66cffabc9c5ecb3eeb8bc2c2ded87f6bc44568eb
[dragonfly.git] / sys / dev / netif / bnx / if_bnx.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 #include "opt_bnx.h"
37 #include "opt_ifpoll.h"
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/interrupt.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/rman.h>
48 #include <sys/serialize.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/sysctl.h>
52
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
55
56 #include <net/bpf.h>
57 #include <net/ethernet.h>
58 #include <net/if.h>
59 #include <net/if_arp.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_poll.h>
63 #include <net/if_types.h>
64 #include <net/ifq_var.h>
65 #include <net/vlan/if_vlan_var.h>
66 #include <net/vlan/if_vlan_ether.h>
67
68 #include <dev/netif/mii_layer/mii.h>
69 #include <dev/netif/mii_layer/miivar.h>
70 #include <dev/netif/mii_layer/brgphyreg.h>
71
72 #include <bus/pci/pcidevs.h>
73 #include <bus/pci/pcireg.h>
74 #include <bus/pci/pcivar.h>
75
76 #include <dev/netif/bge/if_bgereg.h>
77 #include <dev/netif/bnx/if_bnxvar.h>
78
79 /* "device miibus" required.  See GENERIC if you get errors here. */
80 #include "miibus_if.h"
81
82 #define BNX_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
83
84 #define BNX_INTR_CKINTVL        ((10 * hz) / 1000)      /* 10ms */
85
86 static const struct bnx_type {
87         uint16_t                bnx_vid;
88         uint16_t                bnx_did;
89         char                    *bnx_name;
90 } bnx_devs[] = {
91         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717,
92                 "Broadcom BCM5717 Gigabit Ethernet" },
93         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718,
94                 "Broadcom BCM5718 Gigabit Ethernet" },
95         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719,
96                 "Broadcom BCM5719 Gigabit Ethernet" },
97         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720_ALT,
98                 "Broadcom BCM5720 Gigabit Ethernet" },
99
100         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761,
101                 "Broadcom BCM57761 Gigabit Ethernet" },
102         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762,
103                 "Broadcom BCM57762 Gigabit Ethernet" },
104         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765,
105                 "Broadcom BCM57765 Gigabit Ethernet" },
106         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766,
107                 "Broadcom BCM57766 Gigabit Ethernet" },
108         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781,
109                 "Broadcom BCM57781 Gigabit Ethernet" },
110         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782,
111                 "Broadcom BCM57782 Gigabit Ethernet" },
112         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785,
113                 "Broadcom BCM57785 Gigabit Ethernet" },
114         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786,
115                 "Broadcom BCM57786 Gigabit Ethernet" },
116         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791,
117                 "Broadcom BCM57791 Fast Ethernet" },
118         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795,
119                 "Broadcom BCM57795 Fast Ethernet" },
120
121         { 0, 0, NULL }
122 };
123
124 #define BNX_IS_JUMBO_CAPABLE(sc)        ((sc)->bnx_flags & BNX_FLAG_JUMBO)
125 #define BNX_IS_5717_PLUS(sc)            ((sc)->bnx_flags & BNX_FLAG_5717_PLUS)
126 #define BNX_IS_57765_PLUS(sc)           ((sc)->bnx_flags & BNX_FLAG_57765_PLUS)
127 #define BNX_IS_57765_FAMILY(sc)  \
128         ((sc)->bnx_flags & BNX_FLAG_57765_FAMILY)
129
130 typedef int     (*bnx_eaddr_fcn_t)(struct bnx_softc *, uint8_t[]);
131
132 static int      bnx_probe(device_t);
133 static int      bnx_attach(device_t);
134 static int      bnx_detach(device_t);
135 static void     bnx_shutdown(device_t);
136 static int      bnx_suspend(device_t);
137 static int      bnx_resume(device_t);
138 static int      bnx_miibus_readreg(device_t, int, int);
139 static int      bnx_miibus_writereg(device_t, int, int, int);
140 static void     bnx_miibus_statchg(device_t);
141
142 #ifdef IFPOLL_ENABLE
143 static void     bnx_npoll(struct ifnet *, struct ifpoll_info *);
144 static void     bnx_npoll_compat(struct ifnet *, void *, int);
145 #endif
146 static void     bnx_intr_legacy(void *);
147 static void     bnx_msi(void *);
148 static void     bnx_msi_oneshot(void *);
149 static void     bnx_intr(struct bnx_softc *);
150 static void     bnx_enable_intr(struct bnx_softc *);
151 static void     bnx_disable_intr(struct bnx_softc *);
152 static void     bnx_txeof(struct bnx_softc *, uint16_t);
153 static void     bnx_rxeof(struct bnx_softc *, uint16_t);
154
155 static void     bnx_start(struct ifnet *);
156 static int      bnx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
157 static void     bnx_init(void *);
158 static void     bnx_stop(struct bnx_softc *);
159 static void     bnx_watchdog(struct ifnet *);
160 static int      bnx_ifmedia_upd(struct ifnet *);
161 static void     bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
162 static void     bnx_tick(void *);
163
164 static int      bnx_alloc_jumbo_mem(struct bnx_softc *);
165 static void     bnx_free_jumbo_mem(struct bnx_softc *);
166 static struct bnx_jslot
167                 *bnx_jalloc(struct bnx_softc *);
168 static void     bnx_jfree(void *);
169 static void     bnx_jref(void *);
170 static int      bnx_newbuf_std(struct bnx_softc *, int, int);
171 static int      bnx_newbuf_jumbo(struct bnx_softc *, int, int);
172 static void     bnx_setup_rxdesc_std(struct bnx_softc *, int);
173 static void     bnx_setup_rxdesc_jumbo(struct bnx_softc *, int);
174 static int      bnx_init_rx_ring_std(struct bnx_softc *);
175 static void     bnx_free_rx_ring_std(struct bnx_softc *);
176 static int      bnx_init_rx_ring_jumbo(struct bnx_softc *);
177 static void     bnx_free_rx_ring_jumbo(struct bnx_softc *);
178 static void     bnx_free_tx_ring(struct bnx_softc *);
179 static int      bnx_init_tx_ring(struct bnx_softc *);
180 static int      bnx_dma_alloc(struct bnx_softc *);
181 static void     bnx_dma_free(struct bnx_softc *);
182 static int      bnx_dma_block_alloc(struct bnx_softc *, bus_size_t,
183                     bus_dma_tag_t *, bus_dmamap_t *, void **, bus_addr_t *);
184 static void     bnx_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
185 static struct mbuf *
186                 bnx_defrag_shortdma(struct mbuf *);
187 static int      bnx_encap(struct bnx_softc *, struct mbuf **,
188                         uint32_t *, int *);
189 static int      bnx_setup_tso(struct bnx_softc *, struct mbuf **,
190                     uint16_t *, uint16_t *);
191
192 static void     bnx_reset(struct bnx_softc *);
193 static int      bnx_chipinit(struct bnx_softc *);
194 static int      bnx_blockinit(struct bnx_softc *);
195 static void     bnx_stop_block(struct bnx_softc *, bus_size_t, uint32_t);
196 static void     bnx_enable_msi(struct bnx_softc *sc);
197 static void     bnx_setmulti(struct bnx_softc *);
198 static void     bnx_setpromisc(struct bnx_softc *);
199 static void     bnx_stats_update_regs(struct bnx_softc *);
200 static uint32_t bnx_dma_swap_options(struct bnx_softc *);
201
202 static uint32_t bnx_readmem_ind(struct bnx_softc *, uint32_t);
203 static void     bnx_writemem_ind(struct bnx_softc *, uint32_t, uint32_t);
204 #ifdef notdef
205 static uint32_t bnx_readreg_ind(struct bnx_softc *, uint32_t);
206 #endif
207 static void     bnx_writereg_ind(struct bnx_softc *, uint32_t, uint32_t);
208 static void     bnx_writemem_direct(struct bnx_softc *, uint32_t, uint32_t);
209 static void     bnx_writembx(struct bnx_softc *, int, int);
210 static uint8_t  bnx_nvram_getbyte(struct bnx_softc *, int, uint8_t *);
211 static int      bnx_read_nvram(struct bnx_softc *, caddr_t, int, int);
212 static uint8_t  bnx_eeprom_getbyte(struct bnx_softc *, uint32_t, uint8_t *);
213 static int      bnx_read_eeprom(struct bnx_softc *, caddr_t, uint32_t, size_t);
214
215 static void     bnx_tbi_link_upd(struct bnx_softc *, uint32_t);
216 static void     bnx_copper_link_upd(struct bnx_softc *, uint32_t);
217 static void     bnx_autopoll_link_upd(struct bnx_softc *, uint32_t);
218 static void     bnx_link_poll(struct bnx_softc *);
219
220 static int      bnx_get_eaddr_mem(struct bnx_softc *, uint8_t[]);
221 static int      bnx_get_eaddr_nvram(struct bnx_softc *, uint8_t[]);
222 static int      bnx_get_eaddr_eeprom(struct bnx_softc *, uint8_t[]);
223 static int      bnx_get_eaddr(struct bnx_softc *, uint8_t[]);
224
225 static void     bnx_coal_change(struct bnx_softc *);
226 static int      bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
227 static int      bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
228 static int      bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
229 static int      bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
230 static int      bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
231 static int      bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
232 static int      bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
233                     int, int, uint32_t);
234
235 static int      bnx_msi_enable = 1;
236 TUNABLE_INT("hw.bnx.msi.enable", &bnx_msi_enable);
237
238 static device_method_t bnx_methods[] = {
239         /* Device interface */
240         DEVMETHOD(device_probe,         bnx_probe),
241         DEVMETHOD(device_attach,        bnx_attach),
242         DEVMETHOD(device_detach,        bnx_detach),
243         DEVMETHOD(device_shutdown,      bnx_shutdown),
244         DEVMETHOD(device_suspend,       bnx_suspend),
245         DEVMETHOD(device_resume,        bnx_resume),
246
247         /* bus interface */
248         DEVMETHOD(bus_print_child,      bus_generic_print_child),
249         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
250
251         /* MII interface */
252         DEVMETHOD(miibus_readreg,       bnx_miibus_readreg),
253         DEVMETHOD(miibus_writereg,      bnx_miibus_writereg),
254         DEVMETHOD(miibus_statchg,       bnx_miibus_statchg),
255
256         { 0, 0 }
257 };
258
259 static DEFINE_CLASS_0(bnx, bnx_driver, bnx_methods, sizeof(struct bnx_softc));
260 static devclass_t bnx_devclass;
261
262 DECLARE_DUMMY_MODULE(if_bnx);
263 DRIVER_MODULE(if_bnx, pci, bnx_driver, bnx_devclass, NULL, NULL);
264 DRIVER_MODULE(miibus, bnx, miibus_driver, miibus_devclass, NULL, NULL);
265
266 static uint32_t
267 bnx_readmem_ind(struct bnx_softc *sc, uint32_t off)
268 {
269         device_t dev = sc->bnx_dev;
270         uint32_t val;
271
272         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
273             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
274                 return 0;
275
276         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
277         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
278         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
279         return (val);
280 }
281
282 static void
283 bnx_writemem_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
284 {
285         device_t dev = sc->bnx_dev;
286
287         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
288             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
289                 return;
290
291         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
292         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
293         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
294 }
295
296 #ifdef notdef
297 static uint32_t
298 bnx_readreg_ind(struct bnx_softc *sc, uin32_t off)
299 {
300         device_t dev = sc->bnx_dev;
301
302         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
303         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
304 }
305 #endif
306
307 static void
308 bnx_writereg_ind(struct bnx_softc *sc, uint32_t off, uint32_t val)
309 {
310         device_t dev = sc->bnx_dev;
311
312         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
313         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
314 }
315
316 static void
317 bnx_writemem_direct(struct bnx_softc *sc, uint32_t off, uint32_t val)
318 {
319         CSR_WRITE_4(sc, off, val);
320 }
321
322 static void
323 bnx_writembx(struct bnx_softc *sc, int off, int val)
324 {
325         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906)
326                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
327
328         CSR_WRITE_4(sc, off, val);
329 }
330
331 static uint8_t
332 bnx_nvram_getbyte(struct bnx_softc *sc, int addr, uint8_t *dest)
333 {
334         uint32_t access, byte = 0;
335         int i;
336
337         /* Lock. */
338         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
339         for (i = 0; i < 8000; i++) {
340                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
341                         break;
342                 DELAY(20);
343         }
344         if (i == 8000)
345                 return (1);
346
347         /* Enable access. */
348         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
349         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
350
351         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
352         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
353         for (i = 0; i < BNX_TIMEOUT * 10; i++) {
354                 DELAY(10);
355                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
356                         DELAY(10);
357                         break;
358                 }
359         }
360
361         if (i == BNX_TIMEOUT * 10) {
362                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
363                 return (1);
364         }
365
366         /* Get result. */
367         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
368
369         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
370
371         /* Disable access. */
372         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
373
374         /* Unlock. */
375         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
376         CSR_READ_4(sc, BGE_NVRAM_SWARB);
377
378         return (0);
379 }
380
381 /*
382  * Read a sequence of bytes from NVRAM.
383  */
384 static int
385 bnx_read_nvram(struct bnx_softc *sc, caddr_t dest, int off, int cnt)
386 {
387         int err = 0, i;
388         uint8_t byte = 0;
389
390         if (sc->bnx_asicrev != BGE_ASICREV_BCM5906)
391                 return (1);
392
393         for (i = 0; i < cnt; i++) {
394                 err = bnx_nvram_getbyte(sc, off + i, &byte);
395                 if (err)
396                         break;
397                 *(dest + i) = byte;
398         }
399
400         return (err ? 1 : 0);
401 }
402
403 /*
404  * Read a byte of data stored in the EEPROM at address 'addr.' The
405  * BCM570x supports both the traditional bitbang interface and an
406  * auto access interface for reading the EEPROM. We use the auto
407  * access method.
408  */
409 static uint8_t
410 bnx_eeprom_getbyte(struct bnx_softc *sc, uint32_t addr, uint8_t *dest)
411 {
412         int i;
413         uint32_t byte = 0;
414
415         /*
416          * Enable use of auto EEPROM access so we can avoid
417          * having to use the bitbang method.
418          */
419         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
420
421         /* Reset the EEPROM, load the clock period. */
422         CSR_WRITE_4(sc, BGE_EE_ADDR,
423             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
424         DELAY(20);
425
426         /* Issue the read EEPROM command. */
427         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
428
429         /* Wait for completion */
430         for(i = 0; i < BNX_TIMEOUT * 10; i++) {
431                 DELAY(10);
432                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
433                         break;
434         }
435
436         if (i == BNX_TIMEOUT) {
437                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
438                 return(1);
439         }
440
441         /* Get result. */
442         byte = CSR_READ_4(sc, BGE_EE_DATA);
443
444         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
445
446         return(0);
447 }
448
449 /*
450  * Read a sequence of bytes from the EEPROM.
451  */
452 static int
453 bnx_read_eeprom(struct bnx_softc *sc, caddr_t dest, uint32_t off, size_t len)
454 {
455         size_t i;
456         int err;
457         uint8_t byte;
458
459         for (byte = 0, err = 0, i = 0; i < len; i++) {
460                 err = bnx_eeprom_getbyte(sc, off + i, &byte);
461                 if (err)
462                         break;
463                 *(dest + i) = byte;
464         }
465
466         return(err ? 1 : 0);
467 }
468
469 static int
470 bnx_miibus_readreg(device_t dev, int phy, int reg)
471 {
472         struct bnx_softc *sc = device_get_softc(dev);
473         uint32_t val;
474         int i;
475
476         KASSERT(phy == sc->bnx_phyno,
477             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
478
479         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
480         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
481                 CSR_WRITE_4(sc, BGE_MI_MODE,
482                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
483                 DELAY(80);
484         }
485
486         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
487             BGE_MIPHY(phy) | BGE_MIREG(reg));
488
489         /* Poll for the PHY register access to complete. */
490         for (i = 0; i < BNX_TIMEOUT; i++) {
491                 DELAY(10);
492                 val = CSR_READ_4(sc, BGE_MI_COMM);
493                 if ((val & BGE_MICOMM_BUSY) == 0) {
494                         DELAY(5);
495                         val = CSR_READ_4(sc, BGE_MI_COMM);
496                         break;
497                 }
498         }
499         if (i == BNX_TIMEOUT) {
500                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
501                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
502                 val = 0;
503         }
504
505         /* Restore the autopoll bit if necessary. */
506         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
507                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
508                 DELAY(80);
509         }
510
511         if (val & BGE_MICOMM_READFAIL)
512                 return 0;
513
514         return (val & 0xFFFF);
515 }
516
517 static int
518 bnx_miibus_writereg(device_t dev, int phy, int reg, int val)
519 {
520         struct bnx_softc *sc = device_get_softc(dev);
521         int i;
522
523         KASSERT(phy == sc->bnx_phyno,
524             ("invalid phyno %d, should be %d", phy, sc->bnx_phyno));
525
526         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
527             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
528                return 0;
529
530         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
531         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
532                 CSR_WRITE_4(sc, BGE_MI_MODE,
533                     sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
534                 DELAY(80);
535         }
536
537         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
538             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
539
540         for (i = 0; i < BNX_TIMEOUT; i++) {
541                 DELAY(10);
542                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
543                         DELAY(5);
544                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
545                         break;
546                 }
547         }
548         if (i == BNX_TIMEOUT) {
549                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
550                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
551         }
552
553         /* Restore the autopoll bit if necessary. */
554         if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
555                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
556                 DELAY(80);
557         }
558
559         return 0;
560 }
561
562 static void
563 bnx_miibus_statchg(device_t dev)
564 {
565         struct bnx_softc *sc;
566         struct mii_data *mii;
567
568         sc = device_get_softc(dev);
569         mii = device_get_softc(sc->bnx_miibus);
570
571         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
572             (IFM_ACTIVE | IFM_AVALID)) {
573                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
574                 case IFM_10_T:
575                 case IFM_100_TX:
576                         sc->bnx_link = 1;
577                         break;
578                 case IFM_1000_T:
579                 case IFM_1000_SX:
580                 case IFM_2500_SX:
581                         if (sc->bnx_asicrev != BGE_ASICREV_BCM5906)
582                                 sc->bnx_link = 1;
583                         else
584                                 sc->bnx_link = 0;
585                         break;
586                 default:
587                         sc->bnx_link = 0;
588                         break;
589                 }
590         } else {
591                 sc->bnx_link = 0;
592         }
593         if (sc->bnx_link == 0)
594                 return;
595
596         BNX_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
597         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
598             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
599                 BNX_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
600         } else {
601                 BNX_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
602         }
603
604         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
605                 BNX_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
606         } else {
607                 BNX_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
608         }
609 }
610
611 /*
612  * Memory management for jumbo frames.
