         map->min_offset = min;
484         map->max_offset = max;
485         map->pmap = pmap;
486         map->first_free = &map->header;
487         map->hint = &map->header;
488         map->timestamp = 0;
489         lockinit(&map->lock, "thrd_sleep", 0, 0);
490 }
491
492 /*
493  * Shadow the vm_map_entry's object.  This typically needs to be done when
494  * a write fault is taken on an entry which had previously been cloned by
495  * fork().  The shared object (which might be NULL) must become private so
496  * we add a shadow layer above it.
497  *
498  * Object allocation for anonymous mappings is defered as long as possible.
499  * When creating a shadow, however, the underlying object must be instantiated
500  * so it can be shared.
501  *
502  * If the map segment is governed by a virtual page table then it is
503  * possible to address offsets beyond the mapped area.  Just allocate
504  * a maximally sized object for this case.
505  *
506  * The vm_map must be exclusively locked.
507  * No other requirements.
508  */
509 static
510 void
511 vm_map_entry_shadow(vm_map_entry_t entry)
512 {
513         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
514                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
515                                  0x7FFFFFFF);   /* XXX */
516         } else {
517                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
518                                  atop(entry->end - entry->start));
519         }
520         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
521 }
522
523 /*
524  * Allocate an object for a vm_map_entry.
525  *
526  * Object allocation for anonymous mappings is defered as long as possible.
527  * This function is called when we can defer no longer, generally when a map
528  * entry might be split or forked or takes a page fault.
529  *
530  * If the map segment is governed by a virtual page table then it is
531  * possible to address offsets beyond the mapped area.  Just allocate
532  * a maximally sized object for this case.
533  *
534  * The vm_map must be exclusively locked.
535  * No other requirements.
536  */
537 void 
538 vm_map_entry_allocate_object(vm_map_entry_t entry)
539 {
540         vm_object_t obj;
541
542         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
543                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
544         } else {
545                 obj = vm_object_allocate(OBJT_DEFAULT,
546                                          atop(entry->end - entry->start));
547         }
548         entry->object.vm_object = obj;
549         entry->offset = 0;
550 }
551
552 /*
553  * Set an initial negative count so the first attempt to reserve
554  * space preloads a bunch of vm_map_entry's for this cpu.  Also
555  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
556  * map a new page for vm_map_entry structures.  SMP systems are
557  * particularly sensitive.
558  *
559  * This routine is called in early boot so we cannot just call
560  * vm_map_entry_reserve().
561  *
562  * Called from the low level boot code only (for each cpu)
563  */
564 void
565 vm_map_entry_reserve_cpu_init(globaldata_t gd)
566 {
567         vm_map_entry_t entry;
568         int i;
569
570         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
571         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
572         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
573                 entry->next = gd->gd_vme_base;
574                 gd->gd_vme_base = entry;
575         }
576 }
577
578 /*
579  * Reserves vm_map_entry structures so code later on can manipulate
580  * map_entry structures within a locked map without blocking trying
581  * to allocate a new vm_map_entry.
582  *
583  * No requirements.
584  */
585 int
586 vm_map_entry_reserve(int count)
587 {
588         struct globaldata *gd = mycpu;
589         vm_map_entry_t entry;
590
591         /*
592          * Make sure we have enough structures in gd_vme_base to handle
593          * the reservation request.
594          */
595         crit_enter();
596         while (gd->gd_vme_avail < count) {
597                 entry = zalloc(mapentzone);
598                 entry->next = gd->gd_vme_base;
599                 gd->gd_vme_base = entry;
600                 ++gd->gd_vme_avail;
601         }
602         gd->gd_vme_avail -= count;
603         crit_exit();
604
605         return(count);
606 }
607
608 /*
609  * Releases previously reserved vm_map_entry structures that were not
610  * used.  If we have too much junk in our per-cpu cache clean some of
611  * it out.
612  *
613  * No requirements.
614  */
615 void
616 vm_map_entry_release(int count)
617 {
618         struct globaldata *gd = mycpu;
619         vm_map_entry_t entry;
620
621         crit_enter();
622         gd->gd_vme_avail += count;
623         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
624                 entry = gd->gd_vme_base;
625                 KKASSERT(entry != NULL);
626                 gd->gd_vme_base = entry->next;
627                 --gd->gd_vme_avail;
628                 crit_exit();
629                 zfree(mapentzone, entry);
630                 crit_enter();
631         }
632         crit_exit();
633 }
634
635 /*
636  * Reserve map entry structures for use in kernel_map itself.  These
637  * entries have *ALREADY* been reserved on a per-cpu basis when the map
638  * was inited.  This function is used by zalloc() to avoid a recursion
639  * when zalloc() itself needs to allocate additional kernel memory.
640  *
641  * This function works like the normal reserve but does not load the
642  * vm_map_entry cache (because that would result in an infinite
643  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
644  *
645  * Any caller of this function must be sure to renormalize after
646  * potentially eating entries to ensure that the reserve supply
647  * remains intact.
648  *
649  * No requirements.
650  */
651 int
652 vm_map_entry_kreserve(int count)
653 {
654         struct globaldata *gd = mycpu;
655
656         crit_enter();
657         gd->gd_vme_avail -= count;
658         crit_exit();
659         KASSERT(gd->gd_vme_base != NULL,
660                 ("no reserved entries left, gd_vme_avail = %d\n",
661                 gd->gd_vme_avail));
662         return(count);
663 }
664
665 /*
666  * Release previously reserved map entries for kernel_map.  We do not
667  * attempt to clean up like the normal release function as this would
668  * cause an unnecessary (but probably not fatal) deep procedure call.
669  *
670  * No requirements.
671  */
672 void
673 vm_map_entry_krelease(int count)
674 {
675         struct globaldata *gd = mycpu;
676
677         crit_enter();
678         gd->gd_vme_avail += count;
679         crit_exit();
680 }
681
682 /*
683  * Allocates a VM map entry for insertion.  No entry fields are filled in.
684  *
685  * The entries should have previously been reserved.  The reservation count
686  * is tracked in (*countp).
687  *
688  * No requirements.
689  */
690 static vm_map_entry_t
691 vm_map_entry_create(vm_map_t map, int *countp)
692 {
693         struct globaldata *gd = mycpu;
694         vm_map_entry_t entry;
695
696         KKASSERT(*countp > 0);
697         --*countp;
698         crit_enter();
699         entry = gd->gd_vme_base;
700         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
701         gd->gd_vme_base = entry->next;
702         crit_exit();
703
704         return(entry);
705 }
706
707 /*
708  * Dispose of a vm_map_entry that is no longer being referenced.
709  *
710  * No requirements.
711  */
712 static void
713 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
714 {
715         struct globaldata *gd = mycpu;
716
717         KKASSERT(map->hint != entry);
718         KKASSERT(map->first_free != entry);
719
720         ++*countp;
721         crit_enter();
722         entry->next = gd->gd_vme_base;
723         gd->gd_vme_base = entry;
724         crit_exit();
725 }
726
727
728 /*
729  * Insert/remove entries from maps.
730  *
731  * The related map must be exclusively locked.
732  * No other requirements.
733  *
734  * NOTE! We currently acquire the vmspace_token only to avoid races
735  *       against the pageout daemon's calls to vmspace_*_count(), which
736  *       are unable to safely lock the vm_map without potentially
737  *       deadlocking.
738  */
739 static __inline void
740 vm_map_entry_link(vm_map_t map,
741                   vm_map_entry_t after_where,
742                   vm_map_entry_t entry)
743 {
744         ASSERT_VM_MAP_LOCKED(map);
745
746         lwkt_gettoken(&vmspace_token);
747         map->nentries++;
748         entry->prev = after_where;
749         entry->next = after_where->next;
750         entry->next->prev = entry;
751         after_where->next = entry;
752         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
753                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
754         lwkt_reltoken(&vmspace_token);
755 }
756
757 static __inline void
758 vm_map_entry_unlink(vm_map_t map,
759                     vm_map_entry_t entry)
760 {
761         vm_map_entry_t prev;
762         vm_map_entry_t next;
763
764         ASSERT_VM_MAP_LOCKED(map);
765
766         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
767                 panic("vm_map_entry_unlink: attempt to mess with "
768                       "locked entry! %p", entry);
769         }
770         lwkt_gettoken(&vmspace_token);
771         prev = entry->prev;
772         next = entry->next;
773         next->prev = prev;
774         prev->next = next;
775         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
776         map->nentries--;
777         lwkt_reltoken(&vmspace_token);
778 }
779
780 /*
781  * Finds the map entry containing (or immediately preceding) the specified
782  * address in the given map.  The entry is returned in (*entry).
783  *
784  * The boolean result indicates whether the address is actually contained
785  * in the map.
786  *
787  * The related map must be locked.
788  * No other requirements.
789  */
790 boolean_t
791 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
792 {
793         vm_map_entry_t tmp;
794         vm_map_entry_t last;
795
796         ASSERT_VM_MAP_LOCKED(map);
797 #if 0
798         /*
799          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
800          * the hint code with the red-black lookup meets with system crashes
801          * and lockups.  We do not yet know why.
802          *
803          * It is possible that the problem is related to the setting
804          * of the hint during map_entry deletion, in the code specified
805          * at the GGG comment later on in this file.
806          */
807         /*
808          * Quickly check the cached hint, there's a good chance of a match.
809          */
810         if (map->hint != &map->header) {
811                 tmp = map->hint;
812                 if (address >= tmp->start && address < tmp->end) {
813                         *entry = tmp;
814                         return(TRUE);
815                 }
816         }
817 #endif
818
819         /*
820          * Locate the record from the top of the tree.  'last' tracks the
821          * closest prior record and is returned if no match is found, which
822          * in binary tree terms means tracking the most recent right-branch
823          * taken.  If there is no prior record, &map->header is returned.
824          */
825         last = &map->header;
826         tmp = RB_ROOT(&map->rb_root);
827
828         while (tmp) {
829                 if (address >= tmp->start) {
830                         if (address < tmp->end) {
831                                 *entry = tmp;
832                                 map->hint = tmp;
833                                 return(TRUE);
834                         }
835                         last = tmp;
836                         tmp = RB_RIGHT(tmp, rb_entry);
837                 } else {
838                         tmp = RB_LEFT(tmp, rb_entry);
839                 }
840         }
841         *entry = last;
842         return (FALSE);
843 }
844
845 /*
846  * Inserts the given whole VM object into the target map at the specified
847  * address range.  The object's size should match that of the address range.
848  *
849  * The map must be exclusively locked.
850  * The caller must have reserved sufficient vm_map_entry structures.
851  *
852  * If object is non-NULL, ref count must be bumped by caller
853  * prior to making call to account for the new entry.
854  */
855 int
856 vm_map_insert(vm_map_t map, int *countp,
857               vm_object_t object, vm_ooffset_t offset,
858               vm_offset_t start, vm_offset_t end,
859               vm_maptype_t maptype,
860               vm_prot_t prot, vm_prot_t max,
861               int cow)
862 {
863         vm_map_entry_t new_entry;
864         vm_map_entry_t prev_entry;
865         vm_map_entry_t temp_entry;
866         vm_eflags_t protoeflags;
867
868         ASSERT_VM_MAP_LOCKED(map);
869
870         /*
871          * Check that the start and end points are not bogus.
872          */
873         if ((start < map->min_offset) || (end > map->max_offset) ||
874             (start >= end))
875                 return (KERN_INVALID_ADDRESS);
876
877         /*
878          * Find the entry prior to the proposed starting address; if it's part
879          * of an existing entry, this range is bogus.
880          */
881         if (vm_map_lookup_entry(map, start, &temp_entry))
882                 return (KERN_NO_SPACE);
883
884         prev_entry = temp_entry;
885
886         /*
887          * Assert that the next entry doesn't overlap the end point.
888          */
889
890         if ((prev_entry->next != &map->header) &&
891             (prev_entry->next->start < end))
892                 return (KERN_NO_SPACE);
893
894         protoeflags = 0;
895
896         if (cow & MAP_COPY_ON_WRITE)
897                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
898
899         if (cow & MAP_NOFAULT) {
900                 protoeflags |= MAP_ENTRY_NOFAULT;
901
902                 KASSERT(object == NULL,
903                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
904         }
905         if (cow & MAP_DISABLE_SYNCER)
906                 protoeflags |= MAP_ENTRY_NOSYNC;
907         if (cow & MAP_DISABLE_COREDUMP)
908                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
909         if (cow & MAP_IS_STACK)
910                 protoeflags |= MAP_ENTRY_STACK;
911
912         lwkt_gettoken(&vm_token);
913         lwkt_gettoken(&vmobj_token);
914
915         if (object) {
916                 /*
917                  * When object is non-NULL, it could be shared with another
918                  * process.  We have to set or clear OBJ_ONEMAPPING 
919                  * appropriately.
