Merge commit 'origin/vendor/PAM_PASSWDQC'
[dragonfly.git] / sys / emulation / ndis / subr_ntoskrnl.c
1 /*
2  * Copyright (c) 2003
3  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/compat/ndis/subr_ntoskrnl.c,v 1.40 2004/07/20 20:28:57 wpaul Exp $
33  * $DragonFly: src/sys/emulation/ndis/subr_ntoskrnl.c,v 1.13 2006/12/23 00:27:02 swildner Exp $
34  */
35
36 #include <sys/ctype.h>
37 #include <sys/unistd.h>
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/errno.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/lock.h>
44
45 #include <sys/callout.h>
46 #if __FreeBSD_version > 502113
47 #include <sys/kdb.h>
48 #endif
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/kthread.h>
52 #include <sys/bus.h>
53 #include <sys/rman.h>
54
55 #include <machine/atomic.h>
56 #include <machine/clock.h>
57 #include <machine/stdarg.h>
58
59 #include "regcall.h"
60 #include "pe_var.h"
61 #include "resource_var.h"
62 #include "ntoskrnl_var.h"
63 #include "ndis_var.h"
64 #include "hal_var.h"
65
66 #define __regparm __attribute__((regparm(3)))
67
68 #define FUNC void(*)(void)
69
70 __stdcall static uint8_t ntoskrnl_unicode_equal(ndis_unicode_string *,
71         ndis_unicode_string *, uint8_t);
72 __stdcall static void ntoskrnl_unicode_copy(ndis_unicode_string *,
73         ndis_unicode_string *);
74 __stdcall static ndis_status ntoskrnl_unicode_to_ansi(ndis_ansi_string *,
75         ndis_unicode_string *, uint8_t);
76 __stdcall static ndis_status ntoskrnl_ansi_to_unicode(ndis_unicode_string *,
77         ndis_ansi_string *, uint8_t);
78 __stdcall static void *ntoskrnl_iobuildsynchfsdreq(uint32_t, void *,
79         void *, uint32_t, uint32_t *, void *, void *);
80
81 /*
82  * registerized calls
83  */
84 __stdcall __regcall static uint32_t
85     ntoskrnl_iofcalldriver(REGARGS2(void *dobj, void *irp));
86 __stdcall __regcall static void
87     ntoskrnl_iofcompletereq(REGARGS2(void *irp, uint8_t prioboost));
88 __stdcall __regcall static slist_entry *
89     ntoskrnl_push_slist(REGARGS2(slist_header *head, slist_entry *entry));
90 __stdcall __regcall static slist_entry *
91     ntoskrnl_pop_slist(REGARGS1(slist_header *head));
92 __stdcall __regcall static slist_entry *
93     ntoskrnl_push_slist_ex(REGARGS2(slist_header *head, slist_entry *entry), kspin_lock *lock);
94 __stdcall __regcall static slist_entry *
95     ntoskrnl_pop_slist_ex(REGARGS2(slist_header *head, kspin_lock *lock));
96
97 __stdcall __regcall static uint32_t
98     ntoskrnl_interlock_inc(REGARGS1(volatile uint32_t *addend));
99 __stdcall __regcall static uint32_t
100     ntoskrnl_interlock_dec(REGARGS1(volatile uint32_t *addend));
101 __stdcall __regcall static void
102     ntoskrnl_interlock_addstat(REGARGS2(uint64_t *addend, uint32_t inc));
103 __stdcall __regcall static void
104     ntoskrnl_objderef(REGARGS1(void *object));
105
106 __stdcall static uint32_t ntoskrnl_waitforobjs(uint32_t,
107         nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t,
108         int64_t *, wait_block *);
109 static void ntoskrnl_wakeup(void *);
110 static void ntoskrnl_timercall(void *);
111 static void ntoskrnl_run_dpc(void *);
112 __stdcall static void ntoskrnl_writereg_ushort(uint16_t *, uint16_t);
113 __stdcall static uint16_t ntoskrnl_readreg_ushort(uint16_t *);
114 __stdcall static void ntoskrnl_writereg_ulong(uint32_t *, uint32_t);
115 __stdcall static uint32_t ntoskrnl_readreg_ulong(uint32_t *);
116 __stdcall static void ntoskrnl_writereg_uchar(uint8_t *, uint8_t);
117 __stdcall static uint8_t ntoskrnl_readreg_uchar(uint8_t *);
118 __stdcall static int64_t _allmul(int64_t, int64_t);
119 __stdcall static int64_t _alldiv(int64_t, int64_t);
120 __stdcall static int64_t _allrem(int64_t, int64_t);
121 __regparm static int64_t _allshr(int64_t, uint8_t);
122 __regparm static int64_t _allshl(int64_t, uint8_t);
123 __stdcall static uint64_t _aullmul(uint64_t, uint64_t);
124 __stdcall static uint64_t _aulldiv(uint64_t, uint64_t);
125 __stdcall static uint64_t _aullrem(uint64_t, uint64_t);
126 __regparm static uint64_t _aullshr(uint64_t, uint8_t);
127 __regparm static uint64_t _aullshl(uint64_t, uint8_t);
128 __stdcall static void *ntoskrnl_allocfunc(uint32_t, size_t, uint32_t);
129 __stdcall static void ntoskrnl_freefunc(void *);
130 static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *);
131 static slist_entry *ntoskrnl_popsl(slist_header *);
132 __stdcall static void ntoskrnl_init_lookaside(paged_lookaside_list *,
133         lookaside_alloc_func *, lookaside_free_func *,
134         uint32_t, size_t, uint32_t, uint16_t);
135 __stdcall static void ntoskrnl_delete_lookaside(paged_lookaside_list *);
136 __stdcall static void ntoskrnl_init_nplookaside(npaged_lookaside_list *,
137         lookaside_alloc_func *, lookaside_free_func *,
138         uint32_t, size_t, uint32_t, uint16_t);
139 __stdcall static void ntoskrnl_delete_nplookaside(npaged_lookaside_list *);
140 __stdcall static void ntoskrnl_freemdl(ndis_buffer *);
141 __stdcall static uint32_t ntoskrnl_sizeofmdl(void *, size_t);
142 __stdcall static void ntoskrnl_build_npaged_mdl(ndis_buffer *);
143 __stdcall static void *ntoskrnl_mmaplockedpages(ndis_buffer *, uint8_t);
144 __stdcall static void *ntoskrnl_mmaplockedpages_cache(ndis_buffer *,
145         uint8_t, uint32_t, void *, uint32_t, uint32_t);
146 __stdcall static void ntoskrnl_munmaplockedpages(void *, ndis_buffer *);
147 __stdcall static void ntoskrnl_init_lock(kspin_lock *);
148 __stdcall static size_t ntoskrnl_memcmp(const void *, const void *, size_t);
149 __stdcall static void ntoskrnl_init_ansi_string(ndis_ansi_string *, char *);
150 __stdcall static void ntoskrnl_init_unicode_string(ndis_unicode_string *,
151         uint16_t *);
152 __stdcall static void ntoskrnl_free_unicode_string(ndis_unicode_string *);
153 __stdcall static void ntoskrnl_free_ansi_string(ndis_ansi_string *);
154 __stdcall static ndis_status ntoskrnl_unicode_to_int(ndis_unicode_string *,
155         uint32_t, uint32_t *);
156 static int atoi (const char *);
157 static long atol (const char *);
158 static int rand(void);
159 static void ntoskrnl_time(uint64_t *);
160 __stdcall static uint8_t ntoskrnl_wdmver(uint8_t, uint8_t);
161 static void ntoskrnl_thrfunc(void *);
162 __stdcall static ndis_status ntoskrnl_create_thread(ndis_handle *,
163         uint32_t, void *, ndis_handle, void *, void *, void *);
164 __stdcall static ndis_status ntoskrnl_thread_exit(ndis_status);
165 __stdcall static ndis_status ntoskrnl_devprop(device_object *, uint32_t,
166         uint32_t, void *, uint32_t *);
167 __stdcall static void ntoskrnl_init_mutex(kmutant *, uint32_t);
168 __stdcall static uint32_t ntoskrnl_release_mutex(kmutant *, uint8_t);
169 __stdcall static uint32_t ntoskrnl_read_mutex(kmutant *);
170 __stdcall static ndis_status ntoskrnl_objref(ndis_handle, uint32_t, void *,
171     uint8_t, void **, void **);
172 __stdcall static uint32_t ntoskrnl_zwclose(ndis_handle);
173 static uint32_t ntoskrnl_dbgprint(char *, ...);
174 __stdcall static void ntoskrnl_debugger(void);
175 __stdcall static void dummy(void);
176
177 static struct lwkt_token ntoskrnl_dispatchtoken;
178 static kspin_lock ntoskrnl_global;
179 static int ntoskrnl_kth = 0;
180 static struct nt_objref_head ntoskrnl_reflist;
181
182 static MALLOC_DEFINE(M_NDIS, "ndis", "ndis emulation");
183
184 int
185 ntoskrnl_libinit(void)
186 {
187         lwkt_token_init(&ntoskrnl_dispatchtoken);
188         ntoskrnl_init_lock(&ntoskrnl_global);
189         TAILQ_INIT(&ntoskrnl_reflist);
190         return(0);
191 }
192
193 int
194 ntoskrnl_libfini(void)
195 {
196         lwkt_token_uninit(&ntoskrnl_dispatchtoken);
197         return(0);
198 }
199
200 __stdcall static uint8_t 
201 ntoskrnl_unicode_equal(ndis_unicode_string *str1,