613  */
614 static int
615 bnx_alloc_jumbo_mem(struct bnx_softc *sc)
616 {
617         struct ifnet *ifp = &sc->arpcom.ac_if;
618         struct bnx_jslot *entry;
619         uint8_t *ptr;
620         bus_addr_t paddr;
621         int i, error;
622
623         /*
624          * Create tag for jumbo mbufs.
625          * This is really a bit of a kludge. We allocate a special
626          * jumbo buffer pool which (thanks to the way our DMA
627          * memory allocation works) will consist of contiguous
628          * pages. This means that even though a jumbo buffer might
629          * be larger than a page size, we don't really need to
630          * map it into more than one DMA segment. However, the
631          * default mbuf tag will result in multi-segment mappings,
632          * so we have to create a special jumbo mbuf tag that
633          * lets us get away with mapping the jumbo buffers as
634          * a single segment. I think eventually the driver should
635          * be changed so that it uses ordinary mbufs and cluster
636          * buffers, i.e. jumbo frames can span multiple DMA
637          * descriptors. But that's a project for another day.
638          */
639
640         /*
641          * Create DMA stuffs for jumbo RX ring.
642          */
643         error = bnx_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
644                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
645                                     &sc->bnx_cdata.bnx_rx_jumbo_ring_map,
646                                     (void *)&sc->bnx_ldata.bnx_rx_jumbo_ring,
647                                     &sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
648         if (error) {
649                 if_printf(ifp, "could not create jumbo RX ring\n");
650                 return error;
651         }
652
653         /*
654          * Create DMA stuffs for jumbo buffer block.
655          */
656         error = bnx_dma_block_alloc(sc, BNX_JMEM,
657                                     &sc->bnx_cdata.bnx_jumbo_tag,
658                                     &sc->bnx_cdata.bnx_jumbo_map,
659                                     (void **)&sc->bnx_ldata.bnx_jumbo_buf,
660                                     &paddr);
661         if (error) {
662                 if_printf(ifp, "could not create jumbo buffer\n");
663                 return error;
664         }
665
666         SLIST_INIT(&sc->bnx_jfree_listhead);
667
668         /*
669          * Now divide it up into 9K pieces and save the addresses
670          * in an array. Note that we play an evil trick here by using
671          * the first few bytes in the buffer to hold the the address
672          * of the softc structure for this interface. This is because
673          * bnx_jfree() needs it, but it is called by the mbuf management
674          * code which will not pass it to us explicitly.
675          */
676         for (i = 0, ptr = sc->bnx_ldata.bnx_jumbo_buf; i < BNX_JSLOTS; i++) {
677                 entry = &sc->bnx_cdata.bnx_jslots[i];
678                 entry->bnx_sc = sc;
679                 entry->bnx_buf = ptr;
680                 entry->bnx_paddr = paddr;
681                 entry->bnx_inuse = 0;
682                 entry->bnx_slot = i;
683                 SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, entry, jslot_link);
684
685                 ptr += BNX_JLEN;
686                 paddr += BNX_JLEN;
687         }
688         return 0;
689 }
690
691 static void
692 bnx_free_jumbo_mem(struct bnx_softc *sc)
693 {
694         /* Destroy jumbo RX ring. */
695         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_jumbo_ring_tag,
696                            sc->bnx_cdata.bnx_rx_jumbo_ring_map,
697                            sc->bnx_ldata.bnx_rx_jumbo_ring);
698
699         /* Destroy jumbo buffer block. */
700         bnx_dma_block_free(sc->bnx_cdata.bnx_jumbo_tag,
701                            sc->bnx_cdata.bnx_jumbo_map,
702                            sc->bnx_ldata.bnx_jumbo_buf);
703 }
704
705 /*
706  * Allocate a jumbo buffer.
707  */
708 static struct bnx_jslot *
709 bnx_jalloc(struct bnx_softc *sc)
710 {
711         struct bnx_jslot *entry;
712
713         lwkt_serialize_enter(&sc->bnx_jslot_serializer);
714         entry = SLIST_FIRST(&sc->bnx_jfree_listhead);
715         if (entry) {
716                 SLIST_REMOVE_HEAD(&sc->bnx_jfree_listhead, jslot_link);
717                 entry->bnx_inuse = 1;
718         } else {
719                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
720         }
721         lwkt_serialize_exit(&sc->bnx_jslot_serializer);
722         return(entry);
723 }
724
725 /*
726  * Adjust usage count on a jumbo buffer.
727  */
728 static void
729 bnx_jref(void *arg)
730 {
731         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
732         struct bnx_softc *sc = entry->bnx_sc;
733
734         if (sc == NULL)
735                 panic("bnx_jref: can't find softc pointer!");
736
737         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
738                 panic("bnx_jref: asked to reference buffer "
739                     "that we don't manage!");
740         } else if (entry->bnx_inuse == 0) {
741                 panic("bnx_jref: buffer already free!");
742         } else {
743                 atomic_add_int(&entry->bnx_inuse, 1);
744         }
745 }
746
747 /*
748  * Release a jumbo buffer.
749  */
750 static void
751 bnx_jfree(void *arg)
752 {
753         struct bnx_jslot *entry = (struct bnx_jslot *)arg;
754         struct bnx_softc *sc = entry->bnx_sc;
755
756         if (sc == NULL)
757                 panic("bnx_jfree: can't find softc pointer!");
758
759         if (&sc->bnx_cdata.bnx_jslots[entry->bnx_slot] != entry) {
760                 panic("bnx_jfree: asked to free buffer that we don't manage!");
761         } else if (entry->bnx_inuse == 0) {
762                 panic("bnx_jfree: buffer already free!");
763         } else {
764                 /*
765                  * Possible MP race to 0, use the serializer.  The atomic insn
766                  * is still needed for races against bnx_jref().
767                  */
768                 lwkt_serialize_enter(&sc->bnx_jslot_serializer);
769                 atomic_subtract_int(&entry->bnx_inuse, 1);
770                 if (entry->bnx_inuse == 0) {
771                         SLIST_INSERT_HEAD(&sc->bnx_jfree_listhead, 
772                                           entry, jslot_link);
773                 }
774                 lwkt_serialize_exit(&sc->bnx_jslot_serializer);
775         }
776 }
777
778
779 /*
780  * Intialize a standard receive ring descriptor.
781  */
782 static int
783 bnx_newbuf_std(struct bnx_softc *sc, int i, int init)
784 {
785         struct mbuf *m_new = NULL;
786         bus_dma_segment_t seg;
787         bus_dmamap_t map;
788         int error, nsegs;
789
790         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
791         if (m_new == NULL)
792                 return ENOBUFS;
793         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
794         m_adj(m_new, ETHER_ALIGN);
795
796         error = bus_dmamap_load_mbuf_segment(sc->bnx_cdata.bnx_rx_mtag,
797                         sc->bnx_cdata.bnx_rx_tmpmap, m_new,
798                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
799         if (error) {
800                 m_freem(m_new);
801                 return error;
802         }
803
804         if (!init) {
805                 bus_dmamap_sync(sc->bnx_cdata.bnx_rx_mtag,
806                                 sc->bnx_cdata.bnx_rx_std_dmamap[i],
807                                 BUS_DMASYNC_POSTREAD);
808                 bus_dmamap_unload(sc->bnx_cdata.bnx_rx_mtag,
809                         sc->bnx_cdata.bnx_rx_std_dmamap[i]);
810         }
811
812         map = sc->bnx_cdata.bnx_rx_tmpmap;
813         sc->bnx_cdata.bnx_rx_tmpmap = sc->bnx_cdata.bnx_rx_std_dmamap[i];
814         sc->bnx_cdata.bnx_rx_std_dmamap[i] = map;
815
816         sc->bnx_cdata.bnx_rx_std_chain[i].bnx_mbuf = m_new;
817         sc->bnx_cdata.bnx_rx_std_chain[i].bnx_paddr = seg.ds_addr;
818
819         bnx_setup_rxdesc_std(sc, i);
820         return 0;
821 }
822
823 static void
824 bnx_setup_rxdesc_std(struct bnx_softc *sc, int i)
825 {
826         struct bnx_rxchain *rc;
827         struct bge_rx_bd *r;
828
829         rc = &sc->bnx_cdata.bnx_rx_std_chain[i];
830         r = &sc->bnx_ldata.bnx_rx_std_ring[i];
831
832         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_paddr);
833         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_paddr);
834         r->bge_len = rc->bnx_mbuf->m_len;
835         r->bge_idx = i;
836         r->bge_flags = BGE_RXBDFLAG_END;
837 }
838
839 /*
840  * Initialize a jumbo receive ring descriptor. This allocates
841  * a jumbo buffer from the pool managed internally by the driver.
842  */
843 static int
844 bnx_newbuf_jumbo(struct bnx_softc *sc, int i, int init)
845 {
846         struct mbuf *m_new = NULL;
847         struct bnx_jslot *buf;
848         bus_addr_t paddr;
849
850         /* Allocate the mbuf. */
851         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
852         if (m_new == NULL)
853                 return ENOBUFS;
854
855         /* Allocate the jumbo buffer */
856         buf = bnx_jalloc(sc);
857         if (buf == NULL) {
858                 m_freem(m_new);
859                 return ENOBUFS;
860         }
861
862         /* Attach the buffer to the mbuf. */
863         m_new->m_ext.ext_arg = buf;
864         m_new->m_ext.ext_buf = buf->bnx_buf;
865         m_new->m_ext.ext_free = bnx_jfree;
866         m_new->m_ext.ext_ref = bnx_jref;
867         m_new->m_ext.ext_size = BNX_JUMBO_FRAMELEN;
868
869         m_new->m_flags |= M_EXT;
870
871         m_new->m_data = m_new->m_ext.ext_buf;
872         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
873
874         paddr = buf->bnx_paddr;
875         m_adj(m_new, ETHER_ALIGN);
876         paddr += ETHER_ALIGN;
877
878         /* Save necessary information */
879         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_mbuf = m_new;
880         sc->bnx_cdata.bnx_rx_jumbo_chain[i].bnx_paddr = paddr;
881
882         /* Set up the descriptor. */
883         bnx_setup_rxdesc_jumbo(sc, i);
884         return 0;
885 }
886
887 static void
888 bnx_setup_rxdesc_jumbo(struct bnx_softc *sc, int i)
889 {
890         struct bge_rx_bd *r;
891         struct bnx_rxchain *rc;
892
893         r = &sc->bnx_ldata.bnx_rx_jumbo_ring[i];
894         rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
895
896         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bnx_paddr);
897         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bnx_paddr);
898         r->bge_len = rc->bnx_mbuf->m_len;
899         r->bge_idx = i;
900         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
901 }
902
903 static int
904 bnx_init_rx_ring_std(struct bnx_softc *sc)
905 {
906         int i, error;
907
908         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
909                 error = bnx_newbuf_std(sc, i, 1);
910                 if (error)
911                         return error;
912         };
913
914         sc->bnx_std = BGE_STD_RX_RING_CNT - 1;
915         bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bnx_std);
916
917         return(0);
918 }
919
920 static void
921 bnx_free_rx_ring_std(struct bnx_softc *sc)
922 {
923         int i;
924
925         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
926                 struct bnx_rxchain *rc = &sc->bnx_cdata.bnx_rx_std_chain[i];
927
928                 if (rc->bnx_mbuf != NULL) {
929                         bus_dmamap_unload(sc->bnx_cdata.bnx_rx_mtag,
930                                           sc->bnx_cdata.bnx_rx_std_dmamap[i]);
931                         m_freem(rc->bnx_mbuf);
932                         rc->bnx_mbuf = NULL;
933                 }
934                 bzero(&sc->bnx_ldata.bnx_rx_std_ring[i],
935                     sizeof(struct bge_rx_bd));
936         }
937 }
938
939 static int
940 bnx_init_rx_ring_jumbo(struct bnx_softc *sc)
941 {
942         struct bge_rcb *rcb;
943         int i, error;
944
945         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
946                 error = bnx_newbuf_jumbo(sc, i, 1);
947                 if (error)
948                         return error;
949         };
950
951         sc->bnx_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
952
953         rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
954         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
955         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
956
957         bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
958
959         return(0);
960 }
961
962 static void
963 bnx_free_rx_ring_jumbo(struct bnx_softc *sc)
964 {
965         int i;
966
967         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
968                 struct bnx_rxchain *rc = &sc->bnx_cdata.bnx_rx_jumbo_chain[i];
969
970                 if (rc->bnx_mbuf != NULL) {
971                         m_freem(rc->bnx_mbuf);
972                         rc->bnx_mbuf = NULL;
973                 }
974                 bzero(&sc->bnx_ldata.bnx_rx_jumbo_ring[i],
975                     sizeof(struct bge_rx_bd));
976         }
977 }
978
979 static void
980 bnx_free_tx_ring(struct bnx_softc *sc)
981 {
982         int i;
983
984         for (i = 0; i < BGE_TX_RING_CNT; i++) {
985                 if (sc->bnx_cdata.bnx_tx_chain[i] != NULL) {
986                         bus_dmamap_unload(sc->bnx_cdata.bnx_tx_mtag,
987                                           sc->bnx_cdata.bnx_tx_dmamap[i]);
988                         m_freem(sc->bnx_cdata.bnx_tx_chain[i]);
989                         sc->bnx_cdata.bnx_tx_chain[i] = NULL;
990                 }
991                 bzero(&sc->bnx_ldata.bnx_tx_ring[i],
992                     sizeof(struct bge_tx_bd));
993         }
994 }
995
996 static int
997 bnx_init_tx_ring(struct bnx_softc *sc)
998 {
999         sc->bnx_txcnt = 0;
1000         sc->bnx_tx_saved_considx = 0;
1001         sc->bnx_tx_prodidx = 0;
1002
1003         /* Initialize transmit producer index for host-memory send ring. */
1004         bnx_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bnx_tx_prodidx);
1005         bnx_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1006
1007         return(0);
1008 }
1009
1010 static void
1011 bnx_setmulti(struct bnx_softc *sc)
1012 {
1013         struct ifnet *ifp;
1014         struct ifmultiaddr *ifma;
1015         uint32_t hashes[4] = { 0, 0, 0, 0 };
1016         int h, i;
1017
1018         ifp = &sc->arpcom.ac_if;
1019
1020         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1021                 for (i = 0; i < 4; i++)
1022                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1023                 return;
1024         }
1025
1026         /* First, zot all the existing filters. */
1027         for (i = 0; i < 4; i++)
1028                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1029
1030         /* Now program new ones. */
1031         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1032                 if (ifma->ifma_addr->sa_family != AF_LINK)
1033                         continue;
1034                 h = ether_crc32_le(
1035                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1036                     ETHER_ADDR_LEN) & 0x7f;
1037                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1038         }
1039
1040         for (i = 0; i < 4; i++)
1041                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1042 }
1043
1044 /*
1045  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1046  * self-test results.
1047  */
1048 static int
1049 bnx_chipinit(struct bnx_softc *sc)
1050 {
1051         uint32_t dma_rw_ctl, mode_ctl;
1052         int i;
1053
1054         /* Set endian type before we access any non-PCI registers. */
1055         pci_write_config(sc->bnx_dev, BGE_PCI_MISC_CTL,
1056             BGE_INIT | BGE_PCIMISCCTL_TAGGED_STATUS, 4);
1057
1058         /* Clear the MAC control register */
1059         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1060
1061         /*
1062          * Clear the MAC statistics block in the NIC's
1063          * internal memory.
1064          */
1065         for (i = BGE_STATS_BLOCK;
1066             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1067                 BNX_MEMWIN_WRITE(sc, i, 0);
1068
1069         for (i = BGE_STATUS_BLOCK;
1070             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1071                 BNX_MEMWIN_WRITE(sc, i, 0);
1072
1073         if (BNX_IS_57765_FAMILY(sc)) {
1074                 uint32_t val;
1075
1076                 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0) {
1077                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1078                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1079
1080                         /* Access the lower 1K of PL PCI-E block registers. */
1081                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1082                             val | BGE_MODECTL_PCIE_PL_SEL);
1083
1084                         val = CSR_READ_4(sc, BGE_PCIE_PL_LO_PHYCTL5);
1085                         val |= BGE_PCIE_PL_LO_PHYCTL5_DIS_L2CLKREQ;
1086                         CSR_WRITE_4(sc, BGE_PCIE_PL_LO_PHYCTL5, val);
1087
1088                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1089                 }
1090                 if (sc->bnx_chiprev != BGE_CHIPREV_57765_AX) {
1091                         mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
1092                         val = mode_ctl & ~BGE_MODECTL_PCIE_PORTS;
1093
1094                         /* Access the lower 1K of DL PCI-E block registers. */
1095                         CSR_WRITE_4(sc, BGE_MODE_CTL,
1096                             val | BGE_MODECTL_PCIE_DL_SEL);
1097
1098                         val = CSR_READ_4(sc, BGE_PCIE_DL_LO_FTSMAX);
1099                         val &= ~BGE_PCIE_DL_LO_FTSMAX_MASK;
1100                         val |= BGE_PCIE_DL_LO_FTSMAX_VAL;
1101                         CSR_WRITE_4(sc, BGE_PCIE_DL_LO_FTSMAX, val);
1102
1103                         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1104                 }
1105
1106                 val = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
1107                 val &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
1108                 val |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
1109                 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, val);
1110         }
1111
1112         /*
1113          * Set up the PCI DMA control register.
1114          */
1115         dma_rw_ctl = pci_read_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, 4);
1116         /*
1117          * Disable 32bytes cache alignment for DMA write to host memory
1118          *
1119          * NOTE:
1120          * 64bytes cache alignment for DMA write to host memory is still
1121          * enabled.
1122          */
1123         dma_rw_ctl |= BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1124         if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
1125                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1126         /*
1127          * Enable HW workaround for controllers that misinterpret
1128          * a status tag update and leave interrupts permanently
1129          * disabled.
1130          */
1131         if (sc->bnx_asicrev != BGE_ASICREV_BCM5717 &&
1132             !BNX_IS_57765_FAMILY(sc))
1133                 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1134         if (bootverbose) {
1135                 if_printf(&sc->arpcom.ac_if, "DMA read/write %#x\n",
1136                     dma_rw_ctl);
1137         }
1138         pci_write_config(sc->bnx_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1139
1140         /*
1141          * Set up general mode register.
1142          */
1143         mode_ctl = bnx_dma_swap_options(sc) | BGE_MODECTL_MAC_ATTN_INTR |
1144             BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM;
1145         CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1146
1147         /*
1148          * Disable memory write invalidate.  Apparently it is not supported
1149          * properly by these devices.  Also ensure that INTx isn't disabled,
1150          * as these chips need it even when using MSI.
