sys/vfs/hammer: Add HAMMER_MIN_UNDO_BIGBLOCKS to set minimum undo fifo to 512MB
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41
42 #include <sys/nlookup.h>
43 #include <sys/buf2.h>
44
45 #include "hammer.h"
46
47 static void hammer_free_volume(hammer_volume_t volume);
48 static int hammer_load_volume(hammer_volume_t volume);
49 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
50 static int hammer_load_node(hammer_transaction_t trans,
51                                 hammer_node_t node, int isnew);
52 static void _hammer_rel_node(hammer_node_t node, int locked);
53
54 static int
55 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 {
57         if (vol1->vol_no < vol2->vol_no)
58                 return(-1);
59         if (vol1->vol_no > vol2->vol_no)
60                 return(1);
61         return(0);
62 }
63
64 /*
65  * hammer_buffer structures are indexed via their zoneX_offset, not
66  * their zone2_offset.
67  */
68 static int
69 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
70 {
71         if (buf1->zoneX_offset < buf2->zoneX_offset)
72                 return(-1);
73         if (buf1->zoneX_offset > buf2->zoneX_offset)
74                 return(1);
75         return(0);
76 }
77
78 static int
79 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
80 {
81         if (node1->node_offset < node2->node_offset)
82                 return(-1);
83         if (node1->node_offset > node2->node_offset)
84                 return(1);
85         return(0);
86 }
87
88 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
89              hammer_vol_rb_compare, int32_t, vol_no);
90 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
91              hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
92 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
93              hammer_nod_rb_compare, hammer_off_t, node_offset);
94
95 /************************************************************************
96  *                              VOLUMES                                 *
97  ************************************************************************
98  *
99  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
100  * code on failure.  Volumes must be loaded at mount time or via hammer
101  * volume-add command, hammer_get_volume() will not load a new volume.
102  *
103  * The passed devvp is vref()'d but not locked.  This function consumes the
104  * ref (typically by associating it with the volume structure).
105  *
106  * Calls made to hammer_load_volume() or single-threaded
107  */
108 int
109 hammer_install_volume(hammer_mount_t hmp, const char *volname,
110                       struct vnode *devvp, void *data)
111 {
112         struct mount *mp;
113         hammer_volume_t volume;
114         hammer_volume_ondisk_t ondisk;
115         hammer_volume_ondisk_t img;
116         struct nlookupdata nd;
117         struct buf *bp = NULL;
118         int error;
119         int ronly;
120         int setmp = 0;
121         int i;
122
123         mp = hmp->mp;
124         ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125
126         /*
127          * Allocate a volume structure
128          */
129         ++hammer_count_volumes;
130         volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131         volume->vol_name = kstrdup(volname, hmp->m_misc);
132         volume->io.hmp = hmp;   /* bootstrap */
133         hammer_io_init(&volume->io, volume, HAMMER_IOTYPE_VOLUME);
134         volume->io.offset = 0LL;
135         volume->io.bytes = HAMMER_BUFSIZE;
136
137         /*
138          * Get the device vnode
139          */
140         if (devvp == NULL) {
141                 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142                 if (error == 0)
143                         error = nlookup(&nd);
144                 if (error == 0)
145                         error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146                 nlookup_done(&nd);
147         } else {
148                 error = 0;
149                 volume->devvp = devvp;
150         }
151
152         if (error == 0) {
153                 if (vn_isdisk(volume->devvp, &error)) {
154                         error = vfs_mountedon(volume->devvp);
155                 }
156         }
157         if (error == 0 && vcount(volume->devvp) > 0)
158                 error = EBUSY;
159         if (error == 0) {
160                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161                 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162                 if (error == 0) {
163                         error = VOP_OPEN(volume->devvp,
164                                          (ronly ? FREAD : FREAD|FWRITE),
165                                          FSCRED, NULL);
166                 }
167                 vn_unlock(volume->devvp);
168         }
169         if (error) {
170                 hammer_free_volume(volume);
171                 return(error);
172         }
173         volume->devvp->v_rdev->si_mountpoint = mp;
174         setmp = 1;
175
176         /*
177          * Extract the volume number from the volume header and do various
178          * sanity checks.
179          */
180         error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181         if (error)
182                 goto late_failure;
183         ondisk = (void *)bp->b_data;
184
185         /*
186          * Initialize the volume header with data if the data is specified.
187          */
188         if (ronly == 0 && data) {
189                 img = (hammer_volume_ondisk_t)data;
190                 if (ondisk->vol_signature == HAMMER_FSBUF_VOLUME) {
191                         hkprintf("Formatting of valid HAMMER volume "
192                                 "%s denied. Erase with dd!\n", volname);
193                         error = EFTYPE;
194                         goto late_failure;
195                 }
196                 bcopy(img, ondisk, sizeof(*img));
197         }
198
199         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
200                 hkprintf("volume %s has an invalid header\n", volume->vol_name);
201                 for (i = 0; i < (int)sizeof(ondisk->vol_signature); i++) {
202                         kprintf("%02x", ((char*)&ondisk->vol_signature)[i] & 0xFF);
203                         if (i != (int)sizeof(ondisk->vol_signature) - 1)
204                                 kprintf(" ");
205                 }
206                 kprintf("\n");
207                 error = EFTYPE;
208                 goto late_failure;
209         }
210         volume->vol_no = ondisk->vol_no;
211         volume->vol_flags = ondisk->vol_flags;
212         volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
213                                     HAMMER_VOL_BUF_SIZE(ondisk));
214
215         if (RB_EMPTY(&hmp->rb_vols_root)) {
216                 hmp->fsid = ondisk->vol_fsid;
217         } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
218                 hkprintf("volume %s's fsid does not match other volumes\n",
219                         volume->vol_name);
220                 error = EFTYPE;
221                 goto late_failure;
222         }
223
224         /*
225          * Insert the volume structure into the red-black tree.
226          */
227         if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
228                 hkprintf("volume %s has a duplicate vol_no %d\n",
229                         volume->vol_name, volume->vol_no);
230                 error = EEXIST;
231         }
232
233         if (error == 0)
234                 hammer_volume_number_add(hmp, volume);
235
236         /*
237          * Set the root volume .  HAMMER special cases rootvol the structure.
238          * We do not hold a ref because this would prevent related I/O
239          * from being flushed.
240          */
241         if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
242                 hmp->rootvol = volume;
243                 hmp->nvolumes = ondisk->vol_count;
244                 if (bp) {
245                         brelse(bp);
246                         bp = NULL;
247                 }
248                 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
249                                                 HAMMER_BUFFERS_PER_BIGBLOCK;
250                 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
251                                                 HAMMER_BUFFERS_PER_BIGBLOCK;
252         }
253 late_failure:
254         if (bp)
255                 brelse(bp);
256         if (error) {
257                 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
258                 if (setmp)
259                         volume->devvp->v_rdev->si_mountpoint = NULL;
260                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
261                 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
262                 vn_unlock(volume->devvp);
263                 hammer_free_volume(volume);
264         }
265         return (error);
266 }
267
268 /*
269  * This is called for each volume when updating the mount point from
270  * read-write to read-only or vise-versa.