920                  */
921                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
922                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
923                 }
924         }
925         else if ((prev_entry != &map->header) &&
926                  (prev_entry->eflags == protoeflags) &&
927                  (prev_entry->end == start) &&
928                  (prev_entry->wired_count == 0) &&
929                  prev_entry->maptype == maptype &&
930                  ((prev_entry->object.vm_object == NULL) ||
931                   vm_object_coalesce(prev_entry->object.vm_object,
932                                      OFF_TO_IDX(prev_entry->offset),
933                                      (vm_size_t)(prev_entry->end - prev_entry->start),
934                                      (vm_size_t)(end - prev_entry->end)))) {
935                 /*
936                  * We were able to extend the object.  Determine if we
937                  * can extend the previous map entry to include the 
938                  * new range as well.
939                  */
940                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
941                     (prev_entry->protection == prot) &&
942                     (prev_entry->max_protection == max)) {
943                         lwkt_reltoken(&vmobj_token);
944                         lwkt_reltoken(&vm_token);
945                         map->size += (end - prev_entry->end);
946                         prev_entry->end = end;
947                         vm_map_simplify_entry(map, prev_entry, countp);
948                         return (KERN_SUCCESS);
949                 }
950
951                 /*
952                  * If we can extend the object but cannot extend the
953                  * map entry, we have to create a new map entry.  We
954                  * must bump the ref count on the extended object to
955                  * account for it.  object may be NULL.
956                  */
957                 object = prev_entry->object.vm_object;
958                 offset = prev_entry->offset +
959                         (prev_entry->end - prev_entry->start);
960                 vm_object_reference_locked(object);
961         }
962
963         lwkt_reltoken(&vmobj_token);
964         lwkt_reltoken(&vm_token);
965
966         /*
967          * NOTE: if conditionals fail, object can be NULL here.  This occurs
968          * in things like the buffer map where we manage kva but do not manage
969          * backing objects.
970          */
971
972         /*
973          * Create a new entry
974          */
975
976         new_entry = vm_map_entry_create(map, countp);
977         new_entry->start = start;
978         new_entry->end = end;
979
980         new_entry->maptype = maptype;
981         new_entry->eflags = protoeflags;
982         new_entry->object.vm_object = object;
983         new_entry->offset = offset;
984         new_entry->aux.master_pde = 0;
985
986         new_entry->inheritance = VM_INHERIT_DEFAULT;
987         new_entry->protection = prot;
988         new_entry->max_protection = max;
989         new_entry->wired_count = 0;
990
991         /*
992          * Insert the new entry into the list
993          */
994
995         vm_map_entry_link(map, prev_entry, new_entry);
996         map->size += new_entry->end - new_entry->start;
997
998         /*
999          * Update the free space hint.  Entries cannot overlap.
1000          * An exact comparison is needed to avoid matching
1001          * against the map->header.
1002          */
1003         if ((map->first_free == prev_entry) &&
1004             (prev_entry->end == new_entry->start)) {
1005                 map->first_free = new_entry;
1006         }
1007
1008 #if 0
1009         /*
1010          * Temporarily removed to avoid MAP_STACK panic, due to
1011          * MAP_STACK being a huge hack.  Will be added back in
1012          * when MAP_STACK (and the user stack mapping) is fixed.
1013          */
1014         /*
1015          * It may be possible to simplify the entry
1016          */
1017         vm_map_simplify_entry(map, new_entry, countp);
1018 #endif
1019
1020         /*
1021          * Try to pre-populate the page table.  Mappings governed by virtual
1022          * page tables cannot be prepopulated without a lot of work, so
1023          * don't try.
1024          */
1025         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1026             maptype != VM_MAPTYPE_VPAGETABLE) {
1027                 pmap_object_init_pt(map->pmap, start, prot,
1028                                     object, OFF_TO_IDX(offset), end - start,
1029                                     cow & MAP_PREFAULT_PARTIAL);
1030         }
1031
1032         return (KERN_SUCCESS);
1033 }
1034
1035 /*
1036  * Find sufficient space for `length' bytes in the given map, starting at
1037  * `start'.  Returns 0 on success, 1 on no space.
1038  *
1039  * This function will returned an arbitrarily aligned pointer.  If no
1040  * particular alignment is required you should pass align as 1.  Note that
1041  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1042  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1043  * argument.
1044  *
1045  * 'align' should be a power of 2 but is not required to be.
1046  *
1047  * The map must be exclusively locked.
1048  * No other requirements.
1049  */
1050 int
1051 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1052                  vm_size_t align, int flags, vm_offset_t *addr)
1053 {
1054         vm_map_entry_t entry, next;
1055         vm_offset_t end;
1056         vm_offset_t align_mask;
1057
1058         if (start < map->min_offset)
1059                 start = map->min_offset;
1060         if (start > map->max_offset)
1061                 return (1);
1062
1063         /*
1064          * If the alignment is not a power of 2 we will have to use
1065          * a mod/division, set align_mask to a special value.
1066          */
1067         if ((align | (align - 1)) + 1 != (align << 1))
1068                 align_mask = (vm_offset_t)-1;
1069         else
1070                 align_mask = align - 1;
1071
1072         /*
1073          * Look for the first possible address; if there's already something
1074          * at this address, we have to start after it.
1075          */
1076         if (start == map->min_offset) {
1077                 if ((entry = map->first_free) != &map->header)
1078                         start = entry->end;
1079         } else {
1080                 vm_map_entry_t tmp;
1081
1082                 if (vm_map_lookup_entry(map, start, &tmp))
1083                         start = tmp->end;
1084                 entry = tmp;
1085         }
1086
1087         /*
1088          * Look through the rest of the map, trying to fit a new region in the
1089          * gap between existing regions, or after the very last region.
1090          */
1091         for (;; start = (entry = next)->end) {
1092                 /*
1093                  * Adjust the proposed start by the requested alignment,
1094                  * be sure that we didn't wrap the address.
1095                  */
1096                 if (align_mask == (vm_offset_t)-1)
1097                         end = ((start + align - 1) / align) * align;
1098                 else
1099                         end = (start + align_mask) & ~align_mask;
1100                 if (end < start)
1101                         return (1);
1102                 start = end;
1103                 /*
1104                  * Find the end of the proposed new region.  Be sure we didn't
1105                  * go beyond the end of the map, or wrap around the address.
1106                  * Then check to see if this is the last entry or if the 
1107                  * proposed end fits in the gap between this and the next
1108                  * entry.
1109                  */
1110                 end = start + length;
1111                 if (end > map->max_offset || end < start)
1112                         return (1);
1113                 next = entry->next;
1114
1115                 /*
1116                  * If the next entry's start address is beyond the desired
1117                  * end address we may have found a good entry.
1118                  *
1119                  * If the next entry is a stack mapping we do not map into
1120                  * the stack's reserved space.
1121                  *
1122                  * XXX continue to allow mapping into the stack's reserved
1123                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1124                  * mapping, for backwards compatibility.  But the caller
1125                  * really should use MAP_STACK | MAP_TRYFIXED if they
1126                  * want to do that.
1127                  */
1128                 if (next == &map->header)
1129                         break;
1130                 if (next->start >= end) {
1131                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1132                                 break;
1133                         if (flags & MAP_STACK)
1134                                 break;
1135                         if (next->start - next->aux.avail_ssize >= end)
1136                                 break;
1137                 }
1138         }
1139         map->hint = entry;
1140
1141         /*
1142          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1143          * if it fails.  The kernel_map is locked and nothing can steal
1144          * our address space if pmap_growkernel() blocks.
1145          *
1146          * NOTE: This may be unconditionally called for kldload areas on
1147          *       x86_64 because these do not bump kernel_vm_end (which would
1148          *       fill 128G worth of page tables!).  Therefore we must not
1149          *       retry.
1150          */
1151         if (map == &kernel_map) {
1152                 vm_offset_t kstop;
1153
1154                 kstop = round_page(start + length);
1155                 if (kstop > kernel_vm_end)
1156                         pmap_growkernel(start, kstop);
1157         }
1158         *addr = start;
1159         return (0);
1160 }
1161
1162 /*
1163  * vm_map_find finds an unallocated region in the target address map with
1164  * the given length.  The search is defined to be first-fit from the
1165  * specified address; the region found is returned in the same parameter.
1166  *
1167  * If object is non-NULL, ref count must be bumped by caller
1168  * prior to making call to account for the new entry.
1169  *
1170  * No requirements.  This function will lock the map temporarily.
1171  */
1172 int
1173 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1174             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1175             boolean_t fitit,
1176             vm_maptype_t maptype,
1177             vm_prot_t prot, vm_prot_t max,
1178             int cow)
1179 {
1180         vm_offset_t start;
1181         int result;
1182         int count;
1183
1184         start = *addr;
1185
1186         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1187         vm_map_lock(map);
1188         if (fitit) {
1189                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1190                         vm_map_unlock(map);
1191                         vm_map_entry_release(count);
1192                         return (KERN_NO_SPACE);
1193                 }
1194                 start = *addr;
1195         }
1196         result = vm_map_insert(map, &count, object, offset,
1197                                start, start + length,
1198                                maptype,
1199                                prot, max,
1200                                cow);
1201         vm_map_unlock(map);
1202         vm_map_entry_release(count);
1203
1204         return (result);
1205 }
1206
1207 /*
1208  * Simplify the given map entry by merging with either neighbor.  This
1209  * routine also has the ability to merge with both neighbors.
1210  *
1211  * This routine guarentees that the passed entry remains valid (though
1212  * possibly extended).  When merging, this routine may delete one or
1213  * both neighbors.  No action is taken on entries which have their
1214  * in-transition flag set.
1215  *
1216  * The map must be exclusively locked.
1217  */
1218 void
1219 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1220 {
1221         vm_map_entry_t next, prev;
1222         vm_size_t prevsize, esize;
1223
1224         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1225                 ++mycpu->gd_cnt.v_intrans_coll;
1226                 return;
1227         }
1228
1229         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1230                 return;
1231
1232         prev = entry->prev;
1233         if (prev != &map->header) {
1234                 prevsize = prev->end - prev->start;
1235                 if ( (prev->end == entry->start) &&
1236                      (prev->maptype == entry->maptype) &&
1237                      (prev->object.vm_object == entry->object.vm_object) &&
1238                      (!prev->object.vm_object ||
1239                         (prev->offset + prevsize == entry->offset)) &&
1240                      (prev->eflags == entry->eflags) &&
1241                      (prev->protection == entry->protection) &&
1242                      (prev->max_protection == entry->max_protection) &&
1243                      (prev->inheritance == entry->inheritance) &&
1244                      (prev->wired_count == entry->wired_count)) {
1245                         if (map->first_free == prev)
1246                                 map->first_free = entry;
1247                         if (map->hint == prev)
1248                                 map->hint = entry;
1249                         vm_map_entry_unlink(map, prev);
1250                         entry->start = prev->start;
1251                         entry->offset = prev->offset;
1252                         if (prev->object.vm_object)
1253                                 vm_object_deallocate(prev->object.vm_object);
1254                         vm_map_entry_dispose(map, prev, countp);
1255                 }
1256         }
1257
1258         next = entry->next;
1259         if (next != &map->header) {
1260                 esize = entry->end - entry->start;
1261                 if ((entry->end == next->start) &&
1262                     (next->maptype == entry->maptype) &&
1263                     (next->object.vm_object == entry->object.vm_object) &&
1264                      (!entry->object.vm_object ||
1265                         (entry->offset + esize == next->offset)) &&
1266                     (next->eflags == entry->eflags) &&
1267                     (next->protection == entry->protection) &&
1268                     (next->max_protection == entry->max_protection) &&
1269                     (next->inheritance == entry->inheritance) &&
1270                     (next->wired_count == entry->wired_count)) {
1271                         if (map->first_free == next)
1272                                 map->first_free = entry;
1273                         if (map->hint == next)
1274                                 map->hint = entry;
1275                         vm_map_entry_unlink(map, next);
1276                         entry->end = next->end;
1277                         if (next->object.vm_object)
1278                                 vm_object_deallocate(next->object.vm_object);
1279                         vm_map_entry_dispose(map, next, countp);
1280                 }
1281         }
1282 }
1283
1284 /*
1285  * Asserts that the given entry begins at or after the specified address.
1286  * If necessary, it splits the entry into two.
1287  */
1288 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1289 {                                                                       \
1290         if (startaddr > entry->start)                                   \
1291                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1292 }
1293
1294 /*
1295  * This routine is called only when it is known that the entry must be split.
1296  *
1297  * The map must be exclusively locked.
1298  */
1299 static void
1300 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1301                    int *countp)
1302 {
1303         vm_map_entry_t new_entry;
1304
1305         /*
1306          * Split off the front portion -- note that we must insert the new
1307          * entry BEFORE this one, so that this entry has the specified
1308          * starting address.
1309          */
1310
1311         vm_map_simplify_entry(map, entry, countp);
1312
1313         /*
1314          * If there is no object backing this entry, we might as well create
1315          * one now.  If we defer it, an object can get created after the map
1316          * is clipped, and individual objects will be created for the split-up
1317          * map.  This is a bit of a hack, but is also about the best place to
1318          * put this improvement.
