6628b8b9e3ce003bd1ff1161b62bdf7167a9ff65
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.27 2004/05/13 17:40:19 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_zone.h>
93
94 #include <sys/thread2.h>
95
96 /*
97  *      Virtual memory maps provide for the mapping, protection,
98  *      and sharing of virtual memory objects.  In addition,
99  *      this module provides for an efficient virtual copy of
100  *      memory from one map to another.
101  *
102  *      Synchronization is required prior to most operations.
103  *
104  *      Maps consist of an ordered doubly-linked list of simple
105  *      entries; a single hint is used to speed up lookups.
106  *
107  *      Since portions of maps are specified by start/end addresses,
108  *      which may not align with existing map entries, all
109  *      routines merely "clip" entries to these start/end values.
110  *      [That is, an entry is split into two, bordering at a
111  *      start or end value.]  Note that these clippings may not
112  *      always be necessary (as the two resulting entries are then
113  *      not changed); however, the clipping is done for convenience.
114  *
115  *      As mentioned above, virtual copy operations are performed
116  *      by copying VM object references from one map to
117  *      another, and then marking both regions as copy-on-write.
118  */
119
120 /*
121  *      vm_map_startup:
122  *
123  *      Initialize the vm_map module.  Must be called before
124  *      any other vm_map routines.
125  *
126  *      Map and entry structures are allocated from the general
127  *      purpose memory pool with some exceptions:
128  *
129  *      - The kernel map and kmem submap are allocated statically.
130  *      - Kernel map entries are allocated out of a static pool.
131  *
132  *      These restrictions are necessary since malloc() uses the
133  *      maps and requires map entries.
134  */
135
136 static struct vm_zone mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, mapzone, vmspace_zone;
138 static struct vm_object mapentobj, mapobj;
139
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map map_init[MAX_KMAP];
142
143 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
144 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
145 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
146 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
147 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
148 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
149 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
150                 vm_map_entry_t);
151 static void vm_map_split (vm_map_entry_t);
152 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
153
154 void
155 vm_map_startup(void)
156 {
157         mapzone = &mapzone_store;
158         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159                 map_init, MAX_KMAP);
160         mapentzone = &mapentzone_store;
161         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162                 map_entry_init, MAX_MAPENT);
163 }
164
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(vm_offset_t min, vm_offset_t max)
172 {
173         struct vmspace *vm;
174
175         vm = zalloc(vmspace_zone);
176         vm_map_init(&vm->vm_map, min, max);
177         pmap_pinit(vmspace_pmap(vm));
178         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
179         vm->vm_refcnt = 1;
180         vm->vm_shm = NULL;
181         vm->vm_exitingcnt = 0;
182         return (vm);
183 }
184
185 void
186 vm_init2(void) 
187 {
188         zinitna(mapentzone, &mapentobj, NULL, 0, 0, ZONE_USE_RESERVE, 1);
189         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
190         vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
191         pmap_init2();
192         vm_object_init2();
193 }
194
195 static __inline void
196 vmspace_dofree(struct vmspace *vm)
197 {
198         int count;
199
200         /*
201          * Make sure any SysV shm is freed, it might not have in
202          * exit1()
203          */
204         shmexit(vm);
205
206         KKASSERT(vm->vm_upcalls == NULL);
207
208         /*
209          * Lock the map, to wait out all other references to it.
210          * Delete all of the mappings and pages they hold, then call
211          * the pmap module to reclaim anything left.
212          */
213         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
214         vm_map_lock(&vm->vm_map);
215         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
216                 vm->vm_map.max_offset, &count);
217         vm_map_unlock(&vm->vm_map);
218         vm_map_entry_release(count);
219
220         pmap_release(vmspace_pmap(vm));
221         zfree(vmspace_zone, vm);
222 }
223
224 void
225 vmspace_free(struct vmspace *vm)
226 {
227         if (vm->vm_refcnt == 0)
228                 panic("vmspace_free: attempt to free already freed vmspace");
229
230         if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
231                 vmspace_dofree(vm);
232 }
233
234 void
235 vmspace_exitfree(struct proc *p)
236 {
237         struct vmspace *vm;
238
239         vm = p->p_vmspace;
240         p->p_vmspace = NULL;
241
242         /*
243          * cleanup by parent process wait()ing on exiting child.  vm_refcnt
244          * may not be 0 (e.g. fork() and child exits without exec()ing).
245          * exitingcnt may increment above 0 and drop back down to zero
246          * several times while vm_refcnt is held non-zero.  vm_refcnt
247          * may also increment above 0 and drop back down to zero several
248          * times while vm_exitingcnt is held non-zero.
249          *
250          * The last wait on the exiting child's vmspace will clean up
251          * the remainder of the vmspace.
252          */
253         if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
254                 vmspace_dofree(vm);
255 }
256
257 /*
258  * vmspace_swap_count() - count the approximate swap useage in pages for a
259  *                        vmspace.
260  *
261  *      Swap useage is determined by taking the proportional swap used by
262  *      VM objects backing the VM map.  To make up for fractional losses,
263  *      if the VM object has any swap use at all the associated map entries
264  *      count for at least 1 swap page.
265  */
266 int
267 vmspace_swap_count(struct vmspace *vmspace)
268 {
269         vm_map_t map = &vmspace->vm_map;
270         vm_map_entry_t cur;
271         int count = 0;
272
273         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
274                 vm_object_t object;
275
276                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
277                     (object = cur->object.vm_object) != NULL &&
278                     object->type == OBJT_SWAP
279                 ) {
280                         int n = (cur->end - cur->start) / PAGE_SIZE;
281
282                         if (object->un_pager.swp.swp_bcount) {
283                                 count += object->un_pager.swp.swp_bcount *
284                                     SWAP_META_PAGES * n / object->size + 1;
285                         }
286                 }
287         }
288         return(count);
289 }
290
291
292 /*
293  *      vm_map_create:
294  *
295  *      Creates and returns a new empty VM map with
296  *      the given physical map structure, and having
297  *      the given lower and upper address bounds.
298  */
299 vm_map_t
300 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
301 {
302         vm_map_t result;
303
304         result = zalloc(mapzone);
305         vm_map_init(result, min, max);
306         result->pmap = pmap;
307         return (result);
308 }
309
310 /*
311  * Initialize an existing vm_map structure
312  * such as that in the vmspace structure.
313  * The pmap is set elsewhere.
314  */
315 void
316 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
317 {
318         map->header.next = map->header.prev = &map->header;
319         map->nentries = 0;
320         map->size = 0;
321         map->system_map = 0;
322         map->infork = 0;
323         map->min_offset = min;
324         map->max_offset = max;
325         map->first_free = &map->header;
326         map->hint = &map->header;
327         map->timestamp = 0;
328         lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
329 }
330
331 /*
332  *      vm_map_entry_cpu_init:
333  *
334  *      Set an initial negative count so the first attempt to reserve
335  *      space preloads a bunch of vm_map_entry's for this cpu.  This
336  *      routine is called in early boot so we cannot just call
337  *      vm_map_entry_reserve().
338  *
339  *      May be called for a gd other then mycpu.
340  */
341 void
342 vm_map_entry_reserve_cpu_init(globaldata_t gd)
343 {
344         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
345 }
346
347 /*
348  *      vm_map_entry_reserve:
349  *
350  *      Reserves vm_map_entry structures so code later on can manipulate
351  *      map_entry structures within a locked map without blocking trying
352  *      to allocate a new vm_map_entry.
353  */
354 int
355 vm_map_entry_reserve(int count)
356 {
357         struct globaldata *gd = mycpu;
358         vm_map_entry_t entry;
359
360         crit_enter();
361         gd->gd_vme_avail -= count;
362
363         /*
364          * Make sure we have enough structures in gd_vme_base to handle
365          * the reservation request.
366          */
367         while (gd->gd_vme_avail < 0) {
368                 entry = zalloc(mapentzone);
369                 entry->next = gd->gd_vme_base;
370                 gd->gd_vme_base = entry;
371                 ++gd->gd_vme_avail;
372         }
373         crit_exit();
374         return(count);
375 }
376
377 /*
378  *      vm_map_entry_release:
379  *
380  *      Releases previously reserved vm_map_entry structures that were not
381  *      used.  If we have too much junk in our per-cpu cache clean some of
382  *      it out.
383  */
384 void
385 vm_map_entry_release(int count)
386 {
387         struct globaldata *gd = mycpu;
388         vm_map_entry_t entry;
389
390         crit_enter();
391         gd->gd_vme_avail += count;
392         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
393                 entry = gd->gd_vme_base;
394                 KKASSERT(entry != NULL);
395                 gd->gd_vme_base = entry->next;
396                 --gd->gd_vme_avail;
397                 crit_exit();
398                 zfree(mapentzone, entry);
399                 crit_enter();
400         }
401         crit_exit();
402 }
403
404 /*
405  *      vm_map_entry_kreserve:
406  *
407  *      Reserve map entry structures for use in kernel_map or (if it exists)
408  *      kmem_map.  These entries have *ALREADY* been reserved on a per-cpu
409  *      basis when the map was inited.  This function is used by zalloc()
410  *      to avoid a recursion when zalloc() itself needs to allocate additional
411  *      kernel memory.
412  *
413  *      This function should only be used when the caller intends to later
414  *      call vm_map_entry_reserve() to 'normalize' the reserve cache.
415  */
416 int
417 vm_map_entry_kreserve(int count)
418 {
419         struct globaldata *gd = mycpu;
420
421         crit_enter();
422         gd->gd_vme_kdeficit += count;
423         crit_exit();
424         KKASSERT(gd->gd_vme_base != NULL);
425         return(count);
426 }
427
428 /*
429  *      vm_map_entry_krelease:
430  *
431  *      Release previously reserved map entries for kernel_map or kmem_map
432  *      use.  This routine determines how many entries were actually used and
433  *      replentishes the kernel reserve supply from vme_avail.
434  *
435  *      If there is insufficient supply vme_avail will go negative, which is
436  *      ok.  We cannot safely call zalloc in this function without getting
437  *      into a recursion deadlock.  zalloc() will call vm_map_entry_reserve()
438  *      to regenerate the lost entries.
439  */
440 void
441 vm_map_entry_krelease(int count)
442 {
443         struct globaldata *gd = mycpu;
444
445         crit_enter();
446         gd->gd_vme_kdeficit -= count;
447         gd->gd_vme_avail -= gd->gd_vme_kdeficit;        /* can go negative */
448         gd->gd_vme_kdeficit = 0;
449         crit_exit();
450 }
451
452 /*
453  *      vm_map_entry_create:    [ internal use only ]
454  *
455  *      Allocates a VM map entry for insertion.  No entry fields are filled 
456  *      in.
457  *
458  *      This routine may be called from an interrupt thread but not a FAST
459  *      interrupt.  This routine may recurse the map lock.
460  */
461 static vm_map_entry_t
462 vm_map_entry_create(vm_map_t map, int *countp)
463 {
464         struct globaldata *gd = mycpu;
465         vm_map_entry_t entry;
466
467         KKASSERT(*countp > 0);
468         --*countp;
469         crit_enter();
470         entry = gd->gd_vme_base;
471         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
472         gd->gd_vme_base = entry->next;
473         crit_exit();
474         return(entry);
475 }
476
477 /*
478  *      vm_map_entry_dispose:   [ internal use only ]
479  *
480  *      Dispose of a vm_map_entry that is no longer being referenced.  This
481  *      function may be called from an interrupt.
482  */
483 static void
484 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
485 {
486         struct globaldata *gd = mycpu;
487
488         ++*countp;
489         crit_enter();
490         entry->next = gd->gd_vme_base;
491         gd->gd_vme_base = entry;
492         crit_exit();
493 }
494
495
496 /*
497  *      vm_map_entry_{un,}link:
498  *
499  *      Insert/remove entries from maps.
500  */
501 static __inline void
502 vm_map_entry_link(vm_map_t map,
503                   vm_map_entry_t after_where,
504                   vm_map_entry_t entry)
505 {
506         map->nentries++;
507         entry->prev = after_where;
508         entry->next = after_where->next;
509         entry->next->prev = entry;
510         after_where->next = entry;
511 }
512
513 static __inline void
514 vm_map_entry_unlink(vm_map_t map,
515                     vm_map_entry_t entry)
516 {
517         vm_map_entry_t prev;
518         vm_map_entry_t next;
519
520         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
521                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
522         prev = entry->prev;
523         next = entry->next;
524         next->prev = prev;
525         prev->next = next;
526         map->nentries--;
527 }
528
529 /*
530  *      SAVE_HINT:
531  *
532  *      Saves the specified entry as the hint for
533  *      future lookups.
534  */
535 #define SAVE_HINT(map,value) \
536                 (map)->hint = (value);
537
538 /*
539  *      vm_map_lookup_entry:    [ internal use only ]
540  *
541  *      Finds the map entry containing (or
542  *      immediately preceding) the specified address
543  *      in the given map; the entry is returned
544  *      in the "entry" parameter.  The boolean
545  *      result indicates whether the address is
546  *      actually contained in the map.
547  */
548 boolean_t
549 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
550     vm_map_entry_t *entry /* OUT */)
551 {
552         vm_map_entry_t cur;
553         vm_map_entry_t last;
554
555         /*
556          * Start looking either from the head of the list, or from the hint.
557          */
558
559         cur = map->hint;
560
561         if (cur == &map->header)
562                 cur = cur->next;
563
564         if (address >= cur->start) {
565                 /*
566                  * Go from hint to end of list.
567                  *
568                  * But first, make a quick check to see if we are already looking
569                  * at the entry we want (which is usually the case). Note also
570                  * that we don't need to save the hint here... it is the same
571                  * hint (unless we are at the header, in which case the hint
572                  * didn't buy us anything anyway).