1151          */
1152         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_CMD,
1153             (PCIM_CMD_MWRICEN | PCIM_CMD_INTxDIS), 4);
1154
1155         /* Set the timer prescaler (always 66Mhz) */
1156         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1157
1158         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
1159                 DELAY(40);      /* XXX */
1160
1161                 /* Put PHY into ready state */
1162                 BNX_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1163                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1164                 DELAY(40);
1165         }
1166
1167         return(0);
1168 }
1169
1170 static int
1171 bnx_blockinit(struct bnx_softc *sc)
1172 {
1173         struct bge_rcb *rcb;
1174         bus_size_t vrcb;
1175         bge_hostaddr taddr;
1176         uint32_t val;
1177         int i, limit;
1178
1179         /*
1180          * Initialize the memory window pointer register so that
1181          * we can access the first 32K of internal NIC RAM. This will
1182          * allow us to set up the TX send ring RCBs and the RX return
1183          * ring RCBs, plus other things which live in NIC memory.
1184          */
1185         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1186
1187         /* Configure mbuf pool watermarks */
1188         if (BNX_IS_57765_PLUS(sc)) {
1189                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1190                 if (sc->arpcom.ac_if.if_mtu > ETHERMTU) {
1191                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1192                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1193                 } else {
1194                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1195                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1196                 }
1197         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
1198                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1199                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1200                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1201         } else {
1202                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1203                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1204                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1205         }
1206
1207         /* Configure DMA resource watermarks */
1208         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1209         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1210
1211         /* Enable buffer manager */
1212         val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1213         /*
1214          * Change the arbitration algorithm of TXMBUF read request to
1215          * round-robin instead of priority based for BCM5719.  When
1216          * TXFIFO is almost empty, RDMA will hold its request until
1217          * TXFIFO is not almost empty.
1218          */
1219         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719)
1220                 val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1221         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1222             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0 ||
1223             sc->bnx_chipid == BGE_CHIPID_BCM5720_A0)
1224                 val |= BGE_BMANMODE_LOMBUF_ATTN;
1225         CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1226
1227         /* Poll for buffer manager start indication */
1228         for (i = 0; i < BNX_TIMEOUT; i++) {
1229                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1230                         break;
1231                 DELAY(10);
1232         }
1233
1234         if (i == BNX_TIMEOUT) {
1235                 if_printf(&sc->arpcom.ac_if,
1236                           "buffer manager failed to start\n");
1237                 return(ENXIO);
1238         }
1239
1240         /* Enable flow-through queues */
1241         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1242         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1243
1244         /* Wait until queue initialization is complete */
1245         for (i = 0; i < BNX_TIMEOUT; i++) {
1246                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1247                         break;
1248                 DELAY(10);
1249         }
1250
1251         if (i == BNX_TIMEOUT) {
1252                 if_printf(&sc->arpcom.ac_if,
1253                           "flow-through queue init failed\n");
1254                 return(ENXIO);
1255         }
1256
1257         /*
1258          * Summary of rings supported by the controller:
1259          *
1260          * Standard Receive Producer Ring
1261          * - This ring is used to feed receive buffers for "standard"
1262          *   sized frames (typically 1536 bytes) to the controller.
1263          *
1264          * Jumbo Receive Producer Ring
1265          * - This ring is used to feed receive buffers for jumbo sized
1266          *   frames (i.e. anything bigger than the "standard" frames)
1267          *   to the controller.
1268          *
1269          * Mini Receive Producer Ring
1270          * - This ring is used to feed receive buffers for "mini"
1271          *   sized frames to the controller.
1272          * - This feature required external memory for the controller
1273          *   but was never used in a production system.  Should always
1274          *   be disabled.
1275          *
1276          * Receive Return Ring
1277          * - After the controller has placed an incoming frame into a
1278          *   receive buffer that buffer is moved into a receive return
1279          *   ring.  The driver is then responsible to passing the
1280          *   buffer up to the stack.  Many versions of the controller
1281          *   support multiple RR rings.
1282          *
1283          * Send Ring
1284          * - This ring is used for outgoing frames.  Many versions of
1285          *   the controller support multiple send rings.
1286          */
1287
1288         /* Initialize the standard receive producer ring control block. */
1289         rcb = &sc->bnx_ldata.bnx_info.bnx_std_rx_rcb;
1290         rcb->bge_hostaddr.bge_addr_lo =
1291             BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_std_ring_paddr);
1292         rcb->bge_hostaddr.bge_addr_hi =
1293             BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_std_ring_paddr);
1294         if (BNX_IS_57765_PLUS(sc)) {
1295                 /*
1296                  * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
1297                  * Bits 15-2 : Maximum RX frame size
1298                  * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
1299                  * Bit 0     : Reserved
1300                  */
1301                 rcb->bge_maxlen_flags =
1302                     BGE_RCB_MAXLEN_FLAGS(512, BNX_MAX_FRAMELEN << 2);
1303         } else {
1304                 /*
1305                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1306                  * Bits 15-2 : Reserved (should be 0)
1307                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1308                  * Bit 0     : Reserved
1309                  */
1310                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1311         }
1312         if (BNX_IS_5717_PLUS(sc))
1313                 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
1314         else
1315                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1316         /* Write the standard receive producer ring control block. */
1317         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1318         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1319         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1320         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1321         /* Reset the standard receive producer ring producer index. */
1322         bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1323
1324         /*
1325          * Initialize the jumbo RX producer ring control
1326          * block.  We set the 'ring disabled' bit in the
1327          * flags field until we're actually ready to start
1328          * using this ring (i.e. once we set the MTU
1329          * high enough to require it).
1330          */
1331         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1332                 rcb = &sc->bnx_ldata.bnx_info.bnx_jumbo_rx_rcb;
1333                 /* Get the jumbo receive producer ring RCB parameters. */
1334                 rcb->bge_hostaddr.bge_addr_lo =
1335                     BGE_ADDR_LO(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1336                 rcb->bge_hostaddr.bge_addr_hi =
1337                     BGE_ADDR_HI(sc->bnx_ldata.bnx_rx_jumbo_ring_paddr);
1338                 rcb->bge_maxlen_flags =
1339                     BGE_RCB_MAXLEN_FLAGS(BNX_MAX_FRAMELEN,
1340                     BGE_RCB_FLAG_RING_DISABLED);
1341                 if (BNX_IS_5717_PLUS(sc))
1342                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
1343                 else
1344                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1345                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1346                     rcb->bge_hostaddr.bge_addr_hi);
1347                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1348                     rcb->bge_hostaddr.bge_addr_lo);
1349                 /* Program the jumbo receive producer ring RCB parameters. */
1350                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1351                     rcb->bge_maxlen_flags);
1352                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1353                 /* Reset the jumbo receive producer ring producer index. */
1354                 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1355         }
1356
1357         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1358         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906 &&
1359             (sc->bnx_chipid == BGE_CHIPID_BCM5906_A0 ||
1360              sc->bnx_chipid == BGE_CHIPID_BCM5906_A1 ||
1361              sc->bnx_chipid == BGE_CHIPID_BCM5906_A2)) {
1362                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1363                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1364         }
1365
1366         /*
1367          * The BD ring replenish thresholds control how often the
1368          * hardware fetches new BD's from the producer rings in host
1369          * memory.  Setting the value too low on a busy system can
1370          * starve the hardware and recue the throughpout.
1371          *
1372          * Set the BD ring replentish thresholds. The recommended
1373          * values are 1/8th the number of descriptors allocated to
1374          * each ring.
1375          */
1376         val = 8;
1377         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1378         if (BNX_IS_JUMBO_CAPABLE(sc)) {
1379                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1380                     BGE_JUMBO_RX_RING_CNT/8);
1381         }
1382         if (BNX_IS_57765_PLUS(sc)) {
1383                 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
1384                 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
1385         }
1386
1387         /*
1388          * Disable all send rings by setting the 'ring disabled' bit
1389          * in the flags field of all the TX send ring control blocks,
1390          * located in NIC memory.
1391          */
1392         if (BNX_IS_5717_PLUS(sc))
1393                 limit = 4;
1394         else if (BNX_IS_57765_FAMILY(sc))
1395                 limit = 2;
1396         else
1397                 limit = 1;
1398         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1399         for (i = 0; i < limit; i++) {
1400                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1401                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1402                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1403                 vrcb += sizeof(struct bge_rcb);
1404         }
1405
1406         /* Configure send ring RCB 0 (we use only the first ring) */
1407         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1408         BGE_HOSTADDR(taddr, sc->bnx_ldata.bnx_tx_ring_paddr);
1409         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1410         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1411         if (BNX_IS_5717_PLUS(sc)) {
1412                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
1413         } else {
1414                 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1415                     BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1416         }
1417         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1418             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1419
1420         /*
1421          * Disable all receive return rings by setting the
1422          * 'ring disabled' bit in the flags field of all the receive
1423          * return ring control blocks, located in NIC memory.
1424          */
1425         if (BNX_IS_5717_PLUS(sc)) {
1426                 /* Should be 17, use 16 until we get an SRAM map. */
1427                 limit = 16;
1428         } else if (BNX_IS_57765_FAMILY(sc)) {
1429                 limit = 4;
1430         } else {
1431                 limit = 1;
1432         }
1433         /* Disable all receive return rings. */
1434         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1435         for (i = 0; i < limit; i++) {
1436                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1437                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1438                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1439                     BGE_RCB_FLAG_RING_DISABLED);
1440                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1441                 bnx_writembx(sc, BGE_MBX_RX_CONS0_LO +
1442                     (i * (sizeof(uint64_t))), 0);
1443                 vrcb += sizeof(struct bge_rcb);
1444         }
1445
1446         /*
1447          * Set up receive return ring 0.  Note that the NIC address
1448          * for RX return rings is 0x0.  The return rings live entirely
1449          * within the host, so the nicaddr field in the RCB isn't used.
1450          */
1451         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1452         BGE_HOSTADDR(taddr, sc->bnx_ldata.bnx_rx_return_ring_paddr);
1453         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1454         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1455         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1456         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1457             BGE_RCB_MAXLEN_FLAGS(sc->bnx_return_ring_cnt, 0));
1458
1459         /* Set random backoff seed for TX */
1460         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1461             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1462             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1463             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1464             BGE_TX_BACKOFF_SEED_MASK);
1465
1466         /* Set inter-packet gap */
1467         val = 0x2620;
1468         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1469                 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
1470                     (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
1471         }
1472         CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
1473
1474         /*
1475          * Specify which ring to use for packets that don't match
1476          * any RX rules.
1477          */
1478         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1479
1480         /*
1481          * Configure number of RX lists. One interrupt distribution
1482          * list, sixteen active lists, one bad frames class.
1483          */
1484         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1485
1486         /* Inialize RX list placement stats mask. */
1487         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1488         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1489
1490         /* Disable host coalescing until we get it set up */
1491         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1492
1493         /* Poll to make sure it's shut down. */
1494         for (i = 0; i < BNX_TIMEOUT; i++) {
1495                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1496                         break;
1497                 DELAY(10);
1498         }
1499
1500         if (i == BNX_TIMEOUT) {
1501                 if_printf(&sc->arpcom.ac_if,
1502                           "host coalescing engine failed to idle\n");
1503                 return(ENXIO);
1504         }
1505
1506         /* Set up host coalescing defaults */
1507         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bnx_rx_coal_ticks);
1508         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bnx_tx_coal_ticks);
1509         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bnx_rx_coal_bds);
1510         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bnx_tx_coal_bds);
1511         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bnx_rx_coal_bds_int);
1512         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bnx_tx_coal_bds_int);
1513
1514         /* Set up address of status block */
1515         bzero(sc->bnx_ldata.bnx_status_block, BGE_STATUS_BLK_SZ);
1516         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1517             BGE_ADDR_HI(sc->bnx_ldata.bnx_status_block_paddr));
1518         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1519             BGE_ADDR_LO(sc->bnx_ldata.bnx_status_block_paddr));
1520
1521         /* Set up status block partail update size. */
1522         val = BGE_STATBLKSZ_32BYTE;
1523 #if 0
1524         /*
1525          * Does not seem to have visible effect in both
1526          * bulk data (1472B UDP datagram) and tiny data
1527          * (18B UDP datagram) TX tests.
1528          */
1529         val |= BGE_HCCMODE_CLRTICK_TX;
1530 #endif
1531         /* Turn on host coalescing state machine */
1532         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1533
1534         /* Turn on RX BD completion state machine and enable attentions */
1535         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1536             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1537
1538         /* Turn on RX list placement state machine */
1539         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1540
1541         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1542             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1543             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1544             BGE_MACMODE_FRMHDR_DMA_ENB;
1545
1546         if (sc->bnx_flags & BNX_FLAG_TBI)
1547                 val |= BGE_PORTMODE_TBI;
1548         else if (sc->bnx_flags & BNX_FLAG_MII_SERDES)
1549                 val |= BGE_PORTMODE_GMII;
1550         else
1551                 val |= BGE_PORTMODE_MII;
1552
1553         /* Turn on DMA, clear stats */
1554         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1555
1556         /* Set misc. local control, enable interrupts on attentions */
1557         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1558
1559 #ifdef notdef
1560         /* Assert GPIO pins for PHY reset */
1561         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1562             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1563         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1564             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1565 #endif
1566
1567         /* Turn on write DMA state machine */
1568         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1569         /* Enable host coalescing bug fix. */
1570         val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1571         if (sc->bnx_asicrev == BGE_ASICREV_BCM5785) {
1572                 /* Request larger DMA burst size to get better performance. */
1573                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1574         }
1575         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1576         DELAY(40);
1577
1578         if (BNX_IS_57765_PLUS(sc)) {
1579                 uint32_t dmactl;
1580
1581                 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1582                 /*
1583                  * Adjust tx margin to prevent TX data corruption and
1584                  * fix internal FIFO overflow.
1585                  */
1586                 if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1587                     sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1588                         dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
1589                             BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
1590                             BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
1591                         dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
1592                             BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
1593                             BGE_RDMA_RSRVCTRL_TXMRGN_320B;
1594                 }
1595                 /*
1596                  * Enable fix for read DMA FIFO overruns.
1597                  * The fix is to limit the number of RX BDs
1598                  * the hardware would fetch at a fime.
1599                  */
1600                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1601                     dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1602         }
1603
1604         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719) {
1605                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1606                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1607                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
1608                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1609         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1610                 /*
1611                  * Allow 4KB burst length reads for non-LSO frames.
1612                  * Enable 512B burst length reads for buffer descriptors.
1613                  */
1614                 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
1615                     CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
1616                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
1617                     BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
1618         }
1619
1620         /* Turn on read DMA state machine */
1621         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1622         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717)
1623                 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
1624         if (sc->bnx_asicrev == BGE_ASICREV_BCM5784 ||
1625             sc->bnx_asicrev == BGE_ASICREV_BCM5785 ||
1626             sc->bnx_asicrev == BGE_ASICREV_BCM57780) {
1627                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1628                     BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1629                     BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1630         }
1631         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
1632                 val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
1633                     BGE_RDMAMODE_H2BNC_VLAN_DET;
1634                 /*
1635                  * Allow multiple outstanding read requests from
1636                  * non-LSO read DMA engine.
1637                  */
1638                 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
1639         }
1640         if (sc->bnx_flags & BNX_FLAG_TSO)
1641                 val |= BGE_RDMAMODE_TSO4_ENABLE;
1642         val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1643         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1644         DELAY(40);
1645
1646         /* Turn on RX data completion state machine */
1647         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1648
1649         /* Turn on RX BD initiator state machine */
1650         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1651
1652         /* Turn on RX data and RX BD initiator state machine */
1653         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1654
1655         /* Turn on send BD completion state machine */
1656         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1657
1658         /* Turn on send data completion state machine */
1659         val = BGE_SDCMODE_ENABLE;
1660         if (sc->bnx_asicrev == BGE_ASICREV_BCM5761)
1661                 val |= BGE_SDCMODE_CDELAY; 
1662         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1663
1664         /* Turn on send data initiator state machine */
1665         if (sc->bnx_flags & BNX_FLAG_TSO) {
1666                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
1667                     BGE_SDIMODE_HW_LSO_PRE_DMA);
1668         } else {
1669                 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1670         }
1671
1672         /* Turn on send BD initiator state machine */
1673         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1674
1675         /* Turn on send BD selector state machine */
1676         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1677
1678         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1679         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1680             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1681
1682         /* ack/clear link change events */
1683         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1684             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1685             BGE_MACSTAT_LINK_CHANGED);
1686         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1687
1688         /*
1689          * Enable attention when the link has changed state for
1690          * devices that use auto polling.
1691          */
1692         if (sc->bnx_flags & BNX_FLAG_TBI) {
1693                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1694         } else {
1695                 if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
1696                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bnx_mi_mode);
1697                         DELAY(80);
1698                 }
1699         }
1700
1701         /*
1702          * Clear any pending link state attention.
1703          * Otherwise some link state change events may be lost until attention
1704          * is cleared by bnx_intr() -> bnx_softc.bnx_link_upd() sequence.
1705          * It's not necessary on newer BCM chips - perhaps enabling link
1706          * state change attentions implies clearing pending attention.
1707          */
1708         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1709             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1710             BGE_MACSTAT_LINK_CHANGED);
1711
1712         /* Enable link state change attentions. */
1713         BNX_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1714
1715         return(0);
1716 }
1717
1718 /*
1719  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1720  * against our list and return its name if we find a match. Note
1721  * that since the Broadcom controller contains VPD support, we
1722  * can get the device name string from the controller itself instead
1723  * of the compiled-in string. This is a little slow, but it guarantees
1724  * we'll always announce the right product name.
1725  */
1726 static int
1727 bnx_probe(device_t dev)
1728 {
1729         const struct bnx_type *t;
1730         uint16_t product, vendor;
1731
1732         if (!pci_is_pcie(dev))
1733                 return ENXIO;
1734
1735         product = pci_get_device(dev);
1736         vendor = pci_get_vendor(dev);
1737
1738         for (t = bnx_devs; t->bnx_name != NULL; t++) {
1739                 if (vendor == t->bnx_vid && product == t->bnx_did)
1740                         break;
1741         }
1742         if (t->bnx_name == NULL)
1743                 return ENXIO;
1744
1745         device_set_desc(dev, t->bnx_name);
1746         return 0;
1747 }
1748
1749 static int
1750 bnx_attach(device_t dev)
1751 {
1752         struct ifnet *ifp;
1753         struct bnx_softc *sc;
1754         uint32_t hwcfg = 0, misccfg;
1755         int error = 0, rid, capmask;
1756         uint8_t ether_addr[ETHER_ADDR_LEN];
1757         uint16_t product, vendor;
1758         driver_intr_t *intr_func;
1759         uintptr_t mii_priv = 0;
1760         u_int intr_flags;
1761 #ifdef BNX_TSO_DEBUG
1762         char desc[32];
1763         int i;
1764 #endif
1765
1766         sc = device_get_softc(dev);
1767         sc->bnx_dev = dev;
1768         callout_init_mp(&sc->bnx_stat_timer);
1769         callout_init_mp(&sc->bnx_intr_timer);
1770         lwkt_serialize_init(&sc->bnx_jslot_serializer);
1771
1772         product = pci_get_device(dev);
1773         vendor = pci_get_vendor(dev);
1774
1775 #ifndef BURN_BRIDGES
1776         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1777                 uint32_t irq, mem;
1778
1779                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1780                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1781
1782                 device_printf(dev, "chip is in D%d power mode "
1783                     "-- setting to D0\n", pci_get_powerstate(dev));
1784
1785                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1786
1787                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1788                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1789         }
1790 #endif  /* !BURN_BRIDGE */
1791
1792         /*
1793          * Map control/status registers.
