sbin/hammer: Remove debug printfs
[dragonfly.git] / sbin / hammer / ondisk.c
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 #include <sys/diskslice.h>
36 #include <sys/diskmbr.h>
37
38 #include "hammer_util.h"
39
40 static void get_buffer_readahead(struct buffer_info *base);
41 static void *get_ondisk(hammer_off_t buf_offset, struct buffer_info **bufferp,
42                         int isnew);
43 static __inline int readhammervol(struct volume_info *vol);
44 static __inline int readhammerbuf(struct buffer_info *buf);
45 static __inline int writehammervol(struct volume_info *vol);
46 static __inline int writehammerbuf(struct buffer_info *buf);
47
48 int DebugOpt;
49
50 uuid_t Hammer_FSType;
51 uuid_t Hammer_FSId;
52 int     UseReadBehind = -4;
53 int     UseReadAhead = 4;
54 int     AssertOnFailure = 1;
55 struct volume_list VolList = TAILQ_HEAD_INITIALIZER(VolList);
56 static int valid_hammer_volumes;
57
58 static __inline
59 int
60 buffer_hash(hammer_off_t buf_offset)
61 {
62         int hi;
63
64         hi = (int)(buf_offset / HAMMER_BUFSIZE) & HAMMER_BUFLISTMASK;
65         return(hi);
66 }
67
68 static struct buffer_info*
69 find_buffer(struct volume_info *volume, hammer_off_t buf_offset)
70 {
71         int hi;
72         struct buffer_info *buf;
73
74         hi = buffer_hash(buf_offset);
75         TAILQ_FOREACH(buf, &volume->buffer_lists[hi], entry)
76                 if (buf->buf_offset == buf_offset)
77                         return(buf);
78         return(NULL);
79 }
80
81 static
82 struct volume_info *
83 __alloc_volume(const char *volname, int oflags)
84 {
85         struct volume_info *vol;
86         int i;
87
88         vol = malloc(sizeof(*vol));
89         if (vol == NULL)
90                 err(1, "alloc_volume");
91         bzero(vol, sizeof(*vol));
92
93         vol->vol_no = -1;
94         vol->rdonly = (oflags == O_RDONLY);
95         vol->name = strdup(volname);
96         vol->fd = open(vol->name, oflags);
97         if (vol->fd < 0)
98                 err(1, "alloc_volume: Failed to open %s", vol->name);
99
100         vol->size = 0;
101         vol->device_offset = 0;
102         vol->type = NULL;
103
104         vol->ondisk = malloc(HAMMER_BUFSIZE);
105         if (vol->ondisk == NULL)
106                 err(1, "alloc_volume");
107         bzero(vol->ondisk, HAMMER_BUFSIZE);
108
109         for (i = 0; i < HAMMER_BUFLISTS; ++i)
110                 TAILQ_INIT(&vol->buffer_lists[i]);
111
112         return(vol);
113 }
114
115 static void
116 __add_volume(struct volume_info *vol)
117 {
118         struct volume_info *scan;
119         struct stat st1, st2;
120
121         if (fstat(vol->fd, &st1) != 0)
122                 errx(1, "add_volume: %s: Failed to stat", vol->name);
123
124         TAILQ_FOREACH(scan, &VolList, entry) {
125                 if (scan->vol_no == vol->vol_no) {
126                         errx(1, "add_volume: %s: Duplicate volume number %d "
127                                 "against %s",
128                                 vol->name, vol->vol_no, scan->name);
129                 }
130                 if (fstat(scan->fd, &st2) != 0) {
131                         errx(1, "add_volume: %s: Failed to stat %s",
132                                 vol->name, scan->name);
133                 }
134                 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev)) {
135                         errx(1, "add_volume: %s: Specified more than once",
136                                 vol->name);
137                 }
138         }
139
140         TAILQ_INSERT_TAIL(&VolList, vol, entry);
141 }
142
143 /*
144  * Initialize a volume structure and ondisk vol_no field.