202                        ndis_unicode_string *str2,
203                        uint8_t caseinsensitive)
204 {
205         int                     i;
206
207         if (str1->nus_len != str2->nus_len)
208                 return(FALSE);
209
210         for (i = 0; i < str1->nus_len; i++) {
211                 if (caseinsensitive == TRUE) {
212                         if (toupper((char)(str1->nus_buf[i] & 0xFF)) !=
213                             toupper((char)(str2->nus_buf[i] & 0xFF)))
214                                 return(FALSE);
215                 } else {
216                         if (str1->nus_buf[i] != str2->nus_buf[i])
217                                 return(FALSE);
218                 }
219         }
220
221         return(TRUE);
222 }
223
224 __stdcall static void
225 ntoskrnl_unicode_copy(ndis_unicode_string *dest,
226                       ndis_unicode_string *src)
227 {
228
229         if (dest->nus_maxlen >= src->nus_len)
230                 dest->nus_len = src->nus_len;
231         else
232                 dest->nus_len = dest->nus_maxlen;
233         memcpy(dest->nus_buf, src->nus_buf, dest->nus_len);
234         return;
235 }
236
237 __stdcall static ndis_status
238 ntoskrnl_unicode_to_ansi(ndis_ansi_string *dest,
239                          ndis_unicode_string *src,
240                          uint8_t allocate)
241 {
242         char                    *astr = NULL;
243
244         if (dest == NULL || src == NULL)
245                 return(NDIS_STATUS_FAILURE);
246
247         if (allocate == TRUE) {
248                 if (ndis_unicode_to_ascii(src->nus_buf, src->nus_len, &astr))
249                         return(NDIS_STATUS_FAILURE);
250                 dest->nas_buf = astr;
251                 dest->nas_len = dest->nas_maxlen = strlen(astr);
252         } else {
253                 dest->nas_len = src->nus_len / 2; /* XXX */
254                 if (dest->nas_maxlen < dest->nas_len)
255                         dest->nas_len = dest->nas_maxlen;
256                 ndis_unicode_to_ascii(src->nus_buf, dest->nas_len * 2,
257                     &dest->nas_buf);
258         }
259         return (NDIS_STATUS_SUCCESS);
260 }
261
262 __stdcall static ndis_status
263 ntoskrnl_ansi_to_unicode(ndis_unicode_string *dest,
264                          ndis_ansi_string *src,
265                          uint8_t allocate)
266 {
267         uint16_t                *ustr = NULL;
268
269         if (dest == NULL || src == NULL)
270                 return(NDIS_STATUS_FAILURE);
271
272         if (allocate == TRUE) {
273                 if (ndis_ascii_to_unicode(src->nas_buf, &ustr))
274                         return(NDIS_STATUS_FAILURE);
275                 dest->nus_buf = ustr;
276                 dest->nus_len = dest->nus_maxlen = strlen(src->nas_buf) * 2;
277         } else {
278                 dest->nus_len = src->nas_len * 2; /* XXX */
279                 if (dest->nus_maxlen < dest->nus_len)
280                         dest->nus_len = dest->nus_maxlen;
281                 ndis_ascii_to_unicode(src->nas_buf, &dest->nus_buf);
282         }
283         return (NDIS_STATUS_SUCCESS);
284 }
285
286 __stdcall static void *
287 ntoskrnl_iobuildsynchfsdreq(uint32_t func, void *dobj, void *buf,
288                             uint32_t len, uint32_t *off,
289                             void *event, void *status)
290 {
291         return(NULL);
292 }
293         
294 __stdcall __regcall static uint32_t
295 ntoskrnl_iofcalldriver(REGARGS2(void *dobj, void *irp))
296 {
297         return(0);
298 }
299
300 __stdcall __regcall static void
301 ntoskrnl_iofcompletereq(REGARGS2(void *irp, uint8_t prioboost))
302 {
303 }
304
305 static void
306 ntoskrnl_wakeup(void *arg)
307 {
308         nt_dispatch_header      *obj;
309         wait_block              *w;
310         list_entry              *e;
311         struct thread           *td;
312         struct lwkt_tokref      tokref;
313
314         obj = arg;
315
316         lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
317         obj->dh_sigstate = TRUE;
318         e = obj->dh_waitlisthead.nle_flink;
319         while (e != &obj->dh_waitlisthead) {
320                 w = (wait_block *)e;
321                 td = w->wb_kthread;
322                 ndis_thresume(td);
323                 /*
324                  * For synchronization objects, only wake up
325                  * the first waiter.
326                  */
327                 if (obj->dh_type == EVENT_TYPE_SYNC)
328                         break;
329                 e = e->nle_flink;
330         }
331         lwkt_reltoken(&tokref);
332
333         return;
334 }
335
336 static void 
337 ntoskrnl_time(uint64_t *tval)
338 {
339         struct timespec         ts;
340
341         nanotime(&ts);
342         *tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 +
343             11644473600LL;
344
345         return;
346 }
347
348 /*
349  * KeWaitForSingleObject() is a tricky beast, because it can be used
350  * with several different object types: semaphores, timers, events,
351  * mutexes and threads. Semaphores don't appear very often, but the
352  * other object types are quite common. KeWaitForSingleObject() is
353  * what's normally used to acquire a mutex, and it can be used to
354  * wait for a thread termination.
355  *
356  * The Windows NDIS API is implemented in terms of Windows kernel
357  * primitives, and some of the object manipulation is duplicated in
358  * NDIS. For example, NDIS has timers and events, which are actually
359  * Windows kevents and ktimers. Now, you're supposed to only use the
360  * NDIS variants of these objects within the confines of the NDIS API,
361  * but there are some naughty developers out there who will use
362  * KeWaitForSingleObject() on NDIS timer and event objects, so we
363  * have to support that as well. Conseqently, our NDIS timer and event
364  * code has to be closely tied into our ntoskrnl timer and event code,
365  * just as it is in Windows.
366  *
367  * KeWaitForSingleObject() may do different things for different kinds
368  * of objects:
369  *
370  * - For events, we check if the event has been signalled. If the
371  *   event is already in the signalled state, we just return immediately,
372  *   otherwise we wait for it to be set to the signalled state by someone
373  *   else calling KeSetEvent(). Events can be either synchronization or
374  *   notification events.
375  *
376  * - For timers, if the timer has already fired and the timer is in
377  *   the signalled state, we just return, otherwise we wait on the
378  *   timer. Unlike an event, timers get signalled automatically when
379  *   they expire rather than someone having to trip them manually.
380  *   Timers initialized with KeInitializeTimer() are always notification
381  *   events: KeInitializeTimerEx() lets you initialize a timer as
382  *   either a notification or synchronization event.
383  *
384  * - For mutexes, we try to acquire the mutex and if we can't, we wait
385  *   on the mutex until it's available and then grab it. When a mutex is
386  *   released, it enters the signaled state, which wakes up one of the
387  *   threads waiting to acquire it. Mutexes are always synchronization
388  *   events.
389  *
390  * - For threads, the only thing we do is wait until the thread object
391  *   enters a signalled state, which occurs when the thread terminates.
392  *   Threads are always notification events.
393  *
394  * A notification event wakes up all threads waiting on an object. A
395  * synchronization event wakes up just one. Also, a synchronization event
396  * is auto-clearing, which means we automatically set the event back to
397  * the non-signalled state once the wakeup is done.