573                  */
574                 last = &map->header;
575                 if ((cur != last) && (cur->end > address)) {
576                         *entry = cur;
577                         return (TRUE);
578                 }
579         } else {
580                 /*
581                  * Go from start to hint, *inclusively*
582                  */
583                 last = cur->next;
584                 cur = map->header.next;
585         }
586
587         /*
588          * Search linearly
589          */
590
591         while (cur != last) {
592                 if (cur->end > address) {
593                         if (address >= cur->start) {
594                                 /*
595                                  * Save this lookup for future hints, and
596                                  * return
597                                  */
598
599                                 *entry = cur;
600                                 SAVE_HINT(map, cur);
601                                 return (TRUE);
602                         }
603                         break;
604                 }
605                 cur = cur->next;
606         }
607         *entry = cur->prev;
608         SAVE_HINT(map, *entry);
609         return (FALSE);
610 }
611
612 /*
613  *      vm_map_insert:
614  *
615  *      Inserts the given whole VM object into the target
616  *      map at the specified address range.  The object's
617  *      size should match that of the address range.
618  *
619  *      Requires that the map be locked, and leaves it so.  Requires that
620  *      sufficient vm_map_entry structures have been reserved and tracks
621  *      the use via countp.
622  *
623  *      If object is non-NULL, ref count must be bumped by caller
624  *      prior to making call to account for the new entry.
625  */
626 int
627 vm_map_insert(vm_map_t map, int *countp,
628               vm_object_t object, vm_ooffset_t offset,
629               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
630               int cow)
631 {
632         vm_map_entry_t new_entry;
633         vm_map_entry_t prev_entry;
634         vm_map_entry_t temp_entry;
635         vm_eflags_t protoeflags;
636
637         /*
638          * Check that the start and end points are not bogus.
639          */
640
641         if ((start < map->min_offset) || (end > map->max_offset) ||
642             (start >= end))
643                 return (KERN_INVALID_ADDRESS);
644
645         /*
646          * Find the entry prior to the proposed starting address; if it's part
647          * of an existing entry, this range is bogus.
648          */
649
650         if (vm_map_lookup_entry(map, start, &temp_entry))
651                 return (KERN_NO_SPACE);
652
653         prev_entry = temp_entry;
654
655         /*
656          * Assert that the next entry doesn't overlap the end point.
657          */
658
659         if ((prev_entry->next != &map->header) &&
660             (prev_entry->next->start < end))
661                 return (KERN_NO_SPACE);
662
663         protoeflags = 0;
664
665         if (cow & MAP_COPY_ON_WRITE)
666                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
667
668         if (cow & MAP_NOFAULT) {
669                 protoeflags |= MAP_ENTRY_NOFAULT;
670
671                 KASSERT(object == NULL,
672                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
673         }
674         if (cow & MAP_DISABLE_SYNCER)
675                 protoeflags |= MAP_ENTRY_NOSYNC;
676         if (cow & MAP_DISABLE_COREDUMP)
677                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
678
679         if (object) {
680                 /*
681                  * When object is non-NULL, it could be shared with another
682                  * process.  We have to set or clear OBJ_ONEMAPPING 
683                  * appropriately.
684                  */
685                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
686                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
687                 }
688         }
689         else if ((prev_entry != &map->header) &&
690                  (prev_entry->eflags == protoeflags) &&
691                  (prev_entry->end == start) &&
692                  (prev_entry->wired_count == 0) &&
693                  ((prev_entry->object.vm_object == NULL) ||
694                   vm_object_coalesce(prev_entry->object.vm_object,
695                                      OFF_TO_IDX(prev_entry->offset),
696                                      (vm_size_t)(prev_entry->end - prev_entry->start),
697                                      (vm_size_t)(end - prev_entry->end)))) {
698                 /*
699                  * We were able to extend the object.  Determine if we
700                  * can extend the previous map entry to include the 
701                  * new range as well.
702                  */
703                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
704                     (prev_entry->protection == prot) &&
705                     (prev_entry->max_protection == max)) {
706                         map->size += (end - prev_entry->end);
707                         prev_entry->end = end;
708                         vm_map_simplify_entry(map, prev_entry, countp);
709                         return (KERN_SUCCESS);
710                 }
711
712                 /*
713                  * If we can extend the object but cannot extend the
714                  * map entry, we have to create a new map entry.  We
715                  * must bump the ref count on the extended object to
716                  * account for it.  object may be NULL.
717                  */
718                 object = prev_entry->object.vm_object;
719                 offset = prev_entry->offset +
720                         (prev_entry->end - prev_entry->start);
721                 vm_object_reference(object);
722         }
723
724         /*
725          * NOTE: if conditionals fail, object can be NULL here.  This occurs
726          * in things like the buffer map where we manage kva but do not manage
727          * backing objects.
728          */
729
730         /*
731          * Create a new entry
732          */
733
734         new_entry = vm_map_entry_create(map, countp);
735         new_entry->start = start;
736         new_entry->end = end;
737
738         new_entry->eflags = protoeflags;
739         new_entry->object.vm_object = object;
740         new_entry->offset = offset;
741         new_entry->avail_ssize = 0;
742
743         new_entry->inheritance = VM_INHERIT_DEFAULT;
744         new_entry->protection = prot;
745         new_entry->max_protection = max;
746         new_entry->wired_count = 0;
747
748         /*
749          * Insert the new entry into the list
750          */
751
752         vm_map_entry_link(map, prev_entry, new_entry);
753         map->size += new_entry->end - new_entry->start;
754
755         /*
756          * Update the free space hint
757          */
758         if ((map->first_free == prev_entry) &&
759             (prev_entry->end >= new_entry->start)) {
760                 map->first_free = new_entry;
761         }
762
763 #if 0
764         /*
765          * Temporarily removed to avoid MAP_STACK panic, due to
766          * MAP_STACK being a huge hack.  Will be added back in
767          * when MAP_STACK (and the user stack mapping) is fixed.
768          */
769         /*
770          * It may be possible to simplify the entry
771          */
772         vm_map_simplify_entry(map, new_entry, countp);
773 #endif
774
775         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
776                 pmap_object_init_pt(map->pmap, start, prot,
777                                     object, OFF_TO_IDX(offset), end - start,
778                                     cow & MAP_PREFAULT_PARTIAL);
779         }
780
781         return (KERN_SUCCESS);
782 }
783
784 /*
785  * Find sufficient space for `length' bytes in the given map, starting at
786  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
787  *
788  * This function will returned an arbitrarily aligned pointer.  If no
789  * particular alignment is required you should pass align as 1.  Note that
790  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
791  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
792  * argument.
793  *
794  * 'align' should be a power of 2 but is not required to be.
795  */
796 int
797 vm_map_findspace(
798         vm_map_t map,
799         vm_offset_t start,
800         vm_size_t length,
801         vm_offset_t align,
802         vm_offset_t *addr)
803 {
804         vm_map_entry_t entry, next;
805         vm_offset_t end;
806         vm_offset_t align_mask;
807
808         if (start < map->min_offset)
809                 start = map->min_offset;
810         if (start > map->max_offset)
811                 return (1);
812
813         /*
814          * If the alignment is not a power of 2 we will have to use
815          * a mod/division, set align_mask to a special value.
816          */
817         if ((align | (align - 1)) + 1 != (align << 1))
818                 align_mask = (vm_offset_t)-1;
819         else
820                 align_mask = align - 1;
821
822 retry:
823         /*
824          * Look for the first possible address; if there's already something
825          * at this address, we have to start after it.
826          */
827         if (start == map->min_offset) {
828                 if ((entry = map->first_free) != &map->header)
829                         start = entry->end;
830         } else {
831                 vm_map_entry_t tmp;
832
833                 if (vm_map_lookup_entry(map, start, &tmp))
834                         start = tmp->end;
835                 entry = tmp;
836         }
837
838         /*
839          * Look through the rest of the map, trying to fit a new region in the
840          * gap between existing regions, or after the very last region.
841          */
842         for (;; start = (entry = next)->end) {
843                 /*
844                  * Adjust the proposed start by the requested alignment,
845                  * be sure that we didn't wrap the address.
846                  */
847                 if (align_mask == (vm_offset_t)-1)
848                         end = ((start + align - 1) / align) * align;
849                 else
850                         end = (start + align_mask) & ~align_mask;
851                 if (end < start)
852                         return (1);
853                 start = end;
854                 /*
855                  * Find the end of the proposed new region.  Be sure we didn't
856                  * go beyond the end of the map, or wrap around the address.
857                  * Then check to see if this is the last entry or if the 
858                  * proposed end fits in the gap between this and the next
859                  * entry.
860                  */
861                 end = start + length;
862                 if (end > map->max_offset || end < start)
863                         return (1);
864                 next = entry->next;
865                 if (next == &map->header || next->start >= end)
866                         break;
867         }
868         SAVE_HINT(map, entry);
869         if (map == kernel_map) {
870                 vm_offset_t ksize;
871                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
872                         pmap_growkernel(ksize);
873                         goto retry;
874                 }
875         }
876         *addr = start;
877         return (0);
878 }
879
880 /*
881  *      vm_map_find finds an unallocated region in the target address
882  *      map with the given length.  The search is defined to be
883  *      first-fit from the specified address; the region found is
884  *      returned in the same parameter.
885  *
886  *      If object is non-NULL, ref count must be bumped by caller
887  *      prior to making call to account for the new entry.
888  */
889 int
890 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
891             vm_offset_t *addr,  /* IN/OUT */
892             vm_size_t length, boolean_t find_space, vm_prot_t prot,
893             vm_prot_t max, int cow)
894 {
895         vm_offset_t start;
896         int result;
897         int count;
898
899         start = *addr;
900
901         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
902         vm_map_lock(map);
903         if (find_space) {
904                 if (vm_map_findspace(map, start, length, 1, addr)) {
905                         vm_map_unlock(map);
906                         vm_map_entry_release(count);
907                         return (KERN_NO_SPACE);
908                 }
909                 start = *addr;
910         }
911         result = vm_map_insert(map, &count, object, offset,
912                 start, start + length, prot, max, cow);
913         vm_map_unlock(map);
914         vm_map_entry_release(count);
915
916         return (result);
917 }
918
919 /*
920  *      vm_map_simplify_entry:
921  *
922  *      Simplify the given map entry by merging with either neighbor.  This
923  *      routine also has the ability to merge with both neighbors.
924  *
925  *      The map must be locked.
926  *
927  *      This routine guarentees that the passed entry remains valid (though
928  *      possibly extended).  When merging, this routine may delete one or
929  *      both neighbors.  No action is taken on entries which have their
930  *      in-transition flag set.
931  */
932 void
933 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
934 {
935         vm_map_entry_t next, prev;
936         vm_size_t prevsize, esize;
937
938         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
939                 ++mycpu->gd_cnt.v_intrans_coll;
940                 return;
941         }
942
943         prev = entry->prev;
944         if (prev != &map->header) {
945                 prevsize = prev->end - prev->start;
946                 if ( (prev->end == entry->start) &&
947                      (prev->object.vm_object == entry->object.vm_object) &&
948                      (!prev->object.vm_object ||
949                         (prev->offset + prevsize == entry->offset)) &&
950                      (prev->eflags == entry->eflags) &&
951                      (prev->protection == entry->protection) &&
952                      (prev->max_protection == entry->max_protection) &&
953                      (prev->inheritance == entry->inheritance) &&
954                      (prev->wired_count == entry->wired_count)) {
955                         if (map->first_free == prev)
956                                 map->first_free = entry;
957                         if (map->hint == prev)
958                                 map->hint = entry;
959                         vm_map_entry_unlink(map, prev);
960                         entry->start = prev->start;
961                         entry->offset = prev->offset;
962                         if (prev->object.vm_object)
963                                 vm_object_deallocate(prev->object.vm_object);
964                         vm_map_entry_dispose(map, prev, countp);
965                 }
966         }
967
968         next = entry->next;
969         if (next != &map->header) {
970                 esize = entry->end - entry->start;
971                 if ((entry->end == next->start) &&
972                     (next->object.vm_object == entry->object.vm_object) &&
973                      (!entry->object.vm_object ||
974                         (entry->offset + esize == next->offset)) &&
975                     (next->eflags == entry->eflags) &&
976                     (next->protection == entry->protection) &&
977                     (next->max_protection == entry->max_protection) &&
978                     (next->inheritance == entry->inheritance) &&
979                     (next->wired_count == entry->wired_count)) {
980                         if (map->first_free == next)
981                                 map->first_free = entry;
982                         if (map->hint == next)
983                                 map->hint = entry;
984                         vm_map_entry_unlink(map, next);
985                         entry->end = next->end;
986                         if (next->object.vm_object)
987                                 vm_object_deallocate(next->object.vm_object);
988                         vm_map_entry_dispose(map, next, countp);
989                 }
990         }
991 }
992 /*
993  *      vm_map_clip_start:      [ internal use only ]
994  *
995  *      Asserts that the given entry begins at or after
996  *      the specified address; if necessary,
997  *      it splits the entry into two.
998  */
999 #define vm_map_clip_start(map, entry, startaddr, countp) \
1000 { \
1001         if (startaddr > entry->start) \
1002                 _vm_map_clip_start(map, entry, startaddr, countp); \
1003 }
1004
1005 /*
1006  *      This routine is called only when it is known that
1007  *      the entry must be split.
1008  */
1009 static void
1010 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1011 {
1012         vm_map_entry_t new_entry;
1013
1014         /*
1015          * Split off the front portion -- note that we must insert the new
1016          * entry BEFORE this one, so that this entry has the specified
1017          * starting address.
1018          */
1019
1020         vm_map_simplify_entry(map, entry, countp);
1021
1022         /*
1023          * If there is no object backing this entry, we might as well create
1024          * one now.  If we defer it, an object can get created after the map
1025          * is clipped, and individual objects will be created for the split-up
1026          * map.  This is a bit of a hack, but is also about the best place to
1027          * put this improvement.