1794          */
1795         pci_enable_busmaster(dev);
1796
1797         rid = BGE_PCI_BAR0;
1798         sc->bnx_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1799             RF_ACTIVE);
1800
1801         if (sc->bnx_res == NULL) {
1802                 device_printf(dev, "couldn't map memory\n");
1803                 return ENXIO;
1804         }
1805
1806         sc->bnx_btag = rman_get_bustag(sc->bnx_res);
1807         sc->bnx_bhandle = rman_get_bushandle(sc->bnx_res);
1808
1809         /* Save various chip information */
1810         sc->bnx_chipid =
1811             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1812             BGE_PCIMISCCTL_ASICREV_SHIFT;
1813         if (BGE_ASICREV(sc->bnx_chipid) == BGE_ASICREV_USE_PRODID_REG) {
1814                 /* All chips having dedicated ASICREV register have CPMU */
1815                 sc->bnx_flags |= BNX_FLAG_CPMU;
1816
1817                 switch (product) {
1818                 case PCI_PRODUCT_BROADCOM_BCM5717:
1819                 case PCI_PRODUCT_BROADCOM_BCM5718:
1820                 case PCI_PRODUCT_BROADCOM_BCM5719:
1821                 case PCI_PRODUCT_BROADCOM_BCM5720_ALT:
1822                         sc->bnx_chipid = pci_read_config(dev,
1823                             BGE_PCI_GEN2_PRODID_ASICREV, 4);
1824                         break;
1825
1826                 case PCI_PRODUCT_BROADCOM_BCM57761:
1827                 case PCI_PRODUCT_BROADCOM_BCM57762:
1828                 case PCI_PRODUCT_BROADCOM_BCM57765:
1829                 case PCI_PRODUCT_BROADCOM_BCM57766:
1830                 case PCI_PRODUCT_BROADCOM_BCM57781:
1831                 case PCI_PRODUCT_BROADCOM_BCM57782:
1832                 case PCI_PRODUCT_BROADCOM_BCM57785:
1833                 case PCI_PRODUCT_BROADCOM_BCM57786:
1834                 case PCI_PRODUCT_BROADCOM_BCM57791:
1835                 case PCI_PRODUCT_BROADCOM_BCM57795:
1836                         sc->bnx_chipid = pci_read_config(dev,
1837                             BGE_PCI_GEN15_PRODID_ASICREV, 4);
1838                         break;
1839
1840                 default:
1841                         sc->bnx_chipid = pci_read_config(dev,
1842                             BGE_PCI_PRODID_ASICREV, 4);
1843                         break;
1844                 }
1845         }
1846         sc->bnx_asicrev = BGE_ASICREV(sc->bnx_chipid);
1847         sc->bnx_chiprev = BGE_CHIPREV(sc->bnx_chipid);
1848
1849         switch (sc->bnx_asicrev) {
1850         case BGE_ASICREV_BCM5717:
1851         case BGE_ASICREV_BCM5719:
1852         case BGE_ASICREV_BCM5720:
1853                 sc->bnx_flags |= BNX_FLAG_5717_PLUS | BNX_FLAG_57765_PLUS;
1854                 break;
1855
1856         case BGE_ASICREV_BCM57765:
1857         case BGE_ASICREV_BCM57766:
1858                 sc->bnx_flags |= BNX_FLAG_57765_FAMILY | BNX_FLAG_57765_PLUS;
1859                 break;
1860         }
1861         sc->bnx_flags |= BNX_FLAG_SHORTDMA;
1862
1863         sc->bnx_flags |= BNX_FLAG_TSO;
1864         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 &&
1865             sc->bnx_chipid == BGE_CHIPID_BCM5719_A0)
1866                 sc->bnx_flags &= ~BNX_FLAG_TSO;
1867
1868         if (sc->bnx_asicrev == BGE_ASICREV_BCM5717 ||
1869             BNX_IS_57765_FAMILY(sc)) {
1870                 /*
1871                  * All BCM57785 and BCM5718 families chips have a bug that
1872                  * under certain situation interrupt will not be enabled
1873                  * even if status tag is written to BGE_MBX_IRQ0_LO mailbox.
1874                  *
1875                  * While BCM5719 and BCM5720 have a hardware workaround
1876                  * which could fix the above bug.
1877                  * See the comment near BGE_PCIDMARWCTL_TAGGED_STATUS_WA in
1878                  * bnx_chipinit().
1879                  *
1880                  * For the rest of the chips in these two families, we will
1881                  * have to poll the status block at high rate (10ms currently)
1882                  * to check whether the interrupt is hosed or not.
1883                  * See bnx_intr_check() for details.
1884                  */
1885                 sc->bnx_flags |= BNX_FLAG_STATUSTAG_BUG;
1886         }
1887
1888         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
1889
1890         sc->bnx_pciecap = pci_get_pciecap_ptr(sc->bnx_dev);
1891         if (sc->bnx_asicrev == BGE_ASICREV_BCM5719 ||
1892             sc->bnx_asicrev == BGE_ASICREV_BCM5720)
1893                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_2048);
1894         else
1895                 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1896         device_printf(dev, "CHIP ID 0x%08x; "
1897                       "ASIC REV 0x%02x; CHIP REV 0x%02x\n",
1898                       sc->bnx_chipid, sc->bnx_asicrev, sc->bnx_chiprev);
1899
1900         /*
1901          * Set various PHY quirk flags.
1902          */
1903
1904         capmask = MII_CAPMASK_DEFAULT;
1905         if (product == PCI_PRODUCT_BROADCOM_BCM57791 ||
1906             product == PCI_PRODUCT_BROADCOM_BCM57795) {
1907                 /* 10/100 only */
1908                 capmask &= ~BMSR_EXTSTAT;
1909         }
1910
1911         mii_priv |= BRGPHY_FLAG_WIRESPEED;
1912
1913         /*
1914          * Allocate interrupt
1915          */
1916         sc->bnx_irq_type = pci_alloc_1intr(dev, bnx_msi_enable, &sc->bnx_irq_rid,
1917             &intr_flags);
1918
1919         sc->bnx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->bnx_irq_rid,
1920             intr_flags);
1921         if (sc->bnx_irq == NULL) {
1922                 device_printf(dev, "couldn't map interrupt\n");
1923                 error = ENXIO;
1924                 goto fail;
1925         }
1926
1927         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI) {
1928                 sc->bnx_flags |= BNX_FLAG_ONESHOT_MSI;
1929                 bnx_enable_msi(sc);
1930         }
1931
1932         /* Initialize if_name earlier, so if_printf could be used */
1933         ifp = &sc->arpcom.ac_if;
1934         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1935
1936         /* Try to reset the chip. */
1937         bnx_reset(sc);
1938
1939         if (bnx_chipinit(sc)) {
1940                 device_printf(dev, "chip initialization failed\n");
1941                 error = ENXIO;
1942                 goto fail;
1943         }
1944
1945         /*
1946          * Get station address
1947          */
1948         error = bnx_get_eaddr(sc, ether_addr);
1949         if (error) {
1950                 device_printf(dev, "failed to read station address\n");
1951                 goto fail;
1952         }
1953
1954         if (BNX_IS_57765_PLUS(sc)) {
1955                 sc->bnx_return_ring_cnt = BGE_RETURN_RING_CNT;
1956         } else {
1957                 /* 5705/5750 limits RX return ring to 512 entries. */
1958                 sc->bnx_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1959         }
1960
1961         error = bnx_dma_alloc(sc);
1962         if (error)
1963                 goto fail;
1964
1965         /* Set default tuneable values. */
1966         sc->bnx_rx_coal_ticks = BNX_RX_COAL_TICKS_DEF;
1967         sc->bnx_tx_coal_ticks = BNX_TX_COAL_TICKS_DEF;
1968         sc->bnx_rx_coal_bds = BNX_RX_COAL_BDS_DEF;
1969         sc->bnx_tx_coal_bds = BNX_TX_COAL_BDS_DEF;
1970         sc->bnx_rx_coal_bds_int = BNX_RX_COAL_BDS_INT_DEF;
1971         sc->bnx_tx_coal_bds_int = BNX_TX_COAL_BDS_INT_DEF;
1972         sc->bnx_tx_wreg = 8;
1973
1974         /* Set up ifnet structure */
1975         ifp->if_softc = sc;
1976         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1977         ifp->if_ioctl = bnx_ioctl;
1978         ifp->if_start = bnx_start;
1979 #ifdef IFPOLL_ENABLE
1980         ifp->if_npoll = bnx_npoll;
1981 #endif
1982         ifp->if_watchdog = bnx_watchdog;
1983         ifp->if_init = bnx_init;
1984         ifp->if_mtu = ETHERMTU;
1985         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1986         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1987         ifq_set_ready(&ifp->if_snd);
1988
1989         ifp->if_capabilities |= IFCAP_HWCSUM;
1990         ifp->if_hwassist = BNX_CSUM_FEATURES;
1991         if (sc->bnx_flags & BNX_FLAG_TSO) {
1992                 ifp->if_capabilities |= IFCAP_TSO;
1993                 ifp->if_hwassist |= CSUM_TSO;
1994         }
1995         ifp->if_capenable = ifp->if_capabilities;
1996
1997         /*
1998          * Figure out what sort of media we have by checking the
1999          * hardware config word in the first 32k of NIC internal memory,
2000          * or fall back to examining the EEPROM if necessary.
2001          * Note: on some BCM5700 cards, this value appears to be unset.
2002          * If that's the case, we have to rely on identifying the NIC
2003          * by its PCI subsystem ID, as we do below for the SysKonnect
2004          * SK-9D41.
2005          */
2006         if (bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2007                 hwcfg = bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2008         } else {
2009                 if (bnx_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2010                                     sizeof(hwcfg))) {
2011                         device_printf(dev, "failed to read EEPROM\n");
2012                         error = ENXIO;
2013                         goto fail;
2014                 }
2015                 hwcfg = ntohl(hwcfg);
2016         }
2017
2018         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2019         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2020             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2021                 sc->bnx_flags |= BNX_FLAG_TBI;
2022
2023         /* Setup MI MODE */
2024         if (sc->bnx_flags & BNX_FLAG_CPMU)
2025                 sc->bnx_mi_mode = BGE_MIMODE_500KHZ_CONST;
2026         else
2027                 sc->bnx_mi_mode = BGE_MIMODE_BASE;
2028
2029         /* Setup link status update stuffs */
2030         if (sc->bnx_flags & BNX_FLAG_TBI) {
2031                 sc->bnx_link_upd = bnx_tbi_link_upd;
2032                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2033         } else if (sc->bnx_mi_mode & BGE_MIMODE_AUTOPOLL) {
2034                 sc->bnx_link_upd = bnx_autopoll_link_upd;
2035                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2036         } else {
2037                 sc->bnx_link_upd = bnx_copper_link_upd;
2038                 sc->bnx_link_chg = BGE_MACSTAT_LINK_CHANGED;
2039         }
2040
2041         /* Set default PHY address */
2042         sc->bnx_phyno = 1;
2043
2044         /*
2045          * PHY address mapping for various devices.
2046          *
2047          *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2048          * ---------+-------+-------+-------+-------+
2049          * BCM57XX  |   1   |   X   |   X   |   X   |
2050          * BCM5704  |   1   |   X   |   1   |   X   |
2051          * BCM5717  |   1   |   8   |   2   |   9   |
2052          * BCM5719  |   1   |   8   |   2   |   9   |
2053          * BCM5720  |   1   |   8   |   2   |   9   |
2054          *
2055          * Other addresses may respond but they are not
2056          * IEEE compliant PHYs and should be ignored.
2057          */
2058         if (BNX_IS_5717_PLUS(sc)) {
2059                 int f;
2060
2061                 f = pci_get_function(dev);
2062                 if (sc->bnx_chipid == BGE_CHIPID_BCM5717_A0) {
2063                         if (CSR_READ_4(sc, BGE_SGDIG_STS) &
2064                             BGE_SGDIGSTS_IS_SERDES)
2065                                 sc->bnx_phyno = f + 8;
2066                         else
2067                                 sc->bnx_phyno = f + 1;
2068                 } else {
2069                         if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2070                             BGE_CPMU_PHY_STRAP_IS_SERDES)
2071                                 sc->bnx_phyno = f + 8;
2072                         else
2073                                 sc->bnx_phyno = f + 1;
2074                 }
2075         }
2076
2077         if (sc->bnx_flags & BNX_FLAG_TBI) {
2078                 ifmedia_init(&sc->bnx_ifmedia, IFM_IMASK,
2079                     bnx_ifmedia_upd, bnx_ifmedia_sts);
2080                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2081                 ifmedia_add(&sc->bnx_ifmedia,
2082                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2083                 ifmedia_add(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2084                 ifmedia_set(&sc->bnx_ifmedia, IFM_ETHER|IFM_AUTO);
2085                 sc->bnx_ifmedia.ifm_media = sc->bnx_ifmedia.ifm_cur->ifm_media;
2086         } else {
2087                 struct mii_probe_args mii_args;
2088
2089                 mii_probe_args_init(&mii_args, bnx_ifmedia_upd, bnx_ifmedia_sts);
2090                 mii_args.mii_probemask = 1 << sc->bnx_phyno;
2091                 mii_args.mii_capmask = capmask;
2092                 mii_args.mii_privtag = MII_PRIVTAG_BRGPHY;
2093                 mii_args.mii_priv = mii_priv;
2094
2095                 error = mii_probe(dev, &sc->bnx_miibus, &mii_args);
2096                 if (error) {
2097                         device_printf(dev, "MII without any PHY!\n");
2098                         goto fail;
2099                 }
2100         }
2101
2102         /*
2103          * Create sysctl nodes.
2104          */
2105         sysctl_ctx_init(&sc->bnx_sysctl_ctx);
2106         sc->bnx_sysctl_tree = SYSCTL_ADD_NODE(&sc->bnx_sysctl_ctx,
2107                                               SYSCTL_STATIC_CHILDREN(_hw),
2108                                               OID_AUTO,
2109                                               device_get_nameunit(dev),
2110                                               CTLFLAG_RD, 0, "");
2111         if (sc->bnx_sysctl_tree == NULL) {
2112                 device_printf(dev, "can't add sysctl node\n");
2113                 error = ENXIO;
2114                 goto fail;
2115         }
2116
2117         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2118                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2119                         OID_AUTO, "rx_coal_ticks",
2120                         CTLTYPE_INT | CTLFLAG_RW,
2121                         sc, 0, bnx_sysctl_rx_coal_ticks, "I",
2122                         "Receive coalescing ticks (usec).");
2123         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2124                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2125                         OID_AUTO, "tx_coal_ticks",
2126                         CTLTYPE_INT | CTLFLAG_RW,
2127                         sc, 0, bnx_sysctl_tx_coal_ticks, "I",
2128                         "Transmit coalescing ticks (usec).");
2129         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2130                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2131                         OID_AUTO, "rx_coal_bds",
2132                         CTLTYPE_INT | CTLFLAG_RW,
2133                         sc, 0, bnx_sysctl_rx_coal_bds, "I",
2134                         "Receive max coalesced BD count.");
2135         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2136                         SYSCTL_CHILDREN(sc->bnx_sysctl_tree),
2137                         OID_AUTO, "tx_coal_bds",
2138                         CTLTYPE_INT | CTLFLAG_RW,
2139                         sc, 0, bnx_sysctl_tx_coal_bds, "I",
2140                         "Transmit max coalesced BD count.");
2141         /*
2142          * A common design characteristic for many Broadcom
2143          * client controllers is that they only support a
2144          * single outstanding DMA read operation on the PCIe
2145          * bus. This means that it will take twice as long to
2146          * fetch a TX frame that is split into header and
2147          * payload buffers as it does to fetch a single,
2148          * contiguous TX frame (2 reads vs. 1 read). For these
2149          * controllers, coalescing buffers to reduce the number
2150          * of memory reads is effective way to get maximum
2151          * performance(about 940Mbps).  Without collapsing TX
2152          * buffers the maximum TCP bulk transfer performance
2153          * is about 850Mbps. However forcing coalescing mbufs
2154          * consumes a lot of CPU cycles, so leave it off by
2155          * default.
2156          */
2157         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2158             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2159             "force_defrag", CTLFLAG_RW, &sc->bnx_force_defrag, 0,
2160             "Force defragment on TX path");
2161
2162         SYSCTL_ADD_INT(&sc->bnx_sysctl_ctx,
2163             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2164             "tx_wreg", CTLFLAG_RW, &sc->bnx_tx_wreg, 0,
2165             "# of segments before writing to hardware register");
2166
2167         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2168             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2169             "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2170             sc, 0, bnx_sysctl_rx_coal_bds_int, "I",
2171             "Receive max coalesced BD count during interrupt.");
2172         SYSCTL_ADD_PROC(&sc->bnx_sysctl_ctx,
2173             SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2174             "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2175             sc, 0, bnx_sysctl_tx_coal_bds_int, "I",
2176             "Transmit max coalesced BD count during interrupt.");
2177
2178 #ifdef BNX_TSO_DEBUG
2179         for (i = 0; i < BNX_TSO_NSTATS; ++i) {
2180                 ksnprintf(desc, sizeof(desc), "tso%d", i + 1);
2181                 SYSCTL_ADD_ULONG(&sc->bnx_sysctl_ctx,
2182                     SYSCTL_CHILDREN(sc->bnx_sysctl_tree), OID_AUTO,
2183                     desc, CTLFLAG_RW, &sc->bnx_tsosegs[i], "");
2184         }
2185 #endif
2186
2187         /*
2188          * Call MI attach routine.