398  */
399
400 __stdcall uint32_t
401 ntoskrnl_waitforobj(nt_dispatch_header *obj, uint32_t reason,
402                     uint32_t mode, uint8_t alertable, int64_t *duetime)
403 {
404         struct thread           *td = curthread;
405         kmutant                 *km;
406         wait_block              w;
407         struct timeval          tv;
408         int                     error = 0;
409         int                     ticks;
410         uint64_t                curtime;
411         struct lwkt_tokref      tokref;
412
413         if (obj == NULL)
414                 return(STATUS_INVALID_PARAMETER);
415
416         lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
417
418         /*
419          * See if the object is a mutex. If so, and we already own
420          * it, then just increment the acquisition count and return.
421          *
422          * For any other kind of object, see if it's already in the
423          * signalled state, and if it is, just return. If the object
424          * is marked as a synchronization event, reset the state to
425          * unsignalled.
426          */
427
428         if (obj->dh_size == OTYPE_MUTEX) {
429                 km = (kmutant *)obj;
430                 if (km->km_ownerthread == NULL ||
431                     km->km_ownerthread == curthread->td_proc) {
432                         obj->dh_sigstate = FALSE;
433                         km->km_acquirecnt++;
434                         km->km_ownerthread = curthread->td_proc;
435                         lwkt_reltoken(&tokref);
436                         return (STATUS_SUCCESS);
437                 }
438         } else if (obj->dh_sigstate == TRUE) {
439                 if (obj->dh_type == EVENT_TYPE_SYNC)
440                         obj->dh_sigstate = FALSE;
441                 lwkt_reltoken(&tokref);
442                 return (STATUS_SUCCESS);
443         }
444
445         w.wb_object = obj;
446         w.wb_kthread = td;
447
448         INSERT_LIST_TAIL((&obj->dh_waitlisthead), (&w.wb_waitlist));
449
450         /*
451          * The timeout value is specified in 100 nanosecond units
452          * and can be a positive or negative number. If it's positive,
453          * then the duetime is absolute, and we need to convert it
454          * to an absolute offset relative to now in order to use it.
455          * If it's negative, then the duetime is relative and we
456          * just have to convert the units.
457          */
458
459         if (duetime != NULL) {
460                 if (*duetime < 0) {
461                         tv.tv_sec = - (*duetime) / 10000000;
462                         tv.tv_usec = (- (*duetime) / 10) -
463                             (tv.tv_sec * 1000000);
464                 } else {
465                         ntoskrnl_time(&curtime);
466                         if (*duetime < curtime)
467                                 tv.tv_sec = tv.tv_usec = 0;
468                         else {
469                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
470                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
471                                     (tv.tv_sec * 1000000);
472                         }
473                 }
474         }
475
476         lwkt_reltoken(&tokref);
477
478         ticks = 1 + tv.tv_sec * hz + tv.tv_usec * hz / 1000000;
479         error = ndis_thsuspend(td, duetime == NULL ? 0 : ticks);
480
481         lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
482
483         /* We timed out. Leave the object alone and return status. */
484
485         if (error == EWOULDBLOCK) {
486                 REMOVE_LIST_ENTRY((&w.wb_waitlist));
487                 lwkt_reltoken(&tokref);
488                 return(STATUS_TIMEOUT);
489         }
490
491         /*
492          * Mutexes are always synchronization objects, which means
493          * if several threads are waiting to acquire it, only one will
494          * be woken up. If that one is us, and the mutex is up for grabs,
495          * grab it.
496          */
497
498         if (obj->dh_size == OTYPE_MUTEX) {
499                 km = (kmutant *)obj;
500                 if (km->km_ownerthread == NULL) {
501                         km->km_ownerthread = curthread->td_proc;
502                         km->km_acquirecnt++;
503                 }
504         }
505
506         if (obj->dh_type == EVENT_TYPE_SYNC)
507                 obj->dh_sigstate = FALSE;
508         REMOVE_LIST_ENTRY((&w.wb_waitlist));
509
510         lwkt_reltoken(&tokref);
511
512         return(STATUS_SUCCESS);
513 }
514
515 __stdcall static uint32_t
516 ntoskrnl_waitforobjs(uint32_t cnt, nt_dispatch_header *obj[],
517                      uint32_t wtype, uint32_t reason, uint32_t mode,
518                      uint8_t alertable, int64_t *duetime,
519                      wait_block *wb_array)
520 {
521         struct thread           *td = curthread;
522         kmutant                 *km;
523         wait_block              _wb_array[THREAD_WAIT_OBJECTS];
524         wait_block              *w;
525         struct timeval          tv;
526         int                     i, wcnt = 0, widx = 0, error = 0;
527         uint64_t                curtime;
528         struct timespec         t1, t2;
529         struct lwkt_tokref      tokref;
530
531         if (cnt > MAX_WAIT_OBJECTS)
532                 return(STATUS_INVALID_PARAMETER);
533         if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL)
534                 return(STATUS_INVALID_PARAMETER);
535
536         lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
537
538         if (wb_array == NULL)
539                 w = &_wb_array[0];
540         else
541                 w = wb_array;
542
543         /* First pass: see if we can satisfy any waits immediately. */
544
545         for (i = 0; i < cnt; i++) {
546                 if (obj[i]->dh_size == OTYPE_MUTEX) {
547                         km = (kmutant *)obj[i];
548                         if (km->km_ownerthread == NULL ||
549                             km->km_ownerthread == curthread->td_proc) {
550                                 obj[i]->dh_sigstate = FALSE;
551                                 km->km_acquirecnt++;
552                                 km->km_ownerthread = curthread->td_proc;
553                                 if (wtype == WAITTYPE_ANY) {
554                                         lwkt_reltoken(&tokref);
555                                         return (STATUS_WAIT_0 + i);
556                                 }
557                         }
558                 } else if (obj[i]->dh_sigstate == TRUE) {
559                         if (obj[i]->dh_type == EVENT_TYPE_SYNC)
560                                 obj[i]->dh_sigstate = FALSE;
561                         if (wtype == WAITTYPE_ANY) {
562                                 lwkt_reltoken(&tokref);
563                                 return (STATUS_WAIT_0 + i);
564                         }
565                 }
566         }
567
568         /*
569          * Second pass: set up wait for anything we can't
570          * satisfy immediately.
