CAM - add xpt_action_async()
[dragonfly.git] / sys / bus / cam / cam_xpt.c
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.68 2008/08/23 17:13:31 pavalos Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40 #include <sys/fcntl.h>
41 #include <sys/md5.h>
42 #include <sys/devicestat.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 #include <sys/bus.h>
47 #include <sys/thread.h>
48 #include <sys/lock.h>
49 #include <sys/spinlock.h>
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52
53 #include <machine/clock.h>
54 #include <machine/stdarg.h>
55
56 #include "cam.h"
57 #include "cam_ccb.h"
58 #include "cam_periph.h"
59 #include "cam_sim.h"
60 #include "cam_xpt.h"
61 #include "cam_xpt_sim.h"
62 #include "cam_xpt_periph.h"
63 #include "cam_debug.h"
64
65 #include "scsi/scsi_all.h"
66 #include "scsi/scsi_message.h"
67 #include "scsi/scsi_pass.h"
68 #include <sys/kthread.h>
69 #include "opt_cam.h"
70
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76         struct task     task;
77         void            *data1;
78         uintptr_t       data2;
79 };
80
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86         SLIST_ENTRY(async_node) links;
87         u_int32_t       event_enable;   /* Async Event enables */
88         void            (*callback)(void *arg, u_int32_t code,
89                                     struct cam_path *path, void *args);
90         void            *callback_arg;
91 };
92
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110         cam_pinfo pinfo;
111         struct    cam_ed *device;
112 };
113
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120         TAILQ_ENTRY(cam_ed) links;
121         struct  cam_ed_qinfo alloc_ccb_entry;
122         struct  cam_ed_qinfo send_ccb_entry;
123         struct  cam_et   *target;
124         struct  cam_sim  *sim;
125         lun_id_t         lun_id;
126         struct  camq drvq;              /*
127                                          * Queue of type drivers wanting to do
128                                          * work on this device.
129                                          */
130         struct  cam_ccbq ccbq;          /* Queue of pending ccbs */
131         struct  async_list asyncs;      /* Async callback info for this B/T/L */
132         struct  periph_list periphs;    /* All attached devices */
133         u_int   generation;             /* Generation number */
134         struct  cam_periph *owner;      /* Peripheral driver's ownership tag */
135         struct  xpt_quirk_entry *quirk; /* Oddities about this device */
136                                         /* Storage for the inquiry data */
137         cam_proto        protocol;
138         u_int            protocol_version;
139         cam_xport        transport;
140         u_int            transport_version;
141         struct           scsi_inquiry_data inq_data;
142         u_int8_t         inq_flags;     /*
143                                          * Current settings for inquiry flags.
144                                          * This allows us to override settings
145                                          * like disconnection and tagged
146                                          * queuing for a device.
147                                          */
148         u_int8_t         queue_flags;   /* Queue flags from the control page */
149         u_int8_t         serial_num_len;
150         u_int8_t        *serial_num;
151         u_int32_t        qfrozen_cnt;
152         u_int32_t        flags;
153 #define CAM_DEV_UNCONFIGURED            0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING     0x02
155 #define CAM_DEV_REL_ON_COMPLETE         0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY      0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED     0x10
158 #define CAM_DEV_TAG_AFTER_COUNT         0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID      0x40
160 #define CAM_DEV_IN_DV                   0x80
161 #define CAM_DEV_DV_HIT_BOTTOM           0x100
162         u_int32_t        tag_delay_count;
163 #define CAM_TAG_DELAY_COUNT             5
164         u_int32_t        tag_saved_openings;
165         u_int32_t        refcount;
166         struct callout   callout;
167 };
168
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176         TAILQ_HEAD(, cam_ed) ed_entries;
177         TAILQ_ENTRY(cam_et) links;
178         struct  cam_eb  *bus;
179         target_id_t     target_id;
180         u_int32_t       refcount;
181         u_int           generation;
182         struct          timeval last_reset;     /* uptime of last reset */
183 };
184
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191         TAILQ_HEAD(, cam_et) et_entries;
192         TAILQ_ENTRY(cam_eb)  links;
193         path_id_t            path_id;
194         struct cam_sim       *sim;
195         struct timeval       last_reset;        /* uptime of last reset */
196         u_int32_t            flags;
197 #define CAM_EB_RUNQ_SCHEDULED   0x01
198         u_int32_t            refcount;
199         u_int                generation;
200 };
201
202 struct cam_path {
203         struct cam_periph *periph;
204         struct cam_eb     *bus;
205         struct cam_et     *target;
206         struct cam_ed     *device;
207 };
208
209 struct xpt_quirk_entry {
210         struct scsi_inquiry_pattern inq_pat;
211         u_int8_t quirks;
212 #define CAM_QUIRK_NOLUNS        0x01
213 #define CAM_QUIRK_NOSERIAL      0x02
214 #define CAM_QUIRK_HILUNS        0x04
215 #define CAM_QUIRK_NOHILUNS      0x08
216         u_int mintags;
217         u_int maxtags;
218 };
219
220 static int cam_srch_hi = 0;
221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
224     sysctl_cam_search_luns, "I",
225     "allow search above LUN 7 for SCSI3 and greater devices");
226
227 #define CAM_SCSI2_MAXLUN        8
228 /*
229  * If we're not quirked to search <= the first 8 luns
230  * and we are either quirked to search above lun 8,
231  * or we're > SCSI-2 and we've enabled hilun searching,
232  * or we're > SCSI-2 and the last lun was a success,
233  * we can look for luns above lun 8.
234  */
235 #define CAN_SRCH_HI_SPARSE(dv)                          \
236   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0)      \
237   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)            \
238   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
239
240 #define CAN_SRCH_HI_DENSE(dv)                           \
241   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0)      \
242   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)            \
243   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
244
245 typedef enum {
246         XPT_FLAG_OPEN           = 0x01
247 } xpt_flags;
248
249 struct xpt_softc {
250         xpt_flags               flags;
251         u_int32_t               xpt_generation;
252
253         /* number of high powered commands that can go through right now */
254         STAILQ_HEAD(highpowerlist, ccb_hdr)     highpowerq;
255         int                     num_highpower;
256
257         /* queue for handling async rescan requests. */
258         TAILQ_HEAD(, ccb_hdr)   ccb_scanq;
259         int                     ccb_scanq_running;
260
261         /* Registered busses */
262         TAILQ_HEAD(,cam_eb)     xpt_busses;
263         u_int                   bus_generation;
264
265         struct intr_config_hook *xpt_config_hook;
266
267         struct lock             xpt_topo_lock;
268         struct lock             xpt_lock;
269 };
270
271 static const char quantum[] = "QUANTUM";
272 static const char sony[] = "SONY";
273 static const char west_digital[] = "WDIGTL";
274 static const char samsung[] = "SAMSUNG";
275 static const char seagate[] = "SEAGATE";
276 static const char microp[] = "MICROP";
277
278 static struct xpt_quirk_entry xpt_quirk_table[] =
279 {
280         {
281                 /* Reports QUEUE FULL for temporary resource shortages */
282                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
283                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
284         },
285         {
286                 /* Reports QUEUE FULL for temporary resource shortages */
287                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
288                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
289         },
290         {
291                 /* Reports QUEUE FULL for temporary resource shortages */
292                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
293                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
294         },
295         {
296                 /* Broken tagged queuing drive */
297                 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
298                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
299         },
300         {
301                 /* Broken tagged queuing drive */
302                 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
303                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
304         },
305         {
306                 /* Broken tagged queuing drive */
307                 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
308                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
309         },
310         {
311                 /*
312                  * Unfortunately, the Quantum Atlas III has the same
313                  * problem as the Atlas II drives above.
314                  * Reported by: "Johan Granlund" <johan@granlund.nu>
315                  *
316                  * For future reference, the drive with the problem was:
317                  * QUANTUM QM39100TD-SW N1B0
318                  *
319                  * It's possible that Quantum will fix the problem in later
320                  * firmware revisions.  If that happens, the quirk entry
321                  * will need to be made specific to the firmware revisions
322                  * with the problem.
323                  *
324                  */
325                 /* Reports QUEUE FULL for temporary resource shortages */
326                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
327                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
328         },
329         {
330                 /*
331                  * 18 Gig Atlas III, same problem as the 9G version.
332                  * Reported by: Andre Albsmeier
333                  *              <andre.albsmeier@mchp.siemens.de>
334                  *
335                  * For future reference, the drive with the problem was:
336                  * QUANTUM QM318000TD-S N491
337                  */
338                 /* Reports QUEUE FULL for temporary resource shortages */
339                 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
340                 /*quirks*/0, /*mintags*/24, /*maxtags*/32
341         },
342         {
343                 /*
344                  * Broken tagged queuing drive
345                  * Reported by: Bret Ford <bford@uop.cs.uop.edu>
346                  *         and: Martin Renters <martin@tdc.on.ca>
347                  */
348                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
349                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
350         },
351                 /*
352                  * The Seagate Medalist Pro drives have very poor write
353                  * performance with anything more than 2 tags.
354                  *
355                  * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
356                  * Drive:  <SEAGATE ST36530N 1444>
357                  *
358                  * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
359                  * Drive:  <SEAGATE ST34520W 1281>
360                  *
361                  * No one has actually reported that the 9G version
362                  * (ST39140*) of the Medalist Pro has the same problem, but
363                  * we're assuming that it does because the 4G and 6.5G
364                  * versions of the drive are broken.
365                  */
366         {
367                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
368                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
369         },
370         {
371                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
372                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
373         },
374         {
375                 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
376                 /*quirks*/0, /*mintags*/2, /*maxtags*/2
377         },
378         {
379                 /*
380                  * Slow when tagged queueing is enabled.  Write performance
381                  * steadily drops off with more and more concurrent
382                  * transactions.  Best sequential write performance with
383                  * tagged queueing turned off and write caching turned on.
384                  *
385                  * PR:  kern/10398
386                  * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
387                  * Drive:  DCAS-34330 w/ "S65A" firmware.
388                  *
389                  * The drive with the problem had the "S65A" firmware
390                  * revision, and has also been reported (by Stephen J.
391                  * Roznowski <sjr@home.net>) for a drive with the "S61A"
392                  * firmware revision.
393                  *
394                  * Although no one has reported problems with the 2 gig
395                  * version of the DCAS drive, the assumption is that it
396                  * has the same problems as the 4 gig version.  Therefore
397                  * this quirk entries disables tagged queueing for all
398                  * DCAS drives.
399                  */
400                 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
401                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
402         },
403         {
404                 /* Broken tagged queuing drive */
405                 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
406                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
407         },
408         {
409                 /* Broken tagged queuing drive */
410                 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
411                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
412         },
413         {
414                 /* This does not support other than LUN 0 */
415                 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
416                 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
417         },
418         {
419                 /*
420                  * Broken tagged queuing drive.
421                  * Submitted by:
422                  * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
423                  * in PR kern/9535
424                  */
425                 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
426                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
427         },
428         {
429                 /*
430                  * Slow when tagged queueing is enabled. (1.5MB/sec versus
431                  * 8MB/sec.)
432                  * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
433                  * Best performance with these drives is achieved with
434                  * tagged queueing turned off, and write caching turned on.
435                  */
436                 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
437                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
438         },
439         {
440                 /*
441                  * Slow when tagged queueing is enabled. (1.5MB/sec versus
442                  * 8MB/sec.)
443                  * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
444                  * Best performance with these drives is achieved with
445                  * tagged queueing turned off, and write caching turned on.
446                  */
447                 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
448                 /*quirks*/0, /*mintags*/0, /*maxtags*/0
449         },
450         {
451                 /*
452                  * Doesn't handle queue full condition correctly,
453                  * so we need to limit maxtags to what the device
454                  * can handle instead of determining this automatically.
455                  */
456                 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
457                 /*quirks*/0, /*mintags*/2, /*maxtags*/32
458         },
459         {
460                 /* Really only one LUN */
461                 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
462                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
463         },
464         {
465                 /* I can't believe we need a quirk for DPT volumes. */
466                 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
467                 CAM_QUIRK_NOLUNS,
468                 /*mintags*/0, /*maxtags*/255
469         },
470         {
471                 /*
472                  * Many Sony CDROM drives don't like multi-LUN probing.
473                  */
474                 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
475                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
476         },
477         {
478                 /*
479                  * This drive doesn't like multiple LUN probing.
480                  * Submitted by:  Parag Patel <parag@cgt.com>
481                  */
482                 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
483                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
484         },
485         {
486                 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
487                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
488         },
489         {
490                 /*
491                  * The 8200 doesn't like multi-lun probing, and probably
492                  * don't like serial number requests either.
493                  */
494                 {
495                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
496                         "EXB-8200*", "*"
497                 },
498                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
499         },
500         {
501                 /*
502                  * Let's try the same as above, but for a drive that says
503                  * it's an IPL-6860 but is actually an EXB 8200.
504                  */
505                 {
506                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
507                         "IPL-6860*", "*"
508                 },
509                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
510         },
511         {
512                 /*
513                  * These Hitachi drives don't like multi-lun probing.
514                  * The PR submitter has a DK319H, but says that the Linux
515                  * kernel has a similar work-around for the DK312 and DK314,
516                  * so all DK31* drives are quirked here.
517                  * PR:            misc/18793
518                  * Submitted by:  Paul Haddad <paul@pth.com>
519                  */
520                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
521                 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
522         },
523         {
524                 /*
525                  * The Hitachi CJ series with J8A8 firmware apparantly has
526                  * problems with tagged commands.
527                  * PR: 23536
528                  * Reported by: amagai@nue.org
529                  */
530                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
531                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
532         },
533         {
534                 /*
535                  * These are the large storage arrays.
536                  * Submitted by:  William Carrel <william.carrel@infospace.com>
537                  */
538                 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
539                 CAM_QUIRK_HILUNS, 2, 1024
540         },
541         {
542                 /*
543                  * This old revision of the TDC3600 is also SCSI-1, and
544                  * hangs upon serial number probing.
545                  */
546                 {
547                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
548                         " TDC 3600", "U07:"
549                 },
550                 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
551         },
552         {
553                 /*
554                  * Would repond to all LUNs if asked for.
555                  */
556                 {
557                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
558                         "CP150", "*"
559                 },
560                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
561         },
562         {
563                 /*
564                  * Would repond to all LUNs if asked for.