145  */
146 struct volume_info *
147 init_volume(int32_t vol_no, const char *filename, int oflags)
148 {
149         struct volume_info *vol;
150
151         vol = __alloc_volume(filename, oflags);
152         vol->vol_no = vol->ondisk->vol_no = vol_no;
153
154         __add_volume(vol);
155
156         return(vol);
157 }
158
159 /*
160  * Initialize a volume structure and read ondisk volume header.
161  */
162 struct volume_info*
163 load_volume(const char *filename, int oflags)
164 {
165         struct volume_info *vol;
166         struct hammer_volume_ondisk *ondisk;
167         int n;
168
169         vol = __alloc_volume(filename, oflags);
170
171         n = readhammervol(vol);
172         if (n == -1) {
173                 err(1, "load_volume: %s: Read failed at offset 0", vol->name);
174         }
175         ondisk = vol->ondisk;
176         vol->vol_no = ondisk->vol_no;
177
178         if (ondisk->vol_rootvol != HAMMER_ROOT_VOLNO) {
179                 errx(1, "load_volume: Invalid root volume# %d",
180                         ondisk->vol_rootvol);
181         }
182
183         if (bcmp(&Hammer_FSType, &ondisk->vol_fstype, sizeof(Hammer_FSType))) {
184                 errx(1, "load_volume: %s: Header does not indicate "
185                         "that this is a hammer volume", vol->name);
186         }
187
188         if (valid_hammer_volumes++ == 0) {
189                 Hammer_FSId = ondisk->vol_fsid;
190         } else if (bcmp(&Hammer_FSId, &ondisk->vol_fsid, sizeof(Hammer_FSId))) {
191                 errx(1, "load_volume: %s: FSId does match other volumes!",
192                         vol->name);
193         }
194
195         __add_volume(vol);
196
197         return(vol);
198 }
199
200 /*
201  * Check basic volume characteristics.
202  */
203 void
204 check_volume(struct volume_info *vol)
205 {
206         struct partinfo pinfo;
207         struct stat st;
208
209         /*
210          * Get basic information about the volume
211          */
212         if (ioctl(vol->fd, DIOCGPART, &pinfo) < 0) {
213                 /*
214                  * Allow the formatting of regular files as HAMMER volumes
215                  */
216                 if (fstat(vol->fd, &st) < 0)
217                         err(1, "Unable to stat %s", vol->name);
218                 vol->size = st.st_size;
219                 vol->type = "REGFILE";
220         } else {
221                 /*
222                  * When formatting a block device as a HAMMER volume the
223                  * sector size must be compatible.  HAMMER uses 16384 byte
224                  * filesystem buffers.
225                  */
226                 if (pinfo.reserved_blocks) {
227                         errx(1, "HAMMER cannot be placed in a partition "
228                                 "which overlaps the disklabel or MBR");
229                 }
230                 if (pinfo.media_blksize > HAMMER_BUFSIZE ||
231                     HAMMER_BUFSIZE % pinfo.media_blksize) {
232                         errx(1, "A media sector size of %d is not supported",
233                              pinfo.media_blksize);
234                 }
235
236                 vol->size = pinfo.media_size;
237                 vol->device_offset = pinfo.media_offset;
238                 vol->type = "DEVICE";
239         }
240 }
241
242 struct volume_info *
243 get_volume(int32_t vol_no)
244 {
245         struct volume_info *vol;
246
247         TAILQ_FOREACH(vol, &VolList, entry) {
248                 if (vol->vol_no == vol_no)
249                         break;
250         }
251         if (vol == NULL)
252                 errx(1, "get_volume: Volume %d does not exist!", vol_no);
253
254         /* not added to or removed from hammer cache */
255         return(vol);
256 }
257
258 struct volume_info *
259 get_root_volume(void)
260 {
261         return(get_volume(HAMMER_ROOT_VOLNO));
262 }
263
264 void
265 rel_volume(struct volume_info *volume __unused)
266 {
267         /* nothing to do */
268 }
269
270 /*
271  * Acquire the specified buffer.  isnew is -1 only when called
272  * via get_buffer_readahead() to prevent another readahead.