1028          */
1029
1030         if (entry->object.vm_object == NULL && !map->system_map) {
1031                 vm_object_t object;
1032                 object = vm_object_allocate(OBJT_DEFAULT,
1033                                 atop(entry->end - entry->start));
1034                 entry->object.vm_object = object;
1035                 entry->offset = 0;
1036         }
1037
1038         new_entry = vm_map_entry_create(map, countp);
1039         *new_entry = *entry;
1040
1041         new_entry->end = start;
1042         entry->offset += (start - entry->start);
1043         entry->start = start;
1044
1045         vm_map_entry_link(map, entry->prev, new_entry);
1046
1047         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1048                 vm_object_reference(new_entry->object.vm_object);
1049         }
1050 }
1051
1052 /*
1053  *      vm_map_clip_end:        [ internal use only ]
1054  *
1055  *      Asserts that the given entry ends at or before
1056  *      the specified address; if necessary,
1057  *      it splits the entry into two.
1058  */
1059
1060 #define vm_map_clip_end(map, entry, endaddr, countp) \
1061 { \
1062         if (endaddr < entry->end) \
1063                 _vm_map_clip_end(map, entry, endaddr, countp); \
1064 }
1065
1066 /*
1067  *      This routine is called only when it is known that
1068  *      the entry must be split.
1069  */
1070 static void
1071 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1072 {
1073         vm_map_entry_t new_entry;
1074
1075         /*
1076          * If there is no object backing this entry, we might as well create
1077          * one now.  If we defer it, an object can get created after the map
1078          * is clipped, and individual objects will be created for the split-up
1079          * map.  This is a bit of a hack, but is also about the best place to
1080          * put this improvement.
1081          */
1082
1083         if (entry->object.vm_object == NULL && !map->system_map) {
1084                 vm_object_t object;
1085                 object = vm_object_allocate(OBJT_DEFAULT,
1086                                 atop(entry->end - entry->start));
1087                 entry->object.vm_object = object;
1088                 entry->offset = 0;
1089         }
1090
1091         /*
1092          * Create a new entry and insert it AFTER the specified entry
1093          */
1094
1095         new_entry = vm_map_entry_create(map, countp);
1096         *new_entry = *entry;
1097
1098         new_entry->start = entry->end = end;
1099         new_entry->offset += (end - entry->start);
1100
1101         vm_map_entry_link(map, entry, new_entry);
1102
1103         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1104                 vm_object_reference(new_entry->object.vm_object);
1105         }
1106 }
1107
1108 /*
1109  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1110  *
1111  *      Asserts that the starting and ending region
1112  *      addresses fall within the valid range of the map.
1113  */
1114 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1115                 {                                       \
1116                 if (start < vm_map_min(map))            \
1117                         start = vm_map_min(map);        \
1118                 if (end > vm_map_max(map))              \
1119                         end = vm_map_max(map);          \
1120                 if (start > end)                        \
1121                         start = end;                    \
1122                 }
1123
1124 /*
1125  *      vm_map_transition_wait: [ kernel use only ]
1126  *
1127  *      Used to block when an in-transition collison occurs.  The map
1128  *      is unlocked for the sleep and relocked before the return.
1129  */
1130 static
1131 void
1132 vm_map_transition_wait(vm_map_t map)
1133 {
1134         vm_map_unlock(map);
1135         tsleep(map, 0, "vment", 0);
1136         vm_map_lock(map);
1137 }
1138
1139 /*
1140  * CLIP_CHECK_BACK
1141  * CLIP_CHECK_FWD
1142  *
1143  *      When we do blocking operations with the map lock held it is
1144  *      possible that a clip might have occured on our in-transit entry,
1145  *      requiring an adjustment to the entry in our loop.  These macros
1146  *      help the pageable and clip_range code deal with the case.  The
1147  *      conditional costs virtually nothing if no clipping has occured.
1148  */
1149
1150 #define CLIP_CHECK_BACK(entry, save_start)              \
1151     do {                                                \
1152             while (entry->start != save_start) {        \
1153                     entry = entry->prev;                \
1154                     KASSERT(entry != &map->header, ("bad entry clip")); \
1155             }                                           \
1156     } while(0)
1157
1158 #define CLIP_CHECK_FWD(entry, save_end)                 \
1159     do {                                                \
1160             while (entry->end != save_end) {            \
1161                     entry = entry->next;                \
1162                     KASSERT(entry != &map->header, ("bad entry clip")); \
1163             }                                           \
1164     } while(0)
1165
1166
1167 /*
1168  *      vm_map_clip_range:      [ kernel use only ]
1169  *
1170  *      Clip the specified range and return the base entry.  The
1171  *      range may cover several entries starting at the returned base
1172  *      and the first and last entry in the covering sequence will be
1173  *      properly clipped to the requested start and end address.
1174  *
1175  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1176  *      flag.  
1177  *
1178  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1179  *      covered by the requested range.
1180  *
1181  *      The map must be exclusively locked on entry and will remain locked
1182  *      on return. If no range exists or the range contains holes and you
1183  *      specified that no holes were allowed, NULL will be returned.  This
1184  *      routine may temporarily unlock the map in order avoid a deadlock when
1185  *      sleeping.
1186  */
1187 static
1188 vm_map_entry_t
1189 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1190         int *countp, int flags)
1191 {
1192         vm_map_entry_t start_entry;
1193         vm_map_entry_t entry;
1194
1195         /*
1196          * Locate the entry and effect initial clipping.  The in-transition
1197          * case does not occur very often so do not try to optimize it.
1198          */
1199 again:
1200         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1201                 return (NULL);
1202         entry = start_entry;
1203         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1204                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1205                 ++mycpu->gd_cnt.v_intrans_coll;
1206                 ++mycpu->gd_cnt.v_intrans_wait;
1207                 vm_map_transition_wait(map);
1208                 /*
1209                  * entry and/or start_entry may have been clipped while
1210                  * we slept, or may have gone away entirely.  We have
1211                  * to restart from the lookup.
1212                  */
1213                 goto again;
1214         }
1215         /*
1216          * Since we hold an exclusive map lock we do not have to restart
1217          * after clipping, even though clipping may block in zalloc.
1218          */
1219         vm_map_clip_start(map, entry, start, countp);
1220         vm_map_clip_end(map, entry, end, countp);
1221         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1222
1223         /*
1224          * Scan entries covered by the range.  When working on the next
1225          * entry a restart need only re-loop on the current entry which
1226          * we have already locked, since 'next' may have changed.  Also,
1227          * even though entry is safe, it may have been clipped so we
1228          * have to iterate forwards through the clip after sleeping.
1229          */
1230         while (entry->next != &map->header && entry->next->start < end) {
1231                 vm_map_entry_t next = entry->next;
1232
1233                 if (flags & MAP_CLIP_NO_HOLES) {
1234                         if (next->start > entry->end) {
1235                                 vm_map_unclip_range(map, start_entry,
1236                                         start, entry->end, countp, flags);
1237                                 return(NULL);
1238                         }
1239                 }
1240
1241                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1242                         vm_offset_t save_end = entry->end;
1243                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1244                         ++mycpu->gd_cnt.v_intrans_coll;
1245                         ++mycpu->gd_cnt.v_intrans_wait;
1246                         vm_map_transition_wait(map);
1247
1248                         /*
1249                          * clips might have occured while we blocked.
1250                          */
1251                         CLIP_CHECK_FWD(entry, save_end);
1252                         CLIP_CHECK_BACK(start_entry, start);
1253                         continue;
1254                 }
1255                 /*
1256                  * No restart necessary even though clip_end may block, we
1257                  * are holding the map lock.
1258                  */
1259                 vm_map_clip_end(map, next, end, countp);
1260                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1261                 entry = next;
1262         }
1263         if (flags & MAP_CLIP_NO_HOLES) {
1264                 if (entry->end != end) {
1265                         vm_map_unclip_range(map, start_entry,
1266                                 start, entry->end, countp, flags);
1267                         return(NULL);
1268                 }
1269         }
1270         return(start_entry);
1271 }
1272
1273 /*
1274  *      vm_map_unclip_range:    [ kernel use only ]
1275  *
1276  *      Undo the effect of vm_map_clip_range().  You should pass the same
1277  *      flags and the same range that you passed to vm_map_clip_range().
1278  *      This code will clear the in-transition flag on the entries and
1279  *      wake up anyone waiting.  This code will also simplify the sequence 
1280  *      and attempt to merge it with entries before and after the sequence.
1281  *
1282  *      The map must be locked on entry and will remain locked on return.
1283  *
1284  *      Note that you should also pass the start_entry returned by 
1285  *      vm_map_clip_range().  However, if you block between the two calls
1286  *      with the map unlocked please be aware that the start_entry may
1287  *      have been clipped and you may need to scan it backwards to find
1288  *      the entry corresponding with the original start address.  You are
1289  *      responsible for this, vm_map_unclip_range() expects the correct
1290  *      start_entry to be passed to it and will KASSERT otherwise.
1291  */
1292 static
1293 void
1294 vm_map_unclip_range(
1295         vm_map_t map,
1296         vm_map_entry_t start_entry,
1297         vm_offset_t start,
1298         vm_offset_t end,
1299         int *countp,
1300         int flags)
1301 {
1302         vm_map_entry_t entry;
1303
1304         entry = start_entry;
1305
1306         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1307         while (entry != &map->header && entry->start < end) {
1308                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1309                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1310                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1311                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1312                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1313                         wakeup(map);
1314                 }
1315                 entry = entry->next;
1316         }
1317
1318         /*
1319          * Simplification does not block so there is no restart case.
1320          */
1321         entry = start_entry;
1322         while (entry != &map->header && entry->start < end) {
1323                 vm_map_simplify_entry(map, entry, countp);
1324                 entry = entry->next;
1325         }
1326 }
1327
1328 /*
1329  *      vm_map_submap:          [ kernel use only ]
1330  *
1331  *      Mark the given range as handled by a subordinate map.
1332  *
1333  *      This range must have been created with vm_map_find,
1334  *      and no other operations may have been performed on this
1335  *      range prior to calling vm_map_submap.
1336  *
1337  *      Only a limited number of operations can be performed
1338  *      within this rage after calling vm_map_submap:
1339  *              vm_fault
1340  *      [Don't try vm_map_copy!]
1341  *
1342  *      To remove a submapping, one must first remove the
1343  *      range from the superior map, and then destroy the
1344  *      submap (if desired).  [Better yet, don't try it.]
1345  */
1346 int
1347 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1348 {
1349         vm_map_entry_t entry;
1350         int result = KERN_INVALID_ARGUMENT;
1351         int count;
1352
1353         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1354         vm_map_lock(map);
1355
1356         VM_MAP_RANGE_CHECK(map, start, end);
1357
1358         if (vm_map_lookup_entry(map, start, &entry)) {
1359                 vm_map_clip_start(map, entry, start, &count);
1360         } else {
1361                 entry = entry->next;
1362         }
1363
1364         vm_map_clip_end(map, entry, end, &count);
1365
1366         if ((entry->start == start) && (entry->end == end) &&
1367             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1368             (entry->object.vm_object == NULL)) {
1369                 entry->object.sub_map = submap;
1370                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1371                 result = KERN_SUCCESS;
1372         }
1373         vm_map_unlock(map);
1374         vm_map_entry_release(count);
1375
1376         return (result);
1377 }
1378
1379 /*
1380  *      vm_map_protect:
1381  *
1382  *      Sets the protection of the specified address
1383  *      region in the target map.  If "set_max" is
1384  *      specified, the maximum protection is to be set;
1385  *      otherwise, only the current protection is affected.
1386  */
1387 int
1388 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1389                vm_prot_t new_prot, boolean_t set_max)
1390 {
1391         vm_map_entry_t current;
1392         vm_map_entry_t entry;
1393         int count;
1394
1395         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1396         vm_map_lock(map);
1397
1398         VM_MAP_RANGE_CHECK(map, start, end);
1399
1400         if (vm_map_lookup_entry(map, start, &entry)) {
1401                 vm_map_clip_start(map, entry, start, &count);
1402         } else {
1403                 entry = entry->next;
1404         }
1405
1406         /*
1407          * Make a first pass to check for protection violations.
1408          */
1409
1410         current = entry;
1411         while ((current != &map->header) && (current->start < end)) {
1412                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1413                         vm_map_unlock(map);
1414                         vm_map_entry_release(count);
1415                         return (KERN_INVALID_ARGUMENT);
1416                 }
1417                 if ((new_prot & current->max_protection) != new_prot) {
1418                         vm_map_unlock(map);
1419                         vm_map_entry_release(count);
1420                         return (KERN_PROTECTION_FAILURE);
1421                 }
1422                 current = current->next;
1423         }
1424
1425         /*
1426          * Go back and fix up protections. [Note that clipping is not
1427          * necessary the second time.]
1428          */
1429         current = entry;
1430
1431         while ((current != &map->header) && (current->start < end)) {
1432                 vm_prot_t old_prot;
1433
1434                 vm_map_clip_end(map, current, end, &count);
1435
1436                 old_prot = current->protection;
1437                 if (set_max)
1438                         current->protection =
1439                             (current->max_protection = new_prot) &
1440                             old_prot;
1441                 else
1442                         current->protection = new_prot;
1443
1444                 /*
1445                  * Update physical map if necessary. Worry about copy-on-write
1446                  * here -- CHECK THIS XXX
1447                  */
1448
1449                 if (current->protection != old_prot) {
1450 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1451                                                         VM_PROT_ALL)
1452
1453                         pmap_protect(map->pmap, current->start,
1454                             current->end,
1455                             current->protection & MASK(current));
1456 #undef  MASK
1457                 }
1458
1459                 vm_map_simplify_entry(map, current, &count);
1460
1461                 current = current->next;
1462         }
1463
1464         vm_map_unlock(map);
1465         vm_map_entry_release(count);
1466         return (KERN_SUCCESS);
1467 }
1468
1469 /*
1470  *      vm_map_madvise:
1471  *
1472  *      This routine traverses a processes map handling the madvise
1473  *      system call.  Advisories are classified as either those effecting
1474  *      the vm_map_entry structure, or those effecting the underlying 
1475  *      objects.