565                  */
566                 {
567                         T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
568                         "96X2*", "*"
569                 },
570                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
571         },
572         {
573                 /* Submitted by: Matthew Dodd <winter@jurai.net> */
574                 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
575                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
576         },
577         {
578                 /* Submitted by: Matthew Dodd <winter@jurai.net> */
579                 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
580                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
581         },
582         {
583                 /* TeraSolutions special settings for TRC-22 RAID */
584                 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
585                   /*quirks*/0, /*mintags*/55, /*maxtags*/255
586         },
587         {
588                 /* Veritas Storage Appliance */
589                 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
590                   CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
591         },
592         {
593                 /*
594                  * Would respond to all LUNs.  Device type and removable
595                  * flag are jumper-selectable.
596                  */
597                 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
598                   "Tahiti 1", "*"
599                 },
600                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
601         },
602         {
603                 /* EasyRAID E5A aka. areca ARC-6010 */
604                 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
605                   CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
606         },
607         {
608                 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
609                 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
610         },
611         {
612                 /* Default tagged queuing parameters for all devices */
613                 {
614                   T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
615                   /*vendor*/"*", /*product*/"*", /*revision*/"*"
616                 },
617                 /*quirks*/0, /*mintags*/2, /*maxtags*/255
618         },
619 };
620
621 static const int xpt_quirk_table_size =
622         sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
623
624 typedef enum {
625         DM_RET_COPY             = 0x01,
626         DM_RET_FLAG_MASK        = 0x0f,
627         DM_RET_NONE             = 0x00,
628         DM_RET_STOP             = 0x10,
629         DM_RET_DESCEND          = 0x20,
630         DM_RET_ERROR            = 0x30,
631         DM_RET_ACTION_MASK      = 0xf0
632 } dev_match_ret;
633
634 typedef enum {
635         XPT_DEPTH_BUS,
636         XPT_DEPTH_TARGET,
637         XPT_DEPTH_DEVICE,
638         XPT_DEPTH_PERIPH
639 } xpt_traverse_depth;
640
641 struct xpt_traverse_config {
642         xpt_traverse_depth      depth;
643         void                    *tr_func;
644         void                    *tr_arg;
645 };
646
647 typedef int     xpt_busfunc_t (struct cam_eb *bus, void *arg);
648 typedef int     xpt_targetfunc_t (struct cam_et *target, void *arg);
649 typedef int     xpt_devicefunc_t (struct cam_ed *device, void *arg);
650 typedef int     xpt_periphfunc_t (struct cam_periph *periph, void *arg);
651 typedef int     xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
652
653 /* Transport layer configuration information */
654 static struct xpt_softc xsoftc;
655
656 /* Queues for our software interrupt handler */
657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
659 static cam_simq_t cam_simq;
660 static struct spinlock cam_simq_spin;
661
662 struct cam_periph *xpt_periph;
663
664 static periph_init_t xpt_periph_init;
665
666 static periph_init_t probe_periph_init;
667
668 static struct periph_driver xpt_driver =
669 {
670         xpt_periph_init, "xpt",
671         TAILQ_HEAD_INITIALIZER(xpt_driver.units)
672 };
673
674 static struct periph_driver probe_driver =
675 {
676         probe_periph_init, "probe",
677         TAILQ_HEAD_INITIALIZER(probe_driver.units)
678 };
679
680 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
681 PERIPHDRIVER_DECLARE(probe, probe_driver);
682
683 #define XPT_CDEV_MAJOR 104
684
685 static d_open_t xptopen;
686 static d_close_t xptclose;
687 static d_ioctl_t xptioctl;
688
689 static struct dev_ops xpt_ops = {
690         { "xpt", XPT_CDEV_MAJOR, 0 },
691         .d_open = xptopen,
692         .d_close = xptclose,
693         .d_ioctl = xptioctl
694 };
695
696 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
697 static void dead_sim_poll(struct cam_sim *sim);
698
699 /* Dummy SIM that is used when the real one has gone. */
700 static struct cam_sim cam_dead_sim;
701 static struct lock    cam_dead_lock;
702
703 /* Storage for debugging datastructures */
704 #ifdef  CAMDEBUG
705 struct cam_path *cam_dpath;
706 u_int32_t cam_dflags;
707 u_int32_t cam_debug_delay;
708 #endif
709
710 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
711 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
712 #endif
713
714 /*
715  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
716  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
717  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
718  */
719 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
720     || defined(CAM_DEBUG_LUN)
721 #ifdef CAMDEBUG
722 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
723     || !defined(CAM_DEBUG_LUN)
724 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
725         and CAM_DEBUG_LUN"
726 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
727 #else /* !CAMDEBUG */
728 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
729 #endif /* CAMDEBUG */
730 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
731
732 /* Our boot-time initialization hook */
733 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
734
735 static moduledata_t cam_moduledata = {
736         "cam",
737         cam_module_event_handler,
738         NULL
739 };
740
741 static int      xpt_init(void *);
742
743 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
744 MODULE_VERSION(cam, 1);
745
746
747 static cam_status       xpt_compile_path(struct cam_path *new_path,
748                                          struct cam_periph *perph,
749                                          path_id_t path_id,
750                                          target_id_t target_id,
751                                          lun_id_t lun_id);
752
753 static void             xpt_release_path(struct cam_path *path);
754
755 static void             xpt_async_bcast(struct async_list *async_head,
756                                         u_int32_t async_code,
757                                         struct cam_path *path,
758                                         void *async_arg);
759 static void             xpt_dev_async(u_int32_t async_code,
760                                       struct cam_eb *bus,
761                                       struct cam_et *target,
762                                       struct cam_ed *device,
763                                       void *async_arg);
764 static path_id_t xptnextfreepathid(void);
765 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
766 static union ccb *xpt_get_ccb(struct cam_ed *device);
767 static int       xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
768                                   u_int32_t new_priority);
769 static void      xpt_run_dev_allocq(struct cam_eb *bus);
770 static void      xpt_run_dev_sendq(struct cam_eb *bus);
771 static timeout_t xpt_release_devq_timeout;
772 static void      xpt_release_bus(struct cam_eb *bus);
773 static void      xpt_release_devq_device(struct cam_ed *dev, u_int count,
774                                          int run_queue);
775 static struct cam_et*
776                  xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
777 static void      xpt_release_target(struct cam_eb *bus, struct cam_et *target);
778 static struct cam_ed*
779                  xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
780                                   lun_id_t lun_id);
781 static void      xpt_release_device(struct cam_eb *bus, struct cam_et *target,
782                                     struct cam_ed *device);
783 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
784 static struct cam_eb*
785                  xpt_find_bus(path_id_t path_id);
786 static struct cam_et*
787                  xpt_find_target(struct cam_eb *bus, target_id_t target_id);
788 static struct cam_ed*
789                  xpt_find_device(struct cam_et *target, lun_id_t lun_id);
790 static void      xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
791 static void      xpt_scan_lun(struct cam_periph *periph,
792                               struct cam_path *path, cam_flags flags,
793                               union ccb *ccb);
794 static void      xptscandone(struct cam_periph *periph, union ccb *done_ccb);
795 static xpt_busfunc_t    xptconfigbuscountfunc;
796 static xpt_busfunc_t    xptconfigfunc;
797 static void      xpt_config(void *arg);
798 static xpt_devicefunc_t xptpassannouncefunc;
799 static void      xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
800 static void      xptaction(struct cam_sim *sim, union ccb *work_ccb);
801 static void      xptpoll(struct cam_sim *sim);
802 static inthand2_t swi_cambio;
803 static void      camisr(void *);
804 static void      camisr_runqueue(struct cam_sim *);
805 static dev_match_ret    xptbusmatch(struct dev_match_pattern *patterns,
806                                     u_int num_patterns, struct cam_eb *bus);
807 static dev_match_ret    xptdevicematch(struct dev_match_pattern *patterns,
808                                        u_int num_patterns,
809                                        struct cam_ed *device);
810 static dev_match_ret    xptperiphmatch(struct dev_match_pattern *patterns,
811                                        u_int num_patterns,
812                                        struct cam_periph *periph);
813 static xpt_busfunc_t    xptedtbusfunc;
814 static xpt_targetfunc_t xptedttargetfunc;
815 static xpt_devicefunc_t xptedtdevicefunc;
816 static xpt_periphfunc_t xptedtperiphfunc;
817 static xpt_pdrvfunc_t   xptplistpdrvfunc;
818 static xpt_periphfunc_t xptplistperiphfunc;
819 static int              xptedtmatch(struct ccb_dev_match *cdm);
820 static int              xptperiphlistmatch(struct ccb_dev_match *cdm);
821 static int              xptbustraverse(struct cam_eb *start_bus,
822                                        xpt_busfunc_t *tr_func, void *arg);
823 static int              xpttargettraverse(struct cam_eb *bus,
824                                           struct cam_et *start_target,
825                                           xpt_targetfunc_t *tr_func, void *arg);
826 static int              xptdevicetraverse(struct cam_et *target,
827                                           struct cam_ed *start_device,
828                                           xpt_devicefunc_t *tr_func, void *arg);
829 static int              xptperiphtraverse(struct cam_ed *device,
830                                           struct cam_periph *start_periph,
831                                           xpt_periphfunc_t *tr_func, void *arg);
832 static int              xptpdrvtraverse(struct periph_driver **start_pdrv,
833                                         xpt_pdrvfunc_t *tr_func, void *arg);
834 static int              xptpdperiphtraverse(struct periph_driver **pdrv,
835                                             struct cam_periph *start_periph,
836                                             xpt_periphfunc_t *tr_func,
837                                             void *arg);
838 static xpt_busfunc_t    xptdefbusfunc;
839 static xpt_targetfunc_t xptdeftargetfunc;
840 static xpt_devicefunc_t xptdefdevicefunc;
841 static xpt_periphfunc_t xptdefperiphfunc;
842 static int              xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
843 static int              xpt_for_all_devices(xpt_devicefunc_t *tr_func,
844                                             void *arg);
845 static xpt_devicefunc_t xptsetasyncfunc;
846 static xpt_busfunc_t    xptsetasyncbusfunc;
847 static cam_status       xptregister(struct cam_periph *periph,
848                                     void *arg);
849 static cam_status       proberegister(struct cam_periph *periph,
850                                       void *arg);
851 static void      probeschedule(struct cam_periph *probe_periph);
852 static void      probestart(struct cam_periph *periph, union ccb *start_ccb);
853 static void      proberequestdefaultnegotiation(struct cam_periph *periph);
854 static int       proberequestbackoff(struct cam_periph *periph,
855                                      struct cam_ed *device);
856 static void      probedone(struct cam_periph *periph, union ccb *done_ccb);
857 static void      probecleanup(struct cam_periph *periph);
858 static void      xpt_find_quirk(struct cam_ed *device);
859 static void      xpt_devise_transport(struct cam_path *path);
860 static void      xpt_set_transfer_settings(struct ccb_trans_settings *cts,
861                                            struct cam_ed *device,
862                                            int async_update);
863 static void      xpt_toggle_tags(struct cam_path *path);
864 static void      xpt_start_tags(struct cam_path *path);
865 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
866                                             struct cam_ed *dev);
867 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
868                                            struct cam_ed *dev);
869 static __inline int periph_is_queued(struct cam_periph *periph);
870 static __inline int device_is_alloc_queued(struct cam_ed *device);
871 static __inline int device_is_send_queued(struct cam_ed *device);
872 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873
874 static __inline int
875 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 {
877         int retval;
878
879         if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
880                 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
881                         cam_ccbq_resize(&dev->ccbq,
882                                         dev->ccbq.dev_openings
883                                         + dev->ccbq.dev_active);
884                         dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
885                 }
886                 /*
887                  * The priority of a device waiting for CCB resources
888                  * is that of the the highest priority peripheral driver
889                  * enqueued.
890                  */
891                 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
892                                           &dev->alloc_ccb_entry.pinfo,
893                                           CAMQ_GET_HEAD(&dev->drvq)->priority);
894         } else {
895                 retval = 0;
896         }
897
898         return (retval);
899 }
900
901 static __inline int
902 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 {
904         int     retval;
905
906         if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907                 /*
908                  * The priority of a device waiting for controller
909                  * resources is that of the the highest priority CCB
910                  * enqueued.
911                  */
912                 retval =
913                     xpt_schedule_dev(&bus->sim->devq->send_queue,
914                                      &dev->send_ccb_entry.pinfo,
915                                      CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
916         } else {
917                 retval = 0;
918         }
919         return (retval);
920 }
921
922 static __inline int
923 periph_is_queued(struct cam_periph *periph)
924 {
925         return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
926 }
927
928 static __inline int
929 device_is_alloc_queued(struct cam_ed *device)
930 {
931         return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
932 }
933
934 static __inline int
935 device_is_send_queued(struct cam_ed *device)
936 {
937         return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
938 }
939
940 static __inline int
941 dev_allocq_is_runnable(struct cam_devq *devq)
942 {
943         /*
944          * Have work to do.
945          * Have space to do more work.
946          * Allowed to do work.
947          */
948         return ((devq->alloc_queue.qfrozen_cnt == 0)
949              && (devq->alloc_queue.entries > 0)
950              && (devq->alloc_openings > 0));
951 }
952
953 static void
954 xpt_periph_init(void)
955 {
956         dev_ops_add(&xpt_ops, 0, 0);
957         make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
958 }
959
960 static void
961 probe_periph_init(void)
962 {
963 }
964
965
966 static void
967 xptdone(struct cam_periph *periph, union ccb *done_ccb)
968 {
969         /* Caller will release the CCB */
970         wakeup(&done_ccb->ccb_h.cbfcnp);
971 }
972
973 static int
974 xptopen(struct dev_open_args *ap)
975 {
976         cdev_t dev = ap->a_head.a_dev;
977
978         /*
979          * Only allow read-write access.
980          */
981         if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
982                 return(EPERM);
983
984         /*
985          * We don't allow nonblocking access.
986          */
987         if ((ap->a_oflags & O_NONBLOCK) != 0) {
988                 kprintf("%s: can't do nonblocking access\n", devtoname(dev));
989                 return(ENODEV);
990         }
991
992         /* Mark ourselves open */
993         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
994         xsoftc.flags |= XPT_FLAG_OPEN;
995         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
996
997         return(0);
998 }
999
1000 static int
1001 xptclose(struct dev_close_args *ap)
1002 {
1003
1004         /* Mark ourselves closed */
1005         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1006         xsoftc.flags &= ~XPT_FLAG_OPEN;
1007         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1008
1009         return(0);
1010 }
1011
1012 /*
1013  * Don't automatically grab the xpt softc lock here even though this is going
1014  * through the xpt device.  The xpt device is really just a back door for
1015  * accessing other devices and SIMs, so the right thing to do is to grab
1016  * the appropriate SIM lock once the bus/SIM is located.