1319          */
1320         if (entry->object.vm_object == NULL && !map->system_map) {
1321                 vm_map_entry_allocate_object(entry);
1322         }
1323
1324         new_entry = vm_map_entry_create(map, countp);
1325         *new_entry = *entry;
1326
1327         new_entry->end = start;
1328         entry->offset += (start - entry->start);
1329         entry->start = start;
1330
1331         vm_map_entry_link(map, entry->prev, new_entry);
1332
1333         switch(entry->maptype) {
1334         case VM_MAPTYPE_NORMAL:
1335         case VM_MAPTYPE_VPAGETABLE:
1336                 vm_object_reference(new_entry->object.vm_object);
1337                 break;
1338         default:
1339                 break;
1340         }
1341 }
1342
1343 /*
1344  * Asserts that the given entry ends at or before the specified address.
1345  * If necessary, it splits the entry into two.
1346  *
1347  * The map must be exclusively locked.
1348  */
1349 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1350 {                                                               \
1351         if (endaddr < entry->end)                               \
1352                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1353 }
1354
1355 /*
1356  * This routine is called only when it is known that the entry must be split.
1357  *
1358  * The map must be exclusively locked.
1359  */
1360 static void
1361 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1362                  int *countp)
1363 {
1364         vm_map_entry_t new_entry;
1365
1366         /*
1367          * If there is no object backing this entry, we might as well create
1368          * one now.  If we defer it, an object can get created after the map
1369          * is clipped, and individual objects will be created for the split-up
1370          * map.  This is a bit of a hack, but is also about the best place to
1371          * put this improvement.
1372          */
1373
1374         if (entry->object.vm_object == NULL && !map->system_map) {
1375                 vm_map_entry_allocate_object(entry);
1376         }
1377
1378         /*
1379          * Create a new entry and insert it AFTER the specified entry
1380          */
1381
1382         new_entry = vm_map_entry_create(map, countp);
1383         *new_entry = *entry;
1384
1385         new_entry->start = entry->end = end;
1386         new_entry->offset += (end - entry->start);
1387
1388         vm_map_entry_link(map, entry, new_entry);
1389
1390         switch(entry->maptype) {
1391         case VM_MAPTYPE_NORMAL:
1392         case VM_MAPTYPE_VPAGETABLE:
1393                 vm_object_reference(new_entry->object.vm_object);
1394                 break;
1395         default:
1396                 break;
1397         }
1398 }
1399
1400 /*
1401  * Asserts that the starting and ending region addresses fall within the
1402  * valid range for the map.
1403  */
1404 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1405 {                                               \
1406         if (start < vm_map_min(map))            \
1407                 start = vm_map_min(map);        \
1408         if (end > vm_map_max(map))              \
1409                 end = vm_map_max(map);          \
1410         if (start > end)                        \
1411                 start = end;                    \
1412 }
1413
1414 /*
1415  * Used to block when an in-transition collison occurs.  The map
1416  * is unlocked for the sleep and relocked before the return.
1417  */
1418 static
1419 void
1420 vm_map_transition_wait(vm_map_t map)
1421 {
1422         vm_map_unlock(map);
1423         tsleep(map, 0, "vment", 0);
1424         vm_map_lock(map);
1425 }
1426
1427 /*
1428  * When we do blocking operations with the map lock held it is
1429  * possible that a clip might have occured on our in-transit entry,
1430  * requiring an adjustment to the entry in our loop.  These macros
1431  * help the pageable and clip_range code deal with the case.  The
1432  * conditional costs virtually nothing if no clipping has occured.
1433  */
1434
1435 #define CLIP_CHECK_BACK(entry, save_start)              \
1436     do {                                                \
1437             while (entry->start != save_start) {        \
1438                     entry = entry->prev;                \
1439                     KASSERT(entry != &map->header, ("bad entry clip")); \
1440             }                                           \
1441     } while(0)
1442
1443 #define CLIP_CHECK_FWD(entry, save_end)                 \
1444     do {                                                \
1445             while (entry->end != save_end) {            \
1446                     entry = entry->next;                \
1447                     KASSERT(entry != &map->header, ("bad entry clip")); \
1448             }                                           \
1449     } while(0)
1450
1451
1452 /*
1453  * Clip the specified range and return the base entry.  The
1454  * range may cover several entries starting at the returned base
1455  * and the first and last entry in the covering sequence will be
1456  * properly clipped to the requested start and end address.
1457  *
1458  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1459  * flag.
1460  *
1461  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1462  * covered by the requested range.
1463  *
1464  * The map must be exclusively locked on entry and will remain locked
1465  * on return. If no range exists or the range contains holes and you
1466  * specified that no holes were allowed, NULL will be returned.  This
1467  * routine may temporarily unlock the map in order avoid a deadlock when
1468  * sleeping.
1469  */
1470 static
1471 vm_map_entry_t
1472 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1473                   int *countp, int flags)
1474 {
1475         vm_map_entry_t start_entry;
1476         vm_map_entry_t entry;
1477
1478         /*
1479          * Locate the entry and effect initial clipping.  The in-transition
1480          * case does not occur very often so do not try to optimize it.
1481          */
1482 again:
1483         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1484                 return (NULL);
1485         entry = start_entry;
1486         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1487                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1488                 ++mycpu->gd_cnt.v_intrans_coll;
1489                 ++mycpu->gd_cnt.v_intrans_wait;
1490                 vm_map_transition_wait(map);
1491                 /*
1492                  * entry and/or start_entry may have been clipped while
1493                  * we slept, or may have gone away entirely.  We have
1494                  * to restart from the lookup.
1495                  */
1496                 goto again;
1497         }
1498
1499         /*
1500          * Since we hold an exclusive map lock we do not have to restart
1501          * after clipping, even though clipping may block in zalloc.
1502          */
1503         vm_map_clip_start(map, entry, start, countp);
1504         vm_map_clip_end(map, entry, end, countp);
1505         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1506
1507         /*
1508          * Scan entries covered by the range.  When working on the next
1509          * entry a restart need only re-loop on the current entry which
1510          * we have already locked, since 'next' may have changed.  Also,
1511          * even though entry is safe, it may have been clipped so we
1512          * have to iterate forwards through the clip after sleeping.
1513          */
1514         while (entry->next != &map->header && entry->next->start < end) {
1515                 vm_map_entry_t next = entry->next;
1516
1517                 if (flags & MAP_CLIP_NO_HOLES) {
1518                         if (next->start > entry->end) {
1519                                 vm_map_unclip_range(map, start_entry,
1520                                         start, entry->end, countp, flags);
1521                                 return(NULL);
1522                         }
1523                 }
1524
1525                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1526                         vm_offset_t save_end = entry->end;
1527                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1528                         ++mycpu->gd_cnt.v_intrans_coll;
1529                         ++mycpu->gd_cnt.v_intrans_wait;
1530                         vm_map_transition_wait(map);
1531
1532                         /*
1533                          * clips might have occured while we blocked.
1534                          */
1535                         CLIP_CHECK_FWD(entry, save_end);
1536                         CLIP_CHECK_BACK(start_entry, start);
1537                         continue;
1538                 }
1539                 /*
1540                  * No restart necessary even though clip_end may block, we
1541                  * are holding the map lock.
1542                  */
1543                 vm_map_clip_end(map, next, end, countp);
1544                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1545                 entry = next;
1546         }
1547         if (flags & MAP_CLIP_NO_HOLES) {
1548                 if (entry->end != end) {
1549                         vm_map_unclip_range(map, start_entry,
1550                                 start, entry->end, countp, flags);
1551                         return(NULL);
1552                 }
1553         }
1554         return(start_entry);
1555 }
1556
1557 /*
1558  * Undo the effect of vm_map_clip_range().  You should pass the same
1559  * flags and the same range that you passed to vm_map_clip_range().
1560  * This code will clear the in-transition flag on the entries and
1561  * wake up anyone waiting.  This code will also simplify the sequence
1562  * and attempt to merge it with entries before and after the sequence.
1563  *
1564  * The map must be locked on entry and will remain locked on return.
1565  *
1566  * Note that you should also pass the start_entry returned by
1567  * vm_map_clip_range().  However, if you block between the two calls
1568  * with the map unlocked please be aware that the start_entry may
1569  * have been clipped and you may need to scan it backwards to find
1570  * the entry corresponding with the original start address.  You are
1571  * responsible for this, vm_map_unclip_range() expects the correct
1572  * start_entry to be passed to it and will KASSERT otherwise.
1573  */
1574 static
1575 void
1576 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1577                     vm_offset_t start, vm_offset_t end,
1578                     int *countp, int flags)
1579 {
1580         vm_map_entry_t entry;
1581
1582         entry = start_entry;
1583
1584         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1585         while (entry != &map->header && entry->start < end) {
1586                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1587                         ("in-transition flag not set during unclip on: %p",
1588                         entry));
1589                 KASSERT(entry->end <= end,
1590                         ("unclip_range: tail wasn't clipped"));
1591                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1592                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1593                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1594                         wakeup(map);
1595                 }
1596                 entry = entry->next;
1597         }
1598
1599         /*
1600          * Simplification does not block so there is no restart case.
1601          */
1602         entry = start_entry;
1603         while (entry != &map->header && entry->start < end) {
1604                 vm_map_simplify_entry(map, entry, countp);
1605                 entry = entry->next;
1606         }
1607 }
1608
1609 /*
1610  * Mark the given range as handled by a subordinate map.
1611  *
1612  * This range must have been created with vm_map_find(), and no other
1613  * operations may have been performed on this range prior to calling
1614  * vm_map_submap().
1615  *
1616  * Submappings cannot be removed.
1617  *
1618  * No requirements.
1619  */
1620 int
1621 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1622 {
1623         vm_map_entry_t entry;
1624         int result = KERN_INVALID_ARGUMENT;
1625         int count;
1626
1627         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1628         vm_map_lock(map);
1629
1630         VM_MAP_RANGE_CHECK(map, start, end);
1631
1632         if (vm_map_lookup_entry(map, start, &entry)) {
1633                 vm_map_clip_start(map, entry, start, &count);
1634         } else {
1635                 entry = entry->next;
1636         }
1637
1638         vm_map_clip_end(map, entry, end, &count);
1639
1640         if ((entry->start == start) && (entry->end == end) &&
1641             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1642             (entry->object.vm_object == NULL)) {
1643                 entry->object.sub_map = submap;
1644                 entry->maptype = VM_MAPTYPE_SUBMAP;
1645                 result = KERN_SUCCESS;
1646         }
1647         vm_map_unlock(map);
1648         vm_map_entry_release(count);
1649
1650         return (result);
1651 }
1652
1653 /*
1654  * Sets the protection of the specified address region in the target map. 
1655  * If "set_max" is specified, the maximum protection is to be set;
1656  * otherwise, only the current protection is affected.
1657  *
1658  * The protection is not applicable to submaps, but is applicable to normal
1659  * maps and maps governed by virtual page tables.  For example, when operating
1660  * on a virtual page table our protection basically controls how COW occurs
1661  * on the backing object, whereas the virtual page table abstraction itself
1662  * is an abstraction for userland.
1663  *
1664  * No requirements.
1665  */
1666 int
1667 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1668                vm_prot_t new_prot, boolean_t set_max)
1669 {
1670         vm_map_entry_t current;
1671         vm_map_entry_t entry;
1672         int count;
1673
1674         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1675         vm_map_lock(map);
1676
1677         VM_MAP_RANGE_CHECK(map, start, end);
1678
1679         if (vm_map_lookup_entry(map, start, &entry)) {
1680                 vm_map_clip_start(map, entry, start, &count);
1681         } else {
1682                 entry = entry->next;
1683         }
1684
1685         /*
1686          * Make a first pass to check for protection violations.
1687          */
1688         current = entry;
1689         while ((current != &map->header) && (current->start < end)) {
1690                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1691                         vm_map_unlock(map);
1692                         vm_map_entry_release(count);
1693                         return (KERN_INVALID_ARGUMENT);
1694                 }
1695                 if ((new_prot & current->max_protection) != new_prot) {
1696                         vm_map_unlock(map);
1697                         vm_map_entry_release(count);
1698                         return (KERN_PROTECTION_FAILURE);
1699                 }
1700                 current = current->next;
1701         }
1702
1703         /*
1704          * Go back and fix up protections. [Note that clipping is not
1705          * necessary the second time.]
1706          */
1707         current = entry;
1708
1709         while ((current != &map->header) && (current->start < end)) {
1710                 vm_prot_t old_prot;
1711
1712                 vm_map_clip_end(map, current, end, &count);
1713
1714                 old_prot = current->protection;
1715                 if (set_max) {
1716                         current->protection =
1717                             (current->max_protection = new_prot) &
1718                             old_prot;
1719                 } else {
1720                         current->protection = new_prot;
1721                 }
1722
1723                 /*
1724                  * Update physical map if necessary. Worry about copy-on-write
1725                  * here -- CHECK THIS XXX
1726                  */
1727
1728                 if (current->protection != old_prot) {
1729 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1730                                                         VM_PROT_ALL)
1731
1732                         pmap_protect(map->pmap, current->start,
1733                             current->end,
1734                             current->protection & MASK(current));
1735 #undef  MASK
1736                 }
1737
1738                 vm_map_simplify_entry(map, current, &count);
1739
1740                 current = current->next;
1741         }
1742
1743         vm_map_unlock(map);
1744         vm_map_entry_release(count);
1745         return (KERN_SUCCESS);
1746 }
1747
1748 /*
1749  * This routine traverses a processes map handling the madvise
1750  * system call.  Advisories are classified as either those effecting
1751  * the vm_map_entry structure, or those effecting the underlying
1752  * objects.