571          */
572
573         for (i = 0; i < cnt; i++) {
574                 if (obj[i]->dh_sigstate == TRUE)
575                         continue;
576                 INSERT_LIST_TAIL((&obj[i]->dh_waitlisthead),
577                     (&w[i].wb_waitlist));
578                 w[i].wb_kthread = td;
579                 w[i].wb_object = obj[i];
580                 wcnt++;
581         }
582
583         if (duetime != NULL) {
584                 if (*duetime < 0) {
585                         tv.tv_sec = - (*duetime) / 10000000;
586                         tv.tv_usec = (- (*duetime) / 10) -
587                             (tv.tv_sec * 1000000);
588                 } else {
589                         ntoskrnl_time(&curtime);
590                         if (*duetime < curtime)
591                                 tv.tv_sec = tv.tv_usec = 0;
592                         else {
593                                 tv.tv_sec = ((*duetime) - curtime) / 10000000;
594                                 tv.tv_usec = ((*duetime) - curtime) / 10 -
595                                     (tv.tv_sec * 1000000);
596                         }
597                 }
598         }
599
600         while (wcnt) {
601                 nanotime(&t1);
602                 lwkt_reltoken(&tokref);
603
604                 ticks = 1 + tv.tv_sec * hz + tv.tv_usec * hz / 1000000;
605
606                 error = ndis_thsuspend(td, duetime == NULL ? 0 : ticks);
607
608                 lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
609                 nanotime(&t2);
610
611                 for (i = 0; i < cnt; i++) {
612                         if (obj[i]->dh_size == OTYPE_MUTEX) {
613                                 km = (kmutant *)obj;
614                                 if (km->km_ownerthread == NULL) {
615                                         km->km_ownerthread =
616                                             curthread->td_proc;
617                                         km->km_acquirecnt++;
618                                 }
619                         }
620                         if (obj[i]->dh_sigstate == TRUE) {
621                                 widx = i;
622                                 if (obj[i]->dh_type == EVENT_TYPE_SYNC)
623                                         obj[i]->dh_sigstate = FALSE;
624                                 REMOVE_LIST_ENTRY((&w[i].wb_waitlist));
625                                 wcnt--;
626                         }
627                 }
628
629                 if (error || wtype == WAITTYPE_ANY)
630                         break;
631
632                 if (duetime != NULL) {
633                         tv.tv_sec -= (t2.tv_sec - t1.tv_sec);
634                         tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000;
635                 }
636         }
637
638         if (wcnt) {
639                 for (i = 0; i < cnt; i++)
640                         REMOVE_LIST_ENTRY((&w[i].wb_waitlist));
641         }
642
643         if (error == EWOULDBLOCK) {
644                 lwkt_reltoken(&tokref);
645                 return(STATUS_TIMEOUT);
646         }
647
648         if (wtype == WAITTYPE_ANY && wcnt) {
649                 lwkt_reltoken(&tokref);
650                 return(STATUS_WAIT_0 + widx);
651         }
652
653         lwkt_reltoken(&tokref);
654
655         return(STATUS_SUCCESS);
656 }
657
658 __stdcall static void
659 ntoskrnl_writereg_ushort(uint16_t *reg, uint16_t val)
660 {
661         bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
662         return;
663 }
664
665 __stdcall static uint16_t
666 ntoskrnl_readreg_ushort(uint16_t *reg)
667 {
668         return(bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
669 }
670
671 __stdcall static void
672 ntoskrnl_writereg_ulong(uint32_t *reg, uint32_t val)
673 {
674         bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
675         return;
676 }
677
678 __stdcall static uint32_t
679 ntoskrnl_readreg_ulong(uint32_t *reg)
680 {
681         return(bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
682 }
683
684 __stdcall static uint8_t
685 ntoskrnl_readreg_uchar(uint8_t *reg)
686 {
687         return(bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg));
688 }
689
690 __stdcall static void
691 ntoskrnl_writereg_uchar(uint8_t *reg, uint8_t val)
692 {
693         bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val);
694         return;
695 }
696
697 __stdcall static int64_t
698 _allmul(int64_t a, int64_t b)
699 {
700         return (a * b);
701 }
702
703 __stdcall static int64_t
704 _alldiv(int64_t a, int64_t b)
705 {
706         return (a / b);
707 }
708
709 __stdcall static int64_t
710 _allrem(int64_t a, int64_t b)
711 {
712         return (a % b);
713 }
714
715 __stdcall static uint64_t
716 _aullmul(uint64_t a, uint64_t b)
717 {
718         return (a * b);
719 }
720
721 __stdcall static uint64_t
722 _aulldiv(uint64_t a, uint64_t b)
723 {
724         return (a / b);
725 }
726
727 __stdcall static uint64_t
728 _aullrem(uint64_t a, uint64_t b)
729 {
730         return (a % b);
731 }
732
733 __regparm static int64_t
734 _allshl(int64_t a, uint8_t b)
735 {
736         return (a << b);
737 }
738
739 __regparm static uint64_t
740 _aullshl(uint64_t a, uint8_t b)
741 {
742         return (a << b);
743 }
744
745 __regparm static int64_t
746 _allshr(int64_t a, uint8_t b)
747 {
748         return (a >> b);
749 }
750
751 __regparm static uint64_t
752 _aullshr(uint64_t a, uint8_t b)
753 {
754         return (a >> b);
755 }
756
757 static slist_entry *
758 ntoskrnl_pushsl(slist_header *head, slist_entry *entry)
759 {
760         slist_entry             *oldhead;
761
762         oldhead = head->slh_list.slh_next;
763         entry->sl_next = head->slh_list.slh_next;
764         head->slh_list.slh_next = entry;
765         head->slh_list.slh_depth++;
766         head->slh_list.slh_seq++;
767
768         return(oldhead);
769 }
770
771 static slist_entry *
772 ntoskrnl_popsl(slist_header *head)
773 {
774         slist_entry             *first;
775
776         first = head->slh_list.slh_next;
777         if (first != NULL) {
778                 head->slh_list.slh_next = first->sl_next;
779                 head->slh_list.slh_depth--;
780                 head->slh_list.slh_seq++;
781         }
782
783         return(first);
784 }
785
786 __stdcall static void *
787 ntoskrnl_allocfunc(uint32_t pooltype, size_t size, uint32_t tag)
788 {
789         return(kmalloc(size, M_DEVBUF, M_WAITOK));
790 }
791
792 __stdcall static void
793 ntoskrnl_freefunc(void *buf)
794 {
795         kfree(buf, M_DEVBUF);
796         return;
797 }
798
799 __stdcall static void
800 ntoskrnl_init_lookaside(paged_lookaside_list *lookaside,
801                         lookaside_alloc_func *allocfunc,
802                         lookaside_free_func *freefunc,
803                         uint32_t flags, size_t size,
804                         uint32_t tag, uint16_t depth)
805 {
806         bzero((char *)lookaside, sizeof(paged_lookaside_list));
807
808         if (size < sizeof(slist_entry))
809                 lookaside->nll_l.gl_size = sizeof(slist_entry);
810         else
811                 lookaside->nll_l.gl_size = size;
812         lookaside->nll_l.gl_tag = tag;
813         if (allocfunc == NULL)
814                 lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc;
815         else
816                 lookaside->nll_l.gl_allocfunc = allocfunc;
817
818         if (freefunc == NULL)
819                 lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc;
820         else
821                 lookaside->nll_l.gl_freefunc = freefunc;
822
823         ntoskrnl_init_lock(&lookaside->nll_obsoletelock);
824
825         lookaside->nll_l.gl_depth = LOOKASIDE_DEPTH;
826         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
827
828         return;
829 }
830
831 __stdcall static void
832 ntoskrnl_delete_lookaside(paged_lookaside_list *lookaside)
833 {
834         void                    *buf;
835         __stdcall void          (*freefunc)(void *);
836
837         freefunc = lookaside->nll_l.gl_freefunc;
838         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
839                 freefunc(buf);
840
841         return;
842 }
843
844 __stdcall static void
845 ntoskrnl_init_nplookaside(npaged_lookaside_list *lookaside,
846                           lookaside_alloc_func *allocfunc,
847                           lookaside_free_func *freefunc,
848                           uint32_t flags, size_t size,
849                           uint32_t tag, uint16_t depth)
850 {
851         bzero((char *)lookaside, sizeof(npaged_lookaside_list));
852
853         if (size < sizeof(slist_entry))
854                 lookaside->nll_l.gl_size = sizeof(slist_entry);
855         else
856                 lookaside->nll_l.gl_size = size;
857         lookaside->nll_l.gl_tag = tag;
858         if (allocfunc == NULL)
859                 lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc;
860         else
861                 lookaside->nll_l.gl_allocfunc = allocfunc;
862
863         if (freefunc == NULL)
864                 lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc;
865         else
866                 lookaside->nll_l.gl_freefunc = freefunc;
867
868         ntoskrnl_init_lock(&lookaside->nll_obsoletelock);
869
870         lookaside->nll_l.gl_depth = LOOKASIDE_DEPTH;
871         lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH;
872
873         return;
874 }
875
876 __stdcall static void
877 ntoskrnl_delete_nplookaside(npaged_lookaside_list *lookaside)
878 {
879         void                    *buf;
880         __stdcall void          (*freefunc)(void *);
881
882         freefunc = lookaside->nll_l.gl_freefunc;
883         while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL)
884                 freefunc(buf);
885
886         return;
887 }
888
889 /*
890  * Note: the interlocked slist push and pop routines are
891  * declared to be _fastcall in Windows. gcc 3.4 is supposed
892  * to have support for this calling convention, however we
893  * don't have that version available yet, so we kludge things
894  * up using some inline assembly.