1017  */
1018 static int
1019 xptioctl(struct dev_ioctl_args *ap)
1020 {
1021         int error;
1022
1023         error = 0;
1024
1025         switch(ap->a_cmd) {
1026         /*
1027          * For the transport layer CAMIOCOMMAND ioctl, we really only want
1028          * to accept CCB types that don't quite make sense to send through a
1029          * passthrough driver.
1030          */
1031         case CAMIOCOMMAND: {
1032                 union ccb *ccb;
1033                 union ccb *inccb;
1034                 struct cam_eb *bus;
1035
1036                 inccb = (union ccb *)ap->a_data;
1037
1038                 bus = xpt_find_bus(inccb->ccb_h.path_id);
1039                 if (bus == NULL) {
1040                         error = EINVAL;
1041                         break;
1042                 }
1043
1044                 switch(inccb->ccb_h.func_code) {
1045                 case XPT_SCAN_BUS:
1046                 case XPT_RESET_BUS:
1047                         if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1048                          || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1049                                 error = EINVAL;
1050                                 break;
1051                         }
1052                         /* FALLTHROUGH */
1053                 case XPT_PATH_INQ:
1054                 case XPT_ENG_INQ:
1055                 case XPT_SCAN_LUN:
1056
1057                         ccb = xpt_alloc_ccb();
1058
1059                         CAM_SIM_LOCK(bus->sim);
1060
1061                         /*
1062                          * Create a path using the bus, target, and lun the
1063                          * user passed in.
1064                          */
1065                         if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1066                                             inccb->ccb_h.path_id,
1067                                             inccb->ccb_h.target_id,
1068                                             inccb->ccb_h.target_lun) !=
1069                                             CAM_REQ_CMP){
1070                                 error = EINVAL;
1071                                 CAM_SIM_UNLOCK(bus->sim);
1072                                 xpt_free_ccb(ccb);
1073                                 break;
1074                         }
1075                         /* Ensure all of our fields are correct */
1076                         xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1077                                       inccb->ccb_h.pinfo.priority);
1078                         xpt_merge_ccb(ccb, inccb);
1079                         ccb->ccb_h.cbfcnp = xptdone;
1080                         cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1081                         bcopy(ccb, inccb, sizeof(union ccb));
1082                         xpt_free_path(ccb->ccb_h.path);
1083                         xpt_free_ccb(ccb);
1084                         CAM_SIM_UNLOCK(bus->sim);
1085                         break;
1086
1087                 case XPT_DEBUG: {
1088                         union ccb ccb;
1089
1090                         /*
1091                          * This is an immediate CCB, so it's okay to
1092                          * allocate it on the stack.
1093                          */
1094
1095                         CAM_SIM_LOCK(bus->sim);
1096
1097                         /*
1098                          * Create a path using the bus, target, and lun the
1099                          * user passed in.
1100                          */
1101                         if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1102                                             inccb->ccb_h.path_id,
1103                                             inccb->ccb_h.target_id,
1104                                             inccb->ccb_h.target_lun) !=
1105                                             CAM_REQ_CMP){
1106                                 error = EINVAL;
1107                                 CAM_SIM_UNLOCK(bus->sim);
1108                                 break;
1109                         }
1110                         /* Ensure all of our fields are correct */
1111                         xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1112                                       inccb->ccb_h.pinfo.priority);
1113                         xpt_merge_ccb(&ccb, inccb);
1114                         ccb.ccb_h.cbfcnp = xptdone;
1115                         xpt_action(&ccb);
1116                         CAM_SIM_UNLOCK(bus->sim);
1117                         bcopy(&ccb, inccb, sizeof(union ccb));
1118                         xpt_free_path(ccb.ccb_h.path);
1119                         break;
1120
1121                 }
1122                 case XPT_DEV_MATCH: {
1123                         struct cam_periph_map_info mapinfo;
1124                         struct cam_path *old_path;
1125
1126                         /*
1127                          * We can't deal with physical addresses for this
1128                          * type of transaction.
1129                          */
1130                         if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1131                                 error = EINVAL;
1132                                 break;
1133                         }
1134
1135                         /*
1136                          * Save this in case the caller had it set to
1137                          * something in particular.
1138                          */
1139                         old_path = inccb->ccb_h.path;
1140
1141                         /*
1142                          * We really don't need a path for the matching
1143                          * code.  The path is needed because of the
1144                          * debugging statements in xpt_action().  They
1145                          * assume that the CCB has a valid path.
1146                          */
1147                         inccb->ccb_h.path = xpt_periph->path;
1148
1149                         bzero(&mapinfo, sizeof(mapinfo));
1150
1151                         /*
1152                          * Map the pattern and match buffers into kernel
1153                          * virtual address space.
1154                          */
1155                         error = cam_periph_mapmem(inccb, &mapinfo);
1156
1157                         if (error) {
1158                                 inccb->ccb_h.path = old_path;
1159                                 break;
1160                         }
1161
1162                         /*
1163                          * This is an immediate CCB, we can send it on directly.
1164                          */
1165                         xpt_action(inccb);
1166
1167                         /*
1168                          * Map the buffers back into user space.
1169                          */
1170                         cam_periph_unmapmem(inccb, &mapinfo);
1171
1172                         inccb->ccb_h.path = old_path;
1173
1174                         error = 0;
1175                         break;
1176                 }
1177                 default:
1178                         error = ENOTSUP;
1179                         break;
1180                 }
1181                 xpt_release_bus(bus);
1182                 break;
1183         }
1184         /*
1185          * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1186          * with the periphal driver name and unit name filled in.  The other
1187          * fields don't really matter as input.  The passthrough driver name
1188          * ("pass"), and unit number are passed back in the ccb.  The current
1189          * device generation number, and the index into the device peripheral
1190          * driver list, and the status are also passed back.  Note that
1191          * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1192          * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1193          * (or rather should be) impossible for the device peripheral driver
1194          * list to change since we look at the whole thing in one pass, and
1195          * we do it with lock protection.
1196          *
1197          */
1198         case CAMGETPASSTHRU: {
1199                 union ccb *ccb;
1200                 struct cam_periph *periph;
1201                 struct periph_driver **p_drv;
1202                 char   *name;
1203                 u_int unit;
1204                 u_int cur_generation;
1205                 int base_periph_found;
1206                 int splbreaknum;
1207
1208                 ccb = (union ccb *)ap->a_data;
1209                 unit = ccb->cgdl.unit_number;
1210                 name = ccb->cgdl.periph_name;
1211                 /*
1212                  * Every 100 devices, we want to drop our lock protection to
1213                  * give the software interrupt handler a chance to run.
1214                  * Most systems won't run into this check, but this should
1215                  * avoid starvation in the software interrupt handler in
1216                  * large systems.
1217                  */
1218                 splbreaknum = 100;
1219
1220                 ccb = (union ccb *)ap->a_data;
1221
1222                 base_periph_found = 0;
1223
1224                 /*
1225                  * Sanity check -- make sure we don't get a null peripheral
1226                  * driver name.
1227                  */
1228                 if (*ccb->cgdl.periph_name == '\0') {
1229                         error = EINVAL;
1230                         break;
1231                 }
1232
1233                 /* Keep the list from changing while we traverse it */
1234                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1235 ptstartover:
1236                 cur_generation = xsoftc.xpt_generation;
1237
1238                 /* first find our driver in the list of drivers */
1239                 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1240                         if (strcmp((*p_drv)->driver_name, name) == 0)
1241                                 break;
1242                 }
1243
1244                 if (*p_drv == NULL) {
1245                         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1246                         ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1247                         ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1248                         *ccb->cgdl.periph_name = '\0';
1249                         ccb->cgdl.unit_number = 0;
1250                         error = ENOENT;
1251                         break;
1252                 }
1253
1254                 /*
1255                  * Run through every peripheral instance of this driver
1256                  * and check to see whether it matches the unit passed
1257                  * in by the user.  If it does, get out of the loops and
1258                  * find the passthrough driver associated with that
1259                  * peripheral driver.
1260                  */
1261                 TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1262
1263                         if (periph->unit_number == unit) {
1264                                 break;
1265                         } else if (--splbreaknum == 0) {
1266                                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1267                                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1268                                 splbreaknum = 100;
1269                                 if (cur_generation != xsoftc.xpt_generation)
1270                                        goto ptstartover;
1271                         }
1272                 }
1273                 /*
1274                  * If we found the peripheral driver that the user passed
1275                  * in, go through all of the peripheral drivers for that
1276                  * particular device and look for a passthrough driver.
1277                  */
1278                 if (periph != NULL) {
1279                         struct cam_ed *device;
1280                         int i;
1281
1282                         base_periph_found = 1;
1283                         device = periph->path->device;
1284                         for (i = 0, periph = SLIST_FIRST(&device->periphs);
1285                              periph != NULL;
1286                              periph = SLIST_NEXT(periph, periph_links), i++) {
1287                                 /*
1288                                  * Check to see whether we have a
1289                                  * passthrough device or not.
1290                                  */
1291                                 if (strcmp(periph->periph_name, "pass") == 0) {
1292                                         /*
1293                                          * Fill in the getdevlist fields.
1294                                          */
1295                                         strcpy(ccb->cgdl.periph_name,
1296                                                periph->periph_name);
1297                                         ccb->cgdl.unit_number =
1298                                                 periph->unit_number;
1299                                         if (SLIST_NEXT(periph, periph_links))
1300                                                 ccb->cgdl.status =
1301                                                         CAM_GDEVLIST_MORE_DEVS;
1302                                         else
1303                                                 ccb->cgdl.status =
1304                                                        CAM_GDEVLIST_LAST_DEVICE;
1305                                         ccb->cgdl.generation =
1306                                                 device->generation;
1307                                         ccb->cgdl.index = i;
1308                                         /*
1309                                          * Fill in some CCB header fields
1310                                          * that the user may want.
1311                                          */
1312                                         ccb->ccb_h.path_id =
1313                                                 periph->path->bus->path_id;
1314                                         ccb->ccb_h.target_id =
1315                                                 periph->path->target->target_id;
1316                                         ccb->ccb_h.target_lun =
1317                                                 periph->path->device->lun_id;
1318                                         ccb->ccb_h.status = CAM_REQ_CMP;
1319                                         break;
1320                                 }
1321                         }
1322                 }
1323
1324                 /*
1325                  * If the periph is null here, one of two things has
1326                  * happened.  The first possibility is that we couldn't
1327                  * find the unit number of the particular peripheral driver
1328                  * that the user is asking about.  e.g. the user asks for
1329                  * the passthrough driver for "da11".  We find the list of
1330                  * "da" peripherals all right, but there is no unit 11.
1331                  * The other possibility is that we went through the list
1332                  * of peripheral drivers attached to the device structure,
1333                  * but didn't find one with the name "pass".  Either way,
1334                  * we return ENOENT, since we couldn't find something.
1335                  */
1336                 if (periph == NULL) {
1337                         ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1338                         ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1339                         *ccb->cgdl.periph_name = '\0';
1340                         ccb->cgdl.unit_number = 0;
1341                         error = ENOENT;
1342                         /*
1343                          * It is unfortunate that this is even necessary,
1344                          * but there are many, many clueless users out there.
1345                          * If this is true, the user is looking for the
1346                          * passthrough driver, but doesn't have one in his
1347                          * kernel.
1348                          */
1349                         if (base_periph_found == 1) {
1350                                 kprintf("xptioctl: pass driver is not in the "
1351                                        "kernel\n");
1352                                 kprintf("xptioctl: put \"device pass\" in "
1353                                        "your kernel config file\n");
1354                         }
1355                 }
1356                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1357                 break;
1358                 }
1359         default:
1360                 error = ENOTTY;
1361                 break;
1362         }
1363
1364         return(error);
1365 }
1366
1367 static int
1368 cam_module_event_handler(module_t mod, int what, void *arg)
1369 {
1370         int error;
1371
1372         switch (what) {
1373         case MOD_LOAD:
1374                 if ((error = xpt_init(NULL)) != 0)
1375                         return (error);
1376                 break;
1377         case MOD_UNLOAD:
1378                 return EBUSY;
1379         default:
1380                 return EOPNOTSUPP;
1381         }
1382
1383         return 0;
1384 }
1385
1386 /*
1387  * Thread to handle asynchronous main-context requests.
1388  *
1389  * This function is typically used by drivers to perform complex actions
1390  * such as bus scans and engineering requests in a main context instead
1391  * of an interrupt context.
1392  */
1393 static void
1394 xpt_scanner_thread(void *dummy)
1395 {
1396         union ccb       *ccb;
1397 #if 0
1398         struct cam_sim  *sim;
1399 #endif
1400
1401         for (;;) {
1402                 xpt_lock_buses();
1403                 xsoftc.ccb_scanq_running = 1;
1404                 while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1405                         TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1406                                      sim_links.tqe);
1407                         xpt_unlock_buses();
1408 #if 0
1409                         sim = ccb->ccb_h.path->bus->sim;
1410                         CAM_SIM_LOCK(sim);
1411 #endif
1412                         xpt_action(ccb);
1413 #if 0
1414                         CAM_SIM_UNLOCK(sim);
1415                         xpt_lock_buses();
1416 #endif
1417                 }
1418                 xsoftc.ccb_scanq_running = 0;
1419                 crit_enter();
1420                 tsleep_interlock(&xsoftc.ccb_scanq);
1421                 xpt_unlock_buses();
1422                 tsleep(&xsoftc.ccb_scanq, 0, "ccb_scanq", 0);
1423                 crit_exit();
1424         }
1425 }
1426
1427 /*
1428  * Issue an asynchronous asction
1429  */
1430 void
1431 xpt_action_async(union ccb *ccb)
1432 {
1433         xpt_lock_buses();
1434         TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1435         if (xsoftc.ccb_scanq_running == 0) {
1436                 xsoftc.ccb_scanq_running = 1;
1437                 wakeup(&xsoftc.ccb_scanq);
1438         }
1439         xpt_unlock_buses();
1440 }
1441
1442
1443 /* Functions accessed by the peripheral drivers */
1444 static int
1445 xpt_init(void *dummy)
1446 {
1447         struct cam_sim *xpt_sim;
1448         struct cam_path *path;
1449         struct cam_devq *devq;
1450         cam_status status;
1451
1452         TAILQ_INIT(&xsoftc.xpt_busses);
1453         TAILQ_INIT(&cam_simq);
1454         TAILQ_INIT(&xsoftc.ccb_scanq);
1455         STAILQ_INIT(&xsoftc.highpowerq);
1456         xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1457
1458         spin_init(&cam_simq_spin);
1459         lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1460         lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1461
1462         SLIST_INIT(&cam_dead_sim.ccb_freeq);
1463         TAILQ_INIT(&cam_dead_sim.sim_doneq);
1464         spin_init(&cam_dead_sim.sim_spin);
1465         cam_dead_sim.sim_action = dead_sim_action;
1466         cam_dead_sim.sim_poll = dead_sim_poll;
1467         cam_dead_sim.sim_name = "dead_sim";
1468         cam_dead_sim.lock = &cam_dead_lock;
1469         lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1470         cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1471
1472         /*
1473          * The xpt layer is, itself, the equivelent of a SIM.