1753  *
1754  * The <value> argument is used for extended madvise calls.
1755  *
1756  * No requirements.
1757  */
1758 int
1759 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1760                int behav, off_t value)
1761 {
1762         vm_map_entry_t current, entry;
1763         int modify_map = 0;
1764         int error = 0;
1765         int count;
1766
1767         /*
1768          * Some madvise calls directly modify the vm_map_entry, in which case
1769          * we need to use an exclusive lock on the map and we need to perform 
1770          * various clipping operations.  Otherwise we only need a read-lock
1771          * on the map.
1772          */
1773
1774         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1775
1776         switch(behav) {
1777         case MADV_NORMAL:
1778         case MADV_SEQUENTIAL:
1779         case MADV_RANDOM:
1780         case MADV_NOSYNC:
1781         case MADV_AUTOSYNC:
1782         case MADV_NOCORE:
1783         case MADV_CORE:
1784         case MADV_SETMAP:
1785         case MADV_INVAL:
1786                 modify_map = 1;
1787                 vm_map_lock(map);
1788                 break;
1789         case MADV_WILLNEED:
1790         case MADV_DONTNEED:
1791         case MADV_FREE:
1792                 vm_map_lock_read(map);
1793                 break;
1794         default:
1795                 vm_map_entry_release(count);
1796                 return (EINVAL);
1797         }
1798
1799         /*
1800          * Locate starting entry and clip if necessary.
1801          */
1802
1803         VM_MAP_RANGE_CHECK(map, start, end);
1804
1805         if (vm_map_lookup_entry(map, start, &entry)) {
1806                 if (modify_map)
1807                         vm_map_clip_start(map, entry, start, &count);
1808         } else {
1809                 entry = entry->next;
1810         }
1811
1812         if (modify_map) {
1813                 /*
1814                  * madvise behaviors that are implemented in the vm_map_entry.
1815                  *
1816                  * We clip the vm_map_entry so that behavioral changes are
1817                  * limited to the specified address range.
1818                  */
1819                 for (current = entry;
1820                      (current != &map->header) && (current->start < end);
1821                      current = current->next
1822                 ) {
1823                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1824                                 continue;
1825
1826                         vm_map_clip_end(map, current, end, &count);
1827
1828                         switch (behav) {
1829                         case MADV_NORMAL:
1830                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1831                                 break;
1832                         case MADV_SEQUENTIAL:
1833                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1834                                 break;
1835                         case MADV_RANDOM:
1836                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1837                                 break;
1838                         case MADV_NOSYNC:
1839                                 current->eflags |= MAP_ENTRY_NOSYNC;
1840                                 break;
1841                         case MADV_AUTOSYNC:
1842                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1843                                 break;
1844                         case MADV_NOCORE:
1845                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1846                                 break;
1847                         case MADV_CORE:
1848                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1849                                 break;
1850                         case MADV_INVAL:
1851                                 /*
1852                                  * Invalidate the related pmap entries, used
1853                                  * to flush portions of the real kernel's
1854                                  * pmap when the caller has removed or
1855                                  * modified existing mappings in a virtual
1856                                  * page table.
1857                                  */
1858                                 pmap_remove(map->pmap,
1859                                             current->start, current->end);
1860                                 break;
1861                         case MADV_SETMAP:
1862                                 /*
1863                                  * Set the page directory page for a map
1864                                  * governed by a virtual page table.  Mark
1865                                  * the entry as being governed by a virtual
1866                                  * page table if it is not.
1867                                  *
1868                                  * XXX the page directory page is stored
1869                                  * in the avail_ssize field if the map_entry.
1870                                  *
1871                                  * XXX the map simplification code does not
1872                                  * compare this field so weird things may
1873                                  * happen if you do not apply this function
1874                                  * to the entire mapping governed by the
1875                                  * virtual page table.
1876                                  */
1877                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1878                                         error = EINVAL;
1879                                         break;
1880                                 }
1881                                 current->aux.master_pde = value;
1882                                 pmap_remove(map->pmap,
1883                                             current->start, current->end);
1884                                 break;
1885                         default:
1886                                 error = EINVAL;
1887                                 break;
1888                         }
1889                         vm_map_simplify_entry(map, current, &count);
1890                 }
1891                 vm_map_unlock(map);
1892         } else {
1893                 vm_pindex_t pindex;
1894                 int count;
1895
1896                 /*
1897                  * madvise behaviors that are implemented in the underlying
1898                  * vm_object.
1899                  *
1900                  * Since we don't clip the vm_map_entry, we have to clip
1901                  * the vm_object pindex and count.
1902                  *
1903                  * NOTE!  We currently do not support these functions on
1904                  * virtual page tables.
1905                  */
1906                 for (current = entry;
1907                      (current != &map->header) && (current->start < end);
1908                      current = current->next
1909                 ) {
1910                         vm_offset_t useStart;
1911
1912                         if (current->maptype != VM_MAPTYPE_NORMAL)
1913                                 continue;
1914
1915                         pindex = OFF_TO_IDX(current->offset);
1916                         count = atop(current->end - current->start);
1917                         useStart = current->start;
1918
1919                         if (current->start < start) {
1920                                 pindex += atop(start - current->start);
1921                                 count -= atop(start - current->start);
1922                                 useStart = start;
1923                         }
1924                         if (current->end > end)
1925                                 count -= atop(current->end - end);
1926
1927                         if (count <= 0)
1928                                 continue;
1929
1930                         vm_object_madvise(current->object.vm_object,
1931                                           pindex, count, behav);
1932
1933                         /*
1934                          * Try to populate the page table.  Mappings governed
1935                          * by virtual page tables cannot be pre-populated
1936                          * without a lot of work so don't try.
1937                          */
1938                         if (behav == MADV_WILLNEED &&
1939                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
1940                                 pmap_object_init_pt(
1941                                     map->pmap, 
1942                                     useStart,
1943                                     current->protection,
1944                                     current->object.vm_object,
1945                                     pindex, 
1946                                     (count << PAGE_SHIFT),
1947                                     MAP_PREFAULT_MADVISE
1948                                 );
1949                         }
1950                 }
1951                 vm_map_unlock_read(map);
1952         }
1953         vm_map_entry_release(count);
1954         return(error);
1955 }       
1956
1957
1958 /*
1959  * Sets the inheritance of the specified address range in the target map.
1960  * Inheritance affects how the map will be shared with child maps at the
1961  * time of vm_map_fork.
1962  */
1963 int
1964 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1965                vm_inherit_t new_inheritance)
1966 {
1967         vm_map_entry_t entry;
1968         vm_map_entry_t temp_entry;
1969         int count;
1970
1971         switch (new_inheritance) {
1972         case VM_INHERIT_NONE:
1973         case VM_INHERIT_COPY:
1974         case VM_INHERIT_SHARE:
1975                 break;
1976         default:
1977                 return (KERN_INVALID_ARGUMENT);
1978         }
1979
1980         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1981         vm_map_lock(map);
1982
1983         VM_MAP_RANGE_CHECK(map, start, end);
1984
1985         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1986                 entry = temp_entry;
1987                 vm_map_clip_start(map, entry, start, &count);
1988         } else
1989                 entry = temp_entry->next;
1990
1991         while ((entry != &map->header) && (entry->start < end)) {
1992                 vm_map_clip_end(map, entry, end, &count);
1993
1994                 entry->inheritance = new_inheritance;
1995
1996                 vm_map_simplify_entry(map, entry, &count);
1997
1998                 entry = entry->next;
1999         }
2000         vm_map_unlock(map);
2001         vm_map_entry_release(count);
2002         return (KERN_SUCCESS);
2003 }
2004
2005 /*
2006  * Implement the semantics of mlock
2007  */
2008 int
2009 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2010               boolean_t new_pageable)
2011 {
2012         vm_map_entry_t entry;
2013         vm_map_entry_t start_entry;
2014         vm_offset_t end;
2015         int rv = KERN_SUCCESS;
2016         int count;
2017
2018         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2019         vm_map_lock(map);
2020         VM_MAP_RANGE_CHECK(map, start, real_end);
2021         end = real_end;
2022
2023         start_entry = vm_map_clip_range(map, start, end, &count,
2024                                         MAP_CLIP_NO_HOLES);
2025         if (start_entry == NULL) {
2026                 vm_map_unlock(map);
2027                 vm_map_entry_release(count);
2028                 return (KERN_INVALID_ADDRESS);
2029         }
2030
2031         if (new_pageable == 0) {
2032                 entry = start_entry;
2033                 while ((entry != &map->header) && (entry->start < end)) {
2034                         vm_offset_t save_start;
2035                         vm_offset_t save_end;
2036
2037                         /*
2038                          * Already user wired or hard wired (trivial cases)
2039                          */
2040                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2041                                 entry = entry->next;
2042                                 continue;
2043                         }
2044                         if (entry->wired_count != 0) {
2045                                 entry->wired_count++;
2046                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2047                                 entry = entry->next;
2048                                 continue;
2049                         }
2050
2051                         /*
2052                          * A new wiring requires instantiation of appropriate
2053                          * management structures and the faulting in of the
2054                          * page.
2055                          */
2056                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2057                                 int copyflag = entry->eflags &
2058                                                MAP_ENTRY_NEEDS_COPY;
2059                                 if (copyflag && ((entry->protection &
2060                                                   VM_PROT_WRITE) != 0)) {
2061                                         vm_map_entry_shadow(entry);
2062                                 } else if (entry->object.vm_object == NULL &&
2063                                            !map->system_map) {
2064                                         vm_map_entry_allocate_object(entry);
2065                                 }
2066                         }
2067                         entry->wired_count++;
2068                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2069
2070                         /*
2071                          * Now fault in the area.  Note that vm_fault_wire()
2072                          * may release the map lock temporarily, it will be
2073                          * relocked on return.  The in-transition
2074                          * flag protects the entries. 
2075                          */
2076                         save_start = entry->start;
2077                         save_end = entry->end;
2078                         rv = vm_fault_wire(map, entry, TRUE);
2079                         if (rv) {
2080                                 CLIP_CHECK_BACK(entry, save_start);
2081                                 for (;;) {
2082                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2083                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2084                                         entry->wired_count = 0;
2085                                         if (entry->end == save_end)
2086                                                 break;
2087                                         entry = entry->next;
2088                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2089                                 }
2090                                 end = save_start;       /* unwire the rest */
2091                                 break;
2092                         }
2093                         /*
2094                          * note that even though the entry might have been
2095                          * clipped, the USER_WIRED flag we set prevents
2096                          * duplication so we do not have to do a 
2097                          * clip check.
2098                          */
2099                         entry = entry->next;
2100                 }
2101
2102                 /*
2103                  * If we failed fall through to the unwiring section to
2104                  * unwire what we had wired so far.  'end' has already
2105                  * been adjusted.
2106                  */
2107                 if (rv)
2108                         new_pageable = 1;
2109
2110                 /*
2111                  * start_entry might have been clipped if we unlocked the
2112                  * map and blocked.  No matter how clipped it has gotten
2113                  * there should be a fragment that is on our start boundary.
2114                  */
2115                 CLIP_CHECK_BACK(start_entry, start);
2116         }
2117
2118         /*
2119          * Deal with the unwiring case.
2120          */
2121         if (new_pageable) {
2122                 /*
2123                  * This is the unwiring case.  We must first ensure that the
2124                  * range to be unwired is really wired down.  We know there
2125                  * are no holes.
2126                  */
2127                 entry = start_entry;
2128                 while ((entry != &map->header) && (entry->start < end)) {
2129                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2130                                 rv = KERN_INVALID_ARGUMENT;
2131                                 goto done;
2132                         }
2133                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2134                         entry = entry->next;
2135                 }
2136
2137                 /*
2138                  * Now decrement the wiring count for each region. If a region
2139                  * becomes completely unwired, unwire its physical pages and
2140                  * mappings.
2141                  */
2142                 /*
2143                  * The map entries are processed in a loop, checking to
2144                  * make sure the entry is wired and asserting it has a wired
2145                  * count. However, another loop was inserted more-or-less in
2146                  * the middle of the unwiring path. This loop picks up the
2147                  * "entry" loop variable from the first loop without first
2148                  * setting it to start_entry. Naturally, the secound loop
2149                  * is never entered and the pages backing the entries are
2150                  * never unwired. This can lead to a leak of wired pages.
2151                  */
2152                 entry = start_entry;
2153                 while ((entry != &map->header) && (entry->start < end)) {
2154                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2155                                 ("expected USER_WIRED on entry %p", entry));
2156                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2157                         entry->wired_count--;
2158                         if (entry->wired_count == 0)
2159                                 vm_fault_unwire(map, entry);
2160                         entry = entry->next;
2161                 }
2162         }
2163 done:
2164         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2165                 MAP_CLIP_NO_HOLES);
2166         map->timestamp++;
2167         vm_map_unlock(map);
2168         vm_map_entry_release(count);
2169         return (rv);
2170 }
2171
2172 /*
2173  * Sets the pageability of the specified address range in the target map.