2189          */
2190         ether_ifattach(ifp, ether_addr, NULL);
2191
2192 #ifdef IFPOLL_ENABLE
2193         ifpoll_compat_setup(&sc->bnx_npoll,
2194             &sc->bnx_sysctl_ctx, sc->bnx_sysctl_tree,
2195             device_get_unit(dev), ifp->if_serializer);
2196 #endif
2197
2198         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI) {
2199                 if (sc->bnx_flags & BNX_FLAG_ONESHOT_MSI) {
2200                         intr_func = bnx_msi_oneshot;
2201                         if (bootverbose)
2202                                 device_printf(dev, "oneshot MSI\n");
2203                 } else {
2204                         intr_func = bnx_msi;
2205                 }
2206         } else {
2207                 intr_func = bnx_intr_legacy;
2208         }
2209         error = bus_setup_intr(dev, sc->bnx_irq, INTR_MPSAFE, intr_func, sc,
2210             &sc->bnx_intrhand, ifp->if_serializer);
2211         if (error) {
2212                 ether_ifdetach(ifp);
2213                 device_printf(dev, "couldn't set up irq\n");
2214                 goto fail;
2215         }
2216
2217         ifp->if_cpuid = rman_get_cpuid(sc->bnx_irq);
2218         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2219
2220         sc->bnx_stat_cpuid = ifp->if_cpuid;
2221         sc->bnx_intr_cpuid = ifp->if_cpuid;
2222
2223         return(0);
2224 fail:
2225         bnx_detach(dev);
2226         return(error);
2227 }
2228
2229 static int
2230 bnx_detach(device_t dev)
2231 {
2232         struct bnx_softc *sc = device_get_softc(dev);
2233
2234         if (device_is_attached(dev)) {
2235                 struct ifnet *ifp = &sc->arpcom.ac_if;
2236
2237                 lwkt_serialize_enter(ifp->if_serializer);
2238                 bnx_stop(sc);
2239                 bnx_reset(sc);
2240                 bus_teardown_intr(dev, sc->bnx_irq, sc->bnx_intrhand);
2241                 lwkt_serialize_exit(ifp->if_serializer);
2242
2243                 ether_ifdetach(ifp);
2244         }
2245
2246         if (sc->bnx_flags & BNX_FLAG_TBI)
2247                 ifmedia_removeall(&sc->bnx_ifmedia);
2248         if (sc->bnx_miibus)
2249                 device_delete_child(dev, sc->bnx_miibus);
2250         bus_generic_detach(dev);
2251
2252         if (sc->bnx_irq != NULL) {
2253                 bus_release_resource(dev, SYS_RES_IRQ, sc->bnx_irq_rid,
2254                     sc->bnx_irq);
2255         }
2256         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI)
2257                 pci_release_msi(dev);
2258
2259         if (sc->bnx_res != NULL) {
2260                 bus_release_resource(dev, SYS_RES_MEMORY,
2261                     BGE_PCI_BAR0, sc->bnx_res);
2262         }
2263
2264         if (sc->bnx_sysctl_tree != NULL)
2265                 sysctl_ctx_free(&sc->bnx_sysctl_ctx);
2266
2267         bnx_dma_free(sc);
2268
2269         return 0;
2270 }
2271
2272 static void
2273 bnx_reset(struct bnx_softc *sc)
2274 {
2275         device_t dev;
2276         uint32_t cachesize, command, pcistate, reset;
2277         void (*write_op)(struct bnx_softc *, uint32_t, uint32_t);
2278         int i, val = 0;
2279         uint16_t devctl;
2280
2281         dev = sc->bnx_dev;
2282
2283         if (sc->bnx_asicrev != BGE_ASICREV_BCM5906)
2284                 write_op = bnx_writemem_direct;
2285         else
2286                 write_op = bnx_writereg_ind;
2287
2288         /* Save some important PCI state. */
2289         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2290         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2291         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2292
2293         pci_write_config(dev, BGE_PCI_MISC_CTL,
2294             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2295             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2296             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2297
2298         /* Disable fastboot on controllers that support it. */
2299         if (bootverbose)
2300                 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2301         CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2302
2303         /*
2304          * Write the magic number to SRAM at offset 0xB50.
2305          * When firmware finishes its initialization it will
2306          * write ~BGE_MAGIC_NUMBER to the same location.
2307          */
2308         bnx_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2309
2310         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2311
2312         /* XXX: Broadcom Linux driver. */
2313         /* Force PCI-E 1.0a mode */
2314         if (!BNX_IS_57765_PLUS(sc) &&
2315             CSR_READ_4(sc, BGE_PCIE_PHY_TSTCTL) ==
2316             (BGE_PCIE_PHY_TSTCTL_PSCRAM |
2317              BGE_PCIE_PHY_TSTCTL_PCIE10)) {
2318                 CSR_WRITE_4(sc, BGE_PCIE_PHY_TSTCTL,
2319                     BGE_PCIE_PHY_TSTCTL_PSCRAM);
2320         }
2321         if (sc->bnx_chipid != BGE_CHIPID_BCM5750_A0) {
2322                 /* Prevent PCIE link training during global reset */
2323                 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2324                 reset |= (1<<29);
2325         }
2326
2327         /* 
2328          * Set GPHY Power Down Override to leave GPHY
2329          * powered up in D0 uninitialized.
2330          */
2331         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0)
2332                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2333
2334         /* Issue global reset */
2335         write_op(sc, BGE_MISC_CFG, reset);
2336
2337         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
2338                 uint32_t status, ctrl;
2339
2340                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2341                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2342                     status | BGE_VCPU_STATUS_DRV_RESET);
2343                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2344                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2345                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2346         }
2347
2348         DELAY(1000);
2349
2350         /* XXX: Broadcom Linux driver. */
2351         if (sc->bnx_chipid == BGE_CHIPID_BCM5750_A0) {
2352                 uint32_t v;
2353
2354                 DELAY(500000); /* wait for link training to complete */
2355                 v = pci_read_config(dev, 0xc4, 4);
2356                 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2357         }
2358
2359         devctl = pci_read_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL, 2);
2360
2361         /* Disable no snoop and disable relaxed ordering. */
2362         devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2363
2364         /* Old PCI-E chips only support 128 bytes Max PayLoad Size. */
2365         if ((sc->bnx_flags & BNX_FLAG_CPMU) == 0) {
2366                 devctl &= ~PCIEM_DEVCTL_MAX_PAYLOAD_MASK;
2367                 devctl |= PCIEM_DEVCTL_MAX_PAYLOAD_128;
2368         }
2369
2370         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVCTRL,
2371             devctl, 2);
2372
2373         /* Clear error status. */
2374         pci_write_config(dev, sc->bnx_pciecap + PCIER_DEVSTS,
2375             PCIEM_DEVSTS_CORR_ERR |
2376             PCIEM_DEVSTS_NFATAL_ERR |
2377             PCIEM_DEVSTS_FATAL_ERR |
2378             PCIEM_DEVSTS_UNSUPP_REQ, 2);
2379
2380         /* Reset some of the PCI state that got zapped by reset */
2381         pci_write_config(dev, BGE_PCI_MISC_CTL,
2382             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2383             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2384             BGE_PCIMISCCTL_TAGGED_STATUS, 4);
2385         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2386         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2387         write_op(sc, BGE_MISC_CFG, (65 << 1));
2388
2389         /* Enable memory arbiter */
2390         CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2391
2392         if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
2393                 for (i = 0; i < BNX_TIMEOUT; i++) {
2394                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2395                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2396                                 break;
2397                         DELAY(100);
2398                 }
2399                 if (i == BNX_TIMEOUT) {
2400                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2401                         return;
2402                 }
2403         } else {
2404                 /*
2405                  * Poll until we see the 1's complement of the magic number.
2406                  * This indicates that the firmware initialization
2407                  * is complete.
2408                  */
2409                 for (i = 0; i < BNX_FIRMWARE_TIMEOUT; i++) {
2410                         val = bnx_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2411                         if (val == ~BGE_MAGIC_NUMBER)
2412                                 break;
2413                         DELAY(10);
2414                 }
2415                 if (i == BNX_FIRMWARE_TIMEOUT) {
2416                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2417                                   "timed out, found 0x%08x\n", val);
2418                 }
2419
2420                 /* BCM57765 A0 needs additional time before accessing. */
2421                 if (sc->bnx_chipid == BGE_CHIPID_BCM57765_A0)
2422                         DELAY(10 * 1000);
2423         }
2424
2425         /*
2426          * XXX Wait for the value of the PCISTATE register to
2427          * return to its original pre-reset state. This is a
2428          * fairly good indicator of reset completion. If we don't
2429          * wait for the reset to fully complete, trying to read
2430          * from the device's non-PCI registers may yield garbage
2431          * results.
2432          */
2433         for (i = 0; i < BNX_TIMEOUT; i++) {
2434                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2435                         break;
2436                 DELAY(10);
2437         }
2438
2439         /* Fix up byte swapping */
2440         CSR_WRITE_4(sc, BGE_MODE_CTL, bnx_dma_swap_options(sc));
2441
2442         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2443
2444         /*
2445          * The 5704 in TBI mode apparently needs some special
2446          * adjustment to insure the SERDES drive level is set
2447          * to 1.2V.
2448          */
2449         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704 &&
2450             (sc->bnx_flags & BNX_FLAG_TBI)) {
2451                 uint32_t serdescfg;
2452
2453                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2454                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2455                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2456         }
2457
2458         CSR_WRITE_4(sc, BGE_MI_MODE,
2459             sc->bnx_mi_mode & ~BGE_MIMODE_AUTOPOLL);
2460         DELAY(80);
2461
2462         /* XXX: Broadcom Linux driver. */
2463         if (!BNX_IS_57765_PLUS(sc)) {
2464                 uint32_t v;
2465
2466                 /* Enable Data FIFO protection. */
2467                 v = CSR_READ_4(sc, BGE_PCIE_TLDLPL_PORT);
2468                 CSR_WRITE_4(sc, BGE_PCIE_TLDLPL_PORT, v | (1 << 25));
2469         }
2470
2471         DELAY(10000);
2472
2473         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
2474                 BNX_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
2475                     CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
2476         }
2477 }
2478
2479 /*
2480  * Frame reception handling. This is called if there's a frame
2481  * on the receive return list.
2482  *
2483  * Note: we have to be able to handle two possibilities here:
2484  * 1) the frame is from the jumbo recieve ring
2485  * 2) the frame is from the standard receive ring
2486  */
2487
2488 static void
2489 bnx_rxeof(struct bnx_softc *sc, uint16_t rx_prod)
2490 {
2491         struct ifnet *ifp;
2492         int stdcnt = 0, jumbocnt = 0;
2493
2494         ifp = &sc->arpcom.ac_if;
2495
2496         while (sc->bnx_rx_saved_considx != rx_prod) {
2497                 struct bge_rx_bd        *cur_rx;
2498                 uint32_t                rxidx;
2499                 struct mbuf             *m = NULL;
2500                 uint16_t                vlan_tag = 0;
2501                 int                     have_tag = 0;
2502
2503                 cur_rx =
2504             &sc->bnx_ldata.bnx_rx_return_ring[sc->bnx_rx_saved_considx];
2505
2506                 rxidx = cur_rx->bge_idx;
2507                 BNX_INC(sc->bnx_rx_saved_considx, sc->bnx_return_ring_cnt);
2508
2509                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2510                         have_tag = 1;
2511                         vlan_tag = cur_rx->bge_vlan_tag;
2512                 }
2513
2514                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2515                         BNX_INC(sc->bnx_jumbo, BGE_JUMBO_RX_RING_CNT);
2516                         jumbocnt++;
2517
2518                         if (rxidx != sc->bnx_jumbo) {
2519                                 ifp->if_ierrors++;
2520                                 if_printf(ifp, "sw jumbo index(%d) "
2521                                     "and hw jumbo index(%d) mismatch, drop!\n",
2522                                     sc->bnx_jumbo, rxidx);
2523                                 bnx_setup_rxdesc_jumbo(sc, rxidx);
2524                                 continue;
2525                         }
2526
2527                         m = sc->bnx_cdata.bnx_rx_jumbo_chain[rxidx].bnx_mbuf;
2528                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2529                                 ifp->if_ierrors++;
2530                                 bnx_setup_rxdesc_jumbo(sc, sc->bnx_jumbo);
2531                                 continue;
2532                         }
2533                         if (bnx_newbuf_jumbo(sc, sc->bnx_jumbo, 0)) {
2534                                 ifp->if_ierrors++;
2535                                 bnx_setup_rxdesc_jumbo(sc, sc->bnx_jumbo);
2536                                 continue;
2537                         }
2538                 } else {
2539                         BNX_INC(sc->bnx_std, BGE_STD_RX_RING_CNT);
2540                         stdcnt++;
2541
2542                         if (rxidx != sc->bnx_std) {
2543                                 ifp->if_ierrors++;
2544                                 if_printf(ifp, "sw std index(%d) "
2545                                     "and hw std index(%d) mismatch, drop!\n",
2546                                     sc->bnx_std, rxidx);
2547                                 bnx_setup_rxdesc_std(sc, rxidx);
2548                                 continue;
2549                         }
2550
2551                         m = sc->bnx_cdata.bnx_rx_std_chain[rxidx].bnx_mbuf;
2552                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2553                                 ifp->if_ierrors++;
2554                                 bnx_setup_rxdesc_std(sc, sc->bnx_std);
2555                                 continue;
2556                         }
2557                         if (bnx_newbuf_std(sc, sc->bnx_std, 0)) {
2558                                 ifp->if_ierrors++;
2559                                 bnx_setup_rxdesc_std(sc, sc->bnx_std);
2560                                 continue;
2561                         }
2562                 }
2563
2564                 ifp->if_ipackets++;
2565                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2566                 m->m_pkthdr.rcvif = ifp;
2567
2568                 if ((ifp->if_capenable & IFCAP_RXCSUM) &&
2569                     (cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
2570                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2571                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2572                                 if ((cur_rx->bge_error_flag &
2573                                     BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
2574                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2575                         }
2576                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2577                                 m->m_pkthdr.csum_data =
2578                                     cur_rx->bge_tcp_udp_csum;
2579                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2580                                     CSUM_PSEUDO_HDR;
2581                         }
2582                 }
2583
2584                 /*
2585                  * If we received a packet with a vlan tag, pass it
2586                  * to vlan_input() instead of ether_input().
2587                  */
2588                 if (have_tag) {
2589                         m->m_flags |= M_VLANTAG;
2590                         m->m_pkthdr.ether_vlantag = vlan_tag;
2591                         have_tag = vlan_tag = 0;
2592                 }
2593                 ifp->if_input(ifp, m);
2594         }
2595
2596         bnx_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bnx_rx_saved_considx);
2597         if (stdcnt)
2598                 bnx_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bnx_std);
2599         if (jumbocnt)
2600                 bnx_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bnx_jumbo);
2601 }
2602
2603 static void
2604 bnx_txeof(struct bnx_softc *sc, uint16_t tx_cons)
2605 {
2606         struct ifnet *ifp;
2607
2608         ifp = &sc->arpcom.ac_if;
2609
2610         /*
2611          * Go through our tx ring and free mbufs for those
2612          * frames that have been sent.
2613          */
2614         while (sc->bnx_tx_saved_considx != tx_cons) {
2615                 uint32_t idx = 0;
2616
2617                 idx = sc->bnx_tx_saved_considx;
2618                 if (sc->bnx_cdata.bnx_tx_chain[idx] != NULL) {
2619                         ifp->if_opackets++;
2620                         bus_dmamap_unload(sc->bnx_cdata.bnx_tx_mtag,
2621                             sc->bnx_cdata.bnx_tx_dmamap[idx]);
2622                         m_freem(sc->bnx_cdata.bnx_tx_chain[idx]);
2623                         sc->bnx_cdata.bnx_tx_chain[idx] = NULL;
2624                 }
2625                 sc->bnx_txcnt--;
2626                 BNX_INC(sc->bnx_tx_saved_considx, BGE_TX_RING_CNT);
2627         }
2628
2629         if ((BGE_TX_RING_CNT - sc->bnx_txcnt) >=
2630             (BNX_NSEG_RSVD + BNX_NSEG_SPARE))
2631                 ifp->if_flags &= ~IFF_OACTIVE;
2632
2633         if (sc->bnx_txcnt == 0)
2634                 ifp->if_timer = 0;
2635
2636         if (!ifq_is_empty(&ifp->if_snd))
2637                 if_devstart(ifp);
2638 }
2639
2640 #ifdef IFPOLL_ENABLE
2641
2642 static void
2643 bnx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
2644 {
2645         struct bnx_softc *sc = ifp->if_softc;
2646
2647         ASSERT_SERIALIZED(ifp->if_serializer);
2648
2649         if (info != NULL) {
2650                 int cpuid = sc->bnx_npoll.ifpc_cpuid;
2651
2652                 info->ifpi_rx[cpuid].poll_func = bnx_npoll_compat;
2653                 info->ifpi_rx[cpuid].arg = NULL;
2654                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
2655
2656                 if (ifp->if_flags & IFF_RUNNING)
2657                         bnx_disable_intr(sc);
2658                 ifp->if_npoll_cpuid = cpuid;
2659         } else {
2660                 if (ifp->if_flags & IFF_RUNNING)
2661                         bnx_enable_intr(sc);
2662                 ifp->if_npoll_cpuid = -1;
2663         }
2664 }
2665
2666 static void
2667 bnx_npoll_compat(struct ifnet *ifp, void *arg __unused, int cycle __unused)
2668 {
2669         struct bnx_softc *sc = ifp->if_softc;
2670         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
2671         uint16_t rx_prod, tx_cons;
2672
2673         ASSERT_SERIALIZED(ifp->if_serializer);
2674
2675         if (sc->bnx_npoll.ifpc_stcount-- == 0) {
2676                 sc->bnx_npoll.ifpc_stcount = sc->bnx_npoll.ifpc_stfrac;
2677                 /*
2678                  * Process link state changes.
2679                  */
2680                 bnx_link_poll(sc);
2681         }
2682
2683         sc->bnx_status_tag = sblk->bge_status_tag;
2684
2685         /*
2686          * Use a load fence to ensure that status_tag is saved
2687          * before rx_prod and tx_cons.
2688          */
2689         cpu_lfence();
2690
2691         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2692         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2693
2694         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2695         if (sc->bnx_rx_saved_considx != rx_prod)
2696                 bnx_rxeof(sc, rx_prod);
2697
2698         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2699         if (sc->bnx_tx_saved_considx != tx_cons)
2700                 bnx_txeof(sc, tx_cons);
2701
2702         if (sc->bnx_coal_chg)
2703                 bnx_coal_change(sc);
2704 }
2705
2706 #endif  /* IFPOLL_ENABLE */
2707
2708 static void
2709 bnx_intr_legacy(void *xsc)
2710 {
2711         struct bnx_softc *sc = xsc;
2712         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
2713
2714         if (sc->bnx_status_tag == sblk->bge_status_tag) {
2715                 uint32_t val;
2716
2717                 val = pci_read_config(sc->bnx_dev, BGE_PCI_PCISTATE, 4);
2718                 if (val & BGE_PCISTAT_INTR_NOTACT)
2719                         return;
2720         }
2721
2722         /*
2723          * NOTE:
2724          * Interrupt will have to be disabled if tagged status
2725          * is used, else interrupt will always be asserted on
2726          * certain chips (at least on BCM5750 AX/BX).