1474          * Allow 16 ccbs in the ccb pool for it.  This should
1475          * give decent parallelism when we probe busses and
1476          * perform other XPT functions.
1477          */
1478         devq = cam_simq_alloc(16);
1479         xpt_sim = cam_sim_alloc(xptaction,
1480                                 xptpoll,
1481                                 "xpt",
1482                                 /*softc*/NULL,
1483                                 /*unit*/0,
1484                                 /*lock*/&xsoftc.xpt_lock,
1485                                 /*max_dev_transactions*/0,
1486                                 /*max_tagged_dev_transactions*/0,
1487                                 devq);
1488         cam_simq_release(devq);
1489         if (xpt_sim == NULL)
1490                 return (ENOMEM);
1491
1492         xpt_sim->max_ccbs = 16;
1493
1494         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1495         if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1496                 kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1497                        " failing attach\n", status);
1498                 return (EINVAL);
1499         }
1500
1501         /*
1502          * Looking at the XPT from the SIM layer, the XPT is
1503          * the equivelent of a peripheral driver.  Allocate
1504          * a peripheral driver entry for us.
1505          */
1506         if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1507                                       CAM_TARGET_WILDCARD,
1508                                       CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1509                 kprintf("xpt_init: xpt_create_path failed with status %#x,"
1510                        " failing attach\n", status);
1511                 return (EINVAL);
1512         }
1513
1514         cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1515                          path, NULL, 0, xpt_sim);
1516         xpt_free_path(path);
1517
1518         lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1519
1520         /*
1521          * Register a callback for when interrupts are enabled.
1522          */
1523         xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1524                                   M_CAMXPT, M_INTWAIT | M_ZERO);
1525         xsoftc.xpt_config_hook->ich_func = xpt_config;
1526         xsoftc.xpt_config_hook->ich_desc = "xpt";
1527         xsoftc.xpt_config_hook->ich_order = 1000;
1528         if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1529                 kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1530                 kprintf("xpt_init: config_intrhook_establish failed "
1531                        "- failing attach\n");
1532         }
1533
1534         /* fire up rescan thread */
1535         if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1536                 kprintf("xpt_init: failed to create rescan thread\n");
1537         }
1538         /* Install our software interrupt handlers */
1539         register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1540
1541         return (0);
1542 }
1543
1544 static cam_status
1545 xptregister(struct cam_periph *periph, void *arg)
1546 {
1547         struct cam_sim *xpt_sim;
1548
1549         if (periph == NULL) {
1550                 kprintf("xptregister: periph was NULL!!\n");
1551                 return(CAM_REQ_CMP_ERR);
1552         }
1553
1554         xpt_sim = (struct cam_sim *)arg;
1555         xpt_sim->softc = periph;
1556         xpt_periph = periph;
1557         periph->softc = NULL;
1558
1559         return(CAM_REQ_CMP);
1560 }
1561
1562 int32_t
1563 xpt_add_periph(struct cam_periph *periph)
1564 {
1565         struct cam_ed *device;
1566         int32_t  status;
1567         struct periph_list *periph_head;
1568
1569         sim_lock_assert_owned(periph->sim->lock);
1570
1571         device = periph->path->device;
1572
1573         periph_head = &device->periphs;
1574
1575         status = CAM_REQ_CMP;
1576
1577         if (device != NULL) {
1578                 /*
1579                  * Make room for this peripheral
1580                  * so it will fit in the queue
1581                  * when it's scheduled to run
1582                  */
1583                 status = camq_resize(&device->drvq,
1584                                      device->drvq.array_size + 1);
1585
1586                 device->generation++;
1587
1588                 SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1589         }
1590
1591         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1592         xsoftc.xpt_generation++;
1593         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1594
1595         return (status);
1596 }
1597
1598 void
1599 xpt_remove_periph(struct cam_periph *periph)
1600 {
1601         struct cam_ed *device;
1602
1603         sim_lock_assert_owned(periph->sim->lock);
1604
1605         device = periph->path->device;
1606
1607         if (device != NULL) {
1608                 struct periph_list *periph_head;
1609
1610                 periph_head = &device->periphs;
1611
1612                 /* Release the slot for this peripheral */
1613                 camq_resize(&device->drvq, device->drvq.array_size - 1);
1614
1615                 device->generation++;
1616
1617                 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1618         }
1619
1620         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1621         xsoftc.xpt_generation++;
1622         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1623 }
1624
1625 void
1626 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1627 {
1628         struct  ccb_pathinq cpi;
1629         struct  ccb_trans_settings cts;
1630         struct  cam_path *path;
1631         u_int   speed;
1632         u_int   freq;
1633         u_int   mb;
1634
1635         sim_lock_assert_owned(periph->sim->lock);
1636
1637         path = periph->path;
1638         /*
1639          * To ensure that this is printed in one piece,
1640          * mask out CAM interrupts.
1641          */
1642         kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1643                periph->periph_name, periph->unit_number,
1644                path->bus->sim->sim_name,
1645                path->bus->sim->unit_number,
1646                path->bus->sim->bus_id,
1647                path->target->target_id,
1648                path->device->lun_id);
1649         kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1650         scsi_print_inquiry(&path->device->inq_data);
1651         if (bootverbose && path->device->serial_num_len > 0) {
1652                 /* Don't wrap the screen  - print only the first 60 chars */
1653                 kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1654                        periph->unit_number, path->device->serial_num);
1655         }
1656         xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1657         cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1658         cts.type = CTS_TYPE_CURRENT_SETTINGS;
1659         xpt_action((union ccb*)&cts);
1660         if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1661                 return;
1662         }
1663
1664         /* Ask the SIM for its base transfer speed */
1665         xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1666         cpi.ccb_h.func_code = XPT_PATH_INQ;
1667         xpt_action((union ccb *)&cpi);
1668
1669         speed = cpi.base_transfer_speed;
1670         freq = 0;
1671         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1672                 struct  ccb_trans_settings_spi *spi;
1673
1674                 spi = &cts.xport_specific.spi;
1675                 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1676                   && spi->sync_offset != 0) {
1677                         freq = scsi_calc_syncsrate(spi->sync_period);
1678                         speed = freq;
1679                 }
1680
1681                 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1682                         speed *= (0x01 << spi->bus_width);
1683         }
1684         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1685                 struct  ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1686                 if (fc->valid & CTS_FC_VALID_SPEED) {
1687                         speed = fc->bitrate;
1688                 }
1689         }
1690
1691         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1692                 struct  ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1693                 if (sas->valid & CTS_SAS_VALID_SPEED) {
1694                         speed = sas->bitrate;
1695                 }
1696         }
1697
1698         mb = speed / 1000;
1699         if (mb > 0)
1700                 kprintf("%s%d: %d.%03dMB/s transfers",
1701                        periph->periph_name, periph->unit_number,
1702                        mb, speed % 1000);
1703         else
1704                 kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1705                        periph->unit_number, speed);
1706         /* Report additional information about SPI connections */
1707         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1708                 struct  ccb_trans_settings_spi *spi;
1709
1710                 spi = &cts.xport_specific.spi;
1711                 if (freq != 0) {
1712                         kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1713                                freq % 1000,
1714                                (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1715                              ? " DT" : "",
1716                                spi->sync_offset);
1717                 }
1718                 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1719                  && spi->bus_width > 0) {
1720                         if (freq != 0) {
1721                                 kprintf(", ");
1722                         } else {
1723                                 kprintf(" (");
1724                         }
1725                         kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1726                 } else if (freq != 0) {
1727                         kprintf(")");
1728                 }
1729         }
1730         if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1731                 struct  ccb_trans_settings_fc *fc;
1732
1733                 fc = &cts.xport_specific.fc;
1734                 if (fc->valid & CTS_FC_VALID_WWNN)
1735                         kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1736                 if (fc->valid & CTS_FC_VALID_WWPN)
1737                         kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1738                 if (fc->valid & CTS_FC_VALID_PORT)
1739                         kprintf(" PortID 0x%x", fc->port);
1740         }
1741
1742         if (path->device->inq_flags & SID_CmdQue
1743          || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1744                 kprintf("\n%s%d: Command Queueing Enabled",
1745                        periph->periph_name, periph->unit_number);
1746         }
1747         kprintf("\n");
1748
1749         /*
1750          * We only want to print the caller's announce string if they've
1751          * passed one in..
1752          */
1753         if (announce_string != NULL)
1754                 kprintf("%s%d: %s\n", periph->periph_name,
1755                        periph->unit_number, announce_string);
1756 }
1757
1758 static dev_match_ret
1759 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1760             struct cam_eb *bus)
1761 {
1762         dev_match_ret retval;
1763         int i;
1764
1765         retval = DM_RET_NONE;
1766
1767         /*
1768          * If we aren't given something to match against, that's an error.
1769          */
1770         if (bus == NULL)
1771                 return(DM_RET_ERROR);
1772
1773         /*
1774          * If there are no match entries, then this bus matches no
1775          * matter what.
1776          */
1777         if ((patterns == NULL) || (num_patterns == 0))
1778                 return(DM_RET_DESCEND | DM_RET_COPY);
1779
1780         for (i = 0; i < num_patterns; i++) {
1781                 struct bus_match_pattern *cur_pattern;
1782
1783                 /*
1784                  * If the pattern in question isn't for a bus node, we
1785                  * aren't interested.  However, we do indicate to the
1786                  * calling routine that we should continue descending the
1787                  * tree, since the user wants to match against lower-level
1788                  * EDT elements.
1789                  */
1790                 if (patterns[i].type != DEV_MATCH_BUS) {
1791                         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1792                                 retval |= DM_RET_DESCEND;
1793                         continue;
1794                 }
1795
1796                 cur_pattern = &patterns[i].pattern.bus_pattern;
1797
1798                 /*
1799                  * If they want to match any bus node, we give them any
1800                  * device node.
1801                  */
1802                 if (cur_pattern->flags == BUS_MATCH_ANY) {
1803                         /* set the copy flag */
1804                         retval |= DM_RET_COPY;
1805
1806                         /*
1807                          * If we've already decided on an action, go ahead
1808                          * and return.
1809                          */
1810                         if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1811                                 return(retval);
1812                 }
1813
1814                 /*
1815                  * Not sure why someone would do this...
1816                  */
1817                 if (cur_pattern->flags == BUS_MATCH_NONE)
1818                         continue;
1819
1820                 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1821                  && (cur_pattern->path_id != bus->path_id))
1822                         continue;
1823
1824                 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1825                  && (cur_pattern->bus_id != bus->sim->bus_id))
1826                         continue;
1827
1828                 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1829                  && (cur_pattern->unit_number != bus->sim->unit_number))
1830                         continue;
1831
1832                 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1833                  && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1834                              DEV_IDLEN) != 0))
1835                         continue;
1836
1837                 /*
1838                  * If we get to this point, the user definitely wants
1839                  * information on this bus.  So tell the caller to copy the
1840                  * data out.
1841                  */
1842                 retval |= DM_RET_COPY;
1843
1844                 /*
1845                  * If the return action has been set to descend, then we
1846                  * know that we've already seen a non-bus matching
1847                  * expression, therefore we need to further descend the tree.
1848                  * This won't change by continuing around the loop, so we
1849                  * go ahead and return.  If we haven't seen a non-bus
1850                  * matching expression, we keep going around the loop until
1851                  * we exhaust the matching expressions.  We'll set the stop
1852                  * flag once we fall out of the loop.
1853                  */
1854                 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1855                         return(retval);
1856         }
1857
1858         /*
1859          * If the return action hasn't been set to descend yet, that means
1860          * we haven't seen anything other than bus matching patterns.  So
1861          * tell the caller to stop descending the tree -- the user doesn't
1862          * want to match against lower level tree elements.
1863          */
1864         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1865                 retval |= DM_RET_STOP;
1866
1867         return(retval);
1868 }
1869
1870 static dev_match_ret
1871 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1872                struct cam_ed *device)
1873 {
1874         dev_match_ret retval;
1875         int i;
1876
1877         retval = DM_RET_NONE;
1878
1879         /*
1880          * If we aren't given something to match against, that's an error.
1881          */
1882         if (device == NULL)
1883                 return(DM_RET_ERROR);
1884
1885         /*
1886          * If there are no match entries, then this device matches no
1887          * matter what.
1888          */
1889         if ((patterns == NULL) || (num_patterns == 0))
1890                 return(DM_RET_DESCEND | DM_RET_COPY);
1891
1892         for (i = 0; i < num_patterns; i++) {
1893                 struct device_match_pattern *cur_pattern;
1894
1895                 /*
1896                  * If the pattern in question isn't for a device node, we
1897                  * aren't interested.
1898                  */
1899                 if (patterns[i].type != DEV_MATCH_DEVICE) {
1900                         if ((patterns[i].type == DEV_MATCH_PERIPH)
1901                          && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1902                                 retval |= DM_RET_DESCEND;
1903                         continue;
1904                 }
1905
1906                 cur_pattern = &patterns[i].pattern.device_pattern;
1907
1908                 /*
1909                  * If they want to match any device node, we give them any
1910                  * device node.
1911                  */
1912                 if (cur_pattern->flags == DEV_MATCH_ANY) {
1913                         /* set the copy flag */
1914                         retval |= DM_RET_COPY;
1915
1916
1917                         /*
1918                          * If we've already decided on an action, go ahead
1919                          * and return.
1920                          */
1921                         if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1922                                 return(retval);
1923                 }
1924
1925                 /*
1926                  * Not sure why someone would do this...
1927                  */
1928                 if (cur_pattern->flags == DEV_MATCH_NONE)
1929                         continue;
1930
1931                 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1932                  && (cur_pattern->path_id != device->target->bus->path_id))
1933                         continue;
1934
1935                 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1936                  && (cur_pattern->target_id != device->target->target_id))
1937                         continue;
1938
1939                 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1940                  && (cur_pattern->target_lun != device->lun_id))
1941                         continue;
1942
1943                 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1944                  && (cam_quirkmatch((caddr_t)&device->inq_data,
1945                                     (caddr_t)&cur_pattern->inq_pat,
1946                                     1, sizeof(cur_pattern->inq_pat),
1947                                     scsi_static_inquiry_match) == NULL))
1948                         continue;
1949
1950                 /*
1951                  * If we get to this point, the user definitely wants
1952                  * information on this device.  So tell the caller to copy
1953                  * the data out.