1476  */
1477
1478 int
1479 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1480 {
1481         vm_map_entry_t current, entry;
1482         int modify_map = 0;
1483         int count;
1484
1485         /*
1486          * Some madvise calls directly modify the vm_map_entry, in which case
1487          * we need to use an exclusive lock on the map and we need to perform 
1488          * various clipping operations.  Otherwise we only need a read-lock
1489          * on the map.
1490          */
1491
1492         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1493
1494         switch(behav) {
1495         case MADV_NORMAL:
1496         case MADV_SEQUENTIAL:
1497         case MADV_RANDOM:
1498         case MADV_NOSYNC:
1499         case MADV_AUTOSYNC:
1500         case MADV_NOCORE:
1501         case MADV_CORE:
1502                 modify_map = 1;
1503                 vm_map_lock(map);
1504                 break;
1505         case MADV_WILLNEED:
1506         case MADV_DONTNEED:
1507         case MADV_FREE:
1508                 vm_map_lock_read(map);
1509                 break;
1510         default:
1511                 vm_map_entry_release(count);
1512                 return (KERN_INVALID_ARGUMENT);
1513         }
1514
1515         /*
1516          * Locate starting entry and clip if necessary.
1517          */
1518
1519         VM_MAP_RANGE_CHECK(map, start, end);
1520
1521         if (vm_map_lookup_entry(map, start, &entry)) {
1522                 if (modify_map)
1523                         vm_map_clip_start(map, entry, start, &count);
1524         } else {
1525                 entry = entry->next;
1526         }
1527
1528         if (modify_map) {
1529                 /*
1530                  * madvise behaviors that are implemented in the vm_map_entry.
1531                  *
1532                  * We clip the vm_map_entry so that behavioral changes are
1533                  * limited to the specified address range.
1534                  */
1535                 for (current = entry;
1536                      (current != &map->header) && (current->start < end);
1537                      current = current->next
1538                 ) {
1539                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1540                                 continue;
1541
1542                         vm_map_clip_end(map, current, end, &count);
1543
1544                         switch (behav) {
1545                         case MADV_NORMAL:
1546                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1547                                 break;
1548                         case MADV_SEQUENTIAL:
1549                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1550                                 break;
1551                         case MADV_RANDOM:
1552                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1553                                 break;
1554                         case MADV_NOSYNC:
1555                                 current->eflags |= MAP_ENTRY_NOSYNC;
1556                                 break;
1557                         case MADV_AUTOSYNC:
1558                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1559                                 break;
1560                         case MADV_NOCORE:
1561                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1562                                 break;
1563                         case MADV_CORE:
1564                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1565                                 break;
1566                         default:
1567                                 break;
1568                         }
1569                         vm_map_simplify_entry(map, current, &count);
1570                 }
1571                 vm_map_unlock(map);
1572         } else {
1573                 vm_pindex_t pindex;
1574                 int count;
1575
1576                 /*
1577                  * madvise behaviors that are implemented in the underlying
1578                  * vm_object.
1579                  *
1580                  * Since we don't clip the vm_map_entry, we have to clip
1581                  * the vm_object pindex and count.
1582                  */
1583                 for (current = entry;
1584                      (current != &map->header) && (current->start < end);
1585                      current = current->next
1586                 ) {
1587                         vm_offset_t useStart;
1588
1589                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1590                                 continue;
1591
1592                         pindex = OFF_TO_IDX(current->offset);
1593                         count = atop(current->end - current->start);
1594                         useStart = current->start;
1595
1596                         if (current->start < start) {
1597                                 pindex += atop(start - current->start);
1598                                 count -= atop(start - current->start);
1599                                 useStart = start;
1600                         }
1601                         if (current->end > end)
1602                                 count -= atop(current->end - end);
1603
1604                         if (count <= 0)
1605                                 continue;
1606
1607                         vm_object_madvise(current->object.vm_object,
1608                                           pindex, count, behav);
1609                         if (behav == MADV_WILLNEED) {
1610                                 pmap_object_init_pt(
1611                                     map->pmap, 
1612                                     useStart,
1613                                     current->protection,
1614                                     current->object.vm_object,
1615                                     pindex, 
1616                                     (count << PAGE_SHIFT),
1617                                     MAP_PREFAULT_MADVISE
1618                                 );
1619                         }
1620                 }
1621                 vm_map_unlock_read(map);
1622         }
1623         vm_map_entry_release(count);
1624         return(0);
1625 }       
1626
1627
1628 /*
1629  *      vm_map_inherit:
1630  *
1631  *      Sets the inheritance of the specified address
1632  *      range in the target map.  Inheritance
1633  *      affects how the map will be shared with
1634  *      child maps at the time of vm_map_fork.
1635  */
1636 int
1637 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1638                vm_inherit_t new_inheritance)
1639 {
1640         vm_map_entry_t entry;
1641         vm_map_entry_t temp_entry;
1642         int count;
1643
1644         switch (new_inheritance) {
1645         case VM_INHERIT_NONE:
1646         case VM_INHERIT_COPY:
1647         case VM_INHERIT_SHARE:
1648                 break;
1649         default:
1650                 return (KERN_INVALID_ARGUMENT);
1651         }
1652
1653         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1654         vm_map_lock(map);
1655
1656         VM_MAP_RANGE_CHECK(map, start, end);
1657
1658         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1659                 entry = temp_entry;
1660                 vm_map_clip_start(map, entry, start, &count);
1661         } else
1662                 entry = temp_entry->next;
1663
1664         while ((entry != &map->header) && (entry->start < end)) {
1665                 vm_map_clip_end(map, entry, end, &count);
1666
1667                 entry->inheritance = new_inheritance;
1668
1669                 vm_map_simplify_entry(map, entry, &count);
1670
1671                 entry = entry->next;
1672         }
1673         vm_map_unlock(map);
1674         vm_map_entry_release(count);
1675         return (KERN_SUCCESS);
1676 }
1677
1678 /*
1679  * Implement the semantics of mlock
1680  */
1681 int
1682 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1683     boolean_t new_pageable)
1684 {
1685         vm_map_entry_t entry;
1686         vm_map_entry_t start_entry;
1687         vm_offset_t end;
1688         int rv = KERN_SUCCESS;
1689         int count;
1690
1691         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1692         vm_map_lock(map);
1693         VM_MAP_RANGE_CHECK(map, start, real_end);
1694         end = real_end;
1695
1696         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1697         if (start_entry == NULL) {
1698                 vm_map_unlock(map);
1699                 vm_map_entry_release(count);
1700                 return (KERN_INVALID_ADDRESS);
1701         }
1702
1703         if (new_pageable == 0) {
1704                 entry = start_entry;
1705                 while ((entry != &map->header) && (entry->start < end)) {
1706                         vm_offset_t save_start;
1707                         vm_offset_t save_end;
1708
1709                         /*
1710                          * Already user wired or hard wired (trivial cases)
1711                          */
1712                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1713                                 entry = entry->next;
1714                                 continue;
1715                         }
1716                         if (entry->wired_count != 0) {
1717                                 entry->wired_count++;
1718                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1719                                 entry = entry->next;
1720                                 continue;
1721                         }
1722
1723                         /*
1724                          * A new wiring requires instantiation of appropriate
1725                          * management structures and the faulting in of the
1726                          * page.
1727                          */
1728                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1729                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1730                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1731
1732                                         vm_object_shadow(&entry->object.vm_object,
1733                                             &entry->offset,
1734                                             atop(entry->end - entry->start));
1735                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1736
1737                                 } else if (entry->object.vm_object == NULL &&
1738                                            !map->system_map) {
1739
1740                                         entry->object.vm_object =
1741                                             vm_object_allocate(OBJT_DEFAULT,
1742                                                 atop(entry->end - entry->start));
1743                                         entry->offset = (vm_offset_t) 0;
1744
1745                                 }
1746                         }
1747                         entry->wired_count++;
1748                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1749
1750                         /*
1751                          * Now fault in the area.  The map lock needs to be
1752                          * manipulated to avoid deadlocks.  The in-transition
1753                          * flag protects the entries. 
1754                          */
1755                         save_start = entry->start;
1756                         save_end = entry->end;
1757                         vm_map_unlock(map);
1758                         map->timestamp++;
1759                         rv = vm_fault_user_wire(map, save_start, save_end);
1760                         vm_map_lock(map);
1761                         if (rv) {
1762                                 CLIP_CHECK_BACK(entry, save_start);
1763                                 for (;;) {
1764                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1765                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1766                                         entry->wired_count = 0;
1767                                         if (entry->end == save_end)
1768                                                 break;
1769                                         entry = entry->next;
1770                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1771                                 }
1772                                 end = save_start;       /* unwire the rest */
1773                                 break;
1774                         }
1775                         /*
1776                          * note that even though the entry might have been
1777                          * clipped, the USER_WIRED flag we set prevents
1778                          * duplication so we do not have to do a 
1779                          * clip check.
1780                          */
1781                         entry = entry->next;
1782                 }
1783
1784                 /*
1785                  * If we failed fall through to the unwiring section to
1786                  * unwire what we had wired so far.  'end' has already
1787                  * been adjusted.
1788                  */
1789                 if (rv)
1790                         new_pageable = 1;
1791
1792                 /*
1793                  * start_entry might have been clipped if we unlocked the
1794                  * map and blocked.  No matter how clipped it has gotten
1795                  * there should be a fragment that is on our start boundary.
1796                  */
1797                 CLIP_CHECK_BACK(start_entry, start);
1798         }
1799
1800         /*
1801          * Deal with the unwiring case.
1802          */
1803         if (new_pageable) {
1804                 /*
1805                  * This is the unwiring case.  We must first ensure that the
1806                  * range to be unwired is really wired down.  We know there
1807                  * are no holes.
1808                  */
1809                 entry = start_entry;
1810                 while ((entry != &map->header) && (entry->start < end)) {
1811                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1812                                 rv = KERN_INVALID_ARGUMENT;
1813                                 goto done;
1814                         }
1815                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1816                         entry = entry->next;
1817                 }
1818
1819                 /*
1820                  * Now decrement the wiring count for each region. If a region
1821                  * becomes completely unwired, unwire its physical pages and
1822                  * mappings.
1823                  */
1824                 /*
1825                  * The map entries are processed in a loop, checking to
1826                  * make sure the entry is wired and asserting it has a wired
1827                  * count. However, another loop was inserted more-or-less in
1828                  * the middle of the unwiring path. This loop picks up the
1829                  * "entry" loop variable from the first loop without first
1830                  * setting it to start_entry. Naturally, the secound loop
1831                  * is never entered and the pages backing the entries are
1832                  * never unwired. This can lead to a leak of wired pages.
1833                  */
1834                 entry = start_entry;
1835                 while ((entry != &map->header) && (entry->start < end)) {
1836                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, ("expected USER_WIRED on entry %p", entry));
1837                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1838                         entry->wired_count--;
1839                         if (entry->wired_count == 0)
1840                                 vm_fault_unwire(map, entry->start, entry->end);
1841                         entry = entry->next;
1842                 }
1843         }
1844 done:
1845         vm_map_unclip_range(map, start_entry, start, real_end, &count,
1846                 MAP_CLIP_NO_HOLES);
1847         map->timestamp++;
1848         vm_map_unlock(map);
1849         vm_map_entry_release(count);
1850         return (rv);
1851 }
1852
1853 /*
1854  *      vm_map_wire:
1855  *
1856  *      Sets the pageability of the specified address
1857  *      range in the target map.  Regions specified
1858  *      as not pageable require locked-down physical
1859  *      memory and physical page maps.
1860  *
1861  *      The map must not be locked, but a reference
1862  *      must remain to the map throughout the call.
1863  *
1864  *      This function may be called via the zalloc path and must properly
1865  *      reserve map entries for kernel_map.
1866  */
1867 int
1868 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1869 {
1870         vm_map_entry_t entry;
1871         vm_map_entry_t start_entry;
1872         vm_offset_t end;
1873         int rv = KERN_SUCCESS;
1874         int count;
1875         int s;
1876
1877         if (kmflags & KM_KRESERVE)
1878                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1879         else
1880                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1881         vm_map_lock(map);
1882         VM_MAP_RANGE_CHECK(map, start, real_end);
1883         end = real_end;
1884
1885         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1886         if (start_entry == NULL) {
1887                 vm_map_unlock(map);
1888                 rv = KERN_INVALID_ADDRESS;
1889                 goto failure;
1890         }
1891         if ((kmflags & KM_PAGEABLE) == 0) {
1892                 /*
1893                  * Wiring.  
1894                  *
1895                  * 1.  Holding the write lock, we create any shadow or zero-fill
1896                  * objects that need to be created. Then we clip each map
1897                  * entry to the region to be wired and increment its wiring
1898                  * count.  We create objects before clipping the map entries
1899                  * to avoid object proliferation.
1900                  *
1901                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
1902                  * fault in the pages for any newly wired area (wired_count is
1903                  * 1).
1904                  *
1905                  * Downgrading to a read lock for vm_fault_wire avoids a 
1906                  * possible deadlock with another process that may have faulted
1907                  * on one of the pages to be wired (it would mark the page busy,
1908                  * blocking us, then in turn block on the map lock that we
1909                  * hold).  Because of problems in the recursive lock package,
1910                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1911                  * any actions that require the write lock must be done
1912                  * beforehand.  Because we keep the read lock on the map, the
1913                  * copy-on-write status of the entries we modify here cannot
1914                  * change.
1915                  */
1916
1917                 entry = start_entry;
1918                 while ((entry != &map->header) && (entry->start < end)) {
1919                         /*
1920                          * Trivial case if the entry is already wired
1921                          */
1922                         if (entry->wired_count) {
1923                                 entry->wired_count++;
1924                                 entry = entry->next;
1925                                 continue;
1926                         }
1927
1928                         /*
1929                          * The entry is being newly wired, we have to setup
1930                          * appropriate management structures.  A shadow 
1931                          * object is required for a copy-on-write region,
1932                          * or a normal object for a zero-fill region.  We
1933                          * do not have to do this for entries that point to sub
1934                          * maps because we won't hold the lock on the sub map.