273  */
274 struct buffer_info *
275 get_buffer(hammer_off_t buf_offset, int isnew)
276 {
277         struct buffer_info *buf;
278         struct volume_info *volume;
279         int vol_no;
280         int zone;
281         int hi, n;
282         int dora = 0;
283
284         zone = HAMMER_ZONE_DECODE(buf_offset);
285         if (zone > HAMMER_ZONE_RAW_BUFFER_INDEX) {
286                 buf_offset = blockmap_lookup(buf_offset, NULL, NULL, NULL);
287         }
288         if (buf_offset == HAMMER_OFF_BAD)
289                 return(NULL);
290         assert(hammer_is_zone_raw_buffer(buf_offset));
291
292         vol_no = HAMMER_VOL_DECODE(buf_offset);
293         volume = get_volume(vol_no);
294
295         buf_offset &= ~HAMMER_BUFMASK64;
296         buf = find_buffer(volume, buf_offset);
297
298         if (buf == NULL) {
299                 buf = malloc(sizeof(*buf));
300                 bzero(buf, sizeof(*buf));
301                 buf->buf_offset = buf_offset;
302                 buf->raw_offset = hammer_xlate_to_phys(volume->ondisk,
303                                                         buf_offset);
304                 buf->volume = volume;
305                 buf->ondisk = malloc(HAMMER_BUFSIZE);
306                 if (isnew <= 0) {
307                         n = readhammerbuf(buf);
308                         if (n == -1) {
309                                 if (AssertOnFailure)
310                                         err(1, "get_buffer: %s:%016jx "
311                                             "Read failed at offset %016jx",
312                                             volume->name,
313                                             (intmax_t)buf->buf_offset,
314                                             (intmax_t)buf->raw_offset);
315                                 bzero(buf->ondisk, HAMMER_BUFSIZE);
316                         }
317                 }
318
319                 hi = buffer_hash(buf_offset);
320                 TAILQ_INSERT_TAIL(&volume->buffer_lists[hi], buf, entry);
321                 buf->cache.buffer = buf;
322                 hammer_cache_add(&buf->cache);
323                 dora = (isnew == 0);
324         } else {
325                 assert(buf->ondisk != NULL);
326                 assert(isnew != -1);
327                 hammer_cache_used(&buf->cache);
328         }
329
330         ++buf->cache.refs;
331         hammer_cache_flush();
332
333         if (isnew > 0) {
334                 assert(buf->cache.modified == 0);
335                 bzero(buf->ondisk, HAMMER_BUFSIZE);
336                 buf->cache.modified = 1;
337         }
338         if (dora)
339                 get_buffer_readahead(buf);
340         return(buf);
341 }
342
343 static void
344 get_buffer_readahead(struct buffer_info *base)
345 {
346         struct buffer_info *buf;
347         struct volume_info *vol;
348         hammer_off_t buf_offset;
349         int64_t raw_offset;
350         int ri = UseReadBehind;
351         int re = UseReadAhead;
352
353         raw_offset = base->raw_offset + ri * HAMMER_BUFSIZE;
354         vol = base->volume;
355
356         while (ri < re) {
357                 if (raw_offset >= vol->ondisk->vol_buf_end)
358                         break;
359                 if (raw_offset < vol->ondisk->vol_buf_beg || ri == 0) {
360                         ++ri;
361                         raw_offset += HAMMER_BUFSIZE;
362                         continue;
363                 }
364                 buf_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no,
365                         raw_offset - vol->ondisk->vol_buf_beg);
366                 buf = find_buffer(vol, buf_offset);
367                 if (buf == NULL) {
368                         buf = get_buffer(buf_offset, -1);
369                         rel_buffer(buf);
370                 }
371                 ++ri;
372                 raw_offset += HAMMER_BUFSIZE;
373         }
374 }
375
376 void
377 rel_buffer(struct buffer_info *buffer)
378 {
379         struct volume_info *volume;
380         int hi;
381
382         if (buffer == NULL)
383                 return;
384         assert(buffer->cache.refs > 0);
385         if (--buffer->cache.refs == 0) {
386                 if (buffer->cache.delete) {
387                         hi = buffer_hash(buffer->buf_offset);
388                         volume = buffer->volume;
389                         if (buffer->cache.modified)
390                                 flush_buffer(buffer);
391                         TAILQ_REMOVE(&volume->buffer_lists[hi], buffer, entry);
392                         hammer_cache_del(&buffer->cache);
393                         free(buffer->ondisk);
394                         free(buffer);
395                         rel_volume(volume);
396                 }
397         }
398 }
399
400 /*
401  * Retrieve a pointer to a buffer data given a buffer offset.  The underlying
402  * bufferp is freed if isnew or the offset is out of range of the cached data.