1954                  */
1955                 retval |= DM_RET_COPY;
1956
1957                 /*
1958                  * If the return action has been set to descend, then we
1959                  * know that we've already seen a peripheral matching
1960                  * expression, therefore we need to further descend the tree.
1961                  * This won't change by continuing around the loop, so we
1962                  * go ahead and return.  If we haven't seen a peripheral
1963                  * matching expression, we keep going around the loop until
1964                  * we exhaust the matching expressions.  We'll set the stop
1965                  * flag once we fall out of the loop.
1966                  */
1967                 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1968                         return(retval);
1969         }
1970
1971         /*
1972          * If the return action hasn't been set to descend yet, that means
1973          * we haven't seen any peripheral matching patterns.  So tell the
1974          * caller to stop descending the tree -- the user doesn't want to
1975          * match against lower level tree elements.
1976          */
1977         if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1978                 retval |= DM_RET_STOP;
1979
1980         return(retval);
1981 }
1982
1983 /*
1984  * Match a single peripheral against any number of match patterns.
1985  */
1986 static dev_match_ret
1987 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1988                struct cam_periph *periph)
1989 {
1990         dev_match_ret retval;
1991         int i;
1992
1993         /*
1994          * If we aren't given something to match against, that's an error.
1995          */
1996         if (periph == NULL)
1997                 return(DM_RET_ERROR);
1998
1999         /*
2000          * If there are no match entries, then this peripheral matches no
2001          * matter what.
2002          */
2003         if ((patterns == NULL) || (num_patterns == 0))
2004                 return(DM_RET_STOP | DM_RET_COPY);
2005
2006         /*
2007          * There aren't any nodes below a peripheral node, so there's no
2008          * reason to descend the tree any further.
2009          */
2010         retval = DM_RET_STOP;
2011
2012         for (i = 0; i < num_patterns; i++) {
2013                 struct periph_match_pattern *cur_pattern;
2014
2015                 /*
2016                  * If the pattern in question isn't for a peripheral, we
2017                  * aren't interested.
2018                  */
2019                 if (patterns[i].type != DEV_MATCH_PERIPH)
2020                         continue;
2021
2022                 cur_pattern = &patterns[i].pattern.periph_pattern;
2023
2024                 /*
2025                  * If they want to match on anything, then we will do so.
2026                  */
2027                 if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2028                         /* set the copy flag */
2029                         retval |= DM_RET_COPY;
2030
2031                         /*
2032                          * We've already set the return action to stop,
2033                          * since there are no nodes below peripherals in
2034                          * the tree.
2035                          */
2036                         return(retval);
2037                 }
2038
2039                 /*
2040                  * Not sure why someone would do this...
2041                  */
2042                 if (cur_pattern->flags == PERIPH_MATCH_NONE)
2043                         continue;
2044
2045                 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2046                  && (cur_pattern->path_id != periph->path->bus->path_id))
2047                         continue;
2048
2049                 /*
2050                  * For the target and lun id's, we have to make sure the
2051                  * target and lun pointers aren't NULL.  The xpt peripheral
2052                  * has a wildcard target and device.
2053                  */
2054                 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2055                  && ((periph->path->target == NULL)
2056                  ||(cur_pattern->target_id != periph->path->target->target_id)))
2057                         continue;
2058
2059                 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2060                  && ((periph->path->device == NULL)
2061                  || (cur_pattern->target_lun != periph->path->device->lun_id)))
2062                         continue;
2063
2064                 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2065                  && (cur_pattern->unit_number != periph->unit_number))
2066                         continue;
2067
2068                 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2069                  && (strncmp(cur_pattern->periph_name, periph->periph_name,
2070                              DEV_IDLEN) != 0))
2071                         continue;
2072
2073                 /*
2074                  * If we get to this point, the user definitely wants
2075                  * information on this peripheral.  So tell the caller to
2076                  * copy the data out.
2077                  */
2078                 retval |= DM_RET_COPY;
2079
2080                 /*
2081                  * The return action has already been set to stop, since
2082                  * peripherals don't have any nodes below them in the EDT.
2083                  */
2084                 return(retval);
2085         }
2086
2087         /*
2088          * If we get to this point, the peripheral that was passed in
2089          * doesn't match any of the patterns.
2090          */
2091         return(retval);
2092 }
2093
2094 static int
2095 xptedtbusfunc(struct cam_eb *bus, void *arg)
2096 {
2097         struct ccb_dev_match *cdm;
2098         dev_match_ret retval;
2099
2100         cdm = (struct ccb_dev_match *)arg;
2101
2102         /*
2103          * If our position is for something deeper in the tree, that means
2104          * that we've already seen this node.  So, we keep going down.
2105          */
2106         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2107          && (cdm->pos.cookie.bus == bus)
2108          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2109          && (cdm->pos.cookie.target != NULL))
2110                 retval = DM_RET_DESCEND;
2111         else
2112                 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2113
2114         /*
2115          * If we got an error, bail out of the search.
2116          */
2117         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2118                 cdm->status = CAM_DEV_MATCH_ERROR;
2119                 return(0);
2120         }
2121
2122         /*
2123          * If the copy flag is set, copy this bus out.
2124          */
2125         if (retval & DM_RET_COPY) {
2126                 int spaceleft, j;
2127
2128                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2129                         sizeof(struct dev_match_result));
2130
2131                 /*
2132                  * If we don't have enough space to put in another
2133                  * match result, save our position and tell the
2134                  * user there are more devices to check.
2135                  */
2136                 if (spaceleft < sizeof(struct dev_match_result)) {
2137                         bzero(&cdm->pos, sizeof(cdm->pos));
2138                         cdm->pos.position_type =
2139                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2140
2141                         cdm->pos.cookie.bus = bus;
2142                         cdm->pos.generations[CAM_BUS_GENERATION]=
2143                                 xsoftc.bus_generation;
2144                         cdm->status = CAM_DEV_MATCH_MORE;
2145                         return(0);
2146                 }
2147                 j = cdm->num_matches;
2148                 cdm->num_matches++;
2149                 cdm->matches[j].type = DEV_MATCH_BUS;
2150                 cdm->matches[j].result.bus_result.path_id = bus->path_id;
2151                 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2152                 cdm->matches[j].result.bus_result.unit_number =
2153                         bus->sim->unit_number;
2154                 strncpy(cdm->matches[j].result.bus_result.dev_name,
2155                         bus->sim->sim_name, DEV_IDLEN);
2156         }
2157
2158         /*
2159          * If the user is only interested in busses, there's no
2160          * reason to descend to the next level in the tree.
2161          */
2162         if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2163                 return(1);
2164
2165         /*
2166          * If there is a target generation recorded, check it to
2167          * make sure the target list hasn't changed.
2168          */
2169         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2170          && (bus == cdm->pos.cookie.bus)
2171          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2172          && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2173          && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2174              bus->generation)) {
2175                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2176                 return(0);
2177         }
2178
2179         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2180          && (cdm->pos.cookie.bus == bus)
2181          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2182          && (cdm->pos.cookie.target != NULL))
2183                 return(xpttargettraverse(bus,
2184                                         (struct cam_et *)cdm->pos.cookie.target,
2185                                          xptedttargetfunc, arg));
2186         else
2187                 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2188 }
2189
2190 static int
2191 xptedttargetfunc(struct cam_et *target, void *arg)
2192 {
2193         struct ccb_dev_match *cdm;
2194
2195         cdm = (struct ccb_dev_match *)arg;
2196
2197         /*
2198          * If there is a device list generation recorded, check it to
2199          * make sure the device list hasn't changed.
2200          */
2201         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2202          && (cdm->pos.cookie.bus == target->bus)
2203          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2204          && (cdm->pos.cookie.target == target)
2205          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2206          && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2207          && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2208              target->generation)) {
2209                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2210                 return(0);
2211         }
2212
2213         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2214          && (cdm->pos.cookie.bus == target->bus)
2215          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2216          && (cdm->pos.cookie.target == target)
2217          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2218          && (cdm->pos.cookie.device != NULL))
2219                 return(xptdevicetraverse(target,
2220                                         (struct cam_ed *)cdm->pos.cookie.device,
2221                                          xptedtdevicefunc, arg));
2222         else
2223                 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2224 }
2225
2226 static int
2227 xptedtdevicefunc(struct cam_ed *device, void *arg)
2228 {
2229
2230         struct ccb_dev_match *cdm;
2231         dev_match_ret retval;
2232
2233         cdm = (struct ccb_dev_match *)arg;
2234
2235         /*
2236          * If our position is for something deeper in the tree, that means
2237          * that we've already seen this node.  So, we keep going down.
2238          */
2239         if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2240          && (cdm->pos.cookie.device == device)
2241          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2242          && (cdm->pos.cookie.periph != NULL))
2243                 retval = DM_RET_DESCEND;
2244         else
2245                 retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2246                                         device);
2247
2248         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2249                 cdm->status = CAM_DEV_MATCH_ERROR;
2250                 return(0);
2251         }
2252
2253         /*
2254          * If the copy flag is set, copy this device out.
2255          */
2256         if (retval & DM_RET_COPY) {
2257                 int spaceleft, j;
2258
2259                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2260                         sizeof(struct dev_match_result));
2261
2262                 /*
2263                  * If we don't have enough space to put in another
2264                  * match result, save our position and tell the
2265                  * user there are more devices to check.
2266                  */
2267                 if (spaceleft < sizeof(struct dev_match_result)) {
2268                         bzero(&cdm->pos, sizeof(cdm->pos));
2269                         cdm->pos.position_type =
2270                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2271                                 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2272
2273                         cdm->pos.cookie.bus = device->target->bus;
2274                         cdm->pos.generations[CAM_BUS_GENERATION]=
2275                                 xsoftc.bus_generation;
2276                         cdm->pos.cookie.target = device->target;
2277                         cdm->pos.generations[CAM_TARGET_GENERATION] =
2278                                 device->target->bus->generation;
2279                         cdm->pos.cookie.device = device;
2280                         cdm->pos.generations[CAM_DEV_GENERATION] =
2281                                 device->target->generation;
2282                         cdm->status = CAM_DEV_MATCH_MORE;
2283                         return(0);
2284                 }
2285                 j = cdm->num_matches;
2286                 cdm->num_matches++;
2287                 cdm->matches[j].type = DEV_MATCH_DEVICE;
2288                 cdm->matches[j].result.device_result.path_id =
2289                         device->target->bus->path_id;
2290                 cdm->matches[j].result.device_result.target_id =
2291                         device->target->target_id;
2292                 cdm->matches[j].result.device_result.target_lun =
2293                         device->lun_id;
2294                 bcopy(&device->inq_data,
2295                       &cdm->matches[j].result.device_result.inq_data,
2296                       sizeof(struct scsi_inquiry_data));
2297
2298                 /* Let the user know whether this device is unconfigured */
2299                 if (device->flags & CAM_DEV_UNCONFIGURED)
2300                         cdm->matches[j].result.device_result.flags =
2301                                 DEV_RESULT_UNCONFIGURED;
2302                 else
2303                         cdm->matches[j].result.device_result.flags =
2304                                 DEV_RESULT_NOFLAG;
2305         }
2306
2307         /*
2308          * If the user isn't interested in peripherals, don't descend
2309          * the tree any further.
2310          */
2311         if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2312                 return(1);
2313
2314         /*
2315          * If there is a peripheral list generation recorded, make sure
2316          * it hasn't changed.
2317          */
2318         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2319          && (device->target->bus == cdm->pos.cookie.bus)
2320          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2321          && (device->target == cdm->pos.cookie.target)
2322          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2323          && (device == cdm->pos.cookie.device)
2324          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2325          && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2326          && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2327              device->generation)){
2328                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2329                 return(0);
2330         }
2331
2332         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2333          && (cdm->pos.cookie.bus == device->target->bus)
2334          && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2335          && (cdm->pos.cookie.target == device->target)
2336          && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2337          && (cdm->pos.cookie.device == device)
2338          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2339          && (cdm->pos.cookie.periph != NULL))
2340                 return(xptperiphtraverse(device,
2341                                 (struct cam_periph *)cdm->pos.cookie.periph,
2342                                 xptedtperiphfunc, arg));
2343         else
2344                 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2345 }
2346
2347 static int
2348 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2349 {
2350         struct ccb_dev_match *cdm;
2351         dev_match_ret retval;
2352
2353         cdm = (struct ccb_dev_match *)arg;
2354
2355         retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2356
2357         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2358                 cdm->status = CAM_DEV_MATCH_ERROR;
2359                 return(0);
2360         }
2361
2362         /*
2363          * If the copy flag is set, copy this peripheral out.
2364          */
2365         if (retval & DM_RET_COPY) {
2366                 int spaceleft, j;
2367
2368                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2369                         sizeof(struct dev_match_result));
2370
2371                 /*
2372                  * If we don't have enough space to put in another
2373                  * match result, save our position and tell the
2374                  * user there are more devices to check.
2375                  */
2376                 if (spaceleft < sizeof(struct dev_match_result)) {
2377                         bzero(&cdm->pos, sizeof(cdm->pos));
2378                         cdm->pos.position_type =
2379                                 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2380                                 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2381                                 CAM_DEV_POS_PERIPH;
2382
2383                         cdm->pos.cookie.bus = periph->path->bus;
2384                         cdm->pos.generations[CAM_BUS_GENERATION]=
2385                                 xsoftc.bus_generation;
2386                         cdm->pos.cookie.target = periph->path->target;
2387                         cdm->pos.generations[CAM_TARGET_GENERATION] =
2388                                 periph->path->bus->generation;
2389                         cdm->pos.cookie.device = periph->path->device;
2390                         cdm->pos.generations[CAM_DEV_GENERATION] =
2391                                 periph->path->target->generation;
2392                         cdm->pos.cookie.periph = periph;
2393                         cdm->pos.generations[CAM_PERIPH_GENERATION] =
2394                                 periph->path->device->generation;
2395                         cdm->status = CAM_DEV_MATCH_MORE;
2396                         return(0);
2397                 }
2398
2399                 j = cdm->num_matches;
2400                 cdm->num_matches++;
2401                 cdm->matches[j].type = DEV_MATCH_PERIPH;
2402                 cdm->matches[j].result.periph_result.path_id =
2403                         periph->path->bus->path_id;
2404                 cdm->matches[j].result.periph_result.target_id =
2405                         periph->path->target->target_id;
2406                 cdm->matches[j].result.periph_result.target_lun =
2407                         periph->path->device->lun_id;
2408                 cdm->matches[j].result.periph_result.unit_number =
2409                         periph->unit_number;
2410                 strncpy(cdm->matches[j].result.periph_result.periph_name,
2411                         periph->periph_name, DEV_IDLEN);
2412         }
2413
2414         return(1);
2415 }
2416
2417 static int
2418 xptedtmatch(struct ccb_dev_match *cdm)
2419 {
2420         int ret;
2421
2422         cdm->num_matches = 0;
2423
2424         /*
2425          * Check the bus list generation.  If it has changed, the user
2426          * needs to reset everything and start over.