1935                          */
1936                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1937                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1938                                 if (copyflag &&
1939                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
1940
1941                                         vm_object_shadow(&entry->object.vm_object,
1942                                             &entry->offset,
1943                                             atop(entry->end - entry->start));
1944                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1945                                 } else if (entry->object.vm_object == NULL &&
1946                                            !map->system_map) {
1947                                         entry->object.vm_object =
1948                                             vm_object_allocate(OBJT_DEFAULT,
1949                                                 atop(entry->end - entry->start));
1950                                         entry->offset = (vm_offset_t) 0;
1951                                 }
1952                         }
1953
1954                         entry->wired_count++;
1955                         entry = entry->next;
1956                 }
1957
1958                 /*
1959                  * Pass 2.
1960                  */
1961
1962                 /*
1963                  * HACK HACK HACK HACK
1964                  *
1965                  * Unlock the map to avoid deadlocks.  The in-transit flag
1966                  * protects us from most changes but note that
1967                  * clipping may still occur.  To prevent clipping from
1968                  * occuring after the unlock, except for when we are
1969                  * blocking in vm_fault_wire, we must run at splvm().
1970                  * Otherwise our accesses to entry->start and entry->end
1971                  * could be corrupted.  We have to set splvm() prior to
1972                  * unlocking so start_entry does not change out from
1973                  * under us at the very beginning of the loop.
1974                  *
1975                  * HACK HACK HACK HACK
1976                  */
1977
1978                 s = splvm();
1979                 vm_map_unlock(map);
1980
1981                 entry = start_entry;
1982                 while (entry != &map->header && entry->start < end) {
1983                         /*
1984                          * If vm_fault_wire fails for any page we need to undo
1985                          * what has been done.  We decrement the wiring count
1986                          * for those pages which have not yet been wired (now)
1987                          * and unwire those that have (later).
1988                          */
1989                         vm_offset_t save_start = entry->start;
1990                         vm_offset_t save_end = entry->end;
1991
1992                         if (entry->wired_count == 1)
1993                                 rv = vm_fault_wire(map, entry->start, entry->end);
1994                         if (rv) {
1995                                 CLIP_CHECK_BACK(entry, save_start);
1996                                 for (;;) {
1997                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
1998                                         entry->wired_count = 0;
1999                                         if (entry->end == save_end)
2000                                                 break;
2001                                         entry = entry->next;
2002                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2003                                 }
2004                                 end = save_start;
2005                                 break;
2006                         }
2007                         CLIP_CHECK_FWD(entry, save_end);
2008                         entry = entry->next;
2009                 }
2010                 splx(s);
2011
2012                 /*
2013                  * relock.  start_entry is still IN_TRANSITION and must
2014                  * still exist, but may have been clipped (handled just
2015                  * below).
2016                  */
2017                 vm_map_lock(map);
2018
2019                 /*
2020                  * If a failure occured undo everything by falling through
2021                  * to the unwiring code.  'end' has already been adjusted
2022                  * appropriately.
2023                  */
2024                 if (rv)
2025                         kmflags |= KM_PAGEABLE;
2026
2027                 /*
2028                  * start_entry might have been clipped if we unlocked the
2029                  * map and blocked.  No matter how clipped it has gotten
2030                  * there should be a fragment that is on our start boundary.
2031                  */
2032                 CLIP_CHECK_BACK(start_entry, start);
2033         }
2034
2035         if (kmflags & KM_PAGEABLE) {
2036                 /*
2037                  * This is the unwiring case.  We must first ensure that the
2038                  * range to be unwired is really wired down.  We know there
2039                  * are no holes.
2040                  */
2041                 entry = start_entry;
2042                 while ((entry != &map->header) && (entry->start < end)) {
2043                         if (entry->wired_count == 0) {
2044                                 rv = KERN_INVALID_ARGUMENT;
2045                                 goto done;
2046                         }
2047                         entry = entry->next;
2048                 }
2049
2050                 /*
2051                  * Now decrement the wiring count for each region. If a region
2052                  * becomes completely unwired, unwire its physical pages and
2053                  * mappings.
2054                  */
2055                 entry = start_entry;
2056                 while ((entry != &map->header) && (entry->start < end)) {
2057                         entry->wired_count--;
2058                         if (entry->wired_count == 0)
2059                                 vm_fault_unwire(map, entry->start, entry->end);
2060                         entry = entry->next;
2061                 }
2062         }
2063 done:
2064         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2065                 MAP_CLIP_NO_HOLES);
2066         map->timestamp++;
2067         vm_map_unlock(map);
2068 failure:
2069         if (kmflags & KM_KRESERVE)
2070                 vm_map_entry_krelease(count);
2071         else
2072                 vm_map_entry_release(count);
2073         return (rv);
2074 }
2075
2076 /*
2077  * vm_map_set_wired_quick()
2078  *
2079  *      Mark a newly allocated address range as wired but do not fault in
2080  *      the pages.  The caller is expected to load the pages into the object.
2081  *
2082  *      The map must be locked on entry and will remain locked on return.
2083  */
2084 void
2085 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2086 {
2087         vm_map_entry_t scan;
2088         vm_map_entry_t entry;
2089
2090         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2091         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2092             KKASSERT(entry->wired_count == 0);
2093             entry->wired_count = 1;                                              
2094         }
2095         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2096 }
2097
2098 /*
2099  * vm_map_clean
2100  *
2101  * Push any dirty cached pages in the address range to their pager.
2102  * If syncio is TRUE, dirty pages are written synchronously.
2103  * If invalidate is TRUE, any cached pages are freed as well.
2104  *
2105  * Returns an error if any part of the specified range is not mapped.
2106  */
2107 int
2108 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2109     boolean_t invalidate)
2110 {
2111         vm_map_entry_t current;
2112         vm_map_entry_t entry;
2113         vm_size_t size;
2114         vm_object_t object;
2115         vm_ooffset_t offset;
2116
2117         vm_map_lock_read(map);
2118         VM_MAP_RANGE_CHECK(map, start, end);
2119         if (!vm_map_lookup_entry(map, start, &entry)) {
2120                 vm_map_unlock_read(map);
2121                 return (KERN_INVALID_ADDRESS);
2122         }
2123         /*
2124          * Make a first pass to check for holes.
2125          */
2126         for (current = entry; current->start < end; current = current->next) {
2127                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2128                         vm_map_unlock_read(map);
2129                         return (KERN_INVALID_ARGUMENT);
2130                 }
2131                 if (end > current->end &&
2132                     (current->next == &map->header ||
2133                         current->end != current->next->start)) {
2134                         vm_map_unlock_read(map);
2135                         return (KERN_INVALID_ADDRESS);
2136                 }
2137         }
2138
2139         if (invalidate)
2140                 pmap_remove(vm_map_pmap(map), start, end);
2141         /*
2142          * Make a second pass, cleaning/uncaching pages from the indicated
2143          * objects as we go.
2144          */
2145         for (current = entry; current->start < end; current = current->next) {
2146                 offset = current->offset + (start - current->start);
2147                 size = (end <= current->end ? end : current->end) - start;
2148                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2149                         vm_map_t smap;
2150                         vm_map_entry_t tentry;
2151                         vm_size_t tsize;
2152
2153                         smap = current->object.sub_map;
2154                         vm_map_lock_read(smap);
2155                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2156                         tsize = tentry->end - offset;
2157                         if (tsize < size)
2158                                 size = tsize;
2159                         object = tentry->object.vm_object;
2160                         offset = tentry->offset + (offset - tentry->start);
2161                         vm_map_unlock_read(smap);
2162                 } else {
2163                         object = current->object.vm_object;
2164                 }
2165                 /*
2166                  * Note that there is absolutely no sense in writing out
2167                  * anonymous objects, so we track down the vnode object
2168                  * to write out.
2169                  * We invalidate (remove) all pages from the address space
2170                  * anyway, for semantic correctness.
2171                  *
2172                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2173                  * may start out with a NULL object.
2174                  */
2175                 while (object && object->backing_object) {
2176                         object = object->backing_object;
2177                         offset += object->backing_object_offset;
2178                         if (object->size < OFF_TO_IDX( offset + size))
2179                                 size = IDX_TO_OFF(object->size) - offset;
2180                 }
2181                 if (object && (object->type == OBJT_VNODE) && 
2182                     (current->protection & VM_PROT_WRITE)) {
2183                         /*
2184                          * Flush pages if writing is allowed, invalidate them
2185                          * if invalidation requested.  Pages undergoing I/O
2186                          * will be ignored by vm_object_page_remove().
2187                          *
2188                          * We cannot lock the vnode and then wait for paging
2189                          * to complete without deadlocking against vm_fault.
2190                          * Instead we simply call vm_object_page_remove() and
2191                          * allow it to block internally on a page-by-page 
2192                          * basis when it encounters pages undergoing async 
2193                          * I/O.
2194                          */
2195                         int flags;
2196
2197                         vm_object_reference(object);
2198                         vn_lock(object->handle, NULL,
2199                                 LK_EXCLUSIVE | LK_RETRY, curthread);
2200                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2201                         flags |= invalidate ? OBJPC_INVAL : 0;
2202                         vm_object_page_clean(object,
2203                             OFF_TO_IDX(offset),
2204                             OFF_TO_IDX(offset + size + PAGE_MASK),
2205                             flags);
2206                         VOP_UNLOCK(object->handle, NULL, 0, curthread);
2207                         vm_object_deallocate(object);
2208                 }
2209                 if (object && invalidate &&
2210                    ((object->type == OBJT_VNODE) ||
2211                     (object->type == OBJT_DEVICE))) {
2212                         vm_object_reference(object);
2213                         vm_object_page_remove(object,
2214                             OFF_TO_IDX(offset),
2215                             OFF_TO_IDX(offset + size + PAGE_MASK),
2216                             TRUE);
2217                         vm_object_deallocate(object);
2218                 }
2219                 start += size;
2220         }
2221
2222         vm_map_unlock_read(map);
2223         return (KERN_SUCCESS);
2224 }
2225
2226 /*
2227  *      vm_map_entry_unwire:    [ internal use only ]
2228  *
2229  *      Make the region specified by this entry pageable.
2230  *
2231  *      The map in question should be locked.
2232  *      [This is the reason for this routine's existence.]
2233  */
2234 static void 
2235 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2236 {
2237         vm_fault_unwire(map, entry->start, entry->end);
2238         entry->wired_count = 0;
2239 }
2240
2241 /*
2242  *      vm_map_entry_delete:    [ internal use only ]
2243  *
2244  *      Deallocate the given entry from the target map.
2245  */
2246 static void
2247 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2248 {
2249         vm_map_entry_unlink(map, entry);
2250         map->size -= entry->end - entry->start;
2251
2252         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2253                 vm_object_deallocate(entry->object.vm_object);
2254         }
2255
2256         vm_map_entry_dispose(map, entry, countp);
2257 }
2258
2259 /*
2260  *      vm_map_delete:  [ internal use only ]
2261  *
2262  *      Deallocates the given address range from the target
2263  *      map.
2264  */
2265 int
2266 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2267 {
2268         vm_object_t object;
2269         vm_map_entry_t entry;
2270         vm_map_entry_t first_entry;
2271
2272         /*
2273          * Find the start of the region, and clip it
2274          */
2275
2276 again:
2277         if (!vm_map_lookup_entry(map, start, &first_entry))
2278                 entry = first_entry->next;
2279         else {
2280                 entry = first_entry;
2281                 vm_map_clip_start(map, entry, start, countp);
2282                 /*
2283                  * Fix the lookup hint now, rather than each time though the
2284                  * loop.
2285                  */
2286                 SAVE_HINT(map, entry->prev);
2287         }
2288
2289         /*
2290          * Save the free space hint
2291          */
2292
2293         if (entry == &map->header) {
2294                 map->first_free = &map->header;
2295         } else if (map->first_free->start >= start) {
2296                 map->first_free = entry->prev;
2297         }
2298
2299         /*
2300          * Step through all entries in this region
2301          */
2302
2303         while ((entry != &map->header) && (entry->start < end)) {
2304                 vm_map_entry_t next;
2305                 vm_offset_t s, e;
2306                 vm_pindex_t offidxstart, offidxend, count;
2307
2308                 /*
2309                  * If we hit an in-transition entry we have to sleep and
2310                  * retry.  It's easier (and not really slower) to just retry
2311                  * since this case occurs so rarely and the hint is already
2312                  * pointing at the right place.  We have to reset the
2313                  * start offset so as not to accidently delete an entry
2314                  * another process just created in vacated space.
2315                  */
2316                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2317                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2318                         start = entry->start;
2319                         ++mycpu->gd_cnt.v_intrans_coll;
2320                         ++mycpu->gd_cnt.v_intrans_wait;
2321                         vm_map_transition_wait(map);
2322                         goto again;
2323                 }
2324                 vm_map_clip_end(map, entry, end, countp);
2325
2326                 s = entry->start;
2327                 e = entry->end;
2328                 next = entry->next;
2329
2330                 offidxstart = OFF_TO_IDX(entry->offset);
2331                 count = OFF_TO_IDX(e - s);
2332                 object = entry->object.vm_object;
2333
2334                 /*
2335                  * Unwire before removing addresses from the pmap; otherwise,
2336                  * unwiring will put the entries back in the pmap.
2337                  */
2338                 if (entry->wired_count != 0) {
2339                         vm_map_entry_unwire(map, entry);
2340                 }
2341
2342                 offidxend = offidxstart + count;
2343
2344                 if ((object == kernel_object) || (object == kmem_object)) {
2345                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2346                 } else {
2347                         pmap_remove(map->pmap, s, e);
2348                         if (object != NULL &&
2349                             object->ref_count != 1 &&
2350                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2351                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2352                                 vm_object_collapse(object);
2353                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2354                                 if (object->type == OBJT_SWAP) {
2355                                         swap_pager_freespace(object, offidxstart, count);
2356                                 }
2357                                 if (offidxend >= object->size &&
2358                                     offidxstart < object->size) {
2359                                         object->size = offidxstart;
2360                                 }
2361                         }
2362                 }
2363
2364                 /*
2365                  * Delete the entry (which may delete the object) only after
2366                  * removing all pmap entries pointing to its pages.