2727          */
2728         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
2729
2730         bnx_intr(sc);
2731 }
2732
2733 static void
2734 bnx_msi(void *xsc)
2735 {
2736         struct bnx_softc *sc = xsc;
2737
2738         /* Disable interrupt first */
2739         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
2740         bnx_intr(sc);
2741 }
2742
2743 static void
2744 bnx_msi_oneshot(void *xsc)
2745 {
2746         bnx_intr(xsc);
2747 }
2748
2749 static void
2750 bnx_intr(struct bnx_softc *sc)
2751 {
2752         struct ifnet *ifp = &sc->arpcom.ac_if;
2753         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
2754         uint16_t rx_prod, tx_cons;
2755         uint32_t status;
2756
2757         sc->bnx_status_tag = sblk->bge_status_tag;
2758         /*
2759          * Use a load fence to ensure that status_tag is saved 
2760          * before rx_prod, tx_cons and status.
2761          */
2762         cpu_lfence();
2763
2764         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2765         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2766         status = sblk->bge_status;
2767
2768         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bnx_link_evt)
2769                 bnx_link_poll(sc);
2770
2771         if (ifp->if_flags & IFF_RUNNING) {
2772                 if (sc->bnx_rx_saved_considx != rx_prod)
2773                         bnx_rxeof(sc, rx_prod);
2774
2775                 if (sc->bnx_tx_saved_considx != tx_cons)
2776                         bnx_txeof(sc, tx_cons);
2777         }
2778
2779         bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_status_tag << 24);
2780
2781         if (sc->bnx_coal_chg)
2782                 bnx_coal_change(sc);
2783 }
2784
2785 static void
2786 bnx_tick(void *xsc)
2787 {
2788         struct bnx_softc *sc = xsc;
2789         struct ifnet *ifp = &sc->arpcom.ac_if;
2790
2791         lwkt_serialize_enter(ifp->if_serializer);
2792
2793         KKASSERT(mycpuid == sc->bnx_stat_cpuid);
2794
2795         bnx_stats_update_regs(sc);
2796
2797         if (sc->bnx_flags & BNX_FLAG_TBI) {
2798                 /*
2799                  * Since in TBI mode auto-polling can't be used we should poll
2800                  * link status manually. Here we register pending link event
2801                  * and trigger interrupt.
2802                  */
2803                 sc->bnx_link_evt++;
2804                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
2805         } else if (!sc->bnx_link) {
2806                 mii_tick(device_get_softc(sc->bnx_miibus));
2807         }
2808
2809         callout_reset(&sc->bnx_stat_timer, hz, bnx_tick, sc);
2810
2811         lwkt_serialize_exit(ifp->if_serializer);
2812 }
2813
2814 static void
2815 bnx_stats_update_regs(struct bnx_softc *sc)
2816 {
2817         struct ifnet *ifp = &sc->arpcom.ac_if;
2818         struct bge_mac_stats_regs stats;
2819         uint32_t *s;
2820         int i;
2821
2822         s = (uint32_t *)&stats;
2823         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2824                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2825                 s++;
2826         }
2827
2828         ifp->if_collisions +=
2829            (stats.dot3StatsSingleCollisionFrames +
2830            stats.dot3StatsMultipleCollisionFrames +
2831            stats.dot3StatsExcessiveCollisions +
2832            stats.dot3StatsLateCollisions) -
2833            ifp->if_collisions;
2834 }
2835
2836 /*
2837  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2838  * pointers to descriptors.
2839  */
2840 static int
2841 bnx_encap(struct bnx_softc *sc, struct mbuf **m_head0, uint32_t *txidx,
2842     int *segs_used)
2843 {
2844         struct bge_tx_bd *d = NULL;
2845         uint16_t csum_flags = 0, vlan_tag = 0, mss = 0;
2846         bus_dma_segment_t segs[BNX_NSEG_NEW];
2847         bus_dmamap_t map;
2848         int error, maxsegs, nsegs, idx, i;
2849         struct mbuf *m_head = *m_head0, *m_new;
2850
2851         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
2852 #ifdef BNX_TSO_DEBUG
2853                 int tso_nsegs;
2854 #endif
2855
2856                 error = bnx_setup_tso(sc, m_head0, &mss, &csum_flags);
2857                 if (error)
2858                         return error;
2859                 m_head = *m_head0;
2860
2861 #ifdef BNX_TSO_DEBUG
2862                 tso_nsegs = (m_head->m_pkthdr.len /
2863                     m_head->m_pkthdr.tso_segsz) - 1;
2864                 if (tso_nsegs > (BNX_TSO_NSTATS - 1))
2865                         tso_nsegs = BNX_TSO_NSTATS - 1;
2866                 else if (tso_nsegs < 0)
2867                         tso_nsegs = 0;
2868                 sc->bnx_tsosegs[tso_nsegs]++;
2869 #endif
2870         } else if (m_head->m_pkthdr.csum_flags & BNX_CSUM_FEATURES) {
2871                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2872                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2873                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2874                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2875                 if (m_head->m_flags & M_LASTFRAG)
2876                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2877                 else if (m_head->m_flags & M_FRAG)
2878                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2879         }
2880         if (m_head->m_flags & M_VLANTAG) {
2881                 csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
2882                 vlan_tag = m_head->m_pkthdr.ether_vlantag;
2883         }
2884
2885         idx = *txidx;
2886         map = sc->bnx_cdata.bnx_tx_dmamap[idx];
2887
2888         maxsegs = (BGE_TX_RING_CNT - sc->bnx_txcnt) - BNX_NSEG_RSVD;
2889         KASSERT(maxsegs >= BNX_NSEG_SPARE,
2890                 ("not enough segments %d", maxsegs));
2891
2892         if (maxsegs > BNX_NSEG_NEW)
2893                 maxsegs = BNX_NSEG_NEW;
2894
2895         /*
2896          * Pad outbound frame to BGE_MIN_FRAMELEN for an unusual reason.
2897          * The bge hardware will pad out Tx runts to BGE_MIN_FRAMELEN,
2898          * but when such padded frames employ the bge IP/TCP checksum
2899          * offload, the hardware checksum assist gives incorrect results
2900          * (possibly from incorporating its own padding into the UDP/TCP
2901          * checksum; who knows).  If we pad such runts with zeros, the
2902          * onboard checksum comes out correct.
2903          */
2904         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2905             m_head->m_pkthdr.len < BNX_MIN_FRAMELEN) {
2906                 error = m_devpad(m_head, BNX_MIN_FRAMELEN);
2907                 if (error)
2908                         goto back;
2909         }
2910
2911         if ((sc->bnx_flags & BNX_FLAG_SHORTDMA) && m_head->m_next != NULL) {
2912                 m_new = bnx_defrag_shortdma(m_head);
2913                 if (m_new == NULL) {
2914                         error = ENOBUFS;
2915                         goto back;
2916                 }
2917                 *m_head0 = m_head = m_new;
2918         }
2919         if ((m_head->m_pkthdr.csum_flags & CSUM_TSO) == 0 &&
2920             sc->bnx_force_defrag && m_head->m_next != NULL) {
2921                 /*
2922                  * Forcefully defragment mbuf chain to overcome hardware
2923                  * limitation which only support a single outstanding
2924                  * DMA read operation.  If it fails, keep moving on using
2925                  * the original mbuf chain.
2926                  */
2927                 m_new = m_defrag(m_head, MB_DONTWAIT);
2928                 if (m_new != NULL)
2929                         *m_head0 = m_head = m_new;
2930         }
2931
2932         error = bus_dmamap_load_mbuf_defrag(sc->bnx_cdata.bnx_tx_mtag, map,
2933                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2934         if (error)
2935                 goto back;
2936         *segs_used += nsegs;
2937
2938         m_head = *m_head0;
2939         bus_dmamap_sync(sc->bnx_cdata.bnx_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2940
2941         for (i = 0; ; i++) {
2942                 d = &sc->bnx_ldata.bnx_tx_ring[idx];
2943
2944                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
2945                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
2946                 d->bge_len = segs[i].ds_len;
2947                 d->bge_flags = csum_flags;
2948                 d->bge_vlan_tag = vlan_tag;
2949                 d->bge_mss = mss;
2950
2951                 if (i == nsegs - 1)
2952                         break;
2953                 BNX_INC(idx, BGE_TX_RING_CNT);
2954         }
2955         /* Mark the last segment as end of packet... */
2956         d->bge_flags |= BGE_TXBDFLAG_END;
2957
2958         /*
2959          * Insure that the map for this transmission is placed at
2960          * the array index of the last descriptor in this chain.
2961          */
2962         sc->bnx_cdata.bnx_tx_dmamap[*txidx] = sc->bnx_cdata.bnx_tx_dmamap[idx];
2963         sc->bnx_cdata.bnx_tx_dmamap[idx] = map;
2964         sc->bnx_cdata.bnx_tx_chain[idx] = m_head;
2965         sc->bnx_txcnt += nsegs;
2966
2967         BNX_INC(idx, BGE_TX_RING_CNT);
2968         *txidx = idx;
2969 back:
2970         if (error) {
2971                 m_freem(*m_head0);
2972                 *m_head0 = NULL;
2973         }
2974         return error;
2975 }
2976
2977 /*
2978  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2979  * to the mbuf data regions directly in the transmit descriptors.
2980  */
2981 static void
2982 bnx_start(struct ifnet *ifp)
2983 {
2984         struct bnx_softc *sc = ifp->if_softc;
2985         struct mbuf *m_head = NULL;
2986         uint32_t prodidx;
2987         int nsegs = 0;
2988
2989         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2990                 return;
2991
2992         prodidx = sc->bnx_tx_prodidx;
2993
2994         while (sc->bnx_cdata.bnx_tx_chain[prodidx] == NULL) {
2995                 /*
2996                  * Sanity check: avoid coming within BGE_NSEG_RSVD
2997                  * descriptors of the end of the ring.  Also make
2998                  * sure there are BGE_NSEG_SPARE descriptors for
2999                  * jumbo buffers' or TSO segments' defragmentation.
3000                  */
3001                 if ((BGE_TX_RING_CNT - sc->bnx_txcnt) <
3002                     (BNX_NSEG_RSVD + BNX_NSEG_SPARE)) {
3003                         ifp->if_flags |= IFF_OACTIVE;
3004                         break;
3005                 }
3006
3007                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3008                 if (m_head == NULL)
3009                         break;
3010
3011                 /*
3012                  * Pack the data into the transmit ring. If we
3013                  * don't have room, set the OACTIVE flag and wait
3014                  * for the NIC to drain the ring.
3015                  */
3016                 if (bnx_encap(sc, &m_head, &prodidx, &nsegs)) {
3017                         ifp->if_flags |= IFF_OACTIVE;
3018                         ifp->if_oerrors++;
3019                         break;
3020                 }
3021
3022                 if (nsegs >= sc->bnx_tx_wreg) {
3023                         /* Transmit */
3024                         bnx_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3025                         nsegs = 0;
3026                 }
3027
3028                 ETHER_BPF_MTAP(ifp, m_head);
3029
3030                 /*
3031                  * Set a timeout in case the chip goes out to lunch.
3032                  */
3033                 ifp->if_timer = 5;
3034         }
3035
3036         if (nsegs > 0) {
3037                 /* Transmit */
3038                 bnx_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3039         }
3040         sc->bnx_tx_prodidx = prodidx;
3041 }
3042
3043 static void
3044 bnx_init(void *xsc)
3045 {
3046         struct bnx_softc *sc = xsc;
3047         struct ifnet *ifp = &sc->arpcom.ac_if;
3048         uint16_t *m;
3049         uint32_t mode;
3050
3051         ASSERT_SERIALIZED(ifp->if_serializer);
3052
3053         /* Cancel pending I/O and flush buffers. */
3054         bnx_stop(sc);
3055         bnx_reset(sc);
3056         bnx_chipinit(sc);
3057
3058         /*
3059          * Init the various state machines, ring
3060          * control blocks and firmware.
3061          */
3062         if (bnx_blockinit(sc)) {
3063                 if_printf(ifp, "initialization failure\n");
3064                 bnx_stop(sc);
3065                 return;
3066         }
3067
3068         /* Specify MTU. */
3069         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3070             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3071
3072         /* Load our MAC address. */
3073         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3074         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3075         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3076
3077         /* Enable or disable promiscuous mode as needed. */
3078         bnx_setpromisc(sc);
3079
3080         /* Program multicast filter. */
3081         bnx_setmulti(sc);
3082
3083         /* Init RX ring. */
3084         if (bnx_init_rx_ring_std(sc)) {
3085                 if_printf(ifp, "RX ring initialization failed\n");
3086                 bnx_stop(sc);
3087                 return;
3088         }
3089
3090         /* Init jumbo RX ring. */
3091         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3092                 if (bnx_init_rx_ring_jumbo(sc)) {
3093                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3094                         bnx_stop(sc);
3095                         return;
3096                 }
3097         }
3098
3099         /* Init our RX return ring index */
3100         sc->bnx_rx_saved_considx = 0;
3101
3102         /* Init TX ring. */
3103         bnx_init_tx_ring(sc);
3104
3105         /* Enable TX MAC state machine lockup fix. */
3106         mode = CSR_READ_4(sc, BGE_TX_MODE);
3107         mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3108         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
3109                 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3110                 mode |= CSR_READ_4(sc, BGE_TX_MODE) &
3111                     (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
3112         }
3113         /* Turn on transmitter */
3114         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3115
3116         /* Turn on receiver */
3117         BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3118
3119         /*
3120          * Set the number of good frames to receive after RX MBUF
3121          * Low Watermark has been reached.  After the RX MAC receives
3122          * this number of frames, it will drop subsequent incoming
3123          * frames until the MBUF High Watermark is reached.
3124          */
3125         if (BNX_IS_57765_FAMILY(sc))
3126                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
3127         else
3128                 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3129
3130         if (sc->bnx_irq_type == PCI_INTR_TYPE_MSI) {
3131                 if (bootverbose) {
3132                         if_printf(ifp, "MSI_MODE: %#x\n",
3133                             CSR_READ_4(sc, BGE_MSI_MODE));
3134                 }
3135         }
3136
3137         /* Tell firmware we're alive. */
3138         BNX_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3139
3140         /* Enable host interrupts if polling(4) is not enabled. */
3141         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3142 #ifdef IFPOLL_ENABLE
3143         if (ifp->if_flags & IFF_NPOLLING)
3144                 bnx_disable_intr(sc);
3145         else
3146 #endif
3147         bnx_enable_intr(sc);
3148
3149         bnx_ifmedia_upd(ifp);
3150
3151         ifp->if_flags |= IFF_RUNNING;
3152         ifp->if_flags &= ~IFF_OACTIVE;
3153
3154         callout_reset_bycpu(&sc->bnx_stat_timer, hz, bnx_tick, sc,
3155             sc->bnx_stat_cpuid);
3156 }
3157
3158 /*
3159  * Set media options.
3160  */
3161 static int
3162 bnx_ifmedia_upd(struct ifnet *ifp)
3163 {
3164         struct bnx_softc *sc = ifp->if_softc;
3165
3166         /* If this is a 1000baseX NIC, enable the TBI port. */
3167         if (sc->bnx_flags & BNX_FLAG_TBI) {
3168                 struct ifmedia *ifm = &sc->bnx_ifmedia;
3169
3170                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3171                         return(EINVAL);
3172
3173                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3174                 case IFM_AUTO:
3175                         break;
3176
3177                 case IFM_1000_SX:
3178                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3179                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
3180                                     BGE_MACMODE_HALF_DUPLEX);
3181                         } else {
3182                                 BNX_SETBIT(sc, BGE_MAC_MODE,
3183                                     BGE_MACMODE_HALF_DUPLEX);
3184                         }
3185                         break;
3186                 default:
3187                         return(EINVAL);
3188                 }
3189         } else {
3190                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3191
3192                 sc->bnx_link_evt++;
3193                 sc->bnx_link = 0;
3194                 if (mii->mii_instance) {
3195                         struct mii_softc *miisc;
3196
3197                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3198                                 mii_phy_reset(miisc);
3199                 }
3200                 mii_mediachg(mii);
3201
3202                 /*
3203                  * Force an interrupt so that we will call bnx_link_upd
3204                  * if needed and clear any pending link state attention.
3205                  * Without this we are not getting any further interrupts
3206                  * for link state changes and thus will not UP the link and
3207                  * not be able to send in bnx_start.  The only way to get
3208                  * things working was to receive a packet and get an RX
3209                  * intr.
3210                  *
3211                  * bnx_tick should help for fiber cards and we might not
3212                  * need to do this here if BNX_FLAG_TBI is set but as
3213                  * we poll for fiber anyway it should not harm.
3214                  */
3215                 BNX_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3216         }
3217         return(0);
3218 }
3219
3220 /*
3221  * Report current media status.
3222  */
3223 static void
3224 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3225 {
3226         struct bnx_softc *sc = ifp->if_softc;
3227
3228         if (sc->bnx_flags & BNX_FLAG_TBI) {
3229                 ifmr->ifm_status = IFM_AVALID;
3230                 ifmr->ifm_active = IFM_ETHER;
3231                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3232                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3233                         ifmr->ifm_status |= IFM_ACTIVE;
3234                 } else {
3235                         ifmr->ifm_active |= IFM_NONE;
3236                         return;
3237                 }
3238
3239                 ifmr->ifm_active |= IFM_1000_SX;
3240                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3241                         ifmr->ifm_active |= IFM_HDX;    
3242                 else
3243                         ifmr->ifm_active |= IFM_FDX;
3244         } else {
3245                 struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3246
3247                 mii_pollstat(mii);
3248                 ifmr->ifm_active = mii->mii_media_active;
3249                 ifmr->ifm_status = mii->mii_media_status;
3250         }
3251 }
3252
3253 static int
3254 bnx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3255 {
3256         struct bnx_softc *sc = ifp->if_softc;
3257         struct ifreq *ifr = (struct ifreq *)data;
3258         int mask, error = 0;
3259
3260         ASSERT_SERIALIZED(ifp->if_serializer);
3261
3262         switch (command) {
3263         case SIOCSIFMTU:
3264                 if ((!BNX_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3265                     (BNX_IS_JUMBO_CAPABLE(sc) &&
3266                      ifr->ifr_mtu > BNX_JUMBO_MTU)) {
3267                         error = EINVAL;
3268                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3269                         ifp->if_mtu = ifr->ifr_mtu;
3270                         if (ifp->if_flags & IFF_RUNNING)
3271                                 bnx_init(sc);
3272                 }
3273                 break;
3274         case SIOCSIFFLAGS:
3275                 if (ifp->if_flags & IFF_UP) {
3276                         if (ifp->if_flags & IFF_RUNNING) {
3277                                 mask = ifp->if_flags ^ sc->bnx_if_flags;
3278
3279                                 /*
3280                                  * If only the state of the PROMISC flag
3281                                  * changed, then just use the 'set promisc
3282                                  * mode' command instead of reinitializing
3283                                  * the entire NIC. Doing a full re-init
3284                                  * means reloading the firmware and waiting
3285                                  * for it to start up, which may take a
3286                                  * second or two.  Similarly for ALLMULTI.