271  */
272 int
273 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
274 {
275         if (volume->devvp) {
276                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
277                 if (volume->io.hmp->ronly) {
278                         /* do not call vinvalbuf */
279                         VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
280                         VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
281                 } else {
282                         /* do not call vinvalbuf */
283                         VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
284                         VOP_CLOSE(volume->devvp, FREAD, NULL);
285                 }
286                 vn_unlock(volume->devvp);
287         }
288         return(0);
289 }
290
291 /*
292  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
293  * so returns -1 on failure.
294  */
295 int
296 hammer_unload_volume(hammer_volume_t volume, void *data)
297 {
298         hammer_mount_t hmp = volume->io.hmp;
299         struct buf *bp = NULL;
300         hammer_volume_ondisk_t img;
301         int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
302         int error;
303
304         /*
305          * Clear the volume header with data if the data is specified.
306          */
307         if (ronly == 0 && data && volume->devvp) {
308                 img = (hammer_volume_ondisk_t)data;
309                 error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
310                 if (error || bp->b_bcount < sizeof(*img)) {
311                         hmkprintf(hmp, "Failed to read volume header: %d\n", error);
312                         brelse(bp);
313                 } else {
314                         bcopy(img, bp->b_data, sizeof(*img));
315                         error = bwrite(bp);
316                         if (error)
317                                 hmkprintf(hmp, "Failed to clear volume header: %d\n",
318                                         error);
319                 }
320         }
321
322         /*
323          * Clean up the root volume pointer, which is held unlocked in hmp.
324          */
325         if (hmp->rootvol == volume)
326                 hmp->rootvol = NULL;
327
328         /*
329          * We must not flush a dirty buffer to disk on umount.  It should
330          * have already been dealt with by the flusher, or we may be in
331          * catastrophic failure.
332          */
333         hammer_io_clear_modify(&volume->io, 1);
334         volume->io.waitdep = 1;
335
336         /*
337          * Clean up the persistent ref ioerror might have on the volume
338          */
339         if (volume->io.ioerror)
340                 hammer_io_clear_error_noassert(&volume->io);
341
342         /*
343          * This should release the bp.  Releasing the volume with flush set
344          * implies the interlock is set.
345          */
346         hammer_ref_interlock_true(&volume->io.lock);
347         hammer_rel_volume(volume, 1);
348         KKASSERT(volume->io.bp == NULL);
349
350         /*
351          * There should be no references on the volume.
352          */
353         KKASSERT(hammer_norefs(&volume->io.lock));
354
355         volume->ondisk = NULL;
356         if (volume->devvp) {
357                 if (volume->devvp->v_rdev &&
358                     volume->devvp->v_rdev->si_mountpoint == hmp->mp) {
359                         volume->devvp->v_rdev->si_mountpoint = NULL;
360                 }
361                 if (ronly) {
362                         /*
363                          * Make sure we don't sync anything to disk if we
364                          * are in read-only mode (1) or critically-errored
365                          * (2).  Note that there may be dirty buffers in
366                          * normal read-only mode from crash recovery.
367                          */
368                         vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
369                         vinvalbuf(volume->devvp, 0, 0, 0);
370                         VOP_CLOSE(volume->devvp, FREAD, NULL);
371                         vn_unlock(volume->devvp);
372                 } else {
373                         /*
374                          * Normal termination, save any dirty buffers
375                          * (XXX there really shouldn't be any).
376                          */
377                         vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
378                         vinvalbuf(volume->devvp, V_SAVE, 0, 0);
379                         VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
380                         vn_unlock(volume->devvp);
381                 }
382         }
383
384         /*
385          * Destroy the structure
386          */
387         RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
388         hammer_volume_number_del(hmp, volume);
389         hammer_free_volume(volume);
390         return(0);
391 }
392
393 static
394 void
395 hammer_free_volume(hammer_volume_t volume)
396 {
397         hammer_mount_t hmp = volume->io.hmp;
398
399         if (volume->vol_name) {
400                 kfree(volume->vol_name, hmp->m_misc);
401                 volume->vol_name = NULL;
402         }
403         if (volume->devvp) {
404                 vrele(volume->devvp);
405                 volume->devvp = NULL;
406         }
407         --hammer_count_volumes;
408         kfree(volume, hmp->m_misc);
409 }
410
411 /*
412  * Get a HAMMER volume.  The volume must already exist.
413  */
414 hammer_volume_t
415 hammer_get_volume(hammer_mount_t hmp, int32_t vol_no, int *errorp)
416 {
417         hammer_volume_t volume;
418
419         /*
420          * Locate the volume structure
421          */
422         volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
423         if (volume == NULL) {
424                 *errorp = ENOENT;
425                 return(NULL);
426         }
427
428         /*
429          * Reference the volume, load/check the data on the 0->1 transition.
430          * hammer_load_volume() will dispose of the interlock on return,
431          * and also clean up the ref count on error.
432          */
433         if (hammer_ref_interlock(&volume->io.lock)) {
434                 *errorp = hammer_load_volume(volume);
435                 if (*errorp)
436                         volume = NULL;
437         } else {
438                 KKASSERT(volume->ondisk);
439                 *errorp = 0;
440         }
441         return(volume);
442 }
443
444 int
445 hammer_ref_volume(hammer_volume_t volume)
446 {
447         int error;
448
449         /*
450          * Reference the volume and deal with the check condition used to
451          * load its ondisk info.
452          */
453         if (hammer_ref_interlock(&volume->io.lock)) {
454                 error = hammer_load_volume(volume);
455         } else {
456                 KKASSERT(volume->ondisk);
457                 error = 0;
458         }
459         return (error);
460 }
461
462 /*
463  * May be called without fs_token
464  */
465 hammer_volume_t
466 hammer_get_root_volume(hammer_mount_t hmp, int *errorp)
467 {
468         hammer_volume_t volume;
469
470         volume = hmp->rootvol;
471         KKASSERT(volume != NULL);
472
473         /*
474          * Reference the volume and deal with the check condition used to
475          * load its ondisk info.
476          */
477         if (hammer_ref_interlock(&volume->io.lock)) {
478                 lwkt_gettoken(&volume->io.hmp->fs_token);
479                 *errorp = hammer_load_volume(volume);
480                 lwkt_reltoken(&volume->io.hmp->fs_token);
481                 if (*errorp)
482                         volume = NULL;
483         } else {
484                 KKASSERT(volume->ondisk);
485                 *errorp = 0;
486         }
487         return (volume);
488 }
489
490 /*
491  * Load a volume's on-disk information.  The volume must be referenced and
492  * the interlock is held on call.  The interlock will be released on return.
493  * The reference will also be released on return if an error occurs.