895  */
896
897 __stdcall __regcall static slist_entry *
898 ntoskrnl_push_slist(REGARGS2(slist_header *head, slist_entry *entry))
899 {
900         slist_entry             *oldhead;
901
902         oldhead = (slist_entry *)FASTCALL3(ntoskrnl_push_slist_ex,
903             head, entry, &ntoskrnl_global);
904
905         return(oldhead);
906 }
907
908 __stdcall __regcall static slist_entry *
909 ntoskrnl_pop_slist(REGARGS1(slist_header *head))
910 {
911         slist_entry             *first;
912
913         first = (slist_entry *)FASTCALL2(ntoskrnl_pop_slist_ex,
914             head, &ntoskrnl_global);
915
916         return(first);
917 }
918
919 __stdcall __regcall static slist_entry *
920 ntoskrnl_push_slist_ex(REGARGS2(slist_header *head, slist_entry *entry), kspin_lock *lock)
921 {
922         slist_entry             *oldhead;
923         uint8_t                 irql;
924
925         irql = FASTCALL2(hal_lock, lock, DISPATCH_LEVEL);
926         oldhead = ntoskrnl_pushsl(head, entry);
927         FASTCALL2(hal_unlock, lock, irql);
928
929         return(oldhead);
930 }
931
932 __stdcall __regcall static slist_entry *
933 ntoskrnl_pop_slist_ex(REGARGS2(slist_header *head, kspin_lock *lock))
934 {
935         slist_entry             *first;
936         uint8_t                 irql;
937
938         irql = FASTCALL2(hal_lock, lock, DISPATCH_LEVEL);
939         first = ntoskrnl_popsl(head);
940         FASTCALL2(hal_unlock, lock, irql);
941
942         return(first);
943 }
944
945 __stdcall __regcall void
946 ntoskrnl_lock_dpc(REGARGS1(kspin_lock *lock))
947 {
948         while (atomic_poll_acquire_int((volatile u_int *)lock) == 0)
949                 /* sit and spin */;
950 }
951
952 __stdcall __regcall void
953 ntoskrnl_unlock_dpc(REGARGS1(kspin_lock *lock))
954 {
955         atomic_poll_release_int((volatile u_int *)lock);
956 }
957
958 __stdcall __regcall static uint32_t
959 ntoskrnl_interlock_inc(REGARGS1(volatile uint32_t *addend))
960 {
961         atomic_add_long((volatile u_long *)addend, 1);
962         return(*addend);
963 }
964
965 __stdcall __regcall static uint32_t
966 ntoskrnl_interlock_dec(REGARGS1(volatile uint32_t *addend))
967 {
968         atomic_subtract_long((volatile u_long *)addend, 1);
969         return(*addend);
970 }
971
972 __stdcall __regcall static void
973 ntoskrnl_interlock_addstat(REGARGS2(uint64_t *addend, uint32_t inc))
974 {
975         uint8_t                 irql;
976
977         irql = FASTCALL2(hal_lock, &ntoskrnl_global, DISPATCH_LEVEL);
978         *addend += inc;
979         FASTCALL2(hal_unlock, &ntoskrnl_global, irql);
980
981         return;
982 };
983
984 __stdcall static void
985 ntoskrnl_freemdl(ndis_buffer *mdl)
986 {
987         ndis_buffer             *head;
988
989         if (mdl == NULL || mdl->nb_process == NULL)
990                 return;
991
992         head = mdl->nb_process;
993
994         if (head->nb_flags != 0x1)
995                 return;
996
997         mdl->nb_next = head->nb_next;
998         head->nb_next = mdl;
999
1000         /* Decrement count of busy buffers. */
1001
1002         head->nb_bytecount--;
1003
1004         /*
1005          * If the pool has been marked for deletion and there are
1006          * no more buffers outstanding, nuke the pool.
1007          */
1008
1009         if (head->nb_byteoffset && head->nb_bytecount == 0)
1010                 kfree(head, M_DEVBUF);
1011
1012         return;
1013 }
1014
1015 __stdcall static uint32_t
1016 ntoskrnl_sizeofmdl(void *vaddr, size_t len)
1017 {
1018         uint32_t                l;
1019
1020         l = sizeof(struct ndis_buffer) +
1021             (sizeof(uint32_t) * SPAN_PAGES(vaddr, len));
1022
1023         return(l);
1024 }
1025
1026 __stdcall static void
1027 ntoskrnl_build_npaged_mdl(ndis_buffer *mdl)
1028 {
1029         mdl->nb_mappedsystemva = (char *)mdl->nb_startva + mdl->nb_byteoffset;
1030         return;
1031 }
1032
1033 __stdcall static void *
1034 ntoskrnl_mmaplockedpages(ndis_buffer *buf, uint8_t accessmode)
1035 {
1036         return(MDL_VA(buf));
1037 }
1038
1039 __stdcall static void *
1040 ntoskrnl_mmaplockedpages_cache(ndis_buffer *buf, uint8_t accessmode,
1041                                uint32_t cachetype, void *vaddr,
1042                                uint32_t bugcheck, uint32_t prio)
1043 {
1044         return(MDL_VA(buf));
1045 }
1046
1047 __stdcall static void
1048 ntoskrnl_munmaplockedpages(void *vaddr, ndis_buffer *buf)
1049 {
1050         return;
1051 }
1052
1053 /*
1054  * The KeInitializeSpinLock(), KefAcquireSpinLockAtDpcLevel()
1055  * and KefReleaseSpinLockFromDpcLevel() appear to be analagous
1056  * to crit_enter()/crit_exit() in their use. We can't create a new mutex
1057  * lock here because there is no complimentary KeFreeSpinLock()
1058  * function. Instead, we grab a mutex from the mutex pool.
1059  */
1060 __stdcall static void
1061 ntoskrnl_init_lock(kspin_lock *lock)
1062 {
1063         *lock = 0;
1064
1065         return;
1066 }
1067
1068 __stdcall static size_t
1069 ntoskrnl_memcmp(const void *s1, const void *s2, size_t len)
1070 {
1071         size_t                  i, total = 0;
1072         uint8_t                 *m1, *m2;
1073
1074         m1 = __DECONST(char *, s1);
1075         m2 = __DECONST(char *, s2);
1076
1077         for (i = 0; i < len; i++) {
1078                 if (m1[i] == m2[i])
1079                         total++;
1080         }
1081         return(total);
1082 }
1083
1084 __stdcall static void
1085 ntoskrnl_init_ansi_string(ndis_ansi_string *dst, char *src)
1086 {
1087         ndis_ansi_string        *a;
1088
1089         a = dst;
1090         if (a == NULL)
1091                 return;
1092         if (src == NULL) {
1093                 a->nas_len = a->nas_maxlen = 0;
1094                 a->nas_buf = NULL;
1095         } else {
1096                 a->nas_buf = src;
1097                 a->nas_len = a->nas_maxlen = strlen(src);
1098         }
1099
1100         return;
1101 }
1102
1103 __stdcall static void
1104 ntoskrnl_init_unicode_string(ndis_unicode_string *dst, uint16_t *src)
1105 {
1106         ndis_unicode_string     *u;
1107         int                     i;
1108
1109         u = dst;
1110         if (u == NULL)
1111                 return;
1112         if (src == NULL) {
1113                 u->nus_len = u->nus_maxlen = 0;
1114                 u->nus_buf = NULL;
1115         } else {
1116                 i = 0;
1117                 while(src[i] != 0)
1118                         i++;
1119                 u->nus_buf = src;
1120                 u->nus_len = u->nus_maxlen = i * 2;
1121         }
1122
1123         return;
1124 }
1125
1126 __stdcall ndis_status
1127 ntoskrnl_unicode_to_int(ndis_unicode_string *ustr, uint32_t base,
1128                         uint32_t *val)
1129 {
1130         uint16_t                *uchr;
1131         int                     len, neg = 0;
1132         char                    abuf[64];
1133         char                    *astr;
1134
1135         uchr = ustr->nus_buf;
1136         len = ustr->nus_len;
1137         bzero(abuf, sizeof(abuf));
1138
1139         if ((char)((*uchr) & 0xFF) == '-') {
1140                 neg = 1;
1141                 uchr++;
1142                 len -= 2;
1143         } else if ((char)((*uchr) & 0xFF) == '+') {
1144                 neg = 0;
1145                 uchr++;
1146                 len -= 2;
1147         }
1148
1149         if (base == 0) {
1150                 if ((char)((*uchr) & 0xFF) == 'b') {
1151                         base = 2;
1152                         uchr++;
1153                         len -= 2;
1154                 } else if ((char)((*uchr) & 0xFF) == 'o') {
1155                         base = 8;
1156                         uchr++;
1157                         len -= 2;
1158                 } else if ((char)((*uchr) & 0xFF) == 'x') {
1159                         base = 16;
1160                         uchr++;
1161                         len -= 2;
1162                 } else
1163                         base = 10;