403  * If bufferp is freed a referenced buffer is loaded into it.
404  */
405 void *
406 get_buffer_data(hammer_off_t buf_offset, struct buffer_info **bufferp,
407                 int isnew)
408 {
409         if (*bufferp != NULL) {
410                 if (isnew > 0 ||
411                     (((*bufferp)->buf_offset ^ buf_offset) & ~HAMMER_BUFMASK64)) {
412                         rel_buffer(*bufferp);
413                         *bufferp = NULL;
414                 }
415         }
416         return(get_ondisk(buf_offset, bufferp, isnew));
417 }
418
419 /*
420  * Retrieve a pointer to a B-Tree node given a zone offset.  The underlying
421  * bufferp is freed if non-NULL and a referenced buffer is loaded into it.
422  */
423 hammer_node_ondisk_t
424 get_node(hammer_off_t node_offset, struct buffer_info **bufferp)
425 {
426         if (*bufferp != NULL) {
427                 rel_buffer(*bufferp);
428                 *bufferp = NULL;
429         }
430         return(get_ondisk(node_offset, bufferp, 0));
431 }
432
433 /*
434  * Return a pointer to a buffer data given a buffer offset.
435  * If *bufferp is NULL acquire the buffer otherwise use that buffer.
436  */
437 static void *
438 get_ondisk(hammer_off_t buf_offset, struct buffer_info **bufferp, int isnew)
439 {
440         struct buffer_info *buffer;
441
442         buffer = *bufferp;
443         if (buffer == NULL) {
444                 buffer = *bufferp = get_buffer(buf_offset, isnew);
445                 if (buffer == NULL)
446                         return(NULL);
447         }
448
449         return((char *)buffer->ondisk +
450                 ((int32_t)buf_offset & HAMMER_BUFMASK));
451 }
452
453 /*
454  * Allocate HAMMER elements - B-Tree nodes
455  */
456 void *
457 alloc_btree_element(hammer_off_t *offp, struct buffer_info **data_bufferp)
458 {
459         hammer_node_ondisk_t node;
460
461         node = alloc_blockmap(HAMMER_ZONE_BTREE_INDEX, sizeof(*node),
462                               offp, data_bufferp);
463         bzero(node, sizeof(*node));
464         return (node);
465 }
466
467 /*
468  * Allocate HAMMER elements - meta data (inode, direntry, PFS, etc)
469  */
470 void *
471 alloc_meta_element(hammer_off_t *offp, int32_t data_len,
472                    struct buffer_info **data_bufferp)
473 {
474         void *data;
475
476         data = alloc_blockmap(HAMMER_ZONE_META_INDEX, data_len,
477                               offp, data_bufferp);
478         bzero(data, data_len);
479         return (data);
480 }
481
482 /*
483  * Allocate HAMMER elements - data storage
484  *
485  * The only data_len supported by HAMMER userspace for large data zone
486  * (zone 10) is HAMMER_BUFSIZE which is 16KB.  >16KB data does not fit
487  * in a buffer allocated by get_buffer().  Also alloc_blockmap() does
488  * not consider >16KB buffer size.
489  */
490 void *
491 alloc_data_element(hammer_off_t *offp, int32_t data_len,
492                    struct buffer_info **data_bufferp)
493 {
494         void *data;
495         int zone;
496
497         if (data_len == 0)
498                 return(NULL);
499
500         zone = hammer_data_zone_index(data_len);
501         assert(data_len <= HAMMER_BUFSIZE); /* just one buffer */
502         assert(zone == HAMMER_ZONE_LARGE_DATA_INDEX ||
503                zone == HAMMER_ZONE_SMALL_DATA_INDEX);
504
505         data = alloc_blockmap(zone, data_len, offp, data_bufferp);
506         bzero(data, data_len);
507         return(data);
508 }
509
510 /*
511  * Format a new blockmap.  This is mostly a degenerate case because
512  * all allocations are now actually done from the freemap.