494  */
495 static int
496 hammer_load_volume(hammer_volume_t volume)
497 {
498         int error;
499
500         if (volume->ondisk == NULL) {
501                 error = hammer_io_read(volume->devvp, &volume->io,
502                                        HAMMER_BUFSIZE);
503                 if (error == 0) {
504                         volume->ondisk = (void *)volume->io.bp->b_data;
505                         hammer_ref_interlock_done(&volume->io.lock);
506                 } else {
507                         hammer_rel_volume(volume, 1);
508                 }
509         } else {
510                 error = 0;
511         }
512         return(error);
513 }
514
515 /*
516  * Release a previously acquired reference on the volume.
517  *
518  * Volumes are not unloaded from memory during normal operation.
519  *
520  * May be called without fs_token
521  */
522 void
523 hammer_rel_volume(hammer_volume_t volume, int locked)
524 {
525         struct buf *bp;
526
527         if (hammer_rel_interlock(&volume->io.lock, locked)) {
528                 lwkt_gettoken(&volume->io.hmp->fs_token);
529                 volume->ondisk = NULL;
530                 bp = hammer_io_release(&volume->io, locked);
531                 lwkt_reltoken(&volume->io.hmp->fs_token);
532                 hammer_rel_interlock_done(&volume->io.lock, locked);
533                 if (bp)
534                         brelse(bp);
535         }
536 }
537
538 int
539 hammer_mountcheck_volumes(hammer_mount_t hmp)
540 {
541         hammer_volume_t vol;
542         int i;
543
544         HAMMER_VOLUME_NUMBER_FOREACH(hmp, i) {
545                 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
546                 if (vol == NULL)
547                         return(EINVAL);
548         }
549         return(0);
550 }
551
552 int
553 hammer_get_installed_volumes(hammer_mount_t hmp)
554 {
555         int i, ret = 0;
556
557         HAMMER_VOLUME_NUMBER_FOREACH(hmp, i)
558                 ret++;
559         return(ret);
560 }
561
562 /************************************************************************
563  *                              BUFFERS                                 *
564  ************************************************************************
565  *
566  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
567  * to zone-2 buffer offsets, without a translation stage.  However, the
568  * hammer_buffer structure is indexed by its zoneX_offset, not its
569  * zone2_offset.
570  *
571  * The proper zone must be maintained throughout the code-base all the way
572  * through to the big-block allocator, or routines like hammer_del_buffers()
573  * will not be able to locate all potentially conflicting buffers.
574  */
575
576 /*
577  * Helper function returns whether a zone offset can be directly translated
578  * to a raw buffer index or not.  Really only the volume and undo zones
579  * can't be directly translated.  Volumes are special-cased and undo zones
580  * shouldn't be aliased accessed in read-only mode.
581  *
582  * This function is ONLY used to detect aliased zones during a read-only
583  * mount.
584  */
585 static __inline int
586 hammer_direct_zone(hammer_off_t buf_offset)
587 {
588         int zone = HAMMER_ZONE_DECODE(buf_offset);
589
590         return(hammer_is_direct_mapped_index(zone));
591 }
592
593 hammer_buffer_t
594 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
595                   int bytes, int isnew, int *errorp)
596 {
597         hammer_buffer_t buffer;
598         hammer_volume_t volume;
599         hammer_off_t    zone2_offset;
600         int vol_no;
601         int zone;
602
603         buf_offset &= ~HAMMER_BUFMASK64;
604 again:
605         /*
606          * Shortcut if the buffer is already cached
607          */
608         buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
609         if (buffer) {
610                 /*
611                  * Once refed the ondisk field will not be cleared by
612                  * any other action.  Shortcut the operation if the
613                  * ondisk structure is valid.
614                  */
615 found_aliased:
616                 if (hammer_ref_interlock(&buffer->io.lock) == 0) {
617                         hammer_io_advance(&buffer->io);
618                         KKASSERT(buffer->ondisk);
619                         *errorp = 0;
620                         return(buffer);
621                 }
622
623                 /*
624                  * 0->1 transition or defered 0->1 transition (CHECK),
625                  * interlock now held.  Shortcut if ondisk is already
626                  * assigned.
627                  */
628                 atomic_add_int(&hammer_count_refedbufs, 1);
629                 if (buffer->ondisk) {
630                         hammer_io_advance(&buffer->io);
631                         hammer_ref_interlock_done(&buffer->io.lock);
632                         *errorp = 0;
633                         return(buffer);
634                 }
635
636                 /*
637                  * The buffer is no longer loose if it has a ref, and
638                  * cannot become loose once it gains a ref.  Loose
639                  * buffers will never be in a modified state.  This should
640                  * only occur on the 0->1 transition of refs.
641                  *
642                  * lose_root can be modified via a biodone() interrupt
643                  * so the io_token must be held.
644                  */
645                 if (buffer->io.mod_root == &hmp->lose_root) {
646                         lwkt_gettoken(&hmp->io_token);
647                         if (buffer->io.mod_root == &hmp->lose_root) {
648                                 RB_REMOVE(hammer_mod_rb_tree,
649                                           buffer->io.mod_root, &buffer->io);
650                                 buffer->io.mod_root = NULL;
651                                 KKASSERT(buffer->io.modified == 0);
652                         }
653                         lwkt_reltoken(&hmp->io_token);
654                 }
655                 goto found;
656         } else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
657                 /*
658                  * If this is a read-only mount there could be an alias
659                  * in the raw-zone.  If there is we use that buffer instead.
660                  *
661                  * rw mounts will not have aliases.  Also note when going
662                  * from ro -> rw the recovered raw buffers are flushed and
663                  * reclaimed, so again there will not be any aliases once
664                  * the mount is rw.
665                  */
666                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
667                                    hammer_xlate_to_zone2(buf_offset));
668                 if (buffer) {
669                         if (hammer_debug_general & 0x0001) {
670                                 hkrateprintf(&hmp->kdiag,
671                                             "recovered aliased %016jx\n",
672                                             (intmax_t)buf_offset);
673                         }
674                         goto found_aliased;
675                 }
676         }
677
678         /*
679          * Handle blockmap offset translations
680          */
681         zone = HAMMER_ZONE_DECODE(buf_offset);
682         if (hammer_is_zone2_mapped_index(zone)) {
683                 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
684         } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
685                 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
686         } else {
687                 /* Must be zone-2 (not 1 or 4 or 15) */
688                 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
689                 zone2_offset = buf_offset;
690                 *errorp = 0;
691         }
692         if (*errorp)
693                 return(NULL);
694
695         /*
696          * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
697          * specifications.
698          */
699         KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
700         vol_no = HAMMER_VOL_DECODE(zone2_offset);
701         volume = hammer_get_volume(hmp, vol_no, errorp);
702         if (volume == NULL)
703                 return(NULL);
704
705         KKASSERT(zone2_offset < volume->maxbuf_off);
706
707         /*
708          * Allocate a new buffer structure.  We will check for races later.