1164         }
1165
1166         astr = abuf;
1167         if (neg) {
1168                 strcpy(astr, "-");
1169                 astr++;
1170         }
1171
1172         ndis_unicode_to_ascii(uchr, len, &astr);
1173         *val = strtoul(abuf, NULL, base);
1174
1175         return(NDIS_STATUS_SUCCESS);
1176 }
1177
1178 __stdcall static void
1179 ntoskrnl_free_unicode_string(ndis_unicode_string *ustr)
1180 {
1181         if (ustr->nus_buf == NULL)
1182                 return;
1183         kfree(ustr->nus_buf, M_DEVBUF);
1184         ustr->nus_buf = NULL;
1185         return;
1186 }
1187
1188 __stdcall static void
1189 ntoskrnl_free_ansi_string(ndis_ansi_string *astr)
1190 {
1191         if (astr->nas_buf == NULL)
1192                 return;
1193         kfree(astr->nas_buf, M_DEVBUF);
1194         astr->nas_buf = NULL;
1195         return;
1196 }
1197
1198 static int
1199 atoi(const char *str)
1200 {
1201         return (int)strtol(str, (char **)NULL, 10);
1202 }
1203
1204 static long
1205 atol(const char *str)
1206 {
1207         return strtol(str, (char **)NULL, 10);
1208 }
1209
1210 static int
1211 rand(void)
1212 {
1213         struct timeval          tv;
1214
1215         microtime(&tv);
1216         skrandom(tv.tv_usec);
1217         return((int)krandom());
1218 }
1219
1220 __stdcall static uint8_t
1221 ntoskrnl_wdmver(uint8_t major, uint8_t minor)
1222 {
1223         if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP)
1224                 return(TRUE);
1225         return(FALSE);
1226 }
1227
1228 __stdcall static ndis_status
1229 ntoskrnl_devprop(device_object *devobj, uint32_t regprop, uint32_t buflen,
1230                  void *prop, uint32_t *reslen)
1231 {
1232         ndis_miniport_block     *block;
1233
1234         block = devobj->do_rsvd;
1235
1236         switch (regprop) {
1237         case DEVPROP_DRIVER_KEYNAME:
1238                 ndis_ascii_to_unicode(__DECONST(char *,
1239                     device_get_nameunit(block->nmb_dev)), (uint16_t **)&prop);
1240                 *reslen = strlen(device_get_nameunit(block->nmb_dev)) * 2;
1241                 break;
1242         default:
1243                 return(STATUS_INVALID_PARAMETER_2);
1244                 break;
1245         }
1246
1247         return(STATUS_SUCCESS);
1248 }
1249
1250 __stdcall static void
1251 ntoskrnl_init_mutex(kmutant *kmutex, uint32_t level)
1252 {
1253         INIT_LIST_HEAD((&kmutex->km_header.dh_waitlisthead));
1254         kmutex->km_abandoned = FALSE;
1255         kmutex->km_apcdisable = 1;
1256         kmutex->km_header.dh_sigstate = TRUE;
1257         kmutex->km_header.dh_type = EVENT_TYPE_SYNC;
1258         kmutex->km_header.dh_size = OTYPE_MUTEX;
1259         kmutex->km_acquirecnt = 0;
1260         kmutex->km_ownerthread = NULL;
1261         return;
1262 }
1263
1264 __stdcall static uint32_t
1265 ntoskrnl_release_mutex(kmutant *kmutex, uint8_t kwait)
1266 {
1267         struct lwkt_tokref      tokref;
1268
1269         lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
1270         if (kmutex->km_ownerthread != curthread->td_proc) {
1271                 lwkt_reltoken(&tokref);
1272                 return(STATUS_MUTANT_NOT_OWNED);
1273         }
1274         kmutex->km_acquirecnt--;
1275         if (kmutex->km_acquirecnt == 0) {
1276                 kmutex->km_ownerthread = NULL;
1277                 lwkt_reltoken(&tokref);
1278                 ntoskrnl_wakeup(&kmutex->km_header);
1279         } else
1280                 lwkt_reltoken(&tokref);
1281
1282         return(kmutex->km_acquirecnt);
1283 }
1284
1285 __stdcall static uint32_t
1286 ntoskrnl_read_mutex(kmutant *kmutex)
1287 {
1288         return(kmutex->km_header.dh_sigstate);
1289 }
1290
1291 __stdcall void
1292 ntoskrnl_init_event(nt_kevent *kevent, uint32_t type, uint8_t state)
1293 {
1294         INIT_LIST_HEAD((&kevent->k_header.dh_waitlisthead));
1295         kevent->k_header.dh_sigstate = state;
1296         kevent->k_header.dh_type = type;
1297         kevent->k_header.dh_size = OTYPE_EVENT;
1298         return;
1299 }
1300
1301 __stdcall uint32_t
1302 ntoskrnl_reset_event(nt_kevent *kevent)
1303 {
1304         uint32_t                prevstate;
1305         struct lwkt_tokref      tokref;
1306
1307         lwkt_gettoken(&tokref, &ntoskrnl_dispatchtoken);
1308         prevstate = kevent->k_header.dh_sigstate;
1309         kevent->k_header.dh_sigstate = FALSE;
1310         lwkt_reltoken(&tokref);
1311
1312         return(prevstate);
1313 }
1314
1315 __stdcall uint32_t
1316 ntoskrnl_set_event(nt_kevent *kevent, uint32_t increment, uint8_t kwait)
1317 {
1318         uint32_t                prevstate;
1319
1320         prevstate = kevent->k_header.dh_sigstate;
1321         ntoskrnl_wakeup(&kevent->k_header);
1322
1323         return(prevstate);
1324 }
1325
1326 __stdcall void
1327 ntoskrnl_clear_event(nt_kevent *kevent)
1328 {
1329         kevent->k_header.dh_sigstate = FALSE;
1330         return;
1331 }
1332
1333 __stdcall uint32_t
1334 ntoskrnl_read_event(nt_kevent *kevent)
1335 {
1336         return(kevent->k_header.dh_sigstate);
1337 }
1338
1339 __stdcall static ndis_status
1340 ntoskrnl_objref(ndis_handle handle, uint32_t reqaccess, void *otype,
1341                 uint8_t accessmode, void **object, void **handleinfo)
1342 {
1343         nt_objref               *nr;
1344
1345         nr = kmalloc(sizeof(nt_objref), M_DEVBUF, M_WAITOK|M_ZERO);
1346
1347         INIT_LIST_HEAD((&nr->no_dh.dh_waitlisthead));
1348         nr->no_obj = handle;
1349         nr->no_dh.dh_size = OTYPE_THREAD;
1350         TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link);
1351         *object = nr;
1352
1353         return(NDIS_STATUS_SUCCESS);
1354 }
1355
1356 __stdcall __regcall static void
1357 ntoskrnl_objderef(REGARGS1(void *object))
1358 {
1359         nt_objref               *nr;
1360
1361         nr = object;
1362         TAILQ_REMOVE(&ntoskrnl_reflist, nr, link);
1363         kfree(nr, M_DEVBUF);
1364
1365         return;
1366 }
1367
1368 __stdcall static uint32_t
1369 ntoskrnl_zwclose(ndis_handle handle)
1370 {
1371         return(STATUS_SUCCESS);
1372 }
1373
1374 /*
1375  * This is here just in case the thread returns without calling
1376  * PsTerminateSystemThread().
1377  */
1378 static void
1379 ntoskrnl_thrfunc(void *arg)
1380 {
1381         thread_context          *thrctx;
1382         __stdcall uint32_t (*tfunc)(void *);
1383         void                    *tctx;
1384         uint32_t                rval;
1385
1386         thrctx = arg;
1387         tfunc = thrctx->tc_thrfunc;
1388         tctx = thrctx->tc_thrctx;
1389         kfree(thrctx, M_TEMP);
1390
1391         rval = tfunc(tctx);
1392
1393         ntoskrnl_thread_exit(rval);
1394         return; /* notreached */
1395 }
1396
1397 __stdcall static ndis_status
1398 ntoskrnl_create_thread(ndis_handle *handle, uint32_t reqaccess,
1399                        void *objattrs, ndis_handle phandle,
1400                        void *clientid, void *thrfunc, void *thrctx)
1401 {
1402         int                     error;
1403         char                    tname[128];
1404         thread_context          *tc;
1405         thread_t                td;
1406
1407         tc = kmalloc(sizeof(thread_context), M_TEMP, M_WAITOK);
1408
1409         tc->tc_thrctx = thrctx;
1410         tc->tc_thrfunc = thrfunc;
1411
1412         ksprintf(tname, "windows kthread %d", ntoskrnl_kth);
1413         error = kthread_create_stk(ntoskrnl_thrfunc, tc, &td,
1414             NDIS_KSTACK_PAGES * PAGE_SIZE, tname);
1415         *handle = td;
1416
1417         ntoskrnl_kth++;
1418
1419         return(error);
1420 }
1421
1422 /*
1423  * In Windows, the exit of a thread is an event that you're allowed
1424  * to wait on, assuming you've obtained a reference to the thread using
1425  * ObReferenceObjectByHandle(). Unfortunately, the only way we can
1426  * simulate this behavior is to register each thread we create in a
1427  * reference list, and if someone holds a reference to us, we poke
1428  * them.