2367                  * (Otherwise, its page frames may be reallocated, and any
2368                  * modify bits will be set in the wrong object!)
2369                  */
2370                 vm_map_entry_delete(map, entry, countp);
2371                 entry = next;
2372         }
2373         return (KERN_SUCCESS);
2374 }
2375
2376 /*
2377  *      vm_map_remove:
2378  *
2379  *      Remove the given address range from the target map.
2380  *      This is the exported form of vm_map_delete.
2381  */
2382 int
2383 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2384 {
2385         int result;
2386         int count;
2387
2388         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2389         vm_map_lock(map);
2390         VM_MAP_RANGE_CHECK(map, start, end);
2391         result = vm_map_delete(map, start, end, &count);
2392         vm_map_unlock(map);
2393         vm_map_entry_release(count);
2394
2395         return (result);
2396 }
2397
2398 /*
2399  *      vm_map_check_protection:
2400  *
2401  *      Assert that the target map allows the specified
2402  *      privilege on the entire address region given.
2403  *      The entire region must be allocated.
2404  */
2405 boolean_t
2406 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2407                         vm_prot_t protection)
2408 {
2409         vm_map_entry_t entry;
2410         vm_map_entry_t tmp_entry;
2411
2412         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2413                 return (FALSE);
2414         }
2415         entry = tmp_entry;
2416
2417         while (start < end) {
2418                 if (entry == &map->header) {
2419                         return (FALSE);
2420                 }
2421                 /*
2422                  * No holes allowed!
2423                  */
2424
2425                 if (start < entry->start) {
2426                         return (FALSE);
2427                 }
2428                 /*
2429                  * Check protection associated with entry.
2430                  */
2431
2432                 if ((entry->protection & protection) != protection) {
2433                         return (FALSE);
2434                 }
2435                 /* go to next entry */
2436
2437                 start = entry->end;
2438                 entry = entry->next;
2439         }
2440         return (TRUE);
2441 }
2442
2443 /*
2444  * Split the pages in a map entry into a new object.  This affords
2445  * easier removal of unused pages, and keeps object inheritance from
2446  * being a negative impact on memory usage.
2447  */
2448 static void
2449 vm_map_split(vm_map_entry_t entry)
2450 {
2451         vm_page_t m;
2452         vm_object_t orig_object, new_object, source;
2453         vm_offset_t s, e;
2454         vm_pindex_t offidxstart, offidxend, idx;
2455         vm_size_t size;
2456         vm_ooffset_t offset;
2457
2458         orig_object = entry->object.vm_object;
2459         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2460                 return;
2461         if (orig_object->ref_count <= 1)
2462                 return;
2463
2464         offset = entry->offset;
2465         s = entry->start;
2466         e = entry->end;
2467
2468         offidxstart = OFF_TO_IDX(offset);
2469         offidxend = offidxstart + OFF_TO_IDX(e - s);
2470         size = offidxend - offidxstart;
2471
2472         new_object = vm_pager_allocate(orig_object->type,
2473                 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2474         if (new_object == NULL)
2475                 return;
2476
2477         source = orig_object->backing_object;
2478         if (source != NULL) {
2479                 vm_object_reference(source);    /* Referenced by new_object */
2480                 LIST_INSERT_HEAD(&source->shadow_head,
2481                                   new_object, shadow_list);
2482                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2483                 new_object->backing_object_offset = 
2484                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2485                 new_object->backing_object = source;
2486                 source->shadow_count++;
2487                 source->generation++;
2488         }
2489
2490         for (idx = 0; idx < size; idx++) {
2491                 vm_page_t m;
2492                 int ss;         /* s used */
2493
2494                 /*
2495                  * splvm protection is required to avoid a race between
2496                  * the lookup and an interrupt/unbusy/free and our busy
2497                  * check.
2498                  */
2499                 ss = splvm();
2500         retry:
2501                 m = vm_page_lookup(orig_object, offidxstart + idx);
2502                 if (m == NULL) {
2503                         splx(ss);
2504                         continue;
2505                 }
2506
2507                 /*
2508                  * We must wait for pending I/O to complete before we can
2509                  * rename the page.
2510                  *
2511                  * We do not have to VM_PROT_NONE the page as mappings should
2512                  * not be changed by this operation.
2513                  */
2514                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2515                         goto retry;
2516                 vm_page_busy(m);
2517                 vm_page_rename(m, new_object, idx);
2518                 /* page automatically made dirty by rename and cache handled */
2519                 vm_page_busy(m);
2520                 splx(ss);
2521         }
2522
2523         if (orig_object->type == OBJT_SWAP) {
2524                 vm_object_pip_add(orig_object, 1);
2525                 /*
2526                  * copy orig_object pages into new_object
2527                  * and destroy unneeded pages in
2528                  * shadow object.
2529                  */
2530                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2531                 vm_object_pip_wakeup(orig_object);
2532         }
2533
2534         /*
2535          * Wakeup the pages we played with.  No spl protection is needed
2536          * for a simple wakeup.
2537          */
2538         for (idx = 0; idx < size; idx++) {
2539                 m = vm_page_lookup(new_object, idx);
2540                 if (m)
2541                         vm_page_wakeup(m);
2542         }
2543
2544         entry->object.vm_object = new_object;
2545         entry->offset = 0LL;
2546         vm_object_deallocate(orig_object);
2547 }
2548
2549 /*
2550  *      vm_map_copy_entry:
2551  *
2552  *      Copies the contents of the source entry to the destination
2553  *      entry.  The entries *must* be aligned properly.
2554  */
2555 static void
2556 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2557         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2558 {
2559         vm_object_t src_object;
2560
2561         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2562                 return;
2563
2564         if (src_entry->wired_count == 0) {
2565
2566                 /*
2567                  * If the source entry is marked needs_copy, it is already
2568                  * write-protected.
2569                  */
2570                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2571                         pmap_protect(src_map->pmap,
2572                             src_entry->start,
2573                             src_entry->end,
2574                             src_entry->protection & ~VM_PROT_WRITE);
2575                 }
2576
2577                 /*
2578                  * Make a copy of the object.
2579                  */
2580                 if ((src_object = src_entry->object.vm_object) != NULL) {
2581
2582                         if ((src_object->handle == NULL) &&
2583                                 (src_object->type == OBJT_DEFAULT ||
2584                                  src_object->type == OBJT_SWAP)) {
2585                                 vm_object_collapse(src_object);
2586                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2587                                         vm_map_split(src_entry);
2588                                         src_object = src_entry->object.vm_object;
2589                                 }
2590                         }
2591
2592                         vm_object_reference(src_object);
2593                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2594                         dst_entry->object.vm_object = src_object;
2595                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2596                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2597                         dst_entry->offset = src_entry->offset;
2598                 } else {
2599                         dst_entry->object.vm_object = NULL;
2600                         dst_entry->offset = 0;
2601                 }
2602
2603                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2604                     dst_entry->end - dst_entry->start, src_entry->start);
2605         } else {
2606                 /*
2607                  * Of course, wired down pages can't be set copy-on-write.
2608                  * Cause wired pages to be copied into the new map by
2609                  * simulating faults (the new pages are pageable)
2610                  */
2611                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2612         }
2613 }
2614
2615 /*
2616  * vmspace_fork:
2617  * Create a new process vmspace structure and vm_map
2618  * based on those of an existing process.  The new map
2619  * is based on the old map, according to the inheritance
2620  * values on the regions in that map.
2621  *
2622  * The source map must not be locked.
2623  */
2624 struct vmspace *
2625 vmspace_fork(struct vmspace *vm1)
2626 {
2627         struct vmspace *vm2;
2628         vm_map_t old_map = &vm1->vm_map;
2629         vm_map_t new_map;
2630         vm_map_entry_t old_entry;
2631         vm_map_entry_t new_entry;
2632         vm_object_t object;
2633         int count;
2634
2635         vm_map_lock(old_map);
2636         old_map->infork = 1;
2637
2638         /*
2639          * XXX Note: upcalls are not copied.
2640          */
2641         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2642         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2643             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2644         new_map = &vm2->vm_map; /* XXX */
2645         new_map->timestamp = 1;
2646
2647         count = 0;
2648         old_entry = old_map->header.next;
2649         while (old_entry != &old_map->header) {
2650                 ++count;
2651                 old_entry = old_entry->next;
2652         }
2653
2654         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2655
2656         old_entry = old_map->header.next;
2657         while (old_entry != &old_map->header) {
2658                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2659                         panic("vm_map_fork: encountered a submap");
2660
2661                 switch (old_entry->inheritance) {
2662                 case VM_INHERIT_NONE:
2663                         break;
2664
2665                 case VM_INHERIT_SHARE:
2666                         /*
2667                          * Clone the entry, creating the shared object if necessary.
2668                          */
2669                         object = old_entry->object.vm_object;
2670                         if (object == NULL) {
2671                                 object = vm_object_allocate(OBJT_DEFAULT,
2672                                         atop(old_entry->end - old_entry->start));
2673                                 old_entry->object.vm_object = object;
2674                                 old_entry->offset = (vm_offset_t) 0;
2675                         }
2676
2677                         /*
2678                          * Add the reference before calling vm_object_shadow
2679                          * to insure that a shadow object is created.
2680                          */
2681                         vm_object_reference(object);
2682                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2683                                 vm_object_shadow(&old_entry->object.vm_object,
2684                                         &old_entry->offset,
2685                                         atop(old_entry->end - old_entry->start));
2686                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2687                                 /* Transfer the second reference too. */
2688                                 vm_object_reference(
2689                                     old_entry->object.vm_object);
2690                                 vm_object_deallocate(object);
2691                                 object = old_entry->object.vm_object;
2692                         }
2693                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2694
2695                         /*
2696                          * Clone the entry, referencing the shared object.
2697                          */
2698                         new_entry = vm_map_entry_create(new_map, &count);
2699                         *new_entry = *old_entry;
2700                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2701                         new_entry->wired_count = 0;
2702
2703                         /*
2704                          * Insert the entry into the new map -- we know we're
2705                          * inserting at the end of the new map.
2706                          */
2707
2708                         vm_map_entry_link(new_map, new_map->header.prev,
2709                             new_entry);
2710
2711                         /*
2712                          * Update the physical map
2713                          */
2714
2715                         pmap_copy(new_map->pmap, old_map->pmap,
2716                             new_entry->start,
2717                             (old_entry->end - old_entry->start),
2718                             old_entry->start);
2719                         break;
2720
2721                 case VM_INHERIT_COPY:
2722                         /*
2723                          * Clone the entry and link into the map.
2724                          */
2725                         new_entry = vm_map_entry_create(new_map, &count);
2726                         *new_entry = *old_entry;
2727                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2728                         new_entry->wired_count = 0;
2729                         new_entry->object.vm_object = NULL;
2730                         vm_map_entry_link(new_map, new_map->header.prev,
2731                             new_entry);
2732                         vm_map_copy_entry(old_map, new_map, old_entry,
2733                             new_entry);
2734                         break;
2735                 }
2736                 old_entry = old_entry->next;
2737         }
2738
2739         new_map->size = old_map->size;
2740         old_map->infork = 0;
2741         vm_map_unlock(old_map);
2742         vm_map_entry_release(count);
2743
2744         return (vm2);
2745 }
2746
2747 int
2748 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2749               vm_prot_t prot, vm_prot_t max, int cow)
2750 {
2751         vm_map_entry_t prev_entry;
2752         vm_map_entry_t new_stack_entry;
2753         vm_size_t      init_ssize;
2754         int            rv;
2755         int             count;
2756
2757         if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2758                 return (KERN_NO_SPACE);
2759
2760         if (max_ssize < sgrowsiz)
2761                 init_ssize = max_ssize;
2762         else
2763                 init_ssize = sgrowsiz;
2764
2765         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2766         vm_map_lock(map);
2767
2768         /* If addr is already mapped, no go */
2769         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2770                 vm_map_unlock(map);
2771                 vm_map_entry_release(count);
2772                 return (KERN_NO_SPACE);
2773         }
2774
2775         /* If we would blow our VMEM resource limit, no go */
2776         if (map->size + init_ssize >
2777             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2778                 vm_map_unlock(map);
2779                 vm_map_entry_release(count);
2780                 return (KERN_NO_SPACE);
2781         }
2782
2783         /* If we can't accomodate max_ssize in the current mapping,
2784          * no go.  However, we need to be aware that subsequent user
2785          * mappings might map into the space we have reserved for
2786          * stack, and currently this space is not protected.  
2787          * 
2788          * Hopefully we will at least detect this condition 
2789          * when we try to grow the stack.
2790          */
2791         if ((prev_entry->next != &map->header) &&
2792             (prev_entry->next->start < addrbos + max_ssize)) {
2793                 vm_map_unlock(map);
2794                 vm_map_entry_release(count);
2795                 return (KERN_NO_SPACE);
2796         }
2797
2798         /* We initially map a stack of only init_ssize.  We will
2799          * grow as needed later.  Since this is to be a grow 
2800          * down stack, we map at the top of the range.
2801          *
2802          * Note: we would normally expect prot and max to be
2803          * VM_PROT_ALL, and cow to be 0.  Possibly we should
2804          * eliminate these as input parameters, and just
2805          * pass these values here in the insert call.