709          */
710         ++hammer_count_buffers;
711         buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
712                          M_WAITOK|M_ZERO|M_USE_RESERVE);
713         buffer->zone2_offset = zone2_offset;
714         buffer->zoneX_offset = buf_offset;
715
716         hammer_io_init(&buffer->io, volume, hammer_zone_to_iotype(zone));
717         buffer->io.offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
718         buffer->io.bytes = bytes;
719         TAILQ_INIT(&buffer->node_list);
720         hammer_ref_interlock_true(&buffer->io.lock);
721
722         /*
723          * Insert the buffer into the RB tree and handle late collisions.
724          */
725         if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
726                 hammer_rel_volume(volume, 0);
727                 buffer->io.volume = NULL;                       /* safety */
728                 if (hammer_rel_interlock(&buffer->io.lock, 1))  /* safety */
729                         hammer_rel_interlock_done(&buffer->io.lock, 1);
730                 --hammer_count_buffers;
731                 kfree(buffer, hmp->m_misc);
732                 goto again;
733         }
734         atomic_add_int(&hammer_count_refedbufs, 1);
735 found:
736
737         /*
738          * The buffer is referenced and interlocked.  Load the buffer
739          * if necessary.  hammer_load_buffer() deals with the interlock
740          * and, if an error is returned, also deals with the ref.
741          */
742         if (buffer->ondisk == NULL) {
743                 *errorp = hammer_load_buffer(buffer, isnew);
744                 if (*errorp)
745                         buffer = NULL;
746         } else {
747                 hammer_io_advance(&buffer->io);
748                 hammer_ref_interlock_done(&buffer->io.lock);
749                 *errorp = 0;
750         }
751         return(buffer);
752 }
753
754 /*
755  * This is used by the direct-read code to deal with large-data buffers
756  * created by the reblocker and mirror-write code.  The direct-read code
757  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
758  * running hammer buffers must be fully synced to disk before we can issue
759  * the direct-read.
760  *
761  * This code path is not considered critical as only the rebocker and
762  * mirror-write code will create large-data buffers via the HAMMER buffer
763  * subsystem.  They do that because they operate at the B-Tree level and
764  * do not access the vnode/inode structures.
765  */
766 void
767 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
768 {
769         hammer_buffer_t buffer;
770         int error;
771
772         KKASSERT(hammer_is_zone_large_data(base_offset));
773
774         while (bytes > 0) {
775                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
776                                    base_offset);
777                 if (buffer && (buffer->io.modified || buffer->io.running)) {
778                         error = hammer_ref_buffer(buffer);
779                         if (error == 0) {
780                                 hammer_io_wait(&buffer->io);
781                                 if (buffer->io.modified) {
782                                         hammer_io_write_interlock(&buffer->io);
783                                         hammer_io_flush(&buffer->io, 0);
784                                         hammer_io_done_interlock(&buffer->io);
785                                         hammer_io_wait(&buffer->io);
786                                 }
787                                 hammer_rel_buffer(buffer, 0);
788                         }
789                 }
790                 base_offset += HAMMER_BUFSIZE;
791                 bytes -= HAMMER_BUFSIZE;
792         }
793 }
794
795 /*
796  * Destroy all buffers covering the specified zoneX offset range.  This
797  * is called when the related blockmap layer2 entry is freed or when
798  * a direct write bypasses our buffer/buffer-cache subsystem.
799  *
800  * The buffers may be referenced by the caller itself.  Setting reclaim
801  * will cause the buffer to be destroyed when it's ref count reaches zero.
802  *
803  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
804  * to additional references held by other threads, or some other (typically
805  * fatal) error.
806  */
807 int
808 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
809                    hammer_off_t zone2_offset, int bytes,
810                    int report_conflicts)
811 {
812         hammer_buffer_t buffer;
813         hammer_volume_t volume;
814         int vol_no;
815         int error;
816         int ret_error;
817
818         vol_no = HAMMER_VOL_DECODE(zone2_offset);
819         volume = hammer_get_volume(hmp, vol_no, &ret_error);
820         KKASSERT(ret_error == 0);
821
822         while (bytes > 0) {
823                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
824                                    base_offset);
825                 if (buffer) {
826                         error = hammer_ref_buffer(buffer);
827                         if (hammer_debug_general & 0x20000) {
828                                 hkprintf("delbufr %016jx rerr=%d 1ref=%d\n",
829                                         (intmax_t)buffer->zoneX_offset,
830                                         error,
831                                         hammer_oneref(&buffer->io.lock));
832                         }
833                         if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
834                                 error = EAGAIN;
835                                 hammer_rel_buffer(buffer, 0);
836                         }
837                         if (error == 0) {
838                                 KKASSERT(buffer->zone2_offset == zone2_offset);
839                                 hammer_io_clear_modify(&buffer->io, 1);
840                                 buffer->io.reclaim = 1;
841                                 buffer->io.waitdep = 1;
842                                 KKASSERT(buffer->io.volume == volume);
843                                 hammer_rel_buffer(buffer, 0);
844                         }
845                 } else {
846                         error = hammer_io_inval(volume, zone2_offset);
847                 }
848                 if (error) {
849                         ret_error = error;
850                         if (report_conflicts ||
851                             (hammer_debug_general & 0x8000)) {
852                                 krateprintf(&hmp->kdiag,
853                                         "hammer_del_buffers: unable to "
854                                         "invalidate %016jx buffer=%p "
855                                         "rep=%d lkrefs=%08x\n",
856                                         (intmax_t)base_offset,
857                                         buffer, report_conflicts,
858                                         (buffer ? buffer->io.lock.refs : -1));
859                         }
860                 }
861                 base_offset += HAMMER_BUFSIZE;
862                 zone2_offset += HAMMER_BUFSIZE;
863                 bytes -= HAMMER_BUFSIZE;
864         }
865         hammer_rel_volume(volume, 0);
866         return (ret_error);
867 }
868
869 /*
870  * Given a referenced and interlocked buffer load/validate the data.
871  *
872  * The buffer interlock will be released on return.  If an error is
873  * returned the buffer reference will also be released (and the buffer
874  * pointer will thus be stale).
875  */
876 static int
877 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
878 {
879         hammer_volume_t volume;
880         int error;
881
882         /*
883          * Load the buffer's on-disk info
884          */
885         volume = buffer->io.volume;
886
887         if (hammer_debug_io & 0x0004) {
888                 hdkprintf("load_buffer %016jx %016jx isnew=%d od=%p\n",
889                         (intmax_t)buffer->zoneX_offset,
890                         (intmax_t)buffer->zone2_offset,
891                         isnew, buffer->ondisk);
892         }
893
894         if (buffer->ondisk == NULL) {
895                 /*
896                  * Issue the read or generate a new buffer.  When reading
897                  * the limit argument controls any read-ahead clustering
898                  * hammer_io_read() is allowed to do.
899                  *
900                  * We cannot read-ahead in the large-data zone and we cannot
901                  * cross a big-block boundary as the next big-block might
902                  * use a different buffer size.