3287                                  */
3288                                 if (mask & IFF_PROMISC)
3289                                         bnx_setpromisc(sc);
3290                                 if (mask & IFF_ALLMULTI)
3291                                         bnx_setmulti(sc);
3292                         } else {
3293                                 bnx_init(sc);
3294                         }
3295                 } else if (ifp->if_flags & IFF_RUNNING) {
3296                         bnx_stop(sc);
3297                 }
3298                 sc->bnx_if_flags = ifp->if_flags;
3299                 break;
3300         case SIOCADDMULTI:
3301         case SIOCDELMULTI:
3302                 if (ifp->if_flags & IFF_RUNNING)
3303                         bnx_setmulti(sc);
3304                 break;
3305         case SIOCSIFMEDIA:
3306         case SIOCGIFMEDIA:
3307                 if (sc->bnx_flags & BNX_FLAG_TBI) {
3308                         error = ifmedia_ioctl(ifp, ifr,
3309                             &sc->bnx_ifmedia, command);
3310                 } else {
3311                         struct mii_data *mii;
3312
3313                         mii = device_get_softc(sc->bnx_miibus);
3314                         error = ifmedia_ioctl(ifp, ifr,
3315                                               &mii->mii_media, command);
3316                 }
3317                 break;
3318         case SIOCSIFCAP:
3319                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3320                 if (mask & IFCAP_HWCSUM) {
3321                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3322                         if (ifp->if_capenable & IFCAP_TXCSUM)
3323                                 ifp->if_hwassist |= BNX_CSUM_FEATURES;
3324                         else
3325                                 ifp->if_hwassist &= ~BNX_CSUM_FEATURES;
3326                 }
3327                 if (mask & IFCAP_TSO) {
3328                         ifp->if_capenable ^= (mask & IFCAP_TSO);
3329                         if (ifp->if_capenable & IFCAP_TSO)
3330                                 ifp->if_hwassist |= CSUM_TSO;
3331                         else
3332                                 ifp->if_hwassist &= ~CSUM_TSO;
3333                 }
3334                 break;
3335         default:
3336                 error = ether_ioctl(ifp, command, data);
3337                 break;
3338         }
3339         return error;
3340 }
3341
3342 static void
3343 bnx_watchdog(struct ifnet *ifp)
3344 {
3345         struct bnx_softc *sc = ifp->if_softc;
3346
3347         if_printf(ifp, "watchdog timeout -- resetting\n");
3348
3349         bnx_init(sc);
3350
3351         ifp->if_oerrors++;
3352
3353         if (!ifq_is_empty(&ifp->if_snd))
3354                 if_devstart(ifp);
3355 }
3356
3357 /*
3358  * Stop the adapter and free any mbufs allocated to the
3359  * RX and TX lists.
3360  */
3361 static void
3362 bnx_stop(struct bnx_softc *sc)
3363 {
3364         struct ifnet *ifp = &sc->arpcom.ac_if;
3365
3366         ASSERT_SERIALIZED(ifp->if_serializer);
3367
3368         callout_stop(&sc->bnx_stat_timer);
3369
3370         /*
3371          * Disable all of the receiver blocks
3372          */
3373         bnx_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3374         bnx_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3375         bnx_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3376         bnx_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3377         bnx_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3378         bnx_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3379
3380         /*
3381          * Disable all of the transmit blocks
3382          */
3383         bnx_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3384         bnx_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3385         bnx_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3386         bnx_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3387         bnx_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3388         bnx_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3389
3390         /*
3391          * Shut down all of the memory managers and related
3392          * state machines.
3393          */
3394         bnx_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3395         bnx_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3396         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3397         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3398
3399         /* Disable host interrupts. */
3400         bnx_disable_intr(sc);
3401
3402         /*
3403          * Tell firmware we're shutting down.
3404          */
3405         BNX_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3406
3407         /* Free the RX lists. */
3408         bnx_free_rx_ring_std(sc);
3409
3410         /* Free jumbo RX list. */
3411         if (BNX_IS_JUMBO_CAPABLE(sc))
3412                 bnx_free_rx_ring_jumbo(sc);
3413
3414         /* Free TX buffers. */
3415         bnx_free_tx_ring(sc);
3416
3417         sc->bnx_status_tag = 0;
3418         sc->bnx_link = 0;
3419         sc->bnx_coal_chg = 0;
3420
3421         sc->bnx_tx_saved_considx = BNX_TXCONS_UNSET;
3422
3423         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3424         ifp->if_timer = 0;
3425 }
3426
3427 /*
3428  * Stop all chip I/O so that the kernel's probe routines don't
3429  * get confused by errant DMAs when rebooting.
3430  */
3431 static void
3432 bnx_shutdown(device_t dev)
3433 {
3434         struct bnx_softc *sc = device_get_softc(dev);
3435         struct ifnet *ifp = &sc->arpcom.ac_if;
3436
3437         lwkt_serialize_enter(ifp->if_serializer);
3438         bnx_stop(sc);
3439         bnx_reset(sc);
3440         lwkt_serialize_exit(ifp->if_serializer);
3441 }
3442
3443 static int
3444 bnx_suspend(device_t dev)
3445 {
3446         struct bnx_softc *sc = device_get_softc(dev);
3447         struct ifnet *ifp = &sc->arpcom.ac_if;
3448
3449         lwkt_serialize_enter(ifp->if_serializer);
3450         bnx_stop(sc);
3451         lwkt_serialize_exit(ifp->if_serializer);
3452
3453         return 0;
3454 }
3455
3456 static int
3457 bnx_resume(device_t dev)
3458 {
3459         struct bnx_softc *sc = device_get_softc(dev);
3460         struct ifnet *ifp = &sc->arpcom.ac_if;
3461
3462         lwkt_serialize_enter(ifp->if_serializer);
3463
3464         if (ifp->if_flags & IFF_UP) {
3465                 bnx_init(sc);
3466
3467                 if (!ifq_is_empty(&ifp->if_snd))
3468                         if_devstart(ifp);
3469         }
3470
3471         lwkt_serialize_exit(ifp->if_serializer);
3472
3473         return 0;
3474 }
3475
3476 static void
3477 bnx_setpromisc(struct bnx_softc *sc)
3478 {
3479         struct ifnet *ifp = &sc->arpcom.ac_if;
3480
3481         if (ifp->if_flags & IFF_PROMISC)
3482                 BNX_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3483         else
3484                 BNX_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3485 }
3486
3487 static void
3488 bnx_dma_free(struct bnx_softc *sc)
3489 {
3490         int i;
3491
3492         /* Destroy RX mbuf DMA stuffs. */
3493         if (sc->bnx_cdata.bnx_rx_mtag != NULL) {
3494                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3495                         bus_dmamap_destroy(sc->bnx_cdata.bnx_rx_mtag,
3496                             sc->bnx_cdata.bnx_rx_std_dmamap[i]);
3497                 }
3498                 bus_dmamap_destroy(sc->bnx_cdata.bnx_rx_mtag,
3499                                    sc->bnx_cdata.bnx_rx_tmpmap);
3500                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_rx_mtag);
3501         }
3502
3503         /* Destroy TX mbuf DMA stuffs. */
3504         if (sc->bnx_cdata.bnx_tx_mtag != NULL) {
3505                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3506                         bus_dmamap_destroy(sc->bnx_cdata.bnx_tx_mtag,
3507                             sc->bnx_cdata.bnx_tx_dmamap[i]);
3508                 }
3509                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_tx_mtag);
3510         }
3511
3512         /* Destroy standard RX ring */
3513         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_std_ring_tag,
3514                            sc->bnx_cdata.bnx_rx_std_ring_map,
3515                            sc->bnx_ldata.bnx_rx_std_ring);
3516
3517         if (BNX_IS_JUMBO_CAPABLE(sc))
3518                 bnx_free_jumbo_mem(sc);
3519
3520         /* Destroy RX return ring */
3521         bnx_dma_block_free(sc->bnx_cdata.bnx_rx_return_ring_tag,
3522                            sc->bnx_cdata.bnx_rx_return_ring_map,
3523                            sc->bnx_ldata.bnx_rx_return_ring);
3524
3525         /* Destroy TX ring */
3526         bnx_dma_block_free(sc->bnx_cdata.bnx_tx_ring_tag,
3527                            sc->bnx_cdata.bnx_tx_ring_map,
3528                            sc->bnx_ldata.bnx_tx_ring);
3529
3530         /* Destroy status block */
3531         bnx_dma_block_free(sc->bnx_cdata.bnx_status_tag,
3532                            sc->bnx_cdata.bnx_status_map,
3533                            sc->bnx_ldata.bnx_status_block);
3534
3535         /* Destroy the parent tag */
3536         if (sc->bnx_cdata.bnx_parent_tag != NULL)
3537                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_parent_tag);
3538 }
3539
3540 static int
3541 bnx_dma_alloc(struct bnx_softc *sc)
3542 {
3543         struct ifnet *ifp = &sc->arpcom.ac_if;
3544         bus_size_t txmaxsz;
3545         int i, error;
3546
3547         /*
3548          * Allocate the parent bus DMA tag appropriate for PCI.
3549          *
3550          * All of the NetExtreme/NetLink controllers have 4GB boundary
3551          * DMA bug.
3552          * Whenever an address crosses a multiple of the 4GB boundary
3553          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3554          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3555          * state machine will lockup and cause the device to hang.
3556          */
3557         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
3558                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3559                                    NULL, NULL,
3560                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3561                                    BUS_SPACE_MAXSIZE_32BIT,
3562                                    0, &sc->bnx_cdata.bnx_parent_tag);
3563         if (error) {
3564                 if_printf(ifp, "could not allocate parent dma tag\n");
3565                 return error;
3566         }
3567
3568         /*
3569          * Create DMA tag and maps for RX mbufs.
3570          */
3571         error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
3572                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3573                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
3574                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3575                                    &sc->bnx_cdata.bnx_rx_mtag);
3576         if (error) {
3577                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3578                 return error;
3579         }
3580
3581         error = bus_dmamap_create(sc->bnx_cdata.bnx_rx_mtag,
3582                                   BUS_DMA_WAITOK, &sc->bnx_cdata.bnx_rx_tmpmap);
3583         if (error) {
3584                 bus_dma_tag_destroy(sc->bnx_cdata.bnx_rx_mtag);
3585                 sc->bnx_cdata.bnx_rx_mtag = NULL;
3586                 return error;
3587         }
3588
3589         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3590                 error = bus_dmamap_create(sc->bnx_cdata.bnx_rx_mtag,
3591                                           BUS_DMA_WAITOK,
3592                                           &sc->bnx_cdata.bnx_rx_std_dmamap[i]);
3593                 if (error) {
3594                         int j;
3595
3596                         for (j = 0; j < i; ++j) {
3597                                 bus_dmamap_destroy(sc->bnx_cdata.bnx_rx_mtag,
3598                                         sc->bnx_cdata.bnx_rx_std_dmamap[j]);
3599                         }
3600                         bus_dma_tag_destroy(sc->bnx_cdata.bnx_rx_mtag);
3601                         sc->bnx_cdata.bnx_rx_mtag = NULL;
3602
3603                         if_printf(ifp, "could not create DMA map for RX\n");
3604                         return error;
3605                 }
3606         }
3607
3608         /*
3609          * Create DMA tag and maps for TX mbufs.
3610          */
3611         if (sc->bnx_flags & BNX_FLAG_TSO)
3612                 txmaxsz = IP_MAXPACKET + sizeof(struct ether_vlan_header);
3613         else
3614                 txmaxsz = BNX_JUMBO_FRAMELEN;
3615         error = bus_dma_tag_create(sc->bnx_cdata.bnx_parent_tag, 1, 0,
3616                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3617                                    NULL, NULL,
3618                                    txmaxsz, BNX_NSEG_NEW, PAGE_SIZE,
3619                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3620                                    BUS_DMA_ONEBPAGE,
3621                                    &sc->bnx_cdata.bnx_tx_mtag);
3622         if (error) {
3623                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
3624                 return error;
3625         }
3626
3627         for (i = 0; i < BGE_TX_RING_CNT; i++) {
3628                 error = bus_dmamap_create(sc->bnx_cdata.bnx_tx_mtag,
3629                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3630                                           &sc->bnx_cdata.bnx_tx_dmamap[i]);
3631                 if (error) {
3632                         int j;
3633
3634                         for (j = 0; j < i; ++j) {
3635                                 bus_dmamap_destroy(sc->bnx_cdata.bnx_tx_mtag,
3636                                         sc->bnx_cdata.bnx_tx_dmamap[j]);
3637                         }
3638                         bus_dma_tag_destroy(sc->bnx_cdata.bnx_tx_mtag);
3639                         sc->bnx_cdata.bnx_tx_mtag = NULL;
3640
3641                         if_printf(ifp, "could not create DMA map for TX\n");
3642                         return error;
3643                 }
3644         }
3645
3646         /*
3647          * Create DMA stuffs for standard RX ring.
3648          */
3649         error = bnx_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3650                                     &sc->bnx_cdata.bnx_rx_std_ring_tag,
3651                                     &sc->bnx_cdata.bnx_rx_std_ring_map,
3652                                     (void *)&sc->bnx_ldata.bnx_rx_std_ring,
3653                                     &sc->bnx_ldata.bnx_rx_std_ring_paddr);
3654         if (error) {
3655                 if_printf(ifp, "could not create std RX ring\n");
3656                 return error;
3657         }
3658
3659         /*
3660          * Create jumbo buffer pool.
3661          */
3662         if (BNX_IS_JUMBO_CAPABLE(sc)) {
3663                 error = bnx_alloc_jumbo_mem(sc);
3664                 if (error) {
3665                         if_printf(ifp, "could not create jumbo buffer pool\n");
3666                         return error;
3667                 }
3668         }
3669
3670         /*
3671          * Create DMA stuffs for RX return ring.
3672          */
3673         error = bnx_dma_block_alloc(sc,
3674             BGE_RX_RTN_RING_SZ(sc->bnx_return_ring_cnt),
3675             &sc->bnx_cdata.bnx_rx_return_ring_tag,
3676             &sc->bnx_cdata.bnx_rx_return_ring_map,
3677             (void *)&sc->bnx_ldata.bnx_rx_return_ring,
3678             &sc->bnx_ldata.bnx_rx_return_ring_paddr);
3679         if (error) {
3680                 if_printf(ifp, "could not create RX ret ring\n");
3681                 return error;
3682         }
3683
3684         /*
3685          * Create DMA stuffs for TX ring.
3686          */
3687         error = bnx_dma_block_alloc(sc, BGE_TX_RING_SZ,
3688                                     &sc->bnx_cdata.bnx_tx_ring_tag,
3689                                     &sc->bnx_cdata.bnx_tx_ring_map,
3690                                     (void *)&sc->bnx_ldata.bnx_tx_ring,
3691                                     &sc->bnx_ldata.bnx_tx_ring_paddr);
3692         if (error) {
3693                 if_printf(ifp, "could not create TX ring\n");
3694                 return error;
3695         }
3696
3697         /*
3698          * Create DMA stuffs for status block.
3699          */
3700         error = bnx_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3701                                     &sc->bnx_cdata.bnx_status_tag,
3702                                     &sc->bnx_cdata.bnx_status_map,
3703                                     (void *)&sc->bnx_ldata.bnx_status_block,
3704                                     &sc->bnx_ldata.bnx_status_block_paddr);
3705         if (error) {
3706                 if_printf(ifp, "could not create status block\n");
3707                 return error;
3708         }
3709
3710         return 0;
3711 }
3712
3713 static int
3714 bnx_dma_block_alloc(struct bnx_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3715                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3716 {
3717         bus_dmamem_t dmem;
3718         int error;
3719
3720         error = bus_dmamem_coherent(sc->bnx_cdata.bnx_parent_tag, PAGE_SIZE, 0,
3721                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3722                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3723         if (error)
3724                 return error;
3725
3726         *tag = dmem.dmem_tag;
3727         *map = dmem.dmem_map;
3728         *addr = dmem.dmem_addr;
3729         *paddr = dmem.dmem_busaddr;
3730
3731         return 0;
3732 }
3733
3734 static void
3735 bnx_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3736 {
3737         if (tag != NULL) {
3738                 bus_dmamap_unload(tag, map);
3739                 bus_dmamem_free(tag, addr, map);
3740                 bus_dma_tag_destroy(tag);
3741         }
3742 }
3743
3744 static void
3745 bnx_tbi_link_upd(struct bnx_softc *sc, uint32_t status)
3746 {
3747         struct ifnet *ifp = &sc->arpcom.ac_if;
3748
3749 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3750
3751         /*
3752          * Sometimes PCS encoding errors are detected in
3753          * TBI mode (on fiber NICs), and for some reason
3754          * the chip will signal them as link changes.
3755          * If we get a link change event, but the 'PCS
3756          * encoding error' bit in the MAC status register
3757          * is set, don't bother doing a link check.
3758          * This avoids spurious "gigabit link up" messages
3759          * that sometimes appear on fiber NICs during
3760          * periods of heavy traffic.