2174  * Regions specified as not pageable require locked-down physical
2175  * memory and physical page maps.
2176  *
2177  * The map must not be locked, but a reference must remain to the map
2178  * throughout the call.
2179  *
2180  * This function may be called via the zalloc path and must properly
2181  * reserve map entries for kernel_map.
2182  *
2183  * No requirements.
2184  */
2185 int
2186 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2187 {
2188         vm_map_entry_t entry;
2189         vm_map_entry_t start_entry;
2190         vm_offset_t end;
2191         int rv = KERN_SUCCESS;
2192         int count;
2193
2194         if (kmflags & KM_KRESERVE)
2195                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2196         else
2197                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2198         vm_map_lock(map);
2199         VM_MAP_RANGE_CHECK(map, start, real_end);
2200         end = real_end;
2201
2202         start_entry = vm_map_clip_range(map, start, end, &count,
2203                                         MAP_CLIP_NO_HOLES);
2204         if (start_entry == NULL) {
2205                 vm_map_unlock(map);
2206                 rv = KERN_INVALID_ADDRESS;
2207                 goto failure;
2208         }
2209         if ((kmflags & KM_PAGEABLE) == 0) {
2210                 /*
2211                  * Wiring.  
2212                  *
2213                  * 1.  Holding the write lock, we create any shadow or zero-fill
2214                  * objects that need to be created. Then we clip each map
2215                  * entry to the region to be wired and increment its wiring
2216                  * count.  We create objects before clipping the map entries
2217                  * to avoid object proliferation.
2218                  *
2219                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2220                  * fault in the pages for any newly wired area (wired_count is
2221                  * 1).
2222                  *
2223                  * Downgrading to a read lock for vm_fault_wire avoids a 
2224                  * possible deadlock with another process that may have faulted
2225                  * on one of the pages to be wired (it would mark the page busy,
2226                  * blocking us, then in turn block on the map lock that we
2227                  * hold).  Because of problems in the recursive lock package,
2228                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2229                  * any actions that require the write lock must be done
2230                  * beforehand.  Because we keep the read lock on the map, the
2231                  * copy-on-write status of the entries we modify here cannot
2232                  * change.
2233                  */
2234                 entry = start_entry;
2235                 while ((entry != &map->header) && (entry->start < end)) {
2236                         /*
2237                          * Trivial case if the entry is already wired
2238                          */
2239                         if (entry->wired_count) {
2240                                 entry->wired_count++;
2241                                 entry = entry->next;
2242                                 continue;
2243                         }
2244
2245                         /*
2246                          * The entry is being newly wired, we have to setup
2247                          * appropriate management structures.  A shadow 
2248                          * object is required for a copy-on-write region,
2249                          * or a normal object for a zero-fill region.  We
2250                          * do not have to do this for entries that point to sub
2251                          * maps because we won't hold the lock on the sub map.
2252                          */
2253                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2254                                 int copyflag = entry->eflags &
2255                                                MAP_ENTRY_NEEDS_COPY;
2256                                 if (copyflag && ((entry->protection &
2257                                                   VM_PROT_WRITE) != 0)) {
2258                                         vm_map_entry_shadow(entry);
2259                                 } else if (entry->object.vm_object == NULL &&
2260                                            !map->system_map) {
2261                                         vm_map_entry_allocate_object(entry);
2262                                 }
2263                         }
2264
2265                         entry->wired_count++;
2266                         entry = entry->next;
2267                 }
2268
2269                 /*
2270                  * Pass 2.
2271                  */
2272
2273                 /*
2274                  * HACK HACK HACK HACK
2275                  *
2276                  * vm_fault_wire() temporarily unlocks the map to avoid
2277                  * deadlocks.  The in-transition flag from vm_map_clip_range
2278                  * call should protect us from changes while the map is
2279                  * unlocked.  T
2280                  *
2281                  * NOTE: Previously this comment stated that clipping might
2282                  *       still occur while the entry is unlocked, but from
2283                  *       what I can tell it actually cannot.
2284                  *
2285                  *       It is unclear whether the CLIP_CHECK_*() calls
2286                  *       are still needed but we keep them in anyway.
2287                  *
2288                  * HACK HACK HACK HACK
2289                  */
2290
2291                 entry = start_entry;
2292                 while (entry != &map->header && entry->start < end) {
2293                         /*
2294                          * If vm_fault_wire fails for any page we need to undo
2295                          * what has been done.  We decrement the wiring count
2296                          * for those pages which have not yet been wired (now)
2297                          * and unwire those that have (later).
2298                          */
2299                         vm_offset_t save_start = entry->start;
2300                         vm_offset_t save_end = entry->end;
2301
2302                         if (entry->wired_count == 1)
2303                                 rv = vm_fault_wire(map, entry, FALSE);
2304                         if (rv) {
2305                                 CLIP_CHECK_BACK(entry, save_start);
2306                                 for (;;) {
2307                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2308                                         entry->wired_count = 0;
2309                                         if (entry->end == save_end)
2310                                                 break;
2311                                         entry = entry->next;
2312                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2313                                 }
2314                                 end = save_start;
2315                                 break;
2316                         }
2317                         CLIP_CHECK_FWD(entry, save_end);
2318                         entry = entry->next;
2319                 }
2320
2321                 /*
2322                  * If a failure occured undo everything by falling through
2323                  * to the unwiring code.  'end' has already been adjusted
2324                  * appropriately.
2325                  */
2326                 if (rv)
2327                         kmflags |= KM_PAGEABLE;
2328
2329                 /*
2330                  * start_entry is still IN_TRANSITION but may have been 
2331                  * clipped since vm_fault_wire() unlocks and relocks the
2332                  * map.  No matter how clipped it has gotten there should
2333                  * be a fragment that is on our start boundary.
2334                  */
2335                 CLIP_CHECK_BACK(start_entry, start);
2336         }
2337
2338         if (kmflags & KM_PAGEABLE) {
2339                 /*
2340                  * This is the unwiring case.  We must first ensure that the
2341                  * range to be unwired is really wired down.  We know there
2342                  * are no holes.
2343                  */
2344                 entry = start_entry;
2345                 while ((entry != &map->header) && (entry->start < end)) {
2346                         if (entry->wired_count == 0) {
2347                                 rv = KERN_INVALID_ARGUMENT;
2348                                 goto done;
2349                         }
2350                         entry = entry->next;
2351                 }
2352
2353                 /*
2354                  * Now decrement the wiring count for each region. If a region
2355                  * becomes completely unwired, unwire its physical pages and
2356                  * mappings.
2357                  */
2358                 entry = start_entry;
2359                 while ((entry != &map->header) && (entry->start < end)) {
2360                         entry->wired_count--;
2361                         if (entry->wired_count == 0)
2362                                 vm_fault_unwire(map, entry);
2363                         entry = entry->next;
2364                 }
2365         }
2366 done:
2367         vm_map_unclip_range(map, start_entry, start, real_end,
2368                             &count, MAP_CLIP_NO_HOLES);
2369         map->timestamp++;
2370         vm_map_unlock(map);
2371 failure:
2372         if (kmflags & KM_KRESERVE)
2373                 vm_map_entry_krelease(count);
2374         else
2375                 vm_map_entry_release(count);
2376         return (rv);
2377 }
2378
2379 /*
2380  * Mark a newly allocated address range as wired but do not fault in
2381  * the pages.  The caller is expected to load the pages into the object.
2382  *
2383  * The map must be locked on entry and will remain locked on return.
2384  * No other requirements.
2385  */
2386 void
2387 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2388                        int *countp)
2389 {
2390         vm_map_entry_t scan;
2391         vm_map_entry_t entry;
2392
2393         entry = vm_map_clip_range(map, addr, addr + size,
2394                                   countp, MAP_CLIP_NO_HOLES);
2395         for (scan = entry;
2396              scan != &map->header && scan->start < addr + size;
2397              scan = scan->next) {
2398             KKASSERT(entry->wired_count == 0);
2399             entry->wired_count = 1;                                              
2400         }
2401         vm_map_unclip_range(map, entry, addr, addr + size,
2402                             countp, MAP_CLIP_NO_HOLES);
2403 }
2404
2405 /*
2406  * Push any dirty cached pages in the address range to their pager.
2407  * If syncio is TRUE, dirty pages are written synchronously.
2408  * If invalidate is TRUE, any cached pages are freed as well.
2409  *
2410  * This routine is called by sys_msync()
2411  *
2412  * Returns an error if any part of the specified range is not mapped.
2413  *
2414  * No requirements.
2415  */
2416 int
2417 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2418              boolean_t syncio, boolean_t invalidate)
2419 {
2420         vm_map_entry_t current;
2421         vm_map_entry_t entry;
2422         vm_size_t size;
2423         vm_object_t object;
2424         vm_ooffset_t offset;
2425
2426         vm_map_lock_read(map);
2427         VM_MAP_RANGE_CHECK(map, start, end);
2428         if (!vm_map_lookup_entry(map, start, &entry)) {
2429                 vm_map_unlock_read(map);
2430                 return (KERN_INVALID_ADDRESS);
2431         }
2432         /*
2433          * Make a first pass to check for holes.
2434          */
2435         for (current = entry; current->start < end; current = current->next) {
2436                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2437                         vm_map_unlock_read(map);
2438                         return (KERN_INVALID_ARGUMENT);
2439                 }
2440                 if (end > current->end &&
2441                     (current->next == &map->header ||
2442                         current->end != current->next->start)) {
2443                         vm_map_unlock_read(map);
2444                         return (KERN_INVALID_ADDRESS);
2445                 }
2446         }
2447
2448         if (invalidate)
2449                 pmap_remove(vm_map_pmap(map), start, end);
2450
2451         /*
2452          * Make a second pass, cleaning/uncaching pages from the indicated
2453          * objects as we go.
2454          *
2455          * Hold vm_token to avoid blocking in vm_object_reference()
2456          */
2457         lwkt_gettoken(&vm_token);
2458         lwkt_gettoken(&vmobj_token);
2459
2460         for (current = entry; current->start < end; current = current->next) {
2461                 offset = current->offset + (start - current->start);
2462                 size = (end <= current->end ? end : current->end) - start;
2463                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2464                         vm_map_t smap;
2465                         vm_map_entry_t tentry;
2466                         vm_size_t tsize;
2467
2468                         smap = current->object.sub_map;
2469                         vm_map_lock_read(smap);
2470                         vm_map_lookup_entry(smap, offset, &tentry);
2471                         tsize = tentry->end - offset;
2472                         if (tsize < size)
2473                                 size = tsize;
2474                         object = tentry->object.vm_object;
2475                         offset = tentry->offset + (offset - tentry->start);
2476                         vm_map_unlock_read(smap);
2477                 } else {
2478                         object = current->object.vm_object;
2479                 }
2480                 /*
2481                  * Note that there is absolutely no sense in writing out
2482                  * anonymous objects, so we track down the vnode object
2483                  * to write out.
2484                  * We invalidate (remove) all pages from the address space
2485                  * anyway, for semantic correctness.
2486                  *
2487                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2488                  * may start out with a NULL object.
2489                  */
2490                 while (object && object->backing_object) {
2491                         offset += object->backing_object_offset;
2492                         object = object->backing_object;
2493                         if (object->size < OFF_TO_IDX( offset + size))
2494                                 size = IDX_TO_OFF(object->size) - offset;
2495                 }
2496                 if (object && (object->type == OBJT_VNODE) && 
2497                     (current->protection & VM_PROT_WRITE) &&
2498                     (object->flags & OBJ_NOMSYNC) == 0) {
2499                         /*
2500                          * Flush pages if writing is allowed, invalidate them
2501                          * if invalidation requested.  Pages undergoing I/O
2502                          * will be ignored by vm_object_page_remove().
2503                          *
2504                          * We cannot lock the vnode and then wait for paging
2505                          * to complete without deadlocking against vm_fault.
2506                          * Instead we simply call vm_object_page_remove() and
2507                          * allow it to block internally on a page-by-page 
2508                          * basis when it encounters pages undergoing async 
2509                          * I/O.