903                  */
904                 if (isnew) {
905                         error = hammer_io_new(volume->devvp, &buffer->io);
906                 } else if (hammer_is_zone_large_data(buffer->zoneX_offset)) {
907                         error = hammer_io_read(volume->devvp, &buffer->io,
908                                                buffer->io.bytes);
909                 } else {
910                         hammer_off_t limit;
911
912                         limit = (buffer->zone2_offset +
913                                  HAMMER_BIGBLOCK_MASK64) &
914                                 ~HAMMER_BIGBLOCK_MASK64;
915                         limit -= buffer->zone2_offset;
916                         error = hammer_io_read(volume->devvp, &buffer->io,
917                                                limit);
918                 }
919                 if (error == 0)
920                         buffer->ondisk = (void *)buffer->io.bp->b_data;
921         } else if (isnew) {
922                 error = hammer_io_new(volume->devvp, &buffer->io);
923         } else {
924                 error = 0;
925         }
926         if (error == 0) {
927                 hammer_io_advance(&buffer->io);
928                 hammer_ref_interlock_done(&buffer->io.lock);
929         } else {
930                 hammer_rel_buffer(buffer, 1);
931         }
932         return (error);
933 }
934
935 /*
936  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
937  * This routine is only called during unmount or when a volume is
938  * removed.
939  *
940  * If data != NULL, it specifies a volume whoose buffers should
941  * be unloaded.
942  */
943 int
944 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
945 {
946         hammer_volume_t volume = (hammer_volume_t)data;
947
948         /*
949          * If volume != NULL we are only interested in unloading buffers
950          * associated with a particular volume.
951          */
952         if (volume != NULL && volume != buffer->io.volume)
953                 return 0;
954
955         /*
956          * Clean up the persistent ref ioerror might have on the buffer
957          * and acquire a ref.  Expect a 0->1 transition.
958          */
959         if (buffer->io.ioerror) {
960                 hammer_io_clear_error_noassert(&buffer->io);
961                 atomic_add_int(&hammer_count_refedbufs, -1);
962         }
963         hammer_ref_interlock_true(&buffer->io.lock);
964         atomic_add_int(&hammer_count_refedbufs, 1);
965
966         /*
967          * We must not flush a dirty buffer to disk on umount.  It should
968          * have already been dealt with by the flusher, or we may be in
969          * catastrophic failure.
970          *
971          * We must set waitdep to ensure that a running buffer is waited
972          * on and released prior to us trying to unload the volume.
973          */
974         hammer_io_clear_modify(&buffer->io, 1);
975         hammer_flush_buffer_nodes(buffer);
976         buffer->io.waitdep = 1;
977         hammer_rel_buffer(buffer, 1);
978         return(0);
979 }
980
981 /*
982  * Reference a buffer that is either already referenced or via a specially
983  * handled pointer (aka cursor->buffer).
984  */
985 int
986 hammer_ref_buffer(hammer_buffer_t buffer)
987 {
988         hammer_mount_t hmp;
989         int error;
990         int locked;
991
992         /*
993          * Acquire a ref, plus the buffer will be interlocked on the
994          * 0->1 transition.
995          */
996         locked = hammer_ref_interlock(&buffer->io.lock);
997         hmp = buffer->io.hmp;
998
999         /*
1000          * At this point a biodone() will not touch the buffer other then
1001          * incidental bits.  However, lose_root can be modified via
1002          * a biodone() interrupt.
1003          *
1004          * No longer loose.  lose_root requires the io_token.
1005          */
1006         if (buffer->io.mod_root == &hmp->lose_root) {
1007                 lwkt_gettoken(&hmp->io_token);
1008                 if (buffer->io.mod_root == &hmp->lose_root) {
1009                         RB_REMOVE(hammer_mod_rb_tree,
1010                                   buffer->io.mod_root, &buffer->io);
1011                         buffer->io.mod_root = NULL;
1012                 }
1013                 lwkt_reltoken(&hmp->io_token);
1014         }
1015
1016         if (locked) {
1017                 atomic_add_int(&hammer_count_refedbufs, 1);
1018                 error = hammer_load_buffer(buffer, 0);
1019                 /* NOTE: on error the buffer pointer is stale */
1020         } else {
1021                 error = 0;
1022         }
1023         return(error);
1024 }
1025
1026 /*
1027  * Release a reference on the buffer.  On the 1->0 transition the
1028  * underlying IO will be released but the data reference is left
1029  * cached.
1030  *
1031  * Only destroy the structure itself if the related buffer cache buffer
1032  * was disassociated from it.  This ties the management of the structure
1033  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1034  * embedded io is referenced or not.
1035  */
1036 void
1037 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1038 {
1039         hammer_volume_t volume;
1040         hammer_mount_t hmp;
1041         struct buf *bp = NULL;
1042         int freeme = 0;
1043
1044         hmp = buffer->io.hmp;
1045
1046         if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1047                 return;
1048
1049         /*
1050          * hammer_count_refedbufs accounting.  Decrement if we are in
1051          * the error path or if CHECK is clear.
1052          *
1053          * If we are not in the error path and CHECK is set the caller
1054          * probably just did a hammer_ref() and didn't account for it,
1055          * so we don't account for the loss here.
1056          */
1057         if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1058                 atomic_add_int(&hammer_count_refedbufs, -1);
1059
1060         /*
1061          * If the caller locked us or the normal released transitions
1062          * from 1->0 (and acquired the lock) attempt to release the
1063          * io.  If the called locked us we tell hammer_io_release()
1064          * to flush (which would be the unload or failure path).
1065          */
1066         bp = hammer_io_release(&buffer->io, locked);
1067
1068         /*
1069          * If the buffer has no bp association and no refs we can destroy
1070          * it.
1071          *
1072          * NOTE: It is impossible for any associated B-Tree nodes to have
1073          * refs if the buffer has no additional refs.
1074          */
1075         if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1076                 RB_REMOVE(hammer_buf_rb_tree,
1077                           &buffer->io.hmp->rb_bufs_root,
1078                           buffer);
1079                 volume = buffer->io.volume;
1080                 buffer->io.volume = NULL; /* sanity */
1081                 hammer_rel_volume(volume, 0);
1082                 hammer_io_clear_modlist(&buffer->io);
1083                 hammer_flush_buffer_nodes(buffer);
1084                 KKASSERT(TAILQ_EMPTY(&buffer->node_list));
1085                 freeme = 1;
1086         }
1087
1088         /*
1089          * Cleanup
1090          */
1091         hammer_rel_interlock_done(&buffer->io.lock, locked);
1092         if (bp)
1093                 brelse(bp);
1094         if (freeme) {
1095                 --hammer_count_buffers;
1096                 kfree(buffer, hmp->m_misc);
1097         }
1098 }
1099
1100 /*
1101  * Access the filesystem buffer containing the specified hammer offset.
1102  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1103  * relative buffer offset.  It must also have bit 55 set to be valid.
1104  * (see hammer_off_t in hammer_disk.h).
1105  *
1106  * Any prior buffer in *bufferp will be released and replaced by the
1107  * requested buffer.
1108  *
1109  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1110  * passed cached *bufferp to match against either zoneX or zone2.