513  */
514 void
515 format_blockmap(struct volume_info *root_vol, int zone, hammer_off_t offset)
516 {
517         hammer_blockmap_t blockmap;
518         hammer_off_t zone_base;
519
520         /* Only root volume needs formatting */
521         assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
522
523         assert(hammer_is_zone2_mapped_index(zone));
524
525         blockmap = &root_vol->ondisk->vol0_blockmap[zone];
526         zone_base = HAMMER_ZONE_ENCODE(zone, offset);
527
528         bzero(blockmap, sizeof(*blockmap));
529         blockmap->phys_offset = 0;
530         blockmap->first_offset = zone_base;
531         blockmap->next_offset = zone_base;
532         blockmap->alloc_offset = HAMMER_ENCODE(zone, 255, -1);
533         blockmap->entry_crc = crc32(blockmap, HAMMER_BLOCKMAP_CRCSIZE);
534 }
535
536 /*
537  * Format a new freemap.  Set all layer1 entries to UNAVAIL.  The initialize
538  * code will load each volume's freemap.
539  */
540 void
541 format_freemap(struct volume_info *root_vol)
542 {
543         struct buffer_info *buffer = NULL;
544         hammer_off_t layer1_offset;
545         hammer_blockmap_t blockmap;
546         struct hammer_blockmap_layer1 *layer1;
547         int i, isnew;
548
549         /* Only root volume needs formatting */
550         assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
551
552         layer1_offset = alloc_bigblock(root_vol, HAMMER_ZONE_FREEMAP_INDEX);
553         for (i = 0; i < HAMMER_BIGBLOCK_SIZE; i += sizeof(*layer1)) {
554                 isnew = ((i % HAMMER_BUFSIZE) == 0);
555                 layer1 = get_buffer_data(layer1_offset + i, &buffer, isnew);
556                 bzero(layer1, sizeof(*layer1));
557                 layer1->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
558                 layer1->blocks_free = 0;
559                 layer1->layer1_crc = crc32(layer1, HAMMER_LAYER1_CRCSIZE);
560         }
561         assert(i == HAMMER_BIGBLOCK_SIZE);
562         rel_buffer(buffer);
563
564         blockmap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
565         bzero(blockmap, sizeof(*blockmap));
566         blockmap->phys_offset = layer1_offset;
567         blockmap->first_offset = 0;
568         blockmap->next_offset = HAMMER_ENCODE_RAW_BUFFER(0, 0);
569         blockmap->alloc_offset = HAMMER_ENCODE_RAW_BUFFER(255, -1);
570         blockmap->entry_crc = crc32(blockmap, HAMMER_BLOCKMAP_CRCSIZE);
571 }
572
573 /*
574  * Load the volume's remaining free space into the freemap.
575  *
576  * Returns the number of big-blocks available.
577  */
578 int64_t
579 initialize_freemap(struct volume_info *vol)
580 {
581         struct volume_info *root_vol;
582         struct buffer_info *buffer1 = NULL;
583         struct buffer_info *buffer2 = NULL;
584         struct hammer_blockmap_layer1 *layer1;
585         struct hammer_blockmap_layer2 *layer2;
586         hammer_off_t layer1_offset;
587         hammer_off_t layer2_offset;
588         hammer_off_t phys_offset;
589         hammer_off_t block_offset;
590         hammer_off_t aligned_vol_free_end;
591         hammer_blockmap_t freemap;
592         int64_t count = 0;
593         int64_t layer1_count = 0;
594
595         root_vol = get_root_volume();
596         aligned_vol_free_end = (vol->vol_free_end + HAMMER_BLOCKMAP_LAYER2_MASK)
597                                 & ~HAMMER_BLOCKMAP_LAYER2_MASK;
598
599         printf("initialize freemap volume %d\n", vol->vol_no);
600
601         /*
602          * Initialize the freemap.  First preallocate the big-blocks required
603          * to implement layer2.   This preallocation is a bootstrap allocation
604          * using blocks from the target volume.