2427          */
2428         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2429          && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2430          && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2431                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2432                 return(0);
2433         }
2434
2435         if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2436          && (cdm->pos.cookie.bus != NULL))
2437                 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2438                                      xptedtbusfunc, cdm);
2439         else
2440                 ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2441
2442         /*
2443          * If we get back 0, that means that we had to stop before fully
2444          * traversing the EDT.  It also means that one of the subroutines
2445          * has set the status field to the proper value.  If we get back 1,
2446          * we've fully traversed the EDT and copied out any matching entries.
2447          */
2448         if (ret == 1)
2449                 cdm->status = CAM_DEV_MATCH_LAST;
2450
2451         return(ret);
2452 }
2453
2454 static int
2455 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2456 {
2457         struct ccb_dev_match *cdm;
2458
2459         cdm = (struct ccb_dev_match *)arg;
2460
2461         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2462          && (cdm->pos.cookie.pdrv == pdrv)
2463          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2464          && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2465          && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2466              (*pdrv)->generation)) {
2467                 cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2468                 return(0);
2469         }
2470
2471         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2472          && (cdm->pos.cookie.pdrv == pdrv)
2473          && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2474          && (cdm->pos.cookie.periph != NULL))
2475                 return(xptpdperiphtraverse(pdrv,
2476                                 (struct cam_periph *)cdm->pos.cookie.periph,
2477                                 xptplistperiphfunc, arg));
2478         else
2479                 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2480 }
2481
2482 static int
2483 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2484 {
2485         struct ccb_dev_match *cdm;
2486         dev_match_ret retval;
2487
2488         cdm = (struct ccb_dev_match *)arg;
2489
2490         retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2491
2492         if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2493                 cdm->status = CAM_DEV_MATCH_ERROR;
2494                 return(0);
2495         }
2496
2497         /*
2498          * If the copy flag is set, copy this peripheral out.
2499          */
2500         if (retval & DM_RET_COPY) {
2501                 int spaceleft, j;
2502
2503                 spaceleft = cdm->match_buf_len - (cdm->num_matches *
2504                         sizeof(struct dev_match_result));
2505
2506                 /*
2507                  * If we don't have enough space to put in another
2508                  * match result, save our position and tell the
2509                  * user there are more devices to check.
2510                  */
2511                 if (spaceleft < sizeof(struct dev_match_result)) {
2512                         struct periph_driver **pdrv;
2513
2514                         pdrv = NULL;
2515                         bzero(&cdm->pos, sizeof(cdm->pos));
2516                         cdm->pos.position_type =
2517                                 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2518                                 CAM_DEV_POS_PERIPH;
2519
2520                         /*
2521                          * This may look a bit non-sensical, but it is
2522                          * actually quite logical.  There are very few
2523                          * peripheral drivers, and bloating every peripheral
2524                          * structure with a pointer back to its parent
2525                          * peripheral driver linker set entry would cost
2526                          * more in the long run than doing this quick lookup.
2527                          */
2528                         for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2529                                 if (strcmp((*pdrv)->driver_name,
2530                                     periph->periph_name) == 0)
2531                                         break;
2532                         }
2533
2534                         if (*pdrv == NULL) {
2535                                 cdm->status = CAM_DEV_MATCH_ERROR;
2536                                 return(0);
2537                         }
2538
2539                         cdm->pos.cookie.pdrv = pdrv;
2540                         /*
2541                          * The periph generation slot does double duty, as
2542                          * does the periph pointer slot.  They are used for
2543                          * both edt and pdrv lookups and positioning.
2544                          */
2545                         cdm->pos.cookie.periph = periph;
2546                         cdm->pos.generations[CAM_PERIPH_GENERATION] =
2547                                 (*pdrv)->generation;
2548                         cdm->status = CAM_DEV_MATCH_MORE;
2549                         return(0);
2550                 }
2551
2552                 j = cdm->num_matches;
2553                 cdm->num_matches++;
2554                 cdm->matches[j].type = DEV_MATCH_PERIPH;
2555                 cdm->matches[j].result.periph_result.path_id =
2556                         periph->path->bus->path_id;
2557
2558                 /*
2559                  * The transport layer peripheral doesn't have a target or
2560                  * lun.
2561                  */
2562                 if (periph->path->target)
2563                         cdm->matches[j].result.periph_result.target_id =
2564                                 periph->path->target->target_id;
2565                 else
2566                         cdm->matches[j].result.periph_result.target_id = -1;
2567
2568                 if (periph->path->device)
2569                         cdm->matches[j].result.periph_result.target_lun =
2570                                 periph->path->device->lun_id;
2571                 else
2572                         cdm->matches[j].result.periph_result.target_lun = -1;
2573
2574                 cdm->matches[j].result.periph_result.unit_number =
2575                         periph->unit_number;
2576                 strncpy(cdm->matches[j].result.periph_result.periph_name,
2577                         periph->periph_name, DEV_IDLEN);
2578         }
2579
2580         return(1);
2581 }
2582
2583 static int
2584 xptperiphlistmatch(struct ccb_dev_match *cdm)
2585 {
2586         int ret;
2587
2588         cdm->num_matches = 0;
2589
2590         /*
2591          * At this point in the edt traversal function, we check the bus
2592          * list generation to make sure that no busses have been added or
2593          * removed since the user last sent a XPT_DEV_MATCH ccb through.
2594          * For the peripheral driver list traversal function, however, we
2595          * don't have to worry about new peripheral driver types coming or
2596          * going; they're in a linker set, and therefore can't change
2597          * without a recompile.
2598          */
2599
2600         if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2601          && (cdm->pos.cookie.pdrv != NULL))
2602                 ret = xptpdrvtraverse(
2603                                 (struct periph_driver **)cdm->pos.cookie.pdrv,
2604                                 xptplistpdrvfunc, cdm);
2605         else
2606                 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2607
2608         /*
2609          * If we get back 0, that means that we had to stop before fully
2610          * traversing the peripheral driver tree.  It also means that one of
2611          * the subroutines has set the status field to the proper value.  If
2612          * we get back 1, we've fully traversed the EDT and copied out any
2613          * matching entries.
2614          */
2615         if (ret == 1)
2616                 cdm->status = CAM_DEV_MATCH_LAST;
2617
2618         return(ret);
2619 }
2620
2621 static int
2622 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2623 {
2624         struct cam_eb *bus, *next_bus;
2625         int retval;
2626
2627         retval = 1;
2628
2629         lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2630         for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2631              bus != NULL;
2632              bus = next_bus) {
2633                 next_bus = TAILQ_NEXT(bus, links);
2634
2635                 lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2636                 CAM_SIM_LOCK(bus->sim);
2637                 retval = tr_func(bus, arg);
2638                 CAM_SIM_UNLOCK(bus->sim);
2639                 if (retval == 0)
2640                         return(retval);
2641                 lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2642         }
2643         lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2644
2645         return(retval);
2646 }
2647
2648 static int
2649 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2650                   xpt_targetfunc_t *tr_func, void *arg)
2651 {
2652         struct cam_et *target, *next_target;
2653         int retval;
2654
2655         retval = 1;
2656         for (target = (start_target ? start_target :
2657                        TAILQ_FIRST(&bus->et_entries));
2658              target != NULL; target = next_target) {
2659
2660                 next_target = TAILQ_NEXT(target, links);
2661
2662                 retval = tr_func(target, arg);
2663
2664                 if (retval == 0)
2665                         return(retval);
2666         }
2667
2668         return(retval);
2669 }
2670
2671 static int
2672 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2673                   xpt_devicefunc_t *tr_func, void *arg)
2674 {
2675         struct cam_ed *device, *next_device;
2676         int retval;
2677
2678         retval = 1;
2679         for (device = (start_device ? start_device :
2680                        TAILQ_FIRST(&target->ed_entries));
2681              device != NULL;
2682              device = next_device) {
2683
2684                 next_device = TAILQ_NEXT(device, links);
2685
2686                 retval = tr_func(device, arg);
2687
2688                 if (retval == 0)
2689                         return(retval);
2690         }
2691
2692         return(retval);
2693 }
2694
2695 static int
2696 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2697                   xpt_periphfunc_t *tr_func, void *arg)
2698 {
2699         struct cam_periph *periph, *next_periph;
2700         int retval;
2701
2702         retval = 1;
2703
2704         for (periph = (start_periph ? start_periph :
2705                        SLIST_FIRST(&device->periphs));
2706              periph != NULL;
2707              periph = next_periph) {
2708
2709                 next_periph = SLIST_NEXT(periph, periph_links);
2710
2711                 retval = tr_func(periph, arg);
2712                 if (retval == 0)
2713                         return(retval);
2714         }
2715
2716         return(retval);
2717 }
2718
2719 static int
2720 xptpdrvtraverse(struct periph_driver **start_pdrv,
2721                 xpt_pdrvfunc_t *tr_func, void *arg)
2722 {
2723         struct periph_driver **pdrv;
2724         int retval;
2725
2726         retval = 1;
2727
2728         /*
2729          * We don't traverse the peripheral driver list like we do the
2730          * other lists, because it is a linker set, and therefore cannot be
2731          * changed during runtime.  If the peripheral driver list is ever
2732          * re-done to be something other than a linker set (i.e. it can
2733          * change while the system is running), the list traversal should
2734          * be modified to work like the other traversal functions.
2735          */
2736         for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2737              *pdrv != NULL; pdrv++) {
2738                 retval = tr_func(pdrv, arg);
2739
2740                 if (retval == 0)
2741                         return(retval);
2742         }
2743
2744         return(retval);
2745 }
2746
2747 static int
2748 xptpdperiphtraverse(struct periph_driver **pdrv,
2749                     struct cam_periph *start_periph,
2750                     xpt_periphfunc_t *tr_func, void *arg)
2751 {
2752         struct cam_periph *periph, *next_periph;
2753         int retval;
2754
2755         retval = 1;
2756
2757         for (periph = (start_periph ? start_periph :
2758              TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2759              periph = next_periph) {
2760
2761                 next_periph = TAILQ_NEXT(periph, unit_links);
2762
2763                 retval = tr_func(periph, arg);
2764                 if (retval == 0)
2765                         return(retval);
2766         }
2767         return(retval);
2768 }
2769
2770 static int
2771 xptdefbusfunc(struct cam_eb *bus, void *arg)
2772 {
2773         struct xpt_traverse_config *tr_config;
2774
2775         tr_config = (struct xpt_traverse_config *)arg;
2776
2777         if (tr_config->depth == XPT_DEPTH_BUS) {
2778                 xpt_busfunc_t *tr_func;
2779
2780                 tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2781
2782                 return(tr_func(bus, tr_config->tr_arg));
2783         } else
2784                 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2785 }
2786
2787 static int
2788 xptdeftargetfunc(struct cam_et *target, void *arg)
2789 {
2790         struct xpt_traverse_config *tr_config;
2791
2792         tr_config = (struct xpt_traverse_config *)arg;
2793
2794         if (tr_config->depth == XPT_DEPTH_TARGET) {
2795                 xpt_targetfunc_t *tr_func;
2796
2797                 tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2798
2799                 return(tr_func(target, tr_config->tr_arg));
2800         } else
2801                 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2802 }
2803
2804 static int
2805 xptdefdevicefunc(struct cam_ed *device, void *arg)
2806 {
2807         struct xpt_traverse_config *tr_config;
2808
2809         tr_config = (struct xpt_traverse_config *)arg;
2810
2811         if (tr_config->depth == XPT_DEPTH_DEVICE) {
2812                 xpt_devicefunc_t *tr_func;
2813
2814                 tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2815
2816                 return(tr_func(device, tr_config->tr_arg));
2817         } else
2818                 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2819 }
2820
2821 static int
2822 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2823 {
2824         struct xpt_traverse_config *tr_config;
2825         xpt_periphfunc_t *tr_func;
2826
2827         tr_config = (struct xpt_traverse_config *)arg;
2828
2829         tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2830
2831         /*
2832          * Unlike the other default functions, we don't check for depth
2833          * here.  The peripheral driver level is the last level in the EDT,
2834          * so if we're here, we should execute the function in question.
2835          */
2836         return(tr_func(periph, tr_config->tr_arg));
2837 }
2838
2839 /*
2840  * Execute the given function for every bus in the EDT.
2841  */
2842 static int
2843 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2844 {
2845         struct xpt_traverse_config tr_config;
2846
2847         tr_config.depth = XPT_DEPTH_BUS;
2848         tr_config.tr_func = tr_func;
2849         tr_config.tr_arg = arg;
2850
2851         return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2852 }
2853
2854 /*
2855  * Execute the given function for every device in the EDT.
2856  */
2857 static int
2858 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2859 {
2860         struct xpt_traverse_config tr_config;
2861
2862         tr_config.depth = XPT_DEPTH_DEVICE;
2863         tr_config.tr_func = tr_func;
2864         tr_config.tr_arg = arg;
2865
2866         return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2867 }
2868
2869 static int
2870 xptsetasyncfunc(struct cam_ed *device, void *arg)
2871 {
2872         struct cam_path path;
2873         struct ccb_getdev cgd;
2874         struct async_node *cur_entry;
2875
2876         cur_entry = (struct async_node *)arg;
2877
2878         /*
2879          * Don't report unconfigured devices (Wildcard devs,
2880          * devices only for target mode, device instances
2881          * that have been invalidated but are waiting for
2882          * their last reference count to be released).