3761          */
3762         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3763                 if (!sc->bnx_link) {
3764                         sc->bnx_link++;
3765                         if (sc->bnx_asicrev == BGE_ASICREV_BCM5704) {
3766                                 BNX_CLRBIT(sc, BGE_MAC_MODE,
3767                                     BGE_MACMODE_TBI_SEND_CFGS);
3768                         }
3769                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3770
3771                         if (bootverbose)
3772                                 if_printf(ifp, "link UP\n");
3773
3774                         ifp->if_link_state = LINK_STATE_UP;
3775                         if_link_state_change(ifp);
3776                 }
3777         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3778                 if (sc->bnx_link) {
3779                         sc->bnx_link = 0;
3780
3781                         if (bootverbose)
3782                                 if_printf(ifp, "link DOWN\n");
3783
3784                         ifp->if_link_state = LINK_STATE_DOWN;
3785                         if_link_state_change(ifp);
3786                 }
3787         }
3788
3789 #undef PCS_ENCODE_ERR
3790
3791         /* Clear the attention. */
3792         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3793             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3794             BGE_MACSTAT_LINK_CHANGED);
3795 }
3796
3797 static void
3798 bnx_copper_link_upd(struct bnx_softc *sc, uint32_t status __unused)
3799 {
3800         struct ifnet *ifp = &sc->arpcom.ac_if;
3801         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3802
3803         mii_pollstat(mii);
3804         bnx_miibus_statchg(sc->bnx_dev);
3805
3806         if (bootverbose) {
3807                 if (sc->bnx_link)
3808                         if_printf(ifp, "link UP\n");
3809                 else
3810                         if_printf(ifp, "link DOWN\n");
3811         }
3812
3813         /* Clear the attention. */
3814         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3815             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3816             BGE_MACSTAT_LINK_CHANGED);
3817 }
3818
3819 static void
3820 bnx_autopoll_link_upd(struct bnx_softc *sc, uint32_t status __unused)
3821 {
3822         struct ifnet *ifp = &sc->arpcom.ac_if;
3823         struct mii_data *mii = device_get_softc(sc->bnx_miibus);
3824
3825         mii_pollstat(mii);
3826
3827         if (!sc->bnx_link &&
3828             (mii->mii_media_status & IFM_ACTIVE) &&
3829             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3830                 sc->bnx_link++;
3831                 if (bootverbose)
3832                         if_printf(ifp, "link UP\n");
3833         } else if (sc->bnx_link &&
3834             (!(mii->mii_media_status & IFM_ACTIVE) ||
3835             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3836                 sc->bnx_link = 0;
3837                 if (bootverbose)
3838                         if_printf(ifp, "link DOWN\n");
3839         }
3840
3841         /* Clear the attention. */
3842         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3843             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3844             BGE_MACSTAT_LINK_CHANGED);
3845 }
3846
3847 static int
3848 bnx_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3849 {
3850         struct bnx_softc *sc = arg1;
3851
3852         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3853             &sc->bnx_rx_coal_ticks,
3854             BNX_RX_COAL_TICKS_MIN, BNX_RX_COAL_TICKS_MAX,
3855             BNX_RX_COAL_TICKS_CHG);
3856 }
3857
3858 static int
3859 bnx_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3860 {
3861         struct bnx_softc *sc = arg1;
3862
3863         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3864             &sc->bnx_tx_coal_ticks,
3865             BNX_TX_COAL_TICKS_MIN, BNX_TX_COAL_TICKS_MAX,
3866             BNX_TX_COAL_TICKS_CHG);
3867 }
3868
3869 static int
3870 bnx_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
3871 {
3872         struct bnx_softc *sc = arg1;
3873
3874         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3875             &sc->bnx_rx_coal_bds,
3876             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
3877             BNX_RX_COAL_BDS_CHG);
3878 }
3879
3880 static int
3881 bnx_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
3882 {
3883         struct bnx_softc *sc = arg1;
3884
3885         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3886             &sc->bnx_tx_coal_bds,
3887             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
3888             BNX_TX_COAL_BDS_CHG);
3889 }
3890
3891 static int
3892 bnx_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
3893 {
3894         struct bnx_softc *sc = arg1;
3895
3896         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3897             &sc->bnx_rx_coal_bds_int,
3898             BNX_RX_COAL_BDS_MIN, BNX_RX_COAL_BDS_MAX,
3899             BNX_RX_COAL_BDS_INT_CHG);
3900 }
3901
3902 static int
3903 bnx_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
3904 {
3905         struct bnx_softc *sc = arg1;
3906
3907         return bnx_sysctl_coal_chg(oidp, arg1, arg2, req,
3908             &sc->bnx_tx_coal_bds_int,
3909             BNX_TX_COAL_BDS_MIN, BNX_TX_COAL_BDS_MAX,
3910             BNX_TX_COAL_BDS_INT_CHG);
3911 }
3912
3913 static int
3914 bnx_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3915     int coal_min, int coal_max, uint32_t coal_chg_mask)
3916 {
3917         struct bnx_softc *sc = arg1;
3918         struct ifnet *ifp = &sc->arpcom.ac_if;
3919         int error = 0, v;
3920
3921         lwkt_serialize_enter(ifp->if_serializer);
3922
3923         v = *coal;
3924         error = sysctl_handle_int(oidp, &v, 0, req);
3925         if (!error && req->newptr != NULL) {
3926                 if (v < coal_min || v > coal_max) {
3927                         error = EINVAL;
3928                 } else {
3929                         *coal = v;
3930                         sc->bnx_coal_chg |= coal_chg_mask;
3931                 }
3932         }
3933
3934         lwkt_serialize_exit(ifp->if_serializer);
3935         return error;
3936 }
3937
3938 static void
3939 bnx_coal_change(struct bnx_softc *sc)
3940 {
3941         struct ifnet *ifp = &sc->arpcom.ac_if;
3942         uint32_t val;
3943
3944         ASSERT_SERIALIZED(ifp->if_serializer);
3945
3946         if (sc->bnx_coal_chg & BNX_RX_COAL_TICKS_CHG) {
3947                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3948                             sc->bnx_rx_coal_ticks);
3949                 DELAY(10);
3950                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3951
3952                 if (bootverbose) {
3953                         if_printf(ifp, "rx_coal_ticks -> %u\n",
3954                                   sc->bnx_rx_coal_ticks);
3955                 }
3956         }
3957
3958         if (sc->bnx_coal_chg & BNX_TX_COAL_TICKS_CHG) {
3959                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3960                             sc->bnx_tx_coal_ticks);
3961                 DELAY(10);
3962                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3963
3964                 if (bootverbose) {
3965                         if_printf(ifp, "tx_coal_ticks -> %u\n",
3966                                   sc->bnx_tx_coal_ticks);
3967                 }
3968         }
3969
3970         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_CHG) {
3971                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3972                             sc->bnx_rx_coal_bds);
3973                 DELAY(10);
3974                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3975
3976                 if (bootverbose) {
3977                         if_printf(ifp, "rx_coal_bds -> %u\n",
3978                                   sc->bnx_rx_coal_bds);
3979                 }
3980         }
3981
3982         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_CHG) {
3983                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3984                             sc->bnx_tx_coal_bds);
3985                 DELAY(10);
3986                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3987
3988                 if (bootverbose) {
3989                         if_printf(ifp, "tx_coal_bds -> %u\n",
3990                                   sc->bnx_tx_coal_bds);
3991                 }
3992         }
3993
3994         if (sc->bnx_coal_chg & BNX_RX_COAL_BDS_INT_CHG) {
3995                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
3996                     sc->bnx_rx_coal_bds_int);
3997                 DELAY(10);
3998                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
3999
4000                 if (bootverbose) {
4001                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4002                             sc->bnx_rx_coal_bds_int);
4003                 }
4004         }
4005
4006         if (sc->bnx_coal_chg & BNX_TX_COAL_BDS_INT_CHG) {
4007                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4008                     sc->bnx_tx_coal_bds_int);
4009                 DELAY(10);
4010                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4011
4012                 if (bootverbose) {
4013                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4014                             sc->bnx_tx_coal_bds_int);
4015                 }
4016         }
4017
4018         sc->bnx_coal_chg = 0;
4019 }
4020
4021 static void
4022 bnx_intr_check(void *xsc)
4023 {
4024         struct bnx_softc *sc = xsc;
4025         struct ifnet *ifp = &sc->arpcom.ac_if;
4026         struct bge_status_block *sblk = sc->bnx_ldata.bnx_status_block;
4027
4028         lwkt_serialize_enter(ifp->if_serializer);
4029
4030         KKASSERT(mycpuid == sc->bnx_intr_cpuid);
4031
4032         if ((ifp->if_flags & (IFF_RUNNING | IFF_NPOLLING)) != IFF_RUNNING) {
4033                 lwkt_serialize_exit(ifp->if_serializer);
4034                 return;
4035         }
4036
4037         if (sblk->bge_idx[0].bge_rx_prod_idx != sc->bnx_rx_saved_considx ||
4038             sblk->bge_idx[0].bge_tx_cons_idx != sc->bnx_tx_saved_considx) {
4039                 if (sc->bnx_rx_check_considx == sc->bnx_rx_saved_considx &&
4040                     sc->bnx_tx_check_considx == sc->bnx_tx_saved_considx) {
4041                         if (!sc->bnx_intr_maylose) {
4042                                 sc->bnx_intr_maylose = TRUE;
4043                                 goto done;
4044                         }
4045                         if (bootverbose)
4046                                 if_printf(ifp, "lost interrupt\n");
4047                         bnx_msi(sc);
4048                 }
4049         }
4050         sc->bnx_intr_maylose = FALSE;
4051         sc->bnx_rx_check_considx = sc->bnx_rx_saved_considx;
4052         sc->bnx_tx_check_considx = sc->bnx_tx_saved_considx;
4053
4054 done:
4055         callout_reset(&sc->bnx_intr_timer, BNX_INTR_CKINTVL,
4056             bnx_intr_check, sc);
4057         lwkt_serialize_exit(ifp->if_serializer);
4058 }
4059
4060 static void
4061 bnx_enable_intr(struct bnx_softc *sc)
4062 {
4063         struct ifnet *ifp = &sc->arpcom.ac_if;
4064
4065         lwkt_serialize_handler_enable(ifp->if_serializer);
4066
4067         /*
4068          * Enable interrupt.
4069          */
4070         bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_status_tag << 24);
4071         if (sc->bnx_flags & BNX_FLAG_ONESHOT_MSI) {
4072                 /* XXX Linux driver */
4073                 bnx_writembx(sc, BGE_MBX_IRQ0_LO, sc->bnx_status_tag << 24);
4074         }
4075
4076         /*
4077          * Unmask the interrupt when we stop polling.
4078          */
4079         PCI_CLRBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4080             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4081
4082         /*
4083          * Trigger another interrupt, since above writing
4084          * to interrupt mailbox0 may acknowledge pending
4085          * interrupt.
4086          */
4087         BNX_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4088
4089         if (sc->bnx_flags & BNX_FLAG_STATUSTAG_BUG) {
4090                 sc->bnx_intr_maylose = FALSE;
4091                 sc->bnx_rx_check_considx = 0;
4092                 sc->bnx_tx_check_considx = 0;
4093
4094                 if (bootverbose)
4095                         if_printf(ifp, "status tag bug workaround\n");
4096
4097                 /* 10ms check interval */
4098                 callout_reset_bycpu(&sc->bnx_intr_timer, BNX_INTR_CKINTVL,
4099                     bnx_intr_check, sc, sc->bnx_intr_cpuid);
4100         }
4101 }
4102
4103 static void
4104 bnx_disable_intr(struct bnx_softc *sc)
4105 {
4106         struct ifnet *ifp = &sc->arpcom.ac_if;
4107
4108         /*
4109          * Mask the interrupt when we start polling.
4110          */
4111         PCI_SETBIT(sc->bnx_dev, BGE_PCI_MISC_CTL,
4112             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4113
4114         /*
4115          * Acknowledge possible asserted interrupt.
4116          */
4117         bnx_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4118
4119         callout_stop(&sc->bnx_intr_timer);
4120         sc->bnx_intr_maylose = FALSE;
4121         sc->bnx_rx_check_considx = 0;
4122         sc->bnx_tx_check_considx = 0;
4123
4124         sc->bnx_npoll.ifpc_stcount = 0;
4125
4126         lwkt_serialize_handler_disable(ifp->if_serializer);
4127 }
4128
4129 static int
4130 bnx_get_eaddr_mem(struct bnx_softc *sc, uint8_t ether_addr[])
4131 {
4132         uint32_t mac_addr;
4133         int ret = 1;
4134
4135         mac_addr = bnx_readmem_ind(sc, 0x0c14);
4136         if ((mac_addr >> 16) == 0x484b) {
4137                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4138                 ether_addr[1] = (uint8_t)mac_addr;
4139                 mac_addr = bnx_readmem_ind(sc, 0x0c18);
4140                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4141                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4142                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4143                 ether_addr[5] = (uint8_t)mac_addr;
4144                 ret = 0;
4145         }
4146         return ret;
4147 }
4148
4149 static int
4150 bnx_get_eaddr_nvram(struct bnx_softc *sc, uint8_t ether_addr[])
4151 {
4152         int mac_offset = BGE_EE_MAC_OFFSET;
4153
4154         if (BNX_IS_5717_PLUS(sc)) {
4155                 int f;
4156
4157                 f = pci_get_function(sc->bnx_dev);
4158                 if (f & 1)
4159                         mac_offset = BGE_EE_MAC_OFFSET_5717;
4160                 if (f > 1)
4161                         mac_offset += BGE_EE_MAC_OFFSET_5717_OFF;
4162         } else if (sc->bnx_asicrev == BGE_ASICREV_BCM5906) {
4163                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4164         }
4165
4166         return bnx_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4167 }
4168
4169 static int
4170 bnx_get_eaddr_eeprom(struct bnx_softc *sc, uint8_t ether_addr[])
4171 {
4172         if (sc->bnx_flags & BNX_FLAG_NO_EEPROM)
4173                 return 1;
4174
4175         return bnx_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4176                                ETHER_ADDR_LEN);
4177 }
4178
4179 static int
4180 bnx_get_eaddr(struct bnx_softc *sc, uint8_t eaddr[])
4181 {
4182         static const bnx_eaddr_fcn_t bnx_eaddr_funcs[] = {
4183                 /* NOTE: Order is critical */
4184                 bnx_get_eaddr_mem,
4185                 bnx_get_eaddr_nvram,
4186                 bnx_get_eaddr_eeprom,
4187                 NULL
4188         };
4189         const bnx_eaddr_fcn_t *func;
4190
4191         for (func = bnx_eaddr_funcs; *func != NULL; ++func) {
4192                 if ((*func)(sc, eaddr) == 0)
4193                         break;
4194         }
4195         return (*func == NULL ? ENXIO : 0);
4196 }
4197
4198 /*
4199  * NOTE: 'm' is not freed upon failure
4200  */
4201 struct mbuf *
4202 bnx_defrag_shortdma(struct mbuf *m)
4203 {
4204         struct mbuf *n;
4205         int found;
4206
4207         /*
4208          * If device receive two back-to-back send BDs with less than
4209          * or equal to 8 total bytes then the device may hang.  The two
4210          * back-to-back send BDs must in the same frame for this failure
4211          * to occur.  Scan mbuf chains and see whether two back-to-back
4212          * send BDs are there.  If this is the case, allocate new mbuf
4213          * and copy the frame to workaround the silicon bug.
4214          */
4215         for (n = m, found = 0; n != NULL; n = n->m_next) {
4216                 if (n->m_len < 8) {
4217                         found++;
4218                         if (found > 1)
4219                                 break;
4220                         continue;
4221                 }
4222                 found = 0;
4223         }
4224
4225         if (found > 1)
4226                 n = m_defrag(m, MB_DONTWAIT);
4227         else
4228                 n = m;
4229         return n;
4230 }
4231
4232 static void
4233 bnx_stop_block(struct bnx_softc *sc, bus_size_t reg, uint32_t bit)
4234 {
4235         int i;
4236
4237         BNX_CLRBIT(sc, reg, bit);
4238         for (i = 0; i < BNX_TIMEOUT; i++) {
4239                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4240                         return;
4241                 DELAY(100);
4242         }
4243 }
4244
4245 static void
4246 bnx_link_poll(struct bnx_softc *sc)
4247 {
4248         uint32_t status;
4249
4250         status = CSR_READ_4(sc, BGE_MAC_STS);
4251         if ((status & sc->bnx_link_chg) || sc->bnx_link_evt) {
4252                 sc->bnx_link_evt = 0;
4253                 sc->bnx_link_upd(sc, status);
4254         }
4255 }
4256
4257 static void
4258 bnx_enable_msi(struct bnx_softc *sc)
4259 {
4260         uint32_t msi_mode;
4261
4262         msi_mode = CSR_READ_4(sc, BGE_MSI_MODE);
4263         msi_mode |= BGE_MSIMODE_ENABLE;
4264         if (sc->bnx_flags & BNX_FLAG_ONESHOT_MSI) {
4265                 /*
4266                  * NOTE:
4267                  * 5718-PG105-R says that "one shot" mode
4268                  * does not work if MSI is used, however,
4269                  * it obviously works.
4270                  */
4271                 msi_mode &= ~BGE_MSIMODE_ONESHOT_DISABLE;
4272         }
4273         CSR_WRITE_4(sc, BGE_MSI_MODE, msi_mode);
4274 }
4275
4276 static uint32_t
4277 bnx_dma_swap_options(struct bnx_softc *sc)
4278 {
4279         uint32_t dma_options;
4280
4281         dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
4282             BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
4283 #if BYTE_ORDER == BIG_ENDIAN
4284         dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
4285 #endif
4286         if (sc->bnx_asicrev == BGE_ASICREV_BCM5720) {
4287                 dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA |
4288                     BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE |
4289                     BGE_MODECTL_HTX2B_ENABLE;
4290         }
4291         return dma_options;
4292 }
4293
4294 static int
4295 bnx_setup_tso(struct bnx_softc *sc, struct mbuf **mp,
4296     uint16_t *mss0, uint16_t *flags0)
4297 {
4298         struct mbuf *m;
4299         struct ip *ip;
4300         struct tcphdr *th;
4301         int thoff, iphlen, hoff, hlen;
4302         uint16_t flags, mss;
4303
4304         m = *mp;
4305         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4306
4307         hoff = m->m_pkthdr.csum_lhlen;
4308         iphlen = m->m_pkthdr.csum_iphlen;
4309         thoff = m->m_pkthdr.csum_thlen;
4310
4311         KASSERT(hoff > 0, ("invalid ether header len"));
4312         KASSERT(iphlen > 0, ("invalid ip header len"));
4313         KASSERT(thoff > 0, ("invalid tcp header len"));
4314
4315         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4316                 m = m_pullup(m, hoff + iphlen + thoff);
4317                 if (m == NULL) {
4318                         *mp = NULL;
4319                         return ENOBUFS;
4320                 }
4321                 *mp = m;
4322         }
4323         ip = mtodoff(m, struct ip *, hoff);
4324         th = mtodoff(m, struct tcphdr *, hoff + iphlen);
4325
4326         mss = m->m_pkthdr.tso_segsz;
4327         flags = BGE_TXBDFLAG_CPU_PRE_DMA | BGE_TXBDFLAG_CPU_POST_DMA;
4328
4329         ip->ip_len = htons(mss + iphlen + thoff);
4330         th->th_sum = 0;
4331
4332         hlen = (iphlen + thoff) >> 2;
4333         mss |= ((hlen & 0x3) << 14);
4334         flags |= ((hlen & 0xf8) << 7) | ((hlen & 0x4) << 2);
4335
4336         *mss0 = mss;
4337         *flags0 = flags;
4338
4339         return 0;
4340 }