1111  */
1112 static __inline
1113 void *
1114 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1115              int isnew, int *errorp, hammer_buffer_t *bufferp)
1116 {
1117         hammer_buffer_t buffer;
1118         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1119
1120         buf_offset &= ~HAMMER_BUFMASK64;
1121         KKASSERT(HAMMER_ZONE(buf_offset) != 0);
1122
1123         buffer = *bufferp;
1124         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1125                                buffer->zoneX_offset != buf_offset)) {
1126                 if (buffer)
1127                         hammer_rel_buffer(buffer, 0);
1128                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, isnew, errorp);
1129                 *bufferp = buffer;
1130         } else {
1131                 *errorp = 0;
1132         }
1133
1134         /*
1135          * Return a pointer to the buffer data.
1136          */
1137         if (buffer == NULL)
1138                 return(NULL);
1139         else
1140                 return((char *)buffer->ondisk + xoff);
1141 }
1142
1143 void *
1144 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1145              int *errorp, hammer_buffer_t *bufferp)
1146 {
1147         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 0, errorp, bufferp));
1148 }
1149
1150 void *
1151 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1152                  int *errorp, hammer_buffer_t *bufferp)
1153 {
1154         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1155         return(_hammer_bread(hmp, buf_offset, bytes, 0, errorp, bufferp));
1156 }
1157
1158 /*
1159  * Access the filesystem buffer containing the specified hammer offset.
1160  * No disk read operation occurs.  The result buffer may contain garbage.
1161  *
1162  * Any prior buffer in *bufferp will be released and replaced by the
1163  * requested buffer.
1164  *
1165  * This function marks the buffer dirty but does not increment its
1166  * modify_refs count.
1167  */
1168 void *
1169 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1170              int *errorp, hammer_buffer_t *bufferp)
1171 {
1172         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, 1, errorp, bufferp));
1173 }
1174
1175 void *
1176 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1177                 int *errorp, hammer_buffer_t *bufferp)
1178 {
1179         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1180         return(_hammer_bread(hmp, buf_offset, bytes, 1, errorp, bufferp));
1181 }
1182
1183 /************************************************************************
1184  *                              NODES                                   *
1185  ************************************************************************
1186  *
1187  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1188  * method used by the HAMMER filesystem.
1189  *
1190  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1191  * associated with its buffer, and will only referenced the buffer while
1192  * the node itself is referenced.
1193  *
1194  * A hammer_node can also be passively associated with other HAMMER
1195  * structures, such as inodes, while retaining 0 references.  These
1196  * associations can be cleared backwards using a pointer-to-pointer in
1197  * the hammer_node.
1198  *
1199  * This allows the HAMMER implementation to cache hammer_nodes long-term
1200  * and short-cut a great deal of the infrastructure's complexity.  In
1201  * most cases a cached node can be reacquired without having to dip into
1202  * the B-Tree.
1203  */
1204 hammer_node_t
1205 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1206                 int isnew, int *errorp)
1207 {
1208         hammer_mount_t hmp = trans->hmp;
1209         hammer_node_t node;
1210         int doload;
1211
1212         KKASSERT(hammer_is_zone_btree(node_offset));
1213
1214         /*
1215          * Locate the structure, allocating one if necessary.
1216          */
1217 again:
1218         node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1219         if (node == NULL) {
1220                 ++hammer_count_nodes;
1221                 node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1222                 node->node_offset = node_offset;
1223                 node->hmp = hmp;
1224                 TAILQ_INIT(&node->cursor_list);
1225                 TAILQ_INIT(&node->cache_list);
1226                 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1227                         --hammer_count_nodes;
1228                         kfree(node, hmp->m_misc);
1229                         goto again;
1230                 }
1231                 doload = hammer_ref_interlock_true(&node->lock);
1232         } else {
1233                 doload = hammer_ref_interlock(&node->lock);
1234         }
1235         if (doload) {
1236                 *errorp = hammer_load_node(trans, node, isnew);
1237                 if (*errorp)
1238                         node = NULL;
1239         } else {
1240                 KKASSERT(node->ondisk);
1241                 *errorp = 0;
1242                 hammer_io_advance(&node->buffer->io);
1243         }
1244         return(node);
1245 }
1246
1247 /*
1248  * Reference an already-referenced node.  0->1 transitions should assert
1249  * so we do not have to deal with hammer_ref() setting CHECK.
1250  */
1251 void
1252 hammer_ref_node(hammer_node_t node)
1253 {
1254         KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1255         hammer_ref(&node->lock);
1256 }
1257
1258 /*
1259  * Load a node's on-disk data reference.  Called with the node referenced
1260  * and interlocked.
1261  *
1262  * On return the node interlock will be unlocked.  If a non-zero error code
1263  * is returned the node will also be dereferenced (and the caller's pointer
1264  * will be stale).
1265  */
1266 static int
1267 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1268 {
1269         hammer_buffer_t buffer;
1270         hammer_off_t buf_offset;
1271         int error;
1272
1273         error = 0;
1274         if (node->ondisk == NULL) {
1275                 /*
1276                  * This is a little confusing but the jist is that
1277                  * node->buffer determines whether the node is on
1278                  * the buffer's node_list and node->ondisk determines
1279                  * whether the buffer is referenced.
1280                  *
1281                  * We could be racing a buffer release, in which case
1282                  * node->buffer may become NULL while we are blocked
1283                  * referencing the buffer.
1284                  */
1285                 if ((buffer = node->buffer) != NULL) {
1286                         error = hammer_ref_buffer(buffer);
1287                         if (error == 0 && node->buffer == NULL) {
1288                                 TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1289                                 node->buffer = buffer;
1290                         }
1291                 } else {
1292                         buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1293                         buffer = hammer_get_buffer(node->hmp, buf_offset,
1294                                                    HAMMER_BUFSIZE, 0, &error);
1295                         if (buffer) {
1296                                 KKASSERT(error == 0);
1297                                 TAILQ_INSERT_TAIL(&buffer->node_list, node, entry);
1298                                 node->buffer = buffer;
1299                         }
1300                 }
1301                 if (error)
1302                         goto failed;
1303                 node->ondisk = (void *)((char *)buffer->ondisk +
1304                                         (node->node_offset & HAMMER_BUFMASK));
1305
1306                 /*
1307                  * Check CRC.  NOTE: Neither flag is set and the CRC is not
1308                  * generated on new B-Tree nodes.
1309                  */
1310                 if (isnew == 0 &&
1311                     (node->flags & HAMMER_NODE_CRCANY) == 0) {
1312                         if (hammer_crc_test_btree(node->ondisk) == 0) {
1313                                 hdkprintf("CRC B-TREE NODE @ %016jx/%lu FAILED\n",
1314                                         (intmax_t)node->node_offset,
1315                                         sizeof(*node->ondisk));
1316                                 if (hammer_debug_critical)
1317                                         Debugger("CRC FAILED: B-TREE NODE");
1318                                 node->flags |= HAMMER_NODE_CRCBAD;
1319                         } else {
1320                                 node->flags |= HAMMER_NODE_CRCGOOD;
1321                         }
1322                 }
1323         }
1324         if (node->flags & HAMMER_NODE_CRCBAD) {
1325                 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1326                         error = EDOM;
1327                 else
1328                         error = EIO;
1329         }
1330 failed:
1331         if (error) {
1332                 _hammer_rel_node(node, 1);
1333         } else {
1334                 hammer_ref_interlock_done(&node->lock);
1335         }
1336         return (error);
1337 }
1338
1339 /*
1340  * Safely reference a node, interlock against flushes via the IO subsystem.