2883          */
2884         if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2885                 return (1);
2886
2887         xpt_compile_path(&path,
2888                          NULL,
2889                          device->target->bus->path_id,
2890                          device->target->target_id,
2891                          device->lun_id);
2892         xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2893         cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2894         xpt_action((union ccb *)&cgd);
2895         cur_entry->callback(cur_entry->callback_arg,
2896                             AC_FOUND_DEVICE,
2897                             &path, &cgd);
2898         xpt_release_path(&path);
2899
2900         return(1);
2901 }
2902
2903 static int
2904 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2905 {
2906         struct cam_path path;
2907         struct ccb_pathinq cpi;
2908         struct async_node *cur_entry;
2909
2910         cur_entry = (struct async_node *)arg;
2911
2912         xpt_compile_path(&path, /*periph*/NULL,
2913                          bus->sim->path_id,
2914                          CAM_TARGET_WILDCARD,
2915                          CAM_LUN_WILDCARD);
2916         xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2917         cpi.ccb_h.func_code = XPT_PATH_INQ;
2918         xpt_action((union ccb *)&cpi);
2919         cur_entry->callback(cur_entry->callback_arg,
2920                             AC_PATH_REGISTERED,
2921                             &path, &cpi);
2922         xpt_release_path(&path);
2923
2924         return(1);
2925 }
2926
2927 static void
2928 xpt_action_sasync_cb(void *context, int pending)
2929 {
2930         struct async_node *cur_entry;
2931         struct xpt_task *task;
2932         uint32_t added;
2933
2934         task = (struct xpt_task *)context;
2935         cur_entry = (struct async_node *)task->data1;
2936         added = task->data2;
2937
2938         if ((added & AC_FOUND_DEVICE) != 0) {
2939                 /*
2940                  * Get this peripheral up to date with all
2941                  * the currently existing devices.
2942                  */
2943                 xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2944         }
2945         if ((added & AC_PATH_REGISTERED) != 0) {
2946                 /*
2947                  * Get this peripheral up to date with all
2948                  * the currently existing busses.
2949                  */
2950                 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2951         }
2952
2953         kfree(task, M_CAMXPT);
2954 }
2955
2956 void
2957 xpt_action(union ccb *start_ccb)
2958 {
2959         CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2960
2961         start_ccb->ccb_h.status = CAM_REQ_INPROG;
2962
2963         switch (start_ccb->ccb_h.func_code) {
2964         case XPT_SCSI_IO:
2965         {
2966                 struct cam_ed *device;
2967 #ifdef CAMDEBUG
2968                 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2969                 struct cam_path *path;
2970
2971                 path = start_ccb->ccb_h.path;
2972 #endif
2973
2974                 /*
2975                  * For the sake of compatibility with SCSI-1
2976                  * devices that may not understand the identify
2977                  * message, we include lun information in the
2978                  * second byte of all commands.  SCSI-1 specifies
2979                  * that luns are a 3 bit value and reserves only 3
2980                  * bits for lun information in the CDB.  Later
2981                  * revisions of the SCSI spec allow for more than 8
2982                  * luns, but have deprecated lun information in the
2983                  * CDB.  So, if the lun won't fit, we must omit.
2984                  *
2985                  * Also be aware that during initial probing for devices,
2986                  * the inquiry information is unknown but initialized to 0.
2987                  * This means that this code will be exercised while probing
2988                  * devices with an ANSI revision greater than 2.
2989                  */
2990                 device = start_ccb->ccb_h.path->device;
2991                 if (device->protocol_version <= SCSI_REV_2
2992                  && start_ccb->ccb_h.target_lun < 8
2993                  && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2994
2995                         start_ccb->csio.cdb_io.cdb_bytes[1] |=
2996                             start_ccb->ccb_h.target_lun << 5;
2997                 }
2998                 start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2999                 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3000                           scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3001                                        &path->device->inq_data),
3002                           scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3003                                           cdb_str, sizeof(cdb_str))));
3004                 /* FALLTHROUGH */
3005         }
3006         case XPT_TARGET_IO:
3007         case XPT_CONT_TARGET_IO:
3008                 start_ccb->csio.sense_resid = 0;
3009                 start_ccb->csio.resid = 0;
3010                 /* FALLTHROUGH */
3011         case XPT_RESET_DEV:
3012         case XPT_ENG_EXEC:
3013         {
3014                 struct cam_path *path;
3015                 struct cam_sim *sim;
3016                 int runq;
3017
3018                 path = start_ccb->ccb_h.path;
3019
3020                 sim = path->bus->sim;
3021                 if (sim == &cam_dead_sim) {
3022                         /* The SIM has gone; just execute the CCB directly. */
3023                         cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3024                         (*(sim->sim_action))(sim, start_ccb);
3025                         break;
3026                 }
3027
3028                 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3029                 if (path->device->qfrozen_cnt == 0)
3030                         runq = xpt_schedule_dev_sendq(path->bus, path->device);
3031                 else
3032                         runq = 0;
3033                 if (runq != 0)
3034                         xpt_run_dev_sendq(path->bus);
3035                 break;
3036         }
3037         case XPT_SET_TRAN_SETTINGS:
3038         {
3039                 xpt_set_transfer_settings(&start_ccb->cts,
3040                                           start_ccb->ccb_h.path->device,
3041                                           /*async_update*/FALSE);
3042                 break;
3043         }
3044         case XPT_CALC_GEOMETRY:
3045         {
3046                 struct cam_sim *sim;
3047
3048                 /* Filter out garbage */
3049                 if (start_ccb->ccg.block_size == 0
3050                  || start_ccb->ccg.volume_size == 0) {
3051                         start_ccb->ccg.cylinders = 0;
3052                         start_ccb->ccg.heads = 0;
3053                         start_ccb->ccg.secs_per_track = 0;
3054                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3055                         break;
3056                 }
3057                 sim = start_ccb->ccb_h.path->bus->sim;
3058                 (*(sim->sim_action))(sim, start_ccb);
3059                 break;
3060         }
3061         case XPT_ABORT:
3062         {
3063                 union ccb* abort_ccb;
3064
3065                 abort_ccb = start_ccb->cab.abort_ccb;
3066                 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3067
3068                         if (abort_ccb->ccb_h.pinfo.index >= 0) {
3069                                 struct cam_ccbq *ccbq;
3070
3071                                 ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3072                                 cam_ccbq_remove_ccb(ccbq, abort_ccb);
3073                                 abort_ccb->ccb_h.status =
3074                                     CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3075                                 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3076                                 xpt_done(abort_ccb);
3077                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3078                                 break;
3079                         }
3080                         if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3081                          && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3082                                 /*
3083                                  * We've caught this ccb en route to
3084                                  * the SIM.  Flag it for abort and the
3085                                  * SIM will do so just before starting
3086                                  * real work on the CCB.
3087                                  */
3088                                 abort_ccb->ccb_h.status =
3089                                     CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3090                                 xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3091                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3092                                 break;
3093                         }
3094                 }
3095                 if (XPT_FC_IS_QUEUED(abort_ccb)
3096                  && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3097                         /*
3098                          * It's already completed but waiting
3099                          * for our SWI to get to it.
3100                          */
3101                         start_ccb->ccb_h.status = CAM_UA_ABORT;
3102                         break;
3103                 }
3104                 /*
3105                  * If we weren't able to take care of the abort request
3106                  * in the XPT, pass the request down to the SIM for processing.
3107                  */
3108                 /* FALLTHROUGH */
3109         }
3110         case XPT_ACCEPT_TARGET_IO:
3111         case XPT_EN_LUN:
3112         case XPT_IMMED_NOTIFY:
3113         case XPT_NOTIFY_ACK:
3114         case XPT_GET_TRAN_SETTINGS:
3115         case XPT_RESET_BUS:
3116         {
3117                 struct cam_sim *sim;
3118
3119                 sim = start_ccb->ccb_h.path->bus->sim;
3120                 (*(sim->sim_action))(sim, start_ccb);
3121                 break;
3122         }
3123         case XPT_PATH_INQ:
3124         {
3125                 struct cam_sim *sim;
3126
3127                 sim = start_ccb->ccb_h.path->bus->sim;
3128                 (*(sim->sim_action))(sim, start_ccb);
3129                 break;
3130         }
3131         case XPT_PATH_STATS:
3132                 start_ccb->cpis.last_reset =
3133                         start_ccb->ccb_h.path->bus->last_reset;
3134                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3135                 break;
3136         case XPT_GDEV_TYPE:
3137         {
3138                 struct cam_ed *dev;
3139
3140                 dev = start_ccb->ccb_h.path->device;
3141                 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3142                         start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3143                 } else {
3144                         struct ccb_getdev *cgd;
3145                         struct cam_eb *bus;
3146                         struct cam_et *tar;
3147
3148                         cgd = &start_ccb->cgd;
3149                         bus = cgd->ccb_h.path->bus;
3150                         tar = cgd->ccb_h.path->target;
3151                         cgd->inq_data = dev->inq_data;
3152                         cgd->ccb_h.status = CAM_REQ_CMP;
3153                         cgd->serial_num_len = dev->serial_num_len;
3154                         if ((dev->serial_num_len > 0)
3155                          && (dev->serial_num != NULL))
3156                                 bcopy(dev->serial_num, cgd->serial_num,
3157                                       dev->serial_num_len);
3158                 }
3159                 break;
3160         }
3161         case XPT_GDEV_STATS:
3162         {
3163                 struct cam_ed *dev;
3164
3165                 dev = start_ccb->ccb_h.path->device;
3166                 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3167                         start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3168                 } else {
3169                         struct ccb_getdevstats *cgds;
3170                         struct cam_eb *bus;
3171                         struct cam_et *tar;
3172
3173                         cgds = &start_ccb->cgds;
3174                         bus = cgds->ccb_h.path->bus;
3175                         tar = cgds->ccb_h.path->target;
3176                         cgds->dev_openings = dev->ccbq.dev_openings;
3177                         cgds->dev_active = dev->ccbq.dev_active;
3178                         cgds->devq_openings = dev->ccbq.devq_openings;
3179                         cgds->devq_queued = dev->ccbq.queue.entries;
3180                         cgds->held = dev->ccbq.held;
3181                         cgds->last_reset = tar->last_reset;
3182                         cgds->maxtags = dev->quirk->maxtags;
3183                         cgds->mintags = dev->quirk->mintags;
3184                         if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3185                                 cgds->last_reset = bus->last_reset;
3186                         cgds->ccb_h.status = CAM_REQ_CMP;
3187                 }
3188                 break;
3189         }
3190         case XPT_GDEVLIST:
3191         {
3192                 struct cam_periph       *nperiph;
3193                 struct periph_list      *periph_head;
3194                 struct ccb_getdevlist   *cgdl;
3195                 u_int                   i;
3196                 struct cam_ed           *device;
3197                 int                     found;
3198
3199
3200                 found = 0;
3201
3202                 /*
3203                  * Don't want anyone mucking with our data.
3204                  */
3205                 device = start_ccb->ccb_h.path->device;
3206                 periph_head = &device->periphs;
3207                 cgdl = &start_ccb->cgdl;
3208
3209                 /*
3210                  * Check and see if the list has changed since the user
3211                  * last requested a list member.  If so, tell them that the
3212                  * list has changed, and therefore they need to start over
3213                  * from the beginning.
3214                  */
3215                 if ((cgdl->index != 0) &&
3216                     (cgdl->generation != device->generation)) {
3217                         cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3218                         break;
3219                 }
3220
3221                 /*
3222                  * Traverse the list of peripherals and attempt to find
3223                  * the requested peripheral.
3224                  */
3225                 for (nperiph = SLIST_FIRST(periph_head), i = 0;
3226                      (nperiph != NULL) && (i <= cgdl->index);
3227                      nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3228                         if (i == cgdl->index) {
3229                                 strncpy(cgdl->periph_name,
3230                                         nperiph->periph_name,
3231                                         DEV_IDLEN);
3232                                 cgdl->unit_number = nperiph->unit_number;
3233                                 found = 1;
3234                         }
3235                 }
3236                 if (found == 0) {
3237                         cgdl->status = CAM_GDEVLIST_ERROR;
3238                         break;
3239                 }
3240
3241                 if (nperiph == NULL)
3242                         cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3243                 else
3244                         cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3245
3246                 cgdl->index++;
3247                 cgdl->generation = device->generation;
3248
3249                 cgdl->ccb_h.status = CAM_REQ_CMP;
3250                 break;
3251         }
3252         case XPT_DEV_MATCH:
3253         {
3254                 dev_pos_type position_type;
3255                 struct ccb_dev_match *cdm;
3256                 int ret;
3257
3258                 cdm = &start_ccb->cdm;
3259
3260                 /*
3261                  * There are two ways of getting at information in the EDT.
3262                  * The first way is via the primary EDT tree.  It starts
3263                  * with a list of busses, then a list of targets on a bus,
3264                  * then devices/luns on a target, and then peripherals on a
3265                  * device/lun.  The "other" way is by the peripheral driver
3266                  * lists.  The peripheral driver lists are organized by
3267                  * peripheral driver.  (obviously)  So it makes sense to
3268                  * use the peripheral driver list if the user is looking
3269                  * for something like "da1", or all "da" devices.  If the
3270                  * user is looking for something on a particular bus/target
3271                  * or lun, it's generally better to go through the EDT tree.
3272                  */
3273
3274                 if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3275                         position_type = cdm->pos.position_type;
3276                 else {
3277                         u_int i;
3278
3279                         position_type = CAM_DEV_POS_NONE;
3280
3281                         for (i = 0; i < cdm->num_patterns; i++) {
3282                                 if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3283                                  ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3284                                         position_type = CAM_DEV_POS_EDT;
3285                                         break;
3286                                 }
3287                         }
3288
3289                         if (cdm->num_patterns == 0)
3290                                 position_type = CAM_DEV_POS_EDT;
3291                         else if (position_type == CAM_DEV_POS_NONE)
3292                                 position_type = CAM_DEV_POS_PDRV;
3293                 }
3294
3295                 switch(position_type & CAM_DEV_POS_TYPEMASK) {
3296                 case CAM_DEV_POS_EDT:
3297                         ret = xptedtmatch(cdm);
3298                         break;
3299                 case CAM_DEV_POS_PDRV:
3300                         ret = xptperiphlistmatch(cdm);
3301                         break;
3302                 default:
3303                         cdm->status = CAM_DEV_MATCH_ERROR;
3304                         break;
3305                 }
3306
3307                 if (cdm->status == CAM_DEV_MATCH_ERROR)
3308                         start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3309                 else
3310                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3311
3312                 break;
3313         }
3314         case XPT_SASYNC_CB:
3315         {
3316                 struct ccb_setasync *csa;
3317                 struct async_node *cur_entry;
3318                 struct async_list *async_head;
3319                 u_int32_t added;
3320
3321                 csa = &start_ccb->csa;
3322                 added = csa->event_enable;
3323                 async_head = &csa->ccb_h.path->device->asyncs;
3324
3325                 /*
3326                  * If there is already an entry for us, simply
3327                  * update it.