1429  */
1430 __stdcall static ndis_status
1431 ntoskrnl_thread_exit(ndis_status status)
1432 {
1433         struct nt_objref        *nr;
1434
1435         TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) {
1436                 if (nr->no_obj != curthread)
1437                         continue;
1438                 ntoskrnl_wakeup(&nr->no_dh);
1439                 break;
1440         }
1441
1442         ntoskrnl_kth--;
1443
1444         kthread_exit();
1445         return(0);      /* notreached */
1446 }
1447
1448 static uint32_t
1449 ntoskrnl_dbgprint(char *fmt, ...)
1450 {
1451         __va_list                       ap;
1452
1453         if (bootverbose) {
1454                 __va_start(ap, fmt);
1455                 kvprintf(fmt, ap);
1456         }
1457
1458         return(STATUS_SUCCESS);
1459 }
1460
1461 __stdcall static void
1462 ntoskrnl_debugger(void)
1463 {
1464
1465 #if __FreeBSD_version < 502113
1466         Debugger("ntoskrnl_debugger(): breakpoint");
1467 #else
1468         kdb_enter("ntoskrnl_debugger(): breakpoint");
1469 #endif
1470 }
1471
1472 static void
1473 ntoskrnl_timercall(void *arg)
1474 {
1475         ktimer                  *timer;
1476
1477         timer = arg;
1478
1479         timer->k_header.dh_inserted = FALSE;
1480
1481         /*
1482          * If this is a periodic timer, re-arm it
1483          * so it will fire again. We do this before
1484          * calling any deferred procedure calls because
1485          * it's possible the DPC might cancel the timer,
1486          * in which case it would be wrong for us to
1487          * re-arm it again afterwards.
1488          */
1489
1490         if (timer->k_period) {
1491                 timer->k_header.dh_inserted = TRUE;
1492                 callout_reset(timer->k_handle, 1 + timer->k_period * hz / 1000,
1493                               ntoskrnl_timercall, timer);
1494         } else {
1495                 callout_deactivate(timer->k_handle);
1496                 kfree(timer->k_handle, M_NDIS);
1497                 timer->k_handle = NULL;
1498         }
1499
1500         if (timer->k_dpc != NULL)
1501                 ntoskrnl_queue_dpc(timer->k_dpc, NULL, NULL);
1502
1503         ntoskrnl_wakeup(&timer->k_header);
1504 }
1505
1506 __stdcall void
1507 ntoskrnl_init_timer(ktimer *timer)
1508 {
1509         if (timer == NULL)
1510                 return;
1511
1512         ntoskrnl_init_timer_ex(timer,  EVENT_TYPE_NOTIFY);
1513 }
1514
1515 __stdcall void
1516 ntoskrnl_init_timer_ex(ktimer *timer, uint32_t type)
1517 {
1518         if (timer == NULL)
1519                 return;
1520
1521         INIT_LIST_HEAD((&timer->k_header.dh_waitlisthead));
1522         timer->k_header.dh_sigstate = FALSE;
1523         timer->k_header.dh_inserted = FALSE;
1524         timer->k_header.dh_type = type;
1525         timer->k_header.dh_size = OTYPE_TIMER;
1526         timer->k_handle = NULL;
1527
1528         return;
1529 }
1530
1531 /*
1532  * This is a wrapper for Windows deferred procedure calls that
1533  * have been placed on an NDIS thread work queue. We need it
1534  * since the DPC could be a _stdcall function. Also, as far as
1535  * I can tell, defered procedure calls must run at DISPATCH_LEVEL.
1536  */
1537 static void
1538 ntoskrnl_run_dpc(void *arg)
1539 {
1540         kdpc_func               dpcfunc;
1541         kdpc                    *dpc;
1542         uint8_t                 irql;
1543
1544         dpc = arg;
1545         dpcfunc = (kdpc_func)dpc->k_deferedfunc;
1546         irql = FASTCALL1(hal_raise_irql, DISPATCH_LEVEL);
1547         dpcfunc(dpc, dpc->k_deferredctx, dpc->k_sysarg1, dpc->k_sysarg2);
1548         FASTCALL1(hal_lower_irql, irql);
1549
1550         return;
1551 }
1552
1553 __stdcall void
1554 ntoskrnl_init_dpc(kdpc *dpc, void *dpcfunc, void *dpcctx)
1555 {
1556         if (dpc == NULL)
1557                 return;
1558
1559         dpc->k_deferedfunc = dpcfunc;
1560         dpc->k_deferredctx = dpcctx;
1561
1562         return;
1563 }
1564
1565 __stdcall uint8_t
1566 ntoskrnl_queue_dpc(kdpc *dpc, void *sysarg1, void *sysarg2)
1567 {
1568         dpc->k_sysarg1 = sysarg1;
1569         dpc->k_sysarg2 = sysarg2;
1570         if (ndis_sched(ntoskrnl_run_dpc, dpc, NDIS_SWI))
1571                 return(FALSE);
1572
1573         return(TRUE);
1574 }
1575
1576 __stdcall uint8_t
1577 ntoskrnl_dequeue_dpc(kdpc *dpc)
1578 {
1579         if (ndis_unsched(ntoskrnl_run_dpc, dpc, NDIS_SWI))
1580                 return(FALSE);
1581
1582         return(TRUE);
1583 }
1584
1585 __stdcall uint8_t
1586 ntoskrnl_set_timer_ex(ktimer *timer, int64_t duetime, uint32_t period,
1587                       kdpc *dpc)
1588 {
1589         struct timeval          tv;
1590         uint64_t                curtime;
1591         uint8_t                 pending;
1592         int                     ticks;
1593
1594         if (timer == NULL)
1595                 return(FALSE);
1596
1597         if (timer->k_header.dh_inserted == TRUE) {
1598                 if (timer->k_handle != NULL)
1599                         callout_stop(timer->k_handle);
1600                 timer->k_header.dh_inserted = FALSE;
1601                 pending = TRUE;
1602         } else
1603                 pending = FALSE;
1604
1605         timer->k_duetime = duetime;
1606         timer->k_period = period;
1607         timer->k_header.dh_sigstate = FALSE;
1608         timer->k_dpc = dpc;
1609
1610         if (duetime < 0) {
1611                 tv.tv_sec = - (duetime) / 10000000;
1612                 tv.tv_usec = (- (duetime) / 10) -
1613                     (tv.tv_sec * 1000000);
1614         } else {
1615                 ntoskrnl_time(&curtime);
1616                 if (duetime < curtime)
1617                         tv.tv_sec = tv.tv_usec = 0;
1618                 else {
1619                         tv.tv_sec = ((duetime) - curtime) / 10000000;
1620                         tv.tv_usec = ((duetime) - curtime) / 10 -
1621                             (tv.tv_sec * 1000000);
1622                 }
1623         }
1624
1625         ticks = 1 + tv.tv_sec * hz + tv.tv_usec * hz / 1000000;
1626         timer->k_header.dh_inserted = TRUE;
1627         if (timer->k_handle == NULL) {
1628                 timer->k_handle = kmalloc(sizeof(struct callout), M_NDIS,
1629                                          M_INTWAIT);
1630                 callout_init(timer->k_handle);
1631         }
1632         callout_reset(timer->k_handle, ticks, ntoskrnl_timercall, timer);
1633
1634         return(pending);
1635 }
1636
1637 __stdcall uint8_t
1638 ntoskrnl_set_timer(ktimer *timer, int64_t duetime, kdpc *dpc)
1639 {
1640         return (ntoskrnl_set_timer_ex(timer, duetime, 0, dpc));
1641 }
1642
1643 __stdcall uint8_t
1644 ntoskrnl_cancel_timer(ktimer *timer)
1645 {
1646         uint8_t                 pending;
1647
1648         if (timer == NULL)
1649                 return(FALSE);
1650
1651         if (timer->k_header.dh_inserted == TRUE) {
1652                 if (timer->k_handle != NULL) {
1653                         callout_stop(timer->k_handle);
1654                         kfree(timer->k_handle, M_NDIS);
1655                         timer->k_handle = NULL;
1656                 }
1657                 if (timer->k_dpc != NULL)
1658                         ntoskrnl_dequeue_dpc(timer->k_dpc);
1659                 pending = TRUE;
1660         } else
1661                 pending = FALSE;
1662
1663
1664         return(pending);
1665 }
1666