2510                          */
2511                         int flags;
2512
2513                         vm_object_reference_locked(object);
2514                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2515                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2516                         flags |= invalidate ? OBJPC_INVAL : 0;
2517
2518                         /*
2519                          * When operating on a virtual page table just
2520                          * flush the whole object.  XXX we probably ought
2521                          * to 
2522                          */
2523                         switch(current->maptype) {
2524                         case VM_MAPTYPE_NORMAL:
2525                                 vm_object_page_clean(object,
2526                                     OFF_TO_IDX(offset),
2527                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2528                                     flags);
2529                                 break;
2530                         case VM_MAPTYPE_VPAGETABLE:
2531                                 vm_object_page_clean(object, 0, 0, flags);
2532                                 break;
2533                         }
2534                         vn_unlock(((struct vnode *)object->handle));
2535                         vm_object_deallocate_locked(object);
2536                 }
2537                 if (object && invalidate &&
2538                    ((object->type == OBJT_VNODE) ||
2539                     (object->type == OBJT_DEVICE))) {
2540                         int clean_only = 
2541                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2542                         vm_object_reference_locked(object);
2543                         switch(current->maptype) {
2544                         case VM_MAPTYPE_NORMAL:
2545                                 vm_object_page_remove(object,
2546                                     OFF_TO_IDX(offset),
2547                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2548                                     clean_only);
2549                                 break;
2550                         case VM_MAPTYPE_VPAGETABLE:
2551                                 vm_object_page_remove(object, 0, 0, clean_only);
2552                                 break;
2553                         }
2554                         vm_object_deallocate_locked(object);
2555                 }
2556                 start += size;
2557         }
2558
2559         lwkt_reltoken(&vmobj_token);
2560         lwkt_reltoken(&vm_token);
2561         vm_map_unlock_read(map);
2562
2563         return (KERN_SUCCESS);
2564 }
2565
2566 /*
2567  * Make the region specified by this entry pageable.
2568  *
2569  * The vm_map must be exclusively locked.
2570  */
2571 static void 
2572 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2573 {
2574         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2575         entry->wired_count = 0;
2576         vm_fault_unwire(map, entry);
2577 }
2578
2579 /*
2580  * Deallocate the given entry from the target map.
2581  *
2582  * The vm_map must be exclusively locked.
2583  */
2584 static void
2585 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2586 {
2587         vm_map_entry_unlink(map, entry);
2588         map->size -= entry->end - entry->start;
2589
2590         switch(entry->maptype) {
2591         case VM_MAPTYPE_NORMAL:
2592         case VM_MAPTYPE_VPAGETABLE:
2593                 vm_object_deallocate(entry->object.vm_object);
2594                 break;
2595         default:
2596                 break;
2597         }
2598
2599         vm_map_entry_dispose(map, entry, countp);
2600 }
2601
2602 /*
2603  * Deallocates the given address range from the target map.
2604  *
2605  * The vm_map must be exclusively locked.
2606  */
2607 int
2608 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2609 {
2610         vm_object_t object;
2611         vm_map_entry_t entry;
2612         vm_map_entry_t first_entry;
2613
2614         ASSERT_VM_MAP_LOCKED(map);
2615 again:
2616         /*
2617          * Find the start of the region, and clip it.  Set entry to point
2618          * at the first record containing the requested address or, if no
2619          * such record exists, the next record with a greater address.  The
2620          * loop will run from this point until a record beyond the termination
2621          * address is encountered.
2622          *
2623          * map->hint must be adjusted to not point to anything we delete,
2624          * so set it to the entry prior to the one being deleted.
2625          *
2626          * GGG see other GGG comment.
2627          */
2628         if (vm_map_lookup_entry(map, start, &first_entry)) {
2629                 entry = first_entry;
2630                 vm_map_clip_start(map, entry, start, countp);
2631                 map->hint = entry->prev;        /* possible problem XXX */
2632         } else {
2633                 map->hint = first_entry;        /* possible problem XXX */
2634                 entry = first_entry->next;
2635         }
2636
2637         /*
2638          * If a hole opens up prior to the current first_free then
2639          * adjust first_free.  As with map->hint, map->first_free
2640          * cannot be left set to anything we might delete.
2641          */
2642         if (entry == &map->header) {
2643                 map->first_free = &map->header;
2644         } else if (map->first_free->start >= start) {
2645                 map->first_free = entry->prev;
2646         }
2647
2648         /*
2649          * Step through all entries in this region
2650          */
2651         while ((entry != &map->header) && (entry->start < end)) {
2652                 vm_map_entry_t next;
2653                 vm_offset_t s, e;
2654                 vm_pindex_t offidxstart, offidxend, count;
2655
2656                 /*
2657                  * If we hit an in-transition entry we have to sleep and
2658                  * retry.  It's easier (and not really slower) to just retry
2659                  * since this case occurs so rarely and the hint is already
2660                  * pointing at the right place.  We have to reset the
2661                  * start offset so as not to accidently delete an entry
2662                  * another process just created in vacated space.
2663                  */
2664                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2665                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2666                         start = entry->start;
2667                         ++mycpu->gd_cnt.v_intrans_coll;
2668                         ++mycpu->gd_cnt.v_intrans_wait;
2669                         vm_map_transition_wait(map);
2670                         goto again;
2671                 }
2672                 vm_map_clip_end(map, entry, end, countp);
2673
2674                 s = entry->start;
2675                 e = entry->end;
2676                 next = entry->next;
2677
2678                 offidxstart = OFF_TO_IDX(entry->offset);
2679                 count = OFF_TO_IDX(e - s);
2680                 object = entry->object.vm_object;
2681
2682                 /*
2683                  * Unwire before removing addresses from the pmap; otherwise,
2684                  * unwiring will put the entries back in the pmap.
2685                  */
2686                 if (entry->wired_count != 0)
2687                         vm_map_entry_unwire(map, entry);
2688
2689                 offidxend = offidxstart + count;
2690
2691                 /*
2692                  * Hold vm_token when manipulating vm_objects,
2693                  *
2694                  * Hold vmobj_token when potentially adding or removing
2695                  * objects (collapse requires both).
2696                  */
2697                 lwkt_gettoken(&vm_token);
2698                 lwkt_gettoken(&vmobj_token);
2699
2700                 if (object == &kernel_object) {
2701                         vm_object_page_remove(object, offidxstart,
2702                                               offidxend, FALSE);
2703                 } else {
2704                         pmap_remove(map->pmap, s, e);
2705
2706                         if (object != NULL &&
2707                             object->ref_count != 1 &&
2708                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2709                              OBJ_ONEMAPPING &&
2710                             (object->type == OBJT_DEFAULT ||
2711                              object->type == OBJT_SWAP)) {
2712                                 vm_object_collapse(object);
2713                                 vm_object_page_remove(object, offidxstart,
2714                                                       offidxend, FALSE);
2715                                 if (object->type == OBJT_SWAP) {
2716                                         swap_pager_freespace(object,
2717                                                              offidxstart,
2718                                                              count);
2719                                 }
2720                                 if (offidxend >= object->size &&
2721                                     offidxstart < object->size) {
2722                                         object->size = offidxstart;
2723                                 }
2724                         }
2725                 }
2726                 lwkt_reltoken(&vmobj_token);
2727                 lwkt_reltoken(&vm_token);
2728
2729                 /*
2730                  * Delete the entry (which may delete the object) only after
2731                  * removing all pmap entries pointing to its pages.
2732                  * (Otherwise, its page frames may be reallocated, and any
2733                  * modify bits will be set in the wrong object!)
2734                  */
2735                 vm_map_entry_delete(map, entry, countp);
2736                 entry = next;
2737         }
2738         return (KERN_SUCCESS);
2739 }
2740
2741 /*
2742  * Remove the given address range from the target map.
2743  * This is the exported form of vm_map_delete.
2744  *
2745  * No requirements.
2746  */
2747 int
2748 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2749 {
2750         int result;
2751         int count;
2752
2753         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2754         vm_map_lock(map);
2755         VM_MAP_RANGE_CHECK(map, start, end);
2756         result = vm_map_delete(map, start, end, &count);
2757         vm_map_unlock(map);
2758         vm_map_entry_release(count);
2759
2760         return (result);
2761 }
2762
2763 /*
2764  * Assert that the target map allows the specified privilege on the
2765  * entire address region given.  The entire region must be allocated.
2766  *
2767  * The caller must specify whether the vm_map is already locked or not.
2768  */
2769 boolean_t
2770 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2771                         vm_prot_t protection, boolean_t have_lock)
2772 {
2773         vm_map_entry_t entry;
2774         vm_map_entry_t tmp_entry;
2775         boolean_t result;
2776
2777         if (have_lock == FALSE)
2778                 vm_map_lock_read(map);
2779
2780         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2781                 if (have_lock == FALSE)
2782                         vm_map_unlock_read(map);
2783                 return (FALSE);
2784         }
2785         entry = tmp_entry;
2786
2787         result = TRUE;
2788         while (start < end) {
2789                 if (entry == &map->header) {
2790                         result = FALSE;
2791                         break;
2792                 }
2793                 /*
2794                  * No holes allowed!
2795                  */
2796
2797                 if (start < entry->start) {
2798                         result = FALSE;
2799                         break;
2800                 }
2801                 /*
2802                  * Check protection associated with entry.
2803                  */
2804
2805                 if ((entry->protection & protection) != protection) {
2806                         result = FALSE;
2807                         break;
2808                 }
2809                 /* go to next entry */
2810
2811                 start = entry->end;
2812                 entry = entry->next;
2813         }
2814         if (have_lock == FALSE)
2815                 vm_map_unlock_read(map);
2816         return (result);
2817 }
2818
2819 /*
2820  * Split the pages in a map entry into a new object.  This affords
2821  * easier removal of unused pages, and keeps object inheritance from
2822  * being a negative impact on memory usage.
2823  *
2824  * The vm_map must be exclusively locked.
2825  */
2826 static void
2827 vm_map_split(vm_map_entry_t entry)
2828 {
2829         vm_page_t m;
2830         vm_object_t orig_object, new_object, source;
2831         vm_offset_t s, e;
2832         vm_pindex_t offidxstart, offidxend, idx;
2833         vm_size_t size;
2834         vm_ooffset_t offset;
2835
2836         orig_object = entry->object.vm_object;
2837         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2838                 return;
2839         if (orig_object->ref_count <= 1)
2840                 return;
2841
2842         offset = entry->offset;
2843         s = entry->start;
2844         e = entry->end;
2845
2846         offidxstart = OFF_TO_IDX(offset);
2847         offidxend = offidxstart + OFF_TO_IDX(e - s);
2848         size = offidxend - offidxstart;
2849
2850         switch(orig_object->type) {
2851         case OBJT_DEFAULT:
2852                 new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2853                                                  VM_PROT_ALL, 0);
2854                 break;
2855         case OBJT_SWAP:
2856                 new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2857                                               VM_PROT_ALL, 0);
2858                 break;
2859         default:
2860                 /* not reached */
2861                 new_object = NULL;
2862                 KKASSERT(0);
2863         }
2864         if (new_object == NULL)
2865                 return;
2866
2867         /*
2868          * vm_token required when manipulating vm_objects.
2869          */
2870         lwkt_gettoken(&vm_token);
2871         lwkt_gettoken(&vmobj_token);
2872
2873         source = orig_object->backing_object;
2874         if (source != NULL) {
2875                 /* Referenced by new_object */
2876                 vm_object_reference_locked(source);
2877                 LIST_INSERT_HEAD(&source->shadow_head,
2878                                  new_object, shadow_list);
2879                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2880                 new_object->backing_object_offset = 
2881                         orig_object->backing_object_offset +
2882                         IDX_TO_OFF(offidxstart);
2883                 new_object->backing_object = source;
2884                 source->shadow_count++;
2885                 source->generation++;
2886         }
2887
2888         for (idx = 0; idx < size; idx++) {
2889                 vm_page_t m;
2890
2891         retry:
2892                 m = vm_page_lookup(orig_object, offidxstart + idx);
2893                 if (m == NULL)
2894                         continue;
2895
2896                 /*
2897                  * We must wait for pending I/O to complete before we can
2898                  * rename the page.
2899                  *
2900                  * We do not have to VM_PROT_NONE the page as mappings should
2901                  * not be changed by this operation.
2902                  */
2903                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2904                         goto retry;
2905                 vm_page_busy(m);
2906                 vm_page_rename(m, new_object, idx);
2907                 /* page automatically made dirty by rename and cache handled */
2908                 vm_page_busy(m);
2909         }
2910
2911         if (orig_object->type == OBJT_SWAP) {
2912                 vm_object_pip_add(orig_object, 1);
2913                 /*
2914                  * copy orig_object pages into new_object
2915                  * and destroy unneeded pages in
2916                  * shadow object.
2917                  */
2918                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2919                 vm_object_pip_wakeup(orig_object);
2920         }
2921
2922         /*
2923          * Wakeup the pages we played with.  No spl protection is needed
2924          * for a simple wakeup.
2925          */
2926         for (idx = 0; idx < size; idx++) {
2927                 m = vm_page_lookup(new_object, idx);
2928                 if (m)
2929                         vm_page_wakeup(m);
2930         }
2931
2932         entry->object.vm_object = new_object;
2933         entry->offset = 0LL;
2934         vm_object_deallocate_locked(orig_object);
2935         lwkt_reltoken(&vmobj_token);
2936         lwkt_reltoken(&vm_token);
2937 }
2938
2939 /*
2940  * Copies the contents of the source entry to the destination
2941  * entry.  The entries *must* be aligned properly.
2942  *
2943  * The vm_map must be exclusively locked.
2944  * vm_token must be held
2945  */
2946 static void
2947 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2948         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2949 {
2950         vm_object_t src_object;
2951
2952         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2953                 return;
2954         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2955                 return;
2956
2957         ASSERT_LWKT_TOKEN_HELD(&vm_token);
2958         lwkt_gettoken(&vmobj_token);            /* required for collapse */
2959
2960         if (src_entry->wired_count == 0) {
2961                 /*
2962                  * If the source entry is marked needs_copy, it is already
2963                  * write-protected.