1341  */
1342 hammer_node_t
1343 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1344                      int *errorp)
1345 {
1346         hammer_node_t node;
1347         int doload;
1348
1349         node = cache->node;
1350         if (node != NULL) {
1351                 doload = hammer_ref_interlock(&node->lock);
1352                 if (doload) {
1353                         *errorp = hammer_load_node(trans, node, 0);
1354                         if (*errorp)
1355                                 node = NULL;
1356                 } else {
1357                         KKASSERT(node->ondisk);
1358                         if (node->flags & HAMMER_NODE_CRCBAD) {
1359                                 if (trans->flags & HAMMER_TRANSF_CRCDOM)
1360                                         *errorp = EDOM;
1361                                 else
1362                                         *errorp = EIO;
1363                                 _hammer_rel_node(node, 0);
1364                                 node = NULL;
1365                         } else {
1366                                 *errorp = 0;
1367                         }
1368                 }
1369         } else {
1370                 *errorp = ENOENT;
1371         }
1372         return(node);
1373 }
1374
1375 /*
1376  * Release a hammer_node.  On the last release the node dereferences
1377  * its underlying buffer and may or may not be destroyed.
1378  *
1379  * If locked is non-zero the passed node has been interlocked by the
1380  * caller and we are in the failure/unload path, otherwise it has not and
1381  * we are doing a normal release.
1382  *
1383  * This function will dispose of the interlock and the reference.
1384  * On return the node pointer is stale.
1385  */
1386 void
1387 _hammer_rel_node(hammer_node_t node, int locked)
1388 {
1389         hammer_buffer_t buffer;
1390
1391         /*
1392          * Deref the node.  If this isn't the 1->0 transition we're basically
1393          * done.  If locked is non-zero this function will just deref the
1394          * locked node and return 1, otherwise it will deref the locked
1395          * node and either lock and return 1 on the 1->0 transition or
1396          * not lock and return 0.
1397          */
1398         if (hammer_rel_interlock(&node->lock, locked) == 0)
1399                 return;
1400
1401         /*
1402          * Either locked was non-zero and we are interlocked, or the
1403          * hammer_rel_interlock() call returned non-zero and we are
1404          * interlocked.
1405          *
1406          * The ref-count must still be decremented if locked != 0 so
1407          * the cleanup required still varies a bit.
1408          *
1409          * hammer_flush_node() when called with 1 or 2 will dispose of
1410          * the lock and possible ref-count.
1411          */
1412         if (node->ondisk == NULL) {
1413                 hammer_flush_node(node, locked + 1);
1414                 /* node is stale now */
1415                 return;
1416         }
1417
1418         /*
1419          * Do not disassociate the node from the buffer if it represents
1420          * a modified B-Tree node that still needs its crc to be generated.
1421          */
1422         if (node->flags & HAMMER_NODE_NEEDSCRC) {
1423                 hammer_rel_interlock_done(&node->lock, locked);
1424                 return;
1425         }
1426
1427         /*
1428          * Do final cleanups and then either destroy the node and leave it
1429          * passively cached.  The buffer reference is removed regardless.
1430          */
1431         buffer = node->buffer;
1432         node->ondisk = NULL;
1433
1434         if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1435                 /*
1436                  * Normal release.
1437                  */
1438                 hammer_rel_interlock_done(&node->lock, locked);
1439         } else {
1440                 /*
1441                  * Destroy the node.
1442                  */
1443                 hammer_flush_node(node, locked + 1);
1444                 /* node is stale */
1445
1446         }
1447         hammer_rel_buffer(buffer, 0);
1448 }
1449
1450 void
1451 hammer_rel_node(hammer_node_t node)
1452 {
1453         _hammer_rel_node(node, 0);
1454 }
1455
1456 /*
1457  * Free space on-media associated with a B-Tree node.
1458  */
1459 void
1460 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1461 {
1462         KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1463         node->flags |= HAMMER_NODE_DELETED;
1464         hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1465 }
1466
1467 /*
1468  * Passively cache a referenced hammer_node.  The caller may release
1469  * the node on return.
1470  */
1471 void
1472 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1473 {
1474         /*
1475          * If the node doesn't exist, or is being deleted, don't cache it!
1476          *
1477          * The node can only ever be NULL in the I/O failure path.
1478          */
1479         if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1480                 return;
1481         if (cache->node == node)
1482                 return;
1483         while (cache->node)
1484                 hammer_uncache_node(cache);
1485         if (node->flags & HAMMER_NODE_DELETED)
1486                 return;
1487         cache->node = node;
1488         TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1489 }
1490
1491 void
1492 hammer_uncache_node(hammer_node_cache_t cache)
1493 {
1494         hammer_node_t node;
1495
1496         if ((node = cache->node) != NULL) {
1497                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1498                 cache->node = NULL;
1499                 if (TAILQ_EMPTY(&node->cache_list))
1500                         hammer_flush_node(node, 0);
1501         }
1502 }
1503
1504 /*
1505  * Remove a node's cache references and destroy the node if it has no
1506  * other references or backing store.
1507  *
1508  * locked == 0  Normal unlocked operation
1509  * locked == 1  Call hammer_rel_interlock_done(..., 0);
1510  * locked == 2  Call hammer_rel_interlock_done(..., 1);
1511  *
1512  * XXX for now this isn't even close to being MPSAFE so the refs check
1513  *     is sufficient.
1514  */
1515 void
1516 hammer_flush_node(hammer_node_t node, int locked)
1517 {
1518         hammer_node_cache_t cache;
1519         hammer_buffer_t buffer;
1520         hammer_mount_t hmp = node->hmp;
1521         int dofree;
1522
1523         while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1524                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1525                 cache->node = NULL;
1526         }
1527
1528         /*
1529          * NOTE: refs is predisposed if another thread is blocking and
1530          *       will be larger than 0 in that case.  We aren't MPSAFE
1531          *       here.
1532          */
1533         if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1534                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1535                 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1536                 if ((buffer = node->buffer) != NULL) {
1537                         node->buffer = NULL;
1538                         TAILQ_REMOVE(&buffer->node_list, node, entry);
1539                         /* buffer is unreferenced because ondisk is NULL */
1540                 }
1541                 dofree = 1;
1542         } else {
1543                 dofree = 0;
1544         }
1545
1546         /*
1547          * Deal with the interlock if locked == 1 or locked == 2.
1548          */
1549         if (locked)
1550                 hammer_rel_interlock_done(&node->lock, locked - 1);
1551
1552         /*
1553          * Destroy if requested
1554          */
1555         if (dofree) {
1556                 --hammer_count_nodes;
1557                 kfree(node, hmp->m_misc);
1558         }
1559 }
1560
1561 /*
1562  * Flush passively cached B-Tree nodes associated with this buffer.