2806          */
2807         rv = vm_map_insert(map, &count,
2808                            NULL, 0, addrbos + max_ssize - init_ssize,
2809                            addrbos + max_ssize, prot, max, cow);
2810
2811         /* Now set the avail_ssize amount */
2812         if (rv == KERN_SUCCESS){
2813                 if (prev_entry != &map->header)
2814                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2815                 new_stack_entry = prev_entry->next;
2816                 if (new_stack_entry->end   != addrbos + max_ssize ||
2817                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
2818                         panic ("Bad entry start/end for new stack entry");
2819                 else 
2820                         new_stack_entry->avail_ssize = max_ssize - init_ssize;
2821         }
2822
2823         vm_map_unlock(map);
2824         vm_map_entry_release(count);
2825         return (rv);
2826 }
2827
2828 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2829  * desired address is already mapped, or if we successfully grow
2830  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2831  * stack range (this is strange, but preserves compatibility with
2832  * the grow function in vm_machdep.c).
2833  */
2834 int
2835 vm_map_growstack (struct proc *p, vm_offset_t addr)
2836 {
2837         vm_map_entry_t prev_entry;
2838         vm_map_entry_t stack_entry;
2839         vm_map_entry_t new_stack_entry;
2840         struct vmspace *vm = p->p_vmspace;
2841         vm_map_t map = &vm->vm_map;
2842         vm_offset_t    end;
2843         int grow_amount;
2844         int rv = KERN_SUCCESS;
2845         int is_procstack;
2846         int use_read_lock = 1;
2847         int count;
2848
2849         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2850 Retry:
2851         if (use_read_lock)
2852                 vm_map_lock_read(map);
2853         else
2854                 vm_map_lock(map);
2855
2856         /* If addr is already in the entry range, no need to grow.*/
2857         if (vm_map_lookup_entry(map, addr, &prev_entry))
2858                 goto done;
2859
2860         if ((stack_entry = prev_entry->next) == &map->header)
2861                 goto done;
2862         if (prev_entry == &map->header) 
2863                 end = stack_entry->start - stack_entry->avail_ssize;
2864         else
2865                 end = prev_entry->end;
2866
2867         /* This next test mimics the old grow function in vm_machdep.c.
2868          * It really doesn't quite make sense, but we do it anyway
2869          * for compatibility.
2870          *
2871          * If not growable stack, return success.  This signals the
2872          * caller to proceed as he would normally with normal vm.
2873          */
2874         if (stack_entry->avail_ssize < 1 ||
2875             addr >= stack_entry->start ||
2876             addr <  stack_entry->start - stack_entry->avail_ssize) {
2877                 goto done;
2878         } 
2879         
2880         /* Find the minimum grow amount */
2881         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2882         if (grow_amount > stack_entry->avail_ssize) {
2883                 rv = KERN_NO_SPACE;
2884                 goto done;
2885         }
2886
2887         /* If there is no longer enough space between the entries
2888          * nogo, and adjust the available space.  Note: this 
2889          * should only happen if the user has mapped into the
2890          * stack area after the stack was created, and is
2891          * probably an error.
2892          *
2893          * This also effectively destroys any guard page the user
2894          * might have intended by limiting the stack size.
2895          */
2896         if (grow_amount > stack_entry->start - end) {
2897                 if (use_read_lock && vm_map_lock_upgrade(map)) {
2898                         use_read_lock = 0;
2899                         goto Retry;
2900                 }
2901                 use_read_lock = 0;
2902                 stack_entry->avail_ssize = stack_entry->start - end;
2903                 rv = KERN_NO_SPACE;
2904                 goto done;
2905         }
2906
2907         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2908
2909         /* If this is the main process stack, see if we're over the 
2910          * stack limit.
2911          */
2912         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2913                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2914                 rv = KERN_NO_SPACE;
2915                 goto done;
2916         }
2917
2918         /* Round up the grow amount modulo SGROWSIZ */
2919         grow_amount = roundup (grow_amount, sgrowsiz);
2920         if (grow_amount > stack_entry->avail_ssize) {
2921                 grow_amount = stack_entry->avail_ssize;
2922         }
2923         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2924                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2925                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2926                               ctob(vm->vm_ssize);
2927         }
2928
2929         /* If we would blow our VMEM resource limit, no go */
2930         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2931                 rv = KERN_NO_SPACE;
2932                 goto done;
2933         }
2934
2935         if (use_read_lock && vm_map_lock_upgrade(map)) {
2936                 use_read_lock = 0;
2937                 goto Retry;
2938         }
2939         use_read_lock = 0;
2940
2941         /* Get the preliminary new entry start value */
2942         addr = stack_entry->start - grow_amount;
2943
2944         /* If this puts us into the previous entry, cut back our growth
2945          * to the available space.  Also, see the note above.
2946          */
2947         if (addr < end) {
2948                 stack_entry->avail_ssize = stack_entry->start - end;
2949                 addr = end;
2950         }
2951
2952         rv = vm_map_insert(map, &count,
2953                            NULL, 0, addr, stack_entry->start,
2954                            VM_PROT_ALL,
2955                            VM_PROT_ALL,
2956                            0);
2957
2958         /* Adjust the available stack space by the amount we grew. */
2959         if (rv == KERN_SUCCESS) {
2960                 if (prev_entry != &map->header)
2961                         vm_map_clip_end(map, prev_entry, addr, &count);
2962                 new_stack_entry = prev_entry->next;
2963                 if (new_stack_entry->end   != stack_entry->start  ||
2964                     new_stack_entry->start != addr)
2965                         panic ("Bad stack grow start/end in new stack entry");
2966                 else {
2967                         new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2968                                                         (new_stack_entry->end -
2969                                                          new_stack_entry->start);
2970                         if (is_procstack)
2971                                 vm->vm_ssize += btoc(new_stack_entry->end -
2972                                                      new_stack_entry->start);
2973                 }
2974         }
2975
2976 done:
2977         if (use_read_lock)
2978                 vm_map_unlock_read(map);
2979         else
2980                 vm_map_unlock(map);
2981         vm_map_entry_release(count);
2982         return (rv);
2983 }
2984
2985 /*
2986  * Unshare the specified VM space for exec.  If other processes are
2987  * mapped to it, then create a new one.  The new vmspace is null.
2988  */
2989
2990 void
2991 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
2992 {
2993         struct vmspace *oldvmspace = p->p_vmspace;
2994         struct vmspace *newvmspace;
2995         vm_map_t map = &p->p_vmspace->vm_map;
2996
2997         /*
2998          * If we are execing a resident vmspace we fork it, otherwise
2999          * we create a new vmspace.  Note that exitingcnt and upcalls
3000          * are not copied to the new vmspace.
3001          */
3002         if (vmcopy)  {
3003             newvmspace = vmspace_fork(vmcopy);
3004         } else {
3005             newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3006             bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3007                 (caddr_t)&oldvmspace->vm_endcopy - 
3008                     (caddr_t)&oldvmspace->vm_startcopy);
3009         }
3010
3011         /*
3012          * This code is written like this for prototype purposes.  The
3013          * goal is to avoid running down the vmspace here, but let the
3014          * other process's that are still using the vmspace to finally
3015          * run it down.  Even though there is little or no chance of blocking
3016          * here, it is a good idea to keep this form for future mods.
3017          */
3018         p->p_vmspace = newvmspace;
3019         pmap_pinit2(vmspace_pmap(newvmspace));
3020         if (p == curproc)
3021                 pmap_activate(p);
3022         vmspace_free(oldvmspace);
3023 }
3024
3025 /*
3026  * Unshare the specified VM space for forcing COW.  This
3027  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3028  *
3029  * The exitingcnt test is not strictly necessary but has been
3030  * included for code sanity (to make the code a bit more deterministic).
3031  */
3032
3033 void
3034 vmspace_unshare(struct proc *p) 
3035 {
3036         struct vmspace *oldvmspace = p->p_vmspace;
3037         struct vmspace *newvmspace;
3038
3039         if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3040                 return;
3041         newvmspace = vmspace_fork(oldvmspace);
3042         p->p_vmspace = newvmspace;
3043         pmap_pinit2(vmspace_pmap(newvmspace));
3044         if (p == curproc)
3045                 pmap_activate(p);
3046         vmspace_free(oldvmspace);
3047 }
3048
3049 /*
3050  *      vm_map_lookup:
3051  *
3052  *      Finds the VM object, offset, and
3053  *      protection for a given virtual address in the
3054  *      specified map, assuming a page fault of the
3055  *      type specified.
3056  *
3057  *      Leaves the map in question locked for read; return
3058  *      values are guaranteed until a vm_map_lookup_done
3059  *      call is performed.  Note that the map argument
3060  *      is in/out; the returned map must be used in
3061  *      the call to vm_map_lookup_done.
3062  *
3063  *      A handle (out_entry) is returned for use in
3064  *      vm_map_lookup_done, to make that fast.
3065  *
3066  *      If a lookup is requested with "write protection"
3067  *      specified, the map may be changed to perform virtual
3068  *      copying operations, although the data referenced will
3069  *      remain the same.
3070  */
3071 int
3072 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3073               vm_offset_t vaddr,
3074               vm_prot_t fault_typea,
3075               vm_map_entry_t *out_entry,        /* OUT */
3076               vm_object_t *object,              /* OUT */
3077               vm_pindex_t *pindex,              /* OUT */
3078               vm_prot_t *out_prot,              /* OUT */
3079               boolean_t *wired)                 /* OUT */
3080 {
3081         vm_map_entry_t entry;
3082         vm_map_t map = *var_map;
3083         vm_prot_t prot;
3084         vm_prot_t fault_type = fault_typea;
3085         int use_read_lock = 1;
3086         int rv = KERN_SUCCESS;
3087
3088 RetryLookup:
3089         if (use_read_lock)
3090                 vm_map_lock_read(map);
3091         else
3092                 vm_map_lock(map);
3093
3094         /*
3095          * If the map has an interesting hint, try it before calling full
3096          * blown lookup routine.
3097          */
3098         entry = map->hint;
3099         *out_entry = entry;
3100
3101         if ((entry == &map->header) ||
3102             (vaddr < entry->start) || (vaddr >= entry->end)) {
3103                 vm_map_entry_t tmp_entry;
3104
3105                 /*
3106                  * Entry was either not a valid hint, or the vaddr was not
3107                  * contained in the entry, so do a full lookup.
3108                  */
3109                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3110                         rv = KERN_INVALID_ADDRESS;
3111                         goto done;
3112                 }
3113
3114                 entry = tmp_entry;
3115                 *out_entry = entry;
3116         }
3117         
3118         /*
3119          * Handle submaps.
3120          */
3121
3122         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3123                 vm_map_t old_map = map;
3124
3125                 *var_map = map = entry->object.sub_map;
3126                 if (use_read_lock)
3127                         vm_map_unlock_read(old_map);
3128                 else
3129                         vm_map_unlock(old_map);
3130                 use_read_lock = 1;
3131                 goto RetryLookup;
3132         }
3133
3134         /*
3135          * Check whether this task is allowed to have this page.
3136          * Note the special case for MAP_ENTRY_COW
3137          * pages with an override.  This is to implement a forced
3138          * COW for debuggers.
3139          */
3140
3141         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3142                 prot = entry->max_protection;
3143         else
3144                 prot = entry->protection;
3145
3146         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3147         if ((fault_type & prot) != fault_type) {
3148                 rv = KERN_PROTECTION_FAILURE;
3149                 goto done;
3150         }
3151
3152         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3153             (entry->eflags & MAP_ENTRY_COW) &&
3154             (fault_type & VM_PROT_WRITE) &&
3155             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3156                 rv = KERN_PROTECTION_FAILURE;
3157                 goto done;
3158         }
3159
3160         /*
3161          * If this page is not pageable, we have to get it for all possible
3162          * accesses.
3163          */
3164
3165         *wired = (entry->wired_count != 0);
3166         if (*wired)
3167                 prot = fault_type = entry->protection;
3168
3169         /*
3170          * If the entry was copy-on-write, we either ...
3171          */
3172
3173         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3174                 /*
3175                  * If we want to write the page, we may as well handle that
3176                  * now since we've got the map locked.
3177                  *
3178                  * If we don't need to write the page, we just demote the
3179                  * permissions allowed.
3180                  */
3181
3182                 if (fault_type & VM_PROT_WRITE) {
3183                         /*
3184                          * Make a new object, and place it in the object
3185                          * chain.  Note that no new references have appeared
3186                          * -- one just moved from the map to the new
3187                          * object.
3188                          */
3189
3190                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3191                                 use_read_lock = 0;
3192                                 goto RetryLookup;
3193                         }
3194                         use_read_lock = 0;
3195
3196                         vm_object_shadow(
3197                             &entry->object.vm_object,
3198                             &entry->offset,
3199                             atop(entry->end - entry->start));
3200
3201                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3202                 } else {
3203                         /*
3204                          * We're attempting to read a copy-on-write page --
3205                          * don't allow writes.
3206                          */
3207
3208                         prot &= ~VM_PROT_WRITE;
3209                 }
3210         }
3211
3212         /*
3213          * Create an object if necessary.
3214          */
3215         if (entry->object.vm_object == NULL &&
3216             !map->system_map) {
3217                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3218                         use_read_lock = 0;
3219                         goto RetryLookup;
3220                 }
3221                 use_read_lock = 0;
3222                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3223                     atop(entry->end - entry->start));
3224                 entry->offset = 0;
3225         }
3226
3227         /*
3228          * Return the object/offset from this entry.  If the entry was
3229          * copy-on-write or empty, it has been fixed up.
3230          */
3231
3232         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3233         *object = entry->object.vm_object;
3234
3235         /*
3236          * Return whether this is the only map sharing this data.  On
3237          * success we return with a read lock held on the map.  On failure
3238          * we return with the map unlocked.
3239          */
3240         *out_prot = prot;
3241 done:
3242         if (rv == KERN_SUCCESS) {
3243                 if (use_read_lock == 0)
3244                         vm_map_lock_downgrade(map);
3245         } else if (use_read_lock) {
3246                 vm_map_unlock_read(map);
3247         } else {
3248                 vm_map_unlock(map);
3249         }
3250         return (rv);
3251 }
3252
3253 /*
3254  *      vm_map_lookup_done:
3255  *
3256  *      Releases locks acquired by a vm_map_lookup
3257  *      (according to the handle returned by that lookup).