2964                  */
2965                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2966                         pmap_protect(src_map->pmap,
2967                             src_entry->start,
2968                             src_entry->end,
2969                             src_entry->protection & ~VM_PROT_WRITE);
2970                 }
2971
2972                 /*
2973                  * Make a copy of the object.
2974                  */
2975                 if ((src_object = src_entry->object.vm_object) != NULL) {
2976                         if ((src_object->handle == NULL) &&
2977                                 (src_object->type == OBJT_DEFAULT ||
2978                                  src_object->type == OBJT_SWAP)) {
2979                                 vm_object_collapse(src_object);
2980                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2981                                         vm_map_split(src_entry);
2982                                         src_object = src_entry->object.vm_object;
2983                                 }
2984                         }
2985
2986                         vm_object_reference_locked(src_object);
2987                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2988                         dst_entry->object.vm_object = src_object;
2989                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2990                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2991                         dst_entry->offset = src_entry->offset;
2992                 } else {
2993                         dst_entry->object.vm_object = NULL;
2994                         dst_entry->offset = 0;
2995                 }
2996
2997                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2998                     dst_entry->end - dst_entry->start, src_entry->start);
2999         } else {
3000                 /*
3001                  * Of course, wired down pages can't be set copy-on-write.
3002                  * Cause wired pages to be copied into the new map by
3003                  * simulating faults (the new pages are pageable)
3004                  */
3005                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3006         }
3007         lwkt_reltoken(&vmobj_token);
3008 }
3009
3010 /*
3011  * vmspace_fork:
3012  * Create a new process vmspace structure and vm_map
3013  * based on those of an existing process.  The new map
3014  * is based on the old map, according to the inheritance
3015  * values on the regions in that map.
3016  *
3017  * The source map must not be locked.
3018  * No requirements.
3019  */
3020 struct vmspace *
3021 vmspace_fork(struct vmspace *vm1)
3022 {
3023         struct vmspace *vm2;
3024         vm_map_t old_map = &vm1->vm_map;
3025         vm_map_t new_map;
3026         vm_map_entry_t old_entry;
3027         vm_map_entry_t new_entry;
3028         vm_object_t object;
3029         int count;
3030
3031         lwkt_gettoken(&vm_token);
3032         lwkt_gettoken(&vmspace_token);
3033         lwkt_gettoken(&vmobj_token);
3034         vm_map_lock(old_map);
3035         old_map->infork = 1;
3036
3037         /*
3038          * XXX Note: upcalls are not copied.
3039          */
3040         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3041         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3042             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3043         new_map = &vm2->vm_map; /* XXX */
3044         new_map->timestamp = 1;
3045
3046         vm_map_lock(new_map);
3047
3048         count = 0;
3049         old_entry = old_map->header.next;
3050         while (old_entry != &old_map->header) {
3051                 ++count;
3052                 old_entry = old_entry->next;
3053         }
3054
3055         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3056
3057         old_entry = old_map->header.next;
3058         while (old_entry != &old_map->header) {
3059                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3060                         panic("vm_map_fork: encountered a submap");
3061
3062                 switch (old_entry->inheritance) {
3063                 case VM_INHERIT_NONE:
3064                         break;
3065                 case VM_INHERIT_SHARE:
3066                         /*
3067                          * Clone the entry, creating the shared object if
3068                          * necessary.
3069                          */
3070                         object = old_entry->object.vm_object;
3071                         if (object == NULL) {
3072                                 vm_map_entry_allocate_object(old_entry);
3073                                 object = old_entry->object.vm_object;
3074                         }
3075
3076                         /*
3077                          * Add the reference before calling vm_map_entry_shadow
3078                          * to insure that a shadow object is created.
3079                          */
3080                         vm_object_reference_locked(object);
3081                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3082                                 vm_map_entry_shadow(old_entry);
3083                                 /* Transfer the second reference too. */
3084                                 vm_object_reference_locked(
3085                                     old_entry->object.vm_object);
3086                                 vm_object_deallocate_locked(object);
3087                                 object = old_entry->object.vm_object;
3088                         }
3089                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3090
3091                         /*
3092                          * Clone the entry, referencing the shared object.
3093                          */
3094                         new_entry = vm_map_entry_create(new_map, &count);
3095                         *new_entry = *old_entry;
3096                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3097                         new_entry->wired_count = 0;
3098
3099                         /*
3100                          * Insert the entry into the new map -- we know we're
3101                          * inserting at the end of the new map.
3102                          */
3103
3104                         vm_map_entry_link(new_map, new_map->header.prev,
3105                                           new_entry);
3106
3107                         /*
3108                          * Update the physical map
3109                          */
3110                         pmap_copy(new_map->pmap, old_map->pmap,
3111                             new_entry->start,
3112                             (old_entry->end - old_entry->start),
3113                             old_entry->start);
3114                         break;
3115                 case VM_INHERIT_COPY:
3116                         /*
3117                          * Clone the entry and link into the map.
3118                          */
3119                         new_entry = vm_map_entry_create(new_map, &count);
3120                         *new_entry = *old_entry;
3121                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3122                         new_entry->wired_count = 0;
3123                         new_entry->object.vm_object = NULL;
3124                         vm_map_entry_link(new_map, new_map->header.prev,
3125                                           new_entry);
3126                         vm_map_copy_entry(old_map, new_map, old_entry,
3127                                           new_entry);
3128                         break;
3129                 }
3130                 old_entry = old_entry->next;
3131         }
3132
3133         new_map->size = old_map->size;
3134         old_map->infork = 0;
3135         vm_map_unlock(old_map);
3136         vm_map_unlock(new_map);
3137         vm_map_entry_release(count);
3138
3139         lwkt_reltoken(&vmobj_token);
3140         lwkt_reltoken(&vmspace_token);
3141         lwkt_reltoken(&vm_token);
3142
3143         return (vm2);
3144 }
3145
3146 /*
3147  * Create an auto-grow stack entry
3148  *
3149  * No requirements.
3150  */
3151 int
3152 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3153               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3154 {
3155         vm_map_entry_t  prev_entry;
3156         vm_map_entry_t  new_stack_entry;
3157         vm_size_t       init_ssize;
3158         int             rv;
3159         int             count;
3160         vm_offset_t     tmpaddr;
3161
3162         cow |= MAP_IS_STACK;
3163
3164         if (max_ssize < sgrowsiz)
3165                 init_ssize = max_ssize;
3166         else
3167                 init_ssize = sgrowsiz;
3168
3169         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3170         vm_map_lock(map);
3171
3172         /*
3173          * Find space for the mapping
3174          */
3175         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3176                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3177                                      flags, &tmpaddr)) {
3178                         vm_map_unlock(map);
3179                         vm_map_entry_release(count);
3180                         return (KERN_NO_SPACE);
3181                 }
3182                 addrbos = tmpaddr;
3183         }
3184
3185         /* If addr is already mapped, no go */
3186         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3187                 vm_map_unlock(map);
3188                 vm_map_entry_release(count);
3189                 return (KERN_NO_SPACE);
3190         }
3191
3192 #if 0
3193         /* XXX already handled by kern_mmap() */
3194         /* If we would blow our VMEM resource limit, no go */
3195         if (map->size + init_ssize >
3196             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3197                 vm_map_unlock(map);
3198                 vm_map_entry_release(count);
3199                 return (KERN_NO_SPACE);
3200         }
3201 #endif
3202
3203         /*
3204          * If we can't accomodate max_ssize in the current mapping,
3205          * no go.  However, we need to be aware that subsequent user
3206          * mappings might map into the space we have reserved for
3207          * stack, and currently this space is not protected.  
3208          * 
3209          * Hopefully we will at least detect this condition 
3210          * when we try to grow the stack.
3211          */
3212         if ((prev_entry->next != &map->header) &&
3213             (prev_entry->next->start < addrbos + max_ssize)) {
3214                 vm_map_unlock(map);
3215                 vm_map_entry_release(count);
3216                 return (KERN_NO_SPACE);
3217         }
3218
3219         /*
3220          * We initially map a stack of only init_ssize.  We will
3221          * grow as needed later.  Since this is to be a grow 
3222          * down stack, we map at the top of the range.
3223          *
3224          * Note: we would normally expect prot and max to be
3225          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3226          * eliminate these as input parameters, and just
3227          * pass these values here in the insert call.
3228          */
3229         rv = vm_map_insert(map, &count,
3230                            NULL, 0, addrbos + max_ssize - init_ssize,
3231                            addrbos + max_ssize,
3232                            VM_MAPTYPE_NORMAL,
3233                            prot, max,
3234                            cow);
3235
3236         /* Now set the avail_ssize amount */
3237         if (rv == KERN_SUCCESS) {
3238                 if (prev_entry != &map->header)
3239                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3240                 new_stack_entry = prev_entry->next;
3241                 if (new_stack_entry->end   != addrbos + max_ssize ||
3242                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3243                         panic ("Bad entry start/end for new stack entry");
3244                 else 
3245                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3246         }
3247
3248         vm_map_unlock(map);
3249         vm_map_entry_release(count);
3250         return (rv);
3251 }
3252
3253 /*
3254  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3255  * desired address is already mapped, or if we successfully grow
3256  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3257  * stack range (this is strange, but preserves compatibility with
3258  * the grow function in vm_machdep.c).
3259  *
3260  * No requirements.
3261  */
3262 int
3263 vm_map_growstack (struct proc *p, vm_offset_t addr)
3264 {
3265         vm_map_entry_t prev_entry;
3266         vm_map_entry_t stack_entry;
3267         vm_map_entry_t new_stack_entry;
3268         struct vmspace *vm = p->p_vmspace;
3269         vm_map_t map = &vm->vm_map;
3270         vm_offset_t    end;
3271         int grow_amount;
3272         int rv = KERN_SUCCESS;
3273         int is_procstack;
3274         int use_read_lock = 1;
3275         int count;
3276
3277         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3278 Retry:
3279         if (use_read_lock)
3280                 vm_map_lock_read(map);
3281         else
3282                 vm_map_lock(map);
3283
3284         /* If addr is already in the entry range, no need to grow.*/
3285         if (vm_map_lookup_entry(map, addr, &prev_entry))
3286                 goto done;
3287
3288         if ((stack_entry = prev_entry->next) == &map->header)
3289                 goto done;
3290         if (prev_entry == &map->header) 
3291                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3292         else
3293                 end = prev_entry->end;
3294
3295         /*
3296          * This next test mimics the old grow function in vm_machdep.c.
3297          * It really doesn't quite make sense, but we do it anyway
3298          * for compatibility.
3299          *
3300          * If not growable stack, return success.  This signals the
3301          * caller to proceed as he would normally with normal vm.
3302          */
3303         if (stack_entry->aux.avail_ssize < 1 ||
3304             addr >= stack_entry->start ||
3305             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3306                 goto done;
3307         } 
3308         
3309         /* Find the minimum grow amount */
3310         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3311         if (grow_amount > stack_entry->aux.avail_ssize) {
3312                 rv = KERN_NO_SPACE;
3313                 goto done;
3314         }
3315
3316         /*
3317          * If there is no longer enough space between the entries
3318          * nogo, and adjust the available space.  Note: this 
3319          * should only happen if the user has mapped into the
3320          * stack area after the stack was created, and is
3321          * probably an error.
3322          *
3323          * This also effectively destroys any guard page the user
3324          * might have intended by limiting the stack size.
3325          */
3326         if (grow_amount > stack_entry->start - end) {
3327                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3328                         use_read_lock = 0;
3329                         goto Retry;
3330                 }
3331                 use_read_lock = 0;
3332                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3333                 rv = KERN_NO_SPACE;
3334                 goto done;
3335         }
3336
3337         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3338
3339         /* If this is the main process stack, see if we're over the 
3340          * stack limit.
3341          */
3342         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3343                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3344                 rv = KERN_NO_SPACE;
3345                 goto done;
3346         }
3347
3348         /* Round up the grow amount modulo SGROWSIZ */
3349         grow_amount = roundup (grow_amount, sgrowsiz);
3350         if (grow_amount > stack_entry->aux.avail_ssize) {
3351                 grow_amount = stack_entry->aux.avail_ssize;
3352         }
3353         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3354                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3355                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3356                               ctob(vm->vm_ssize);
3357         }
3358
3359         /* If we would blow our VMEM resource limit, no go */
3360         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3361                 rv = KERN_NO_SPACE;
3362                 goto done;
3363         }
3364
3365         if (use_read_lock && vm_map_lock_upgrade(map)) {
3366                 use_read_lock = 0;
3367                 goto Retry;
3368         }
3369         use_read_lock = 0;
3370
3371         /* Get the preliminary new entry start value */
3372         addr = stack_entry->start - grow_amount;
3373
3374         /* If this puts us into the previous entry, cut back our growth
3375          * to the available space.  Also, see the note above.