3328                  */
3329                 cur_entry = SLIST_FIRST(async_head);
3330                 while (cur_entry != NULL) {
3331                         if ((cur_entry->callback_arg == csa->callback_arg)
3332                          && (cur_entry->callback == csa->callback))
3333                                 break;
3334                         cur_entry = SLIST_NEXT(cur_entry, links);
3335                 }
3336
3337                 if (cur_entry != NULL) {
3338                         /*
3339                          * If the request has no flags set,
3340                          * remove the entry.
3341                          */
3342                         added &= ~cur_entry->event_enable;
3343                         if (csa->event_enable == 0) {
3344                                 SLIST_REMOVE(async_head, cur_entry,
3345                                              async_node, links);
3346                                 csa->ccb_h.path->device->refcount--;
3347                                 kfree(cur_entry, M_CAMXPT);
3348                         } else {
3349                                 cur_entry->event_enable = csa->event_enable;
3350                         }
3351                 } else {
3352                         cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3353                                            M_INTWAIT);
3354                         cur_entry->event_enable = csa->event_enable;
3355                         cur_entry->callback_arg = csa->callback_arg;
3356                         cur_entry->callback = csa->callback;
3357                         SLIST_INSERT_HEAD(async_head, cur_entry, links);
3358                         csa->ccb_h.path->device->refcount++;
3359                 }
3360
3361                 /*
3362                  * Need to decouple this operation via a taskqueue so that
3363                  * the locking doesn't become a mess.
3364                  */
3365                 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3366                         struct xpt_task *task;
3367
3368                         task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3369                                       M_INTWAIT);
3370
3371                         TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3372                         task->data1 = cur_entry;
3373                         task->data2 = added;
3374                         taskqueue_enqueue(taskqueue_thread[mycpuid],
3375                                           &task->task);
3376                 }
3377
3378                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3379                 break;
3380         }
3381         case XPT_REL_SIMQ:
3382         {
3383                 struct ccb_relsim *crs;
3384                 struct cam_ed *dev;
3385
3386                 crs = &start_ccb->crs;
3387                 dev = crs->ccb_h.path->device;
3388                 if (dev == NULL) {
3389
3390                         crs->ccb_h.status = CAM_DEV_NOT_THERE;
3391                         break;
3392                 }
3393
3394                 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3395
3396                         if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3397                                 /* Don't ever go below one opening */
3398                                 if (crs->openings > 0) {
3399                                         xpt_dev_ccbq_resize(crs->ccb_h.path,
3400                                                             crs->openings);
3401
3402                                         if (bootverbose) {
3403                                                 xpt_print(crs->ccb_h.path,
3404                                                     "tagged openings now %d\n",
3405                                                     crs->openings);
3406                                         }
3407                                 }
3408                         }
3409                 }
3410
3411                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3412
3413                         if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3414
3415                                 /*
3416                                  * Just extend the old timeout and decrement
3417                                  * the freeze count so that a single timeout
3418                                  * is sufficient for releasing the queue.
3419                                  */
3420                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3421                                 callout_stop(&dev->callout);
3422                         } else {
3423
3424                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3425                         }
3426
3427                         callout_reset(&dev->callout,
3428                                       (crs->release_timeout * hz) / 1000, 
3429                                       xpt_release_devq_timeout, dev);
3430
3431                         dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3432
3433                 }
3434
3435                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3436
3437                         if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3438                                 /*
3439                                  * Decrement the freeze count so that a single
3440                                  * completion is still sufficient to unfreeze
3441                                  * the queue.
3442                                  */
3443                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3444                         } else {
3445
3446                                 dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3447                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3448                         }
3449                 }
3450
3451                 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3452
3453                         if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3454                          || (dev->ccbq.dev_active == 0)) {
3455
3456                                 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3457                         } else {
3458
3459                                 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3460                                 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3461                         }
3462                 }
3463                 
3464                 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3465
3466                         xpt_release_devq(crs->ccb_h.path, /*count*/1,
3467                                          /*run_queue*/TRUE);
3468                 }
3469                 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3470                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3471                 break;
3472         }
3473         case XPT_SCAN_BUS:
3474                 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3475                 break;
3476         case XPT_SCAN_LUN:
3477                 xpt_scan_lun(start_ccb->ccb_h.path->periph,
3478                              start_ccb->ccb_h.path, start_ccb->crcn.flags,
3479                              start_ccb);
3480                 break;
3481         case XPT_DEBUG: {
3482 #ifdef CAMDEBUG
3483 #ifdef CAM_DEBUG_DELAY
3484                 cam_debug_delay = CAM_DEBUG_DELAY;
3485 #endif
3486                 cam_dflags = start_ccb->cdbg.flags;
3487                 if (cam_dpath != NULL) {
3488                         xpt_free_path(cam_dpath);
3489                         cam_dpath = NULL;
3490                 }
3491
3492                 if (cam_dflags != CAM_DEBUG_NONE) {
3493                         if (xpt_create_path(&cam_dpath, xpt_periph,
3494                                             start_ccb->ccb_h.path_id,
3495                                             start_ccb->ccb_h.target_id,
3496                                             start_ccb->ccb_h.target_lun) !=
3497                                             CAM_REQ_CMP) {
3498                                 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3499                                 cam_dflags = CAM_DEBUG_NONE;
3500                         } else {
3501                                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3502                                 xpt_print(cam_dpath, "debugging flags now %x\n",
3503                                     cam_dflags);
3504                         }
3505                 } else {
3506                         cam_dpath = NULL;
3507                         start_ccb->ccb_h.status = CAM_REQ_CMP;
3508                 }
3509 #else /* !CAMDEBUG */
3510                 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3511 #endif /* CAMDEBUG */
3512                 break;
3513         }
3514         case XPT_NOOP:
3515                 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3516                         xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3517                 start_ccb->ccb_h.status = CAM_REQ_CMP;
3518                 break;
3519         default:
3520         case XPT_SDEV_TYPE:
3521         case XPT_TERM_IO:
3522         case XPT_ENG_INQ:
3523                 /* XXX Implement */
3524                 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3525                 break;
3526         }
3527 }
3528
3529 void
3530 xpt_polled_action(union ccb *start_ccb)
3531 {
3532         u_int32_t timeout;
3533         struct    cam_sim *sim;
3534         struct    cam_devq *devq;
3535         struct    cam_ed *dev;
3536
3537         timeout = start_ccb->ccb_h.timeout;
3538         sim = start_ccb->ccb_h.path->bus->sim;
3539         devq = sim->devq;
3540         dev = start_ccb->ccb_h.path->device;
3541
3542         sim_lock_assert_owned(sim->lock);
3543
3544         /*
3545          * Steal an opening so that no other queued requests
3546          * can get it before us while we simulate interrupts.
3547          */
3548         dev->ccbq.devq_openings--;
3549         dev->ccbq.dev_openings--;
3550
3551         while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3552            && (--timeout > 0)) {
3553                 DELAY(1000);
3554                 (*(sim->sim_poll))(sim);
3555                 camisr_runqueue(sim);
3556         }
3557
3558         dev->ccbq.devq_openings++;
3559         dev->ccbq.dev_openings++;
3560
3561         if (timeout != 0) {
3562                 xpt_action(start_ccb);
3563                 while(--timeout > 0) {
3564                         (*(sim->sim_poll))(sim);
3565                         camisr_runqueue(sim);
3566                         if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3567                             != CAM_REQ_INPROG)
3568                                 break;
3569                         DELAY(1000);
3570                 }
3571                 if (timeout == 0) {
3572                         /*
3573                          * XXX Is it worth adding a sim_timeout entry
3574                          * point so we can attempt recovery?  If
3575                          * this is only used for dumps, I don't think
3576                          * it is.
3577                          */
3578                         start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3579                 }
3580         } else {
3581                 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3582         }
3583 }
3584
3585 /*
3586  * Schedule a peripheral driver to receive a ccb when it's
3587  * target device has space for more transactions.
3588  */
3589 void
3590 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3591 {
3592         struct cam_ed *device;
3593         union ccb *work_ccb;
3594         int runq;
3595
3596         sim_lock_assert_owned(perph->sim->lock);
3597
3598         CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3599         device = perph->path->device;
3600         if (periph_is_queued(perph)) {
3601                 /* Simply reorder based on new priority */
3602                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3603                           ("   change priority to %d\n", new_priority));
3604                 if (new_priority < perph->pinfo.priority) {
3605                         camq_change_priority(&device->drvq,
3606                                              perph->pinfo.index,
3607                                              new_priority);
3608                 }
3609                 runq = 0;
3610         } else if (perph->path->bus->sim == &cam_dead_sim) {
3611                 /* The SIM is gone so just call periph_start directly. */
3612                 work_ccb = xpt_get_ccb(perph->path->device);
3613                 if (work_ccb == NULL)
3614                         return; /* XXX */
3615                 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3616                 perph->pinfo.priority = new_priority;
3617                 perph->periph_start(perph, work_ccb);
3618                 return;
3619         } else {
3620                 /* New entry on the queue */
3621                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3622                           ("   added periph to queue\n"));
3623                 perph->pinfo.priority = new_priority;
3624                 perph->pinfo.generation = ++device->drvq.generation;
3625                 camq_insert(&device->drvq, &perph->pinfo);
3626                 runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3627         }
3628         if (runq != 0) {
3629                 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3630                           ("   calling xpt_run_devq\n"));
3631                 xpt_run_dev_allocq(perph->path->bus);
3632         }
3633 }
3634
3635
3636 /*
3637  * Schedule a device to run on a given queue.
3638  * If the device was inserted as a new entry on the queue,
3639  * return 1 meaning the device queue should be run. If we
3640  * were already queued, implying someone else has already
3641  * started the queue, return 0 so the caller doesn't attempt
3642  * to run the queue.
3643  */
3644 static int
3645 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3646                  u_int32_t new_priority)
3647 {
3648         int retval;
3649         u_int32_t old_priority;
3650
3651         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3652
3653         old_priority = pinfo->priority;
3654
3655         /*
3656          * Are we already queued?
3657          */
3658         if (pinfo->index != CAM_UNQUEUED_INDEX) {
3659                 /* Simply reorder based on new priority */
3660                 if (new_priority < old_priority) {
3661                         camq_change_priority(queue, pinfo->index,
3662                                              new_priority);
3663                         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3664                                         ("changed priority to %d\n",
3665                                          new_priority));
3666                 }
3667                 retval = 0;
3668         } else {
3669                 /* New entry on the queue */
3670                 if (new_priority < old_priority)
3671                         pinfo->priority = new_priority;
3672
3673                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3674                                 ("Inserting onto queue\n"));
3675                 pinfo->generation = ++queue->generation;
3676                 camq_insert(queue, pinfo);
3677                 retval = 1;
3678         }
3679         return (retval);
3680 }
3681
3682 static void
3683 xpt_run_dev_allocq(struct cam_eb *bus)
3684 {
3685         struct  cam_devq *devq;
3686
3687         if ((devq = bus->sim->devq) == NULL) {
3688                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3689                 return;
3690         }
3691         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3692
3693         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3694                         ("   qfrozen_cnt == 0x%x, entries == %d, "
3695                          "openings == %d, active == %d\n",
3696                          devq->alloc_queue.qfrozen_cnt,
3697                          devq->alloc_queue.entries,
3698                          devq->alloc_openings,
3699                          devq->alloc_active));
3700
3701         devq->alloc_queue.qfrozen_cnt++;
3702         while ((devq->alloc_queue.entries > 0)
3703             && (devq->alloc_openings > 0)
3704             && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3705                 struct  cam_ed_qinfo *qinfo;
3706                 struct  cam_ed *device;
3707                 union   ccb *work_ccb;
3708                 struct  cam_periph *drv;
3709                 struct  camq *drvq;
3710
3711                 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3712                                                            CAMQ_HEAD);
3713                 device = qinfo->device;
3714
3715                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3716                                 ("running device %p\n", device));
3717
3718                 drvq = &device->drvq;
3719
3720 #ifdef CAMDEBUG
3721                 if (drvq->entries <= 0) {
3722                         panic("xpt_run_dev_allocq: "
3723                               "Device on queue without any work to do");
3724                 }
3725 #endif
3726                 if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3727                         devq->alloc_openings--;
3728                         devq->alloc_active++;
3729                         drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3730                         xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3731                                       drv->pinfo.priority);
3732                         CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3733                                         ("calling periph start\n"));
3734                         drv->periph_start(drv, work_ccb);
3735                 } else {
3736                         /*
3737                          * Malloc failure in alloc_ccb
3738                          */
3739                         /*
3740                          * XXX add us to a list to be run from free_ccb
3741                          * if we don't have any ccbs active on this
3742                          * device queue otherwise we may never get run
3743                          * again.
3744                          */
3745                         break;
3746                 }
3747
3748                 if (drvq->entries > 0) {
3749                         /* We have more work.  Attempt to reschedule */
3750                         xpt_schedule_dev_allocq(bus, device);
3751                 }
3752         }
3753         devq->alloc_queue.qfrozen_cnt--;
3754 }
3755
3756 static void
3757 xpt_run_dev_sendq(struct cam_eb *bus)
3758 {
3759         struct  cam_devq *devq;
3760
3761         if ((devq = bus->sim->devq) == NULL) {
3762                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3763                 return;
3764         }
3765         CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3766
3767         devq->send_queue.qfrozen_cnt++;
3768         while ((devq->send_queue.entries > 0)
3769             && (devq->send_openings > 0)) {
3770                 struct  cam_ed_qinfo *qinfo;
3771                 struct  cam_ed *device;
3772                 union ccb *work_ccb;
3773                 struct  cam_sim *sim;
3774
3775                 if (devq->send_queue.qfrozen_cnt > 1) {
3776                         break;
3777                 }
3778
3779                 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3780                                                            CAMQ_HEAD);
3781                 device = qinfo->device;
3782
3783                 /*
3784                  * If the device has been "frozen", don't attempt
3785                  * to run it.
3786                  */
3787                 if (device->qfrozen_cnt > 0) {
3788                         continue;
3789                 }
3790
3791                 CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3792                                 ("running device %p\n", device));
3793
3794                 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3795                 if (work_ccb == NULL) {
3796                         kprintf("device on run queue with no ccbs???\n");
3797                         continue;
3798                 }
3799
3800                 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3801
3802                         lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3803                         if (xsoftc.num_highpower <= 0) {
3804                                 /*
3805                                  * We got a high power command, but we
3806                                  * don't have any available slots.  Freeze
3807                                  * the device queue until we have a slot
3808                                  * available.
3809                                  */
3810                                 device->qfrozen_cnt++;
3811                                 STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3812                                                    &work_ccb->ccb_h,
3813                                                    xpt_links.stqe);
3814
3815                                 lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3816