605          */
606         freemap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
607
608         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
609              phys_offset < aligned_vol_free_end;
610              phys_offset += HAMMER_BLOCKMAP_LAYER2) {
611                 layer1_offset = freemap->phys_offset +
612                                 HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
613                 layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
614                 if (layer1->phys_offset == HAMMER_BLOCKMAP_UNAVAIL) {
615                         layer1->phys_offset = alloc_bigblock(vol,
616                                                 HAMMER_ZONE_FREEMAP_INDEX);
617                         layer1->blocks_free = 0;
618                         buffer1->cache.modified = 1;
619                         layer1->layer1_crc = crc32(layer1,
620                                                    HAMMER_LAYER1_CRCSIZE);
621                 }
622         }
623
624         /*
625          * Now fill everything in.
626          */
627         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
628              phys_offset < aligned_vol_free_end;
629              phys_offset += HAMMER_BLOCKMAP_LAYER2) {
630                 layer1_count = 0;
631                 layer1_offset = freemap->phys_offset +
632                                 HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
633                 layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
634                 assert(layer1->phys_offset != HAMMER_BLOCKMAP_UNAVAIL);
635
636                 for (block_offset = 0;
637                      block_offset < HAMMER_BLOCKMAP_LAYER2;
638                      block_offset += HAMMER_BIGBLOCK_SIZE) {
639                         layer2_offset = layer1->phys_offset +
640                                         HAMMER_BLOCKMAP_LAYER2_OFFSET(block_offset);
641                         layer2 = get_buffer_data(layer2_offset, &buffer2, 0);
642                         bzero(layer2, sizeof(*layer2));
643
644                         if (phys_offset + block_offset < vol->vol_free_off) {
645                                 /*
646                                  * Fixups XXX - big-blocks already allocated as part
647                                  * of the freemap bootstrap.
648                                  */
649                                 layer2->zone = HAMMER_ZONE_FREEMAP_INDEX;
650                                 layer2->append_off = HAMMER_BIGBLOCK_SIZE;
651                                 layer2->bytes_free = 0;
652                         } else if (phys_offset + block_offset < vol->vol_free_end) {
653                                 layer2->zone = 0;
654                                 layer2->append_off = 0;
655                                 layer2->bytes_free = HAMMER_BIGBLOCK_SIZE;
656                                 ++count;
657                                 ++layer1_count;
658                         } else {
659                                 layer2->zone = HAMMER_ZONE_UNAVAIL_INDEX;
660                                 layer2->append_off = HAMMER_BIGBLOCK_SIZE;
661                                 layer2->bytes_free = 0;
662                         }
663                         layer2->entry_crc = crc32(layer2, HAMMER_LAYER2_CRCSIZE);
664                         buffer2->cache.modified = 1;
665                 }
666
667                 layer1->blocks_free += layer1_count;
668                 layer1->layer1_crc = crc32(layer1, HAMMER_LAYER1_CRCSIZE);
669                 buffer1->cache.modified = 1;
670         }
671
672         rel_buffer(buffer1);
673         rel_buffer(buffer2);
674         rel_volume(root_vol);
675         return(count);
676 }
677
678 /*
679  * Returns the number of big-blocks available for filesystem data and undos
680  * without formatting.
681  */
682 int64_t
683 count_freemap(struct volume_info *vol)
684 {
685         hammer_off_t phys_offset;
686         hammer_off_t vol_free_off;
687         hammer_off_t aligned_vol_free_end;
688         int64_t count = 0;
689
690         vol_free_off = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
691         aligned_vol_free_end = (vol->vol_free_end + HAMMER_BLOCKMAP_LAYER2_MASK)
692                                 & ~HAMMER_BLOCKMAP_LAYER2_MASK;
693
694         if (vol->vol_no == HAMMER_ROOT_VOLNO)
695                 vol_free_off += HAMMER_BIGBLOCK_SIZE;
696
697         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
698              phys_offset < aligned_vol_free_end;
699              phys_offset += HAMMER_BLOCKMAP_LAYER2) {
700                 vol_free_off += HAMMER_BIGBLOCK_SIZE;
701         }
702
703         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
704              phys_offset < aligned_vol_free_end;
705              phys_offset += HAMMER_BIGBLOCK_SIZE) {
706                 if (phys_offset < vol_free_off) {
707                         ;
708                 } else if (phys_offset < vol->vol_free_end) {
709                         ++count;
710                 }
711         }
712
713         return(count);
714 }
715
716 /*
717  * Format the undomap for the root volume.