1563  * This is only called when the buffer is about to be destroyed, so
1564  * none of the nodes should have any references.  The buffer is locked.
1565  *
1566  * We may be interlocked with the buffer.
1567  */
1568 void
1569 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1570 {
1571         hammer_node_t node;
1572
1573         while ((node = TAILQ_FIRST(&buffer->node_list)) != NULL) {
1574                 KKASSERT(node->ondisk == NULL);
1575                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1576
1577                 if (hammer_try_interlock_norefs(&node->lock)) {
1578                         hammer_ref(&node->lock);
1579                         node->flags |= HAMMER_NODE_FLUSH;
1580                         _hammer_rel_node(node, 1);
1581                 } else {
1582                         KKASSERT(node->buffer != NULL);
1583                         buffer = node->buffer;
1584                         node->buffer = NULL;
1585                         TAILQ_REMOVE(&buffer->node_list, node, entry);
1586                         /* buffer is unreferenced because ondisk is NULL */
1587                 }
1588         }
1589 }
1590
1591
1592 /************************************************************************
1593  *                              ALLOCATORS                              *
1594  ************************************************************************/
1595
1596 /*
1597  * Allocate a B-Tree node.
1598  */
1599 hammer_node_t
1600 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1601 {
1602         hammer_buffer_t buffer = NULL;
1603         hammer_node_t node = NULL;
1604         hammer_off_t node_offset;
1605
1606         node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1607                                             sizeof(struct hammer_node_ondisk),
1608                                             hint, errorp);
1609         if (*errorp == 0) {
1610                 node = hammer_get_node(trans, node_offset, 1, errorp);
1611                 hammer_modify_node_noundo(trans, node);
1612                 bzero(node->ondisk, sizeof(*node->ondisk));
1613                 hammer_modify_node_done(node);
1614         }
1615         if (buffer)
1616                 hammer_rel_buffer(buffer, 0);
1617         return(node);
1618 }
1619
1620 /*
1621  * Allocate data.  If the address of a data buffer is supplied then
1622  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1623  * will be set to the related buffer.  The caller must release it when
1624  * finally done.  The initial *data_bufferp should be set to NULL by
1625  * the caller.
1626  *
1627  * The caller is responsible for making hammer_modify*() calls on the
1628  * *data_bufferp.
1629  */
1630 void *
1631 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1632                   uint16_t rec_type, hammer_off_t *data_offsetp,
1633                   hammer_buffer_t *data_bufferp,
1634                   hammer_off_t hint, int *errorp)
1635 {
1636         void *data;
1637         int zone;
1638
1639         /*
1640          * Allocate data directly from blockmap.
1641          */
1642         if (data_len) {
1643                 switch(rec_type) {
1644                 case HAMMER_RECTYPE_INODE:
1645                 case HAMMER_RECTYPE_DIRENTRY:
1646                 case HAMMER_RECTYPE_EXT:
1647                 case HAMMER_RECTYPE_FIX:
1648                 case HAMMER_RECTYPE_PFS:
1649                 case HAMMER_RECTYPE_SNAPSHOT:
1650                 case HAMMER_RECTYPE_CONFIG:
1651                         zone = HAMMER_ZONE_META_INDEX;
1652                         break;
1653                 case HAMMER_RECTYPE_DATA:
1654                 case HAMMER_RECTYPE_DB:
1655                         /*
1656                          * Only mirror-write comes here.
1657                          * Regular allocation path uses blockmap reservation.
1658                          */
1659                         zone = hammer_data_zone_index(data_len);
1660                         if (zone == HAMMER_ZONE_LARGE_DATA_INDEX) {
1661                                 /* round up */
1662                                 data_len = (data_len + HAMMER_BUFMASK) &
1663                                            ~HAMMER_BUFMASK;
1664                         }
1665                         break;
1666                 default:
1667                         hpanic("rec_type %04x unknown", rec_type);
1668                         zone = HAMMER_ZONE_UNAVAIL_INDEX; /* NOT REACHED */
1669                         break;
1670                 }
1671                 *data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1672                                                       hint, errorp);
1673         } else {
1674                 *data_offsetp = 0;
1675         }
1676
1677         data = NULL;
1678         if (*errorp == 0 && data_bufferp && data_len)
1679                 data = hammer_bread_ext(trans->hmp, *data_offsetp, data_len,
1680                                         errorp, data_bufferp);
1681         return(data);
1682 }
1683
1684 /*
1685  * Sync dirty buffers to the media and clean-up any loose ends.
1686  *
1687  * These functions do not start the flusher going, they simply
1688  * queue everything up to the flusher.
1689  */
1690 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1691
1692 struct hammer_sync_info {
1693         int error;
1694 };
1695
1696 int
1697 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1698 {
1699         struct hammer_sync_info info;
1700
1701         info.error = 0;
1702         if (waitfor == MNT_WAIT) {
1703                 vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1704                           hammer_sync_scan2, &info);
1705         } else {
1706                 vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1707                           hammer_sync_scan2, &info);
1708         }
1709         return(info.error);
1710 }
1711
1712 /*
1713  * Filesystem sync.  If doing a synchronous sync make a second pass on
1714  * the vnodes in case any were already flushing during the first pass,
1715  * and activate the flusher twice (the second time brings the UNDO FIFO's
1716  * start position up to the end position after the first call).
1717  *
1718  * If doing a lazy sync make just one pass on the vnode list, ignoring
1719  * any new vnodes added to the list while the sync is in progress.
1720  */
1721 int
1722 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1723 {
1724         struct hammer_sync_info info;
1725         int flags;
1726
1727         flags = VMSC_GETVP;
1728         if (waitfor & MNT_LAZY)
1729                 flags |= VMSC_ONEPASS;
1730
1731         info.error = 0;
1732         vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1733
1734         if (info.error == 0 && (waitfor & MNT_WAIT)) {
1735                 vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1736         }
1737         if (waitfor == MNT_WAIT) {
1738                 hammer_flusher_sync(hmp);
1739                 hammer_flusher_sync(hmp);
1740         } else {
1741                 hammer_flusher_async(hmp, NULL);
1742                 hammer_flusher_async(hmp, NULL);
1743         }
1744         return(info.error);
1745 }
1746
1747 static int
1748 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1749 {
1750         struct hammer_sync_info *info = data;
1751         hammer_inode_t ip;
1752         int error;
1753
1754         ip = VTOI(vp);
1755         if (ip == NULL)
1756                 return(0);
1757         if (vp->v_type == VNON || vp->v_type == VBAD) {
1758                 vclrisdirty(vp);
1759                 return(0);
1760         }
1761         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1762             RB_EMPTY(&vp->v_rbdirty_tree)) {
1763                 vclrisdirty(vp);
1764                 return(0);
1765         }
1766         error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1767         if (error)
1768                 info->error = error;
1769         return(0);
1770 }