3258  */
3259
3260 void
3261 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3262 {
3263         /*
3264          * Unlock the main-level map
3265          */
3266         vm_map_unlock_read(map);
3267         if (count)
3268                 vm_map_entry_release(count);
3269 }
3270
3271 #ifdef ENABLE_VFS_IOOPT
3272
3273 /*
3274  * Implement uiomove with VM operations.  This handles (and collateral changes)
3275  * support every combination of source object modification, and COW type
3276  * operations.
3277  *
3278  * XXX this is extremely dangerous, enabling this option is NOT recommended.
3279  */
3280 int
3281 vm_uiomove(vm_map_t mapa, vm_object_t srcobject, off_t cp, int cnta,
3282     vm_offset_t uaddra, int *npages)
3283 {
3284         vm_map_t map;
3285         vm_object_t first_object, oldobject, object;
3286         vm_map_entry_t entry;
3287         vm_prot_t prot;
3288         boolean_t wired;
3289         int tcnt, rv;
3290         vm_offset_t uaddr, start, end, tend;
3291         vm_pindex_t first_pindex, osize, oindex;
3292         off_t ooffset;
3293         int cnt;
3294         int count;
3295         int s;
3296
3297         if (npages)
3298                 *npages = 0;
3299
3300         cnt = cnta;
3301         uaddr = uaddra;
3302
3303         while (cnt > 0) {
3304                 map = mapa;
3305
3306                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3307
3308                 if ((vm_map_lookup(&map, uaddr,
3309                         VM_PROT_READ, &entry, &first_object,
3310                         &first_pindex, &prot, &wired)) != KERN_SUCCESS) {
3311                         return EFAULT;
3312                 }
3313
3314                 vm_map_clip_start(map, entry, uaddr, &count);
3315
3316                 tcnt = cnt;
3317                 tend = uaddr + tcnt;
3318                 if (tend > entry->end) {
3319                         tcnt = entry->end - uaddr;
3320                         tend = entry->end;
3321                 }
3322
3323                 vm_map_clip_end(map, entry, tend, &count);
3324
3325                 start = entry->start;
3326                 end = entry->end;
3327
3328                 osize = atop(tcnt);
3329
3330                 oindex = OFF_TO_IDX(cp);
3331                 if (npages) {
3332                         vm_pindex_t idx;
3333
3334                         /*
3335                          * spl protection is needed to avoid a race between
3336                          * the lookup and an interrupt/unbusy/free occuring
3337                          * prior to our busy check.
3338                          */
3339                         s = splvm();
3340                         for (idx = 0; idx < osize; idx++) {
3341                                 vm_page_t m;
3342                                 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
3343                                         splx(s);
3344                                         vm_map_lookup_done(map, entry, count);
3345                                         return 0;
3346                                 }
3347                                 /*
3348                                  * disallow busy or invalid pages, but allow
3349                                  * m->busy pages if they are entirely valid.
3350                                  */
3351                                 if ((m->flags & PG_BUSY) ||
3352                                         ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
3353                                         splx(s);
3354                                         vm_map_lookup_done(map, entry, count);
3355                                         return 0;
3356                                 }
3357                         }
3358                         splx(s);
3359                 }
3360
3361 /*
3362  * If we are changing an existing map entry, just redirect
3363  * the object, and change mappings.
3364  */
3365                 if ((first_object->type == OBJT_VNODE) &&
3366                         ((oldobject = entry->object.vm_object) == first_object)) {
3367
3368                         if ((entry->offset != cp) || (oldobject != srcobject)) {
3369                                 /*
3370                                 * Remove old window into the file
3371                                 */
3372                                 pmap_remove (map->pmap, uaddr, tend);
3373
3374                                 /*
3375                                 * Force copy on write for mmaped regions
3376                                 */
3377                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3378
3379                                 /*
3380                                 * Point the object appropriately
3381                                 */
3382                                 if (oldobject != srcobject) {
3383
3384                                 /*
3385                                 * Set the object optimization hint flag
3386                                 */
3387                                         vm_object_set_flag(srcobject, OBJ_OPT);
3388                                         vm_object_reference(srcobject);
3389                                         entry->object.vm_object = srcobject;
3390
3391                                         if (oldobject) {
3392                                                 vm_object_deallocate(oldobject);
3393                                         }
3394                                 }
3395
3396                                 entry->offset = cp;
3397                                 map->timestamp++;
3398                         } else {
3399                                 pmap_remove (map->pmap, uaddr, tend);
3400                         }
3401
3402                 } else if ((first_object->ref_count == 1) &&
3403                         (first_object->size == osize) &&
3404                         ((first_object->type == OBJT_DEFAULT) ||
3405                                 (first_object->type == OBJT_SWAP)) ) {
3406
3407                         oldobject = first_object->backing_object;
3408
3409                         if ((first_object->backing_object_offset != cp) ||
3410                                 (oldobject != srcobject)) {
3411                                 /*
3412                                 * Remove old window into the file
3413                                 */
3414                                 pmap_remove (map->pmap, uaddr, tend);
3415
3416                                 /*
3417                                  * Remove unneeded old pages
3418                                  */
3419                                 vm_object_page_remove(first_object, 0, 0, 0);
3420
3421                                 /*
3422                                  * Invalidate swap space
3423                                  */
3424                                 if (first_object->type == OBJT_SWAP) {
3425                                         swap_pager_freespace(first_object,
3426                                                 0,
3427                                                 first_object->size);
3428                                 }
3429
3430                                 /*
3431                                 * Force copy on write for mmaped regions
3432                                 */
3433                                 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3434
3435                                 /*
3436                                 * Point the object appropriately
3437                                 */
3438                                 if (oldobject != srcobject) {
3439
3440                                 /*
3441                                 * Set the object optimization hint flag
3442                                 */
3443                                         vm_object_set_flag(srcobject, OBJ_OPT);
3444                                         vm_object_reference(srcobject);
3445
3446                                         if (oldobject) {
3447                                                 LIST_REMOVE(
3448                                                         first_object, shadow_list);
3449                                                 oldobject->shadow_count--;
3450                                                 /* XXX bump generation? */
3451                                                 vm_object_deallocate(oldobject);
3452                                         }
3453
3454                                         LIST_INSERT_HEAD(&srcobject->shadow_head,
3455                                                 first_object, shadow_list);
3456                                         srcobject->shadow_count++;
3457                                         /* XXX bump generation? */
3458
3459                                         first_object->backing_object = srcobject;
3460                                 }
3461                                 first_object->backing_object_offset = cp;
3462                                 map->timestamp++;
3463                         } else {
3464                                 pmap_remove (map->pmap, uaddr, tend);
3465                         }
3466 /*
3467  * Otherwise, we have to do a logical mmap.
3468  */
3469                 } else {
3470
3471                         vm_object_set_flag(srcobject, OBJ_OPT);
3472                         vm_object_reference(srcobject);
3473
3474                         pmap_remove (map->pmap, uaddr, tend);
3475
3476                         vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3477                         vm_map_lock_upgrade(map);
3478
3479                         if (entry == &map->header) {
3480                                 map->first_free = &map->header;
3481                         } else if (map->first_free->start >= start) {
3482                                 map->first_free = entry->prev;
3483                         }
3484
3485                         SAVE_HINT(map, entry->prev);
3486                         vm_map_entry_delete(map, entry, &count);
3487
3488                         object = srcobject;
3489                         ooffset = cp;
3490
3491                         rv = vm_map_insert(map, &count,
3492                                 object, ooffset, start, tend,
3493                                 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3494
3495                         if (rv != KERN_SUCCESS)
3496                                 panic("vm_uiomove: could not insert new entry: %d", rv);
3497                 }
3498
3499 /*
3500  * Map the window directly, if it is already in memory
3501  */
3502                 pmap_object_init_pt(map->pmap, uaddr, entry->protection,
3503                         srcobject, oindex, tcnt, 0);
3504
3505                 map->timestamp++;
3506                 vm_map_unlock(map);
3507                 vm_map_entry_release(count);
3508
3509                 cnt -= tcnt;
3510                 uaddr += tcnt;
3511                 cp += tcnt;
3512                 if (npages)
3513                         *npages += osize;
3514         }
3515         return 0;
3516 }
3517
3518 #endif
3519
3520 /*
3521  * Performs the copy_on_write operations necessary to allow the virtual copies
3522  * into user space to work.  This has to be called for write(2) system calls
3523  * from other processes, file unlinking, and file size shrinkage.
3524  */
3525 void
3526 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3527 {
3528         int rv;
3529         vm_object_t robject;
3530         vm_pindex_t idx;
3531
3532         if ((object == NULL) ||
3533                 ((object->flags & OBJ_OPT) == 0))
3534                 return;
3535
3536         if (object->shadow_count > object->ref_count)
3537                 panic("vm_freeze_copyopts: sc > rc");
3538
3539         while ((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3540                 vm_pindex_t bo_pindex;
3541                 vm_page_t m_in, m_out;
3542
3543                 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3544
3545                 vm_object_reference(robject);
3546
3547                 vm_object_pip_wait(robject, "objfrz");
3548
3549                 if (robject->ref_count == 1) {
3550                         vm_object_deallocate(robject);
3551                         continue;
3552                 }
3553
3554                 vm_object_pip_add(robject, 1);
3555
3556                 for (idx = 0; idx < robject->size; idx++) {
3557
3558                         m_out = vm_page_grab(robject, idx,
3559                                             VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3560
3561                         if (m_out->valid == 0) {
3562                                 m_in = vm_page_grab(object, bo_pindex + idx,
3563                                             VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3564                                 if (m_in->valid == 0) {
3565                                         rv = vm_pager_get_pages(object, &m_in, 1, 0);
3566                                         if (rv != VM_PAGER_OK) {
3567                                                 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3568                                                 continue;
3569                                         }
3570                                         vm_page_deactivate(m_in);
3571                                 }
3572
3573                                 vm_page_protect(m_in, VM_PROT_NONE);
3574                                 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3575                                 m_out->valid = m_in->valid;
3576                                 vm_page_dirty(m_out);
3577                                 vm_page_activate(m_out);
3578                                 vm_page_wakeup(m_in);
3579                         }
3580                         vm_page_wakeup(m_out);
3581                 }
3582
3583                 object->shadow_count--;
3584                 object->ref_count--;
3585                 LIST_REMOVE(robject, shadow_list);
3586                 robject->backing_object = NULL;
3587                 robject->backing_object_offset = 0;
3588
3589                 vm_object_pip_wakeup(robject);
3590                 vm_object_deallocate(robject);
3591         }
3592
3593         vm_object_clear_flag(object, OBJ_OPT);
3594 }
3595
3596 #include "opt_ddb.h"
3597 #ifdef DDB
3598 #include <sys/kernel.h>
3599
3600 #include <ddb/ddb.h>
3601
3602 /*
3603  *      vm_map_print:   [ debug ]
3604  */
3605 DB_SHOW_COMMAND(map, vm_map_print)
3606 {
3607         static int nlines;
3608         /* XXX convert args. */
3609         vm_map_t map = (vm_map_t)addr;
3610         boolean_t full = have_addr;
3611
3612         vm_map_entry_t entry;
3613
3614         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3615             (void *)map,
3616             (void *)map->pmap, map->nentries, map->timestamp);
3617         nlines++;
3618
3619         if (!full && db_indent)
3620                 return;
3621
3622         db_indent += 2;
3623         for (entry = map->header.next; entry != &map->header;
3624             entry = entry->next) {
3625                 db_iprintf("map entry %p: start=%p, end=%p\n",
3626                     (void *)entry, (void *)entry->start, (void *)entry->end);
3627                 nlines++;
3628                 {
3629                         static char *inheritance_name[4] =
3630                         {"share", "copy", "none", "donate_copy"};
3631
3632                         db_iprintf(" prot=%x/%x/%s",
3633                             entry->protection,
3634                             entry->max_protection,
3635                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3636                         if (entry->wired_count != 0)
3637                                 db_printf(", wired");
3638                 }
3639                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3640                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3641                         db_printf(", share=%p, offset=0x%lx\n",
3642                             (void *)entry->object.sub_map,
3643                             (long)entry->offset);
3644                         nlines++;
3645                         if ((entry->prev == &map->header) ||
3646                             (entry->prev->object.sub_map !=
3647                                 entry->object.sub_map)) {
3648                                 db_indent += 2;
3649                                 vm_map_print((db_expr_t)(intptr_t)
3650                                              entry->object.sub_map,
3651                                              full, 0, (char *)0);
3652                                 db_indent -= 2;
3653                         }
3654                 } else {
3655                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3656                         db_printf(", object=%p, offset=0x%lx",
3657                             (void *)entry->object.vm_object,
3658                             (long)entry->offset);
3659                         if (entry->eflags & MAP_ENTRY_COW)
3660                                 db_printf(", copy (%s)",
3661                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3662                         db_printf("\n");
3663                         nlines++;
3664
3665                         if ((entry->prev == &map->header) ||
3666                             (entry->prev->object.vm_object !=
3667                                 entry->object.vm_object)) {
3668                                 db_indent += 2;
3669                                 vm_object_print((db_expr_t)(intptr_t)
3670                                                 entry->object.vm_object,
3671                                                 full, 0, (char *)0);
3672                                 nlines += 4;
3673                                 db_indent -= 2;
3674                         }
3675                 }
3676         }
3677         db_indent -= 2;
3678         if (db_indent == 0)
3679                 nlines = 0;
3680 }
3681
3682
3683 DB_SHOW_COMMAND(procvm, procvm)
3684 {
3685         struct proc *p;
3686
3687         if (have_addr) {
3688                 p = (struct proc *) addr;
3689         } else {
3690                 p = curproc;
3691         }
3692
3693         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3694             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3695             (void *)vmspace_pmap(p->p_vmspace));
3696
3697         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3698 }
3699
3700 #endif /* DDB */