3376          */
3377         if (addr < end) {
3378                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3379                 addr = end;
3380         }
3381
3382         rv = vm_map_insert(map, &count,
3383                            NULL, 0, addr, stack_entry->start,
3384                            VM_MAPTYPE_NORMAL,
3385                            VM_PROT_ALL, VM_PROT_ALL,
3386                            0);
3387
3388         /* Adjust the available stack space by the amount we grew. */
3389         if (rv == KERN_SUCCESS) {
3390                 if (prev_entry != &map->header)
3391                         vm_map_clip_end(map, prev_entry, addr, &count);
3392                 new_stack_entry = prev_entry->next;
3393                 if (new_stack_entry->end   != stack_entry->start  ||
3394                     new_stack_entry->start != addr)
3395                         panic ("Bad stack grow start/end in new stack entry");
3396                 else {
3397                         new_stack_entry->aux.avail_ssize =
3398                                 stack_entry->aux.avail_ssize -
3399                                 (new_stack_entry->end - new_stack_entry->start);
3400                         if (is_procstack)
3401                                 vm->vm_ssize += btoc(new_stack_entry->end -
3402                                                      new_stack_entry->start);
3403                 }
3404         }
3405
3406 done:
3407         if (use_read_lock)
3408                 vm_map_unlock_read(map);
3409         else
3410                 vm_map_unlock(map);
3411         vm_map_entry_release(count);
3412         return (rv);
3413 }
3414
3415 /*
3416  * Unshare the specified VM space for exec.  If other processes are
3417  * mapped to it, then create a new one.  The new vmspace is null.
3418  *
3419  * No requirements.
3420  */
3421 void
3422 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3423 {
3424         struct vmspace *oldvmspace = p->p_vmspace;
3425         struct vmspace *newvmspace;
3426         vm_map_t map = &p->p_vmspace->vm_map;
3427
3428         /*
3429          * If we are execing a resident vmspace we fork it, otherwise
3430          * we create a new vmspace.  Note that exitingcnt and upcalls
3431          * are not copied to the new vmspace.
3432          */
3433         lwkt_gettoken(&vmspace_token);
3434         if (vmcopy)  {
3435                 newvmspace = vmspace_fork(vmcopy);
3436         } else {
3437                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3438                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3439                       (caddr_t)&oldvmspace->vm_endcopy -
3440                        (caddr_t)&oldvmspace->vm_startcopy);
3441         }
3442
3443         /*
3444          * Finish initializing the vmspace before assigning it
3445          * to the process.  The vmspace will become the current vmspace
3446          * if p == curproc.
3447          */
3448         pmap_pinit2(vmspace_pmap(newvmspace));
3449         pmap_replacevm(p, newvmspace, 0);
3450         sysref_put(&oldvmspace->vm_sysref);
3451         lwkt_reltoken(&vmspace_token);
3452 }
3453
3454 /*
3455  * Unshare the specified VM space for forcing COW.  This
3456  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3457  *
3458  * The exitingcnt test is not strictly necessary but has been
3459  * included for code sanity (to make the code a bit more deterministic).
3460  */
3461 void
3462 vmspace_unshare(struct proc *p) 
3463 {
3464         struct vmspace *oldvmspace = p->p_vmspace;
3465         struct vmspace *newvmspace;
3466
3467         lwkt_gettoken(&vmspace_token);
3468         if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3469                 return;
3470         newvmspace = vmspace_fork(oldvmspace);
3471         pmap_pinit2(vmspace_pmap(newvmspace));
3472         pmap_replacevm(p, newvmspace, 0);
3473         sysref_put(&oldvmspace->vm_sysref);
3474         lwkt_reltoken(&vmspace_token);
3475 }
3476
3477 /*
3478  * Finds the VM object, offset, and protection for a given virtual address
3479  * in the specified map, assuming a page fault of the type specified.
3480  *
3481  * Leaves the map in question locked for read; return values are guaranteed
3482  * until a vm_map_lookup_done call is performed.  Note that the map argument
3483  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3484  *
3485  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3486  * that fast.
3487  *
3488  * If a lookup is requested with "write protection" specified, the map may
3489  * be changed to perform virtual copying operations, although the data
3490  * referenced will remain the same.
3491  *
3492  * No requirements.
3493  */
3494 int
3495 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3496               vm_offset_t vaddr,
3497               vm_prot_t fault_typea,
3498               vm_map_entry_t *out_entry,        /* OUT */
3499               vm_object_t *object,              /* OUT */
3500               vm_pindex_t *pindex,              /* OUT */
3501               vm_prot_t *out_prot,              /* OUT */
3502               boolean_t *wired)                 /* OUT */
3503 {
3504         vm_map_entry_t entry;
3505         vm_map_t map = *var_map;
3506         vm_prot_t prot;
3507         vm_prot_t fault_type = fault_typea;
3508         int use_read_lock = 1;
3509         int rv = KERN_SUCCESS;
3510
3511 RetryLookup:
3512         if (use_read_lock)
3513                 vm_map_lock_read(map);
3514         else
3515                 vm_map_lock(map);
3516
3517         /*
3518          * If the map has an interesting hint, try it before calling full
3519          * blown lookup routine.
3520          */
3521         entry = map->hint;
3522         *out_entry = entry;
3523
3524         if ((entry == &map->header) ||
3525             (vaddr < entry->start) || (vaddr >= entry->end)) {
3526                 vm_map_entry_t tmp_entry;
3527
3528                 /*
3529                  * Entry was either not a valid hint, or the vaddr was not
3530                  * contained in the entry, so do a full lookup.
3531                  */
3532                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3533                         rv = KERN_INVALID_ADDRESS;
3534                         goto done;
3535                 }
3536
3537                 entry = tmp_entry;
3538                 *out_entry = entry;
3539         }
3540         
3541         /*
3542          * Handle submaps.
3543          */
3544         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3545                 vm_map_t old_map = map;
3546
3547                 *var_map = map = entry->object.sub_map;
3548                 if (use_read_lock)
3549                         vm_map_unlock_read(old_map);
3550                 else
3551                         vm_map_unlock(old_map);
3552                 use_read_lock = 1;
3553                 goto RetryLookup;
3554         }
3555
3556         /*
3557          * Check whether this task is allowed to have this page.
3558          * Note the special case for MAP_ENTRY_COW
3559          * pages with an override.  This is to implement a forced
3560          * COW for debuggers.
3561          */
3562
3563         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3564                 prot = entry->max_protection;
3565         else
3566                 prot = entry->protection;
3567
3568         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3569         if ((fault_type & prot) != fault_type) {
3570                 rv = KERN_PROTECTION_FAILURE;
3571                 goto done;
3572         }
3573
3574         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3575             (entry->eflags & MAP_ENTRY_COW) &&
3576             (fault_type & VM_PROT_WRITE) &&
3577             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3578                 rv = KERN_PROTECTION_FAILURE;
3579                 goto done;
3580         }
3581
3582         /*
3583          * If this page is not pageable, we have to get it for all possible
3584          * accesses.
3585          */
3586         *wired = (entry->wired_count != 0);
3587         if (*wired)
3588                 prot = fault_type = entry->protection;
3589
3590         /*
3591          * Virtual page tables may need to update the accessed (A) bit
3592          * in a page table entry.  Upgrade the fault to a write fault for
3593          * that case if the map will support it.  If the map does not support
3594          * it the page table entry simply will not be updated.
3595          */
3596         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3597                 if (prot & VM_PROT_WRITE)
3598                         fault_type |= VM_PROT_WRITE;
3599         }
3600
3601         /*
3602          * If the entry was copy-on-write, we either ...
3603          */
3604         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3605                 /*
3606                  * If we want to write the page, we may as well handle that
3607                  * now since we've got the map locked.
3608                  *
3609                  * If we don't need to write the page, we just demote the
3610                  * permissions allowed.
3611                  */
3612
3613                 if (fault_type & VM_PROT_WRITE) {
3614                         /*
3615                          * Make a new object, and place it in the object
3616                          * chain.  Note that no new references have appeared
3617                          * -- one just moved from the map to the new
3618                          * object.
3619                          */
3620
3621                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3622                                 use_read_lock = 0;
3623                                 goto RetryLookup;
3624                         }
3625                         use_read_lock = 0;
3626
3627                         vm_map_entry_shadow(entry);
3628                 } else {
3629                         /*
3630                          * We're attempting to read a copy-on-write page --
3631                          * don't allow writes.
3632                          */
3633
3634                         prot &= ~VM_PROT_WRITE;
3635                 }
3636         }
3637
3638         /*
3639          * Create an object if necessary.
3640          */
3641         if (entry->object.vm_object == NULL &&
3642             !map->system_map) {
3643                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3644                         use_read_lock = 0;
3645                         goto RetryLookup;
3646                 }
3647                 use_read_lock = 0;
3648                 vm_map_entry_allocate_object(entry);
3649         }
3650
3651         /*
3652          * Return the object/offset from this entry.  If the entry was
3653          * copy-on-write or empty, it has been fixed up.
3654          */
3655
3656         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3657         *object = entry->object.vm_object;
3658
3659         /*
3660          * Return whether this is the only map sharing this data.  On
3661          * success we return with a read lock held on the map.  On failure
3662          * we return with the map unlocked.
3663          */
3664         *out_prot = prot;
3665 done:
3666         if (rv == KERN_SUCCESS) {
3667                 if (use_read_lock == 0)
3668                         vm_map_lock_downgrade(map);
3669         } else if (use_read_lock) {
3670                 vm_map_unlock_read(map);
3671         } else {
3672                 vm_map_unlock(map);
3673         }
3674         return (rv);
3675 }
3676
3677 /*
3678  * Releases locks acquired by a vm_map_lookup()
3679  * (according to the handle returned by that lookup).
3680  *
3681  * No other requirements.
3682  */
3683 void
3684 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3685 {
3686         /*
3687          * Unlock the main-level map
3688          */
3689         vm_map_unlock_read(map);
3690         if (count)
3691                 vm_map_entry_release(count);
3692 }
3693
3694 #include "opt_ddb.h"
3695 #ifdef DDB
3696 #include <sys/kernel.h>
3697
3698 #include <ddb/ddb.h>
3699
3700 /*
3701  * Debugging only
3702  */
3703 DB_SHOW_COMMAND(map, vm_map_print)
3704 {
3705         static int nlines;
3706         /* XXX convert args. */
3707         vm_map_t map = (vm_map_t)addr;
3708         boolean_t full = have_addr;
3709
3710         vm_map_entry_t entry;
3711
3712         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3713             (void *)map,
3714             (void *)map->pmap, map->nentries, map->timestamp);
3715         nlines++;
3716
3717         if (!full && db_indent)
3718                 return;
3719
3720         db_indent += 2;
3721         for (entry = map->header.next; entry != &map->header;
3722             entry = entry->next) {
3723                 db_iprintf("map entry %p: start=%p, end=%p\n",
3724                     (void *)entry, (void *)entry->start, (void *)entry->end);
3725                 nlines++;
3726                 {
3727                         static char *inheritance_name[4] =
3728                         {"share", "copy", "none", "donate_copy"};
3729
3730                         db_iprintf(" prot=%x/%x/%s",
3731                             entry->protection,
3732                             entry->max_protection,
3733                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3734                         if (entry->wired_count != 0)
3735                                 db_printf(", wired");
3736                 }
3737                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3738                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3739                         db_printf(", share=%p, offset=0x%lx\n",
3740                             (void *)entry->object.sub_map,
3741                             (long)entry->offset);
3742                         nlines++;
3743                         if ((entry->prev == &map->header) ||
3744                             (entry->prev->object.sub_map !=
3745                                 entry->object.sub_map)) {
3746                                 db_indent += 2;
3747                                 vm_map_print((db_expr_t)(intptr_t)
3748                                              entry->object.sub_map,
3749                                              full, 0, NULL);
3750                                 db_indent -= 2;
3751                         }
3752                 } else {
3753                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3754                         db_printf(", object=%p, offset=0x%lx",
3755                             (void *)entry->object.vm_object,
3756                             (long)entry->offset);
3757                         if (entry->eflags & MAP_ENTRY_COW)
3758                                 db_printf(", copy (%s)",
3759                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3760                         db_printf("\n");
3761                         nlines++;
3762
3763                         if ((entry->prev == &map->header) ||
3764                             (entry->prev->object.vm_object !=
3765                                 entry->object.vm_object)) {
3766                                 db_indent += 2;
3767                                 vm_object_print((db_expr_t)(intptr_t)
3768                                                 entry->object.vm_object,
3769                                                 full, 0, NULL);
3770                                 nlines += 4;
3771                                 db_indent -= 2;
3772                         }
3773                 }
3774         }
3775         db_indent -= 2;
3776         if (db_indent == 0)
3777                 nlines = 0;
3778 }
3779
3780 /*
3781  * Debugging only
3782  */
3783 DB_SHOW_COMMAND(procvm, procvm)
3784 {
3785         struct proc *p;
3786
3787         if (have_addr) {
3788                 p = (struct proc *) addr;
3789         } else {
3790                 p = curproc;
3791         }
3792
3793         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3794             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3795             (void *)vmspace_pmap(p->p_vmspace));
3796
3797         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3798 }
3799
3800 #endif /* DDB */