718  */
719 void
720 format_undomap(struct volume_info *root_vol, int64_t *undo_buffer_size)
721 {
722         const int undo_zone = HAMMER_ZONE_UNDO_INDEX;
723         hammer_off_t undo_limit;
724         hammer_blockmap_t blockmap;
725         struct hammer_volume_ondisk *ondisk;
726         struct buffer_info *buffer = NULL;
727         hammer_off_t scan;
728         int n;
729         int limit_index;
730         uint32_t seqno;
731
732         /* Only root volume needs formatting */
733         assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
734         ondisk = root_vol->ondisk;
735
736         /*
737          * Size the undo buffer in multiples of HAMMER_BIGBLOCK_SIZE,
738          * up to HAMMER_UNDO_LAYER2 big-blocks.  Size to approximately
739          * 0.1% of the disk.
740          *
741          * The minimum UNDO fifo size is 500MB, or approximately 1% of
742          * the recommended 50G disk.
743          *
744          * Changing this minimum is rather dangerous as complex filesystem
745          * operations can cause the UNDO FIFO to fill up otherwise.
746          */
747         undo_limit = *undo_buffer_size;
748         if (undo_limit == 0) {
749                 undo_limit = (ondisk->vol_buf_end - ondisk->vol_buf_beg) / 1000;
750                 if (undo_limit < 500*1024*1024)
751                         undo_limit = 500*1024*1024;
752         }
753         undo_limit = (undo_limit + HAMMER_BIGBLOCK_MASK64) &
754                      ~HAMMER_BIGBLOCK_MASK64;
755         if (undo_limit < HAMMER_BIGBLOCK_SIZE)
756                 undo_limit = HAMMER_BIGBLOCK_SIZE;
757         if (undo_limit > HAMMER_BIGBLOCK_SIZE * HAMMER_UNDO_LAYER2)
758                 undo_limit = HAMMER_BIGBLOCK_SIZE * HAMMER_UNDO_LAYER2;
759         *undo_buffer_size = undo_limit;
760
761         blockmap = &ondisk->vol0_blockmap[undo_zone];
762         bzero(blockmap, sizeof(*blockmap));
763         blockmap->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
764         blockmap->first_offset = HAMMER_ZONE_ENCODE(undo_zone, 0);
765         blockmap->next_offset = blockmap->first_offset;
766         blockmap->alloc_offset = HAMMER_ZONE_ENCODE(undo_zone, undo_limit);
767         blockmap->entry_crc = crc32(blockmap, HAMMER_BLOCKMAP_CRCSIZE);
768
769         limit_index = undo_limit / HAMMER_BIGBLOCK_SIZE;
770         assert(limit_index <= HAMMER_UNDO_LAYER2);
771
772         for (n = 0; n < limit_index; ++n) {
773                 ondisk->vol0_undo_array[n] = alloc_bigblock(root_vol,
774                                                         HAMMER_ZONE_UNDO_INDEX);
775         }
776         while (n < HAMMER_UNDO_LAYER2) {
777                 ondisk->vol0_undo_array[n++] = HAMMER_BLOCKMAP_UNAVAIL;
778         }
779
780         /*
781          * Pre-initialize the UNDO blocks (HAMMER version 4+)
782          */
783         printf("initializing the undo map (%jd MB)\n",
784                 (intmax_t)(blockmap->alloc_offset & HAMMER_OFF_LONG_MASK) /
785                 (1024 * 1024));
786
787         scan = blockmap->first_offset;
788         seqno = 0;
789
790         while (scan < blockmap->alloc_offset) {
791                 hammer_fifo_head_t head;
792                 hammer_fifo_tail_t tail;
793                 int isnew;
794                 int bytes = HAMMER_UNDO_ALIGN;
795
796                 isnew = ((scan & HAMMER_BUFMASK64) == 0);
797                 head = get_buffer_data(scan, &buffer, isnew);
798                 buffer->cache.modified = 1;
799                 tail = (void *)((char *)head + bytes - sizeof(*tail));
800
801                 bzero(head, bytes);
802                 head->hdr_signature = HAMMER_HEAD_SIGNATURE;
803                 head->hdr_type = HAMMER_HEAD_TYPE_DUMMY;
804                 head->hdr_size = bytes;