1667 __stdcall uint8_t
1668 ntoskrnl_read_timer(ktimer *timer)
1669 {
1670         return(timer->k_header.dh_sigstate);
1671 }
1672
1673 __stdcall static void
1674 dummy(void)
1675 {
1676         kprintf ("ntoskrnl dummy called...\n");
1677         return;
1678 }
1679
1680
1681 image_patch_table ntoskrnl_functbl[] = {
1682         { "RtlCompareMemory",           (FUNC)ntoskrnl_memcmp },
1683         { "RtlEqualUnicodeString",      (FUNC)ntoskrnl_unicode_equal },
1684         { "RtlCopyUnicodeString",       (FUNC)ntoskrnl_unicode_copy },
1685         { "RtlUnicodeStringToAnsiString", (FUNC)ntoskrnl_unicode_to_ansi },
1686         { "RtlAnsiStringToUnicodeString", (FUNC)ntoskrnl_ansi_to_unicode },
1687         { "RtlInitAnsiString",          (FUNC)ntoskrnl_init_ansi_string },
1688         { "RtlInitUnicodeString",       (FUNC)ntoskrnl_init_unicode_string },
1689         { "RtlFreeAnsiString",          (FUNC)ntoskrnl_free_ansi_string },
1690         { "RtlFreeUnicodeString",       (FUNC)ntoskrnl_free_unicode_string },
1691         { "RtlUnicodeStringToInteger",  (FUNC)ntoskrnl_unicode_to_int },
1692         { "sprintf",                    (FUNC)ksprintf },
1693         { "vsprintf",                   (FUNC)kvsprintf },
1694         { "_snprintf",                  (FUNC)ksnprintf },
1695         { "_vsnprintf",                 (FUNC)kvsnprintf },
1696         { "DbgPrint",                   (FUNC)ntoskrnl_dbgprint },
1697         { "DbgBreakPoint",              (FUNC)ntoskrnl_debugger },
1698         { "strncmp",                    (FUNC)strncmp },
1699         { "strcmp",                     (FUNC)strcmp },
1700         { "strncpy",                    (FUNC)strncpy },
1701         { "strcpy",                     (FUNC)strcpy },
1702         { "strlen",                     (FUNC)strlen },
1703         { "memcpy",                     (FUNC)memcpy },
1704         { "memmove",                    (FUNC)memcpy },
1705         { "memset",                     (FUNC)memset },
1706         { "IofCallDriver",              (FUNC)ntoskrnl_iofcalldriver },
1707         { "IofCompleteRequest",         (FUNC)ntoskrnl_iofcompletereq },
1708         { "IoBuildSynchronousFsdRequest", (FUNC)ntoskrnl_iobuildsynchfsdreq },
1709         { "KeWaitForSingleObject",      (FUNC)ntoskrnl_waitforobj },
1710         { "KeWaitForMultipleObjects",   (FUNC)ntoskrnl_waitforobjs },
1711         { "_allmul",                    (FUNC)_allmul },
1712         { "_alldiv",                    (FUNC)_alldiv },
1713         { "_allrem",                    (FUNC)_allrem },
1714         { "_allshr",                    (FUNC)_allshr },
1715         { "_allshl",                    (FUNC)_allshl },
1716         { "_aullmul",                   (FUNC)_aullmul },
1717         { "_aulldiv",                   (FUNC)_aulldiv },
1718         { "_aullrem",                   (FUNC)_aullrem },
1719         { "_aullshr",                   (FUNC)_aullshr },
1720         { "_aullshl",                   (FUNC)_aullshl },
1721         { "atoi",                       (FUNC)atoi },
1722         { "atol",                       (FUNC)atol },
1723         { "rand",                       (FUNC)rand },
1724         { "WRITE_REGISTER_USHORT",      (FUNC)ntoskrnl_writereg_ushort },
1725         { "READ_REGISTER_USHORT",       (FUNC)ntoskrnl_readreg_ushort },
1726         { "WRITE_REGISTER_ULONG",       (FUNC)ntoskrnl_writereg_ulong },
1727         { "READ_REGISTER_ULONG",        (FUNC)ntoskrnl_readreg_ulong },
1728         { "READ_REGISTER_UCHAR",        (FUNC)ntoskrnl_readreg_uchar },
1729         { "WRITE_REGISTER_UCHAR",       (FUNC)ntoskrnl_writereg_uchar },
1730         { "ExInitializePagedLookasideList", (FUNC)ntoskrnl_init_lookaside },
1731         { "ExDeletePagedLookasideList", (FUNC)ntoskrnl_delete_lookaside },
1732         { "ExInitializeNPagedLookasideList", (FUNC)ntoskrnl_init_nplookaside },
1733         { "ExDeleteNPagedLookasideList", (FUNC)ntoskrnl_delete_nplookaside },
1734         { "InterlockedPopEntrySList",   (FUNC)ntoskrnl_pop_slist },
1735         { "InterlockedPushEntrySList",  (FUNC)ntoskrnl_push_slist },
1736         { "ExInterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist_ex },
1737         { "ExInterlockedPushEntrySList",(FUNC)ntoskrnl_push_slist_ex },
1738         { "KefAcquireSpinLockAtDpcLevel", (FUNC)ntoskrnl_lock_dpc },
1739         { "KefReleaseSpinLockFromDpcLevel", (FUNC)ntoskrnl_unlock_dpc },
1740         { "InterlockedIncrement",       (FUNC)ntoskrnl_interlock_inc },
1741         { "InterlockedDecrement",       (FUNC)ntoskrnl_interlock_dec },
1742         { "ExInterlockedAddLargeStatistic",
1743                                         (FUNC)ntoskrnl_interlock_addstat },
1744         { "IoFreeMdl",                  (FUNC)ntoskrnl_freemdl },
1745         { "MmSizeOfMdl",                (FUNC)ntoskrnl_sizeofmdl },
1746         { "MmMapLockedPages",           (FUNC)ntoskrnl_mmaplockedpages },
1747         { "MmMapLockedPagesSpecifyCache",
1748                                         (FUNC)ntoskrnl_mmaplockedpages_cache },
1749         { "MmUnmapLockedPages",         (FUNC)ntoskrnl_munmaplockedpages },
1750         { "MmBuildMdlForNonPagedPool",  (FUNC)ntoskrnl_build_npaged_mdl },
1751         { "KeInitializeSpinLock",       (FUNC)ntoskrnl_init_lock },
1752         { "IoIsWdmVersionAvailable",    (FUNC)ntoskrnl_wdmver },
1753         { "IoGetDeviceProperty",        (FUNC)ntoskrnl_devprop },
1754         { "KeInitializeMutex",          (FUNC)ntoskrnl_init_mutex },
1755         { "KeReleaseMutex",             (FUNC)ntoskrnl_release_mutex },
1756         { "KeReadStateMutex",           (FUNC)ntoskrnl_read_mutex },
1757         { "KeInitializeEvent",          (FUNC)ntoskrnl_init_event },
1758         { "KeSetEvent",                 (FUNC)ntoskrnl_set_event },
1759         { "KeResetEvent",               (FUNC)ntoskrnl_reset_event },
1760         { "KeClearEvent",               (FUNC)ntoskrnl_clear_event },
1761         { "KeReadStateEvent",           (FUNC)ntoskrnl_read_event },
1762         { "KeInitializeTimer",          (FUNC)ntoskrnl_init_timer },
1763         { "KeInitializeTimerEx",        (FUNC)ntoskrnl_init_timer_ex },
1764         { "KeSetTimer",                 (FUNC)ntoskrnl_set_timer },
1765         { "KeSetTimerEx",               (FUNC)ntoskrnl_set_timer_ex },
1766         { "KeCancelTimer",              (FUNC)ntoskrnl_cancel_timer },
1767         { "KeReadStateTimer",           (FUNC)ntoskrnl_read_timer },
1768         { "KeInitializeDpc",            (FUNC)ntoskrnl_init_dpc },
1769         { "KeInsertQueueDpc",           (FUNC)ntoskrnl_queue_dpc },
1770         { "KeRemoveQueueDpc",           (FUNC)ntoskrnl_dequeue_dpc },
1771         { "ObReferenceObjectByHandle",  (FUNC)ntoskrnl_objref },
1772         { "ObfDereferenceObject",       (FUNC)ntoskrnl_objderef },
1773         { "ZwClose",                    (FUNC)ntoskrnl_zwclose },
1774         { "PsCreateSystemThread",       (FUNC)ntoskrnl_create_thread },
1775         { "PsTerminateSystemThread",    (FUNC)ntoskrnl_thread_exit },
1776
1777         /*
1778          * This last entry is a catch-all for any function we haven't
1779          * implemented yet. The PE import list patching routine will
1780          * use it for any function that doesn't have an explicit match
1781          * in this table.
1782          */
1783
1784         { NULL, (FUNC)dummy },
1785
1786         /* End of list. */
1787
1788         { NULL, NULL },
1789 };