805                 head->hdr_seq = seqno++;
806
807                 tail->tail_signature = HAMMER_TAIL_SIGNATURE;
808                 tail->tail_type = HAMMER_HEAD_TYPE_DUMMY;
809                 tail->tail_size = bytes;
810
811                 head->hdr_crc = crc32(head, HAMMER_FIFO_HEAD_CRCOFF) ^
812                                 crc32(head + 1, bytes - sizeof(*head));
813
814                 scan += bytes;
815         }
816         rel_buffer(buffer);
817 }
818
819 /*
820  * Flush various tracking structures to disk
821  */
822 void
823 flush_all_volumes(void)
824 {
825         struct volume_info *vol;
826
827         TAILQ_FOREACH(vol, &VolList, entry)
828                 flush_volume(vol);
829 }
830
831 void
832 flush_volume(struct volume_info *volume)
833 {
834         struct buffer_info *buffer;
835         int i;
836
837         for (i = 0; i < HAMMER_BUFLISTS; ++i) {
838                 TAILQ_FOREACH(buffer, &volume->buffer_lists[i], entry)
839                         flush_buffer(buffer);
840         }
841         if (writehammervol(volume) == -1)
842                 err(1, "Write volume %d (%s)", volume->vol_no, volume->name);
843 }
844
845 void
846 flush_buffer(struct buffer_info *buffer)
847 {
848         struct volume_info *vol;
849
850         vol = buffer->volume;
851         if (writehammerbuf(buffer) == -1)
852                 err(1, "Write volume %d (%s)", vol->vol_no, vol->name);
853         buffer->cache.modified = 0;
854 }
855
856 /*
857  * Core I/O operations
858  */
859 static int
860 __read(struct volume_info *vol, void *data, int64_t offset, int size)
861 {
862         ssize_t n;
863
864         n = pread(vol->fd, data, size, offset);
865         if (n != size)
866                 return(-1);
867         return(0);
868 }
869
870 static __inline int
871 readhammervol(struct volume_info *vol)
872 {
873         return(__read(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
874 }
875
876 static __inline int
877 readhammerbuf(struct buffer_info *buf)
878 {
879         return(__read(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
880 }
881
882 static int
883 __write(struct volume_info *vol, const void *data, int64_t offset, int size)
884 {
885         ssize_t n;
886
887         if (vol->rdonly)
888                 return(0);
889
890         n = pwrite(vol->fd, data, size, offset);
891         if (n != size)
892                 return(-1);
893         return(0);
894 }
895
896 static __inline int
897 writehammervol(struct volume_info *vol)
898 {
899         return(__write(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
900 }
901
902 static __inline int
903 writehammerbuf(struct buffer_info *buf)
904 {
905         return(__write(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
906 }
907
908 int64_t init_boot_area_size(int64_t value, off_t avg_vol_size)
909 {
910         if (value == 0) {
911                 value = HAMMER_BOOT_NOMBYTES;
912                 while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
913                         value >>= 1;
914                 if (value < HAMMER_BOOT_MINBYTES)
915                         value = 0;
916         } else if (value < HAMMER_BOOT_MINBYTES) {
917                 value = HAMMER_BOOT_MINBYTES;
918         }
919
920         return(value);
921 }
922
923 int64_t init_mem_area_size(int64_t value, off_t avg_vol_size)
924 {
925         if (value == 0) {
926                 value = HAMMER_MEM_NOMBYTES;
927                 while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
928                         value >>= 1;
929                 if (value < HAMMER_MEM_MINBYTES)
930                         value = 0;
931         } else if (value < HAMMER_MEM_MINBYTES) {
932                 value = HAMMER_MEM_MINBYTES;
933         }
934
935         return(value);
936 }