Introduce ETHER_INPUT_CHAIN option:
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  *
3  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 2001-2006, Intel Corporation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  * 
11  *  1. Redistributions of source code must retain the above copyright notice,
12  *     this list of conditions and the following disclaimer.
13  * 
14  *  2. Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in the
16  *     documentation and/or other materials provided with the distribution.
17  * 
18  *  3. Neither the name of the Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived from
20  *     this software without specific prior written permission.
21  * 
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
23  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
26  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
36  * 
37  * This code is derived from software contributed to The DragonFly Project
38  * by Matthew Dillon <dillon@backplane.com>
39  * 
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  * 3. Neither the name of The DragonFly Project nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific, prior written permission.
53  * 
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
57  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
58  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
59  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
60  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
61  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
62  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
63  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
64  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65  * SUCH DAMAGE.
66  * 
67  * $DragonFly: src/sys/dev/netif/em/if_em.c,v 1.70 2008/05/02 07:40:32 sephe Exp $
68  * $FreeBSD$
69  */
70 /*
71  * SERIALIZATION API RULES:
72  *
73  * - If the driver uses the same serializer for the interrupt as for the
74  *   ifnet, most of the serialization will be done automatically for the
75  *   driver.  
76  *
77  * - ifmedia entry points will be serialized by the ifmedia code using the
78  *   ifnet serializer.
79  *
80  * - if_* entry points except for if_input will be serialized by the IF
81  *   and protocol layers.
82  *
83  * - The device driver must be sure to serialize access from timeout code
84  *   installed by the device driver.
85  *
86  * - The device driver typically holds the serializer at the time it wishes
87  *   to call if_input.  If so, it should pass the serializer to if_input and
88  *   note that the serializer might be dropped temporarily by if_input 
89  *   (e.g. in case it has to bridge the packet to another interface).
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95
96 #include "opt_polling.h"
97 #include "opt_inet.h"
98 #include "opt_serializer.h"
99 #include "opt_ethernet.h"
100
101 #include <sys/param.h>
102 #include <sys/bus.h>
103 #include <sys/endian.h>
104 #include <sys/kernel.h>
105 #include <sys/ktr.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/module.h>
109 #include <sys/rman.h>
110 #include <sys/serialize.h>
111 #include <sys/socket.h>
112 #include <sys/sockio.h>
113 #include <sys/sysctl.h>
114
115 #include <net/bpf.h>
116 #include <net/ethernet.h>
117 #include <net/if.h>
118 #include <net/if_arp.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/if_types.h>
122 #include <net/ifq_var.h>
123 #include <net/vlan/if_vlan_var.h>
124 #include <net/vlan/if_vlan_ether.h>
125
126 #ifdef INET
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/in_var.h>
130 #include <netinet/ip.h>
131 #include <netinet/tcp.h>
132 #include <netinet/udp.h>
133 #endif
134
135 #include <dev/netif/em/if_em_hw.h>
136 #include <dev/netif/em/if_em.h>
137
138 #define EM_X60_WORKAROUND
139
140 /*********************************************************************
141  *  Set this to one to display debug statistics
142  *********************************************************************/
143 int     em_display_debug_stats = 0;
144
145 /*********************************************************************
146  *  Driver version
147  *********************************************************************/
148
149 char em_driver_version[] = "6.2.9";
150
151
152 /*********************************************************************
153  *  PCI Device ID Table
154  *
155  *  Used by probe to select devices to load on
156  *  Last field stores an index into em_strings
157  *  Last entry must be all 0s
158  *
159  *  { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
160  *********************************************************************/
161
162 static em_vendor_info_t em_vendor_info_array[] =
163 {
164         /* Intel(R) PRO/1000 Network Connection */
165         { 0x8086, E1000_DEV_ID_82540EM,         PCI_ANY_ID, PCI_ANY_ID, 0},
166         { 0x8086, E1000_DEV_ID_82540EM_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
167         { 0x8086, E1000_DEV_ID_82540EP,         PCI_ANY_ID, PCI_ANY_ID, 0},
168         { 0x8086, E1000_DEV_ID_82540EP_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
169         { 0x8086, E1000_DEV_ID_82540EP_LP,      PCI_ANY_ID, PCI_ANY_ID, 0},
170
171         { 0x8086, E1000_DEV_ID_82541EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
172         { 0x8086, E1000_DEV_ID_82541ER,         PCI_ANY_ID, PCI_ANY_ID, 0},
173         { 0x8086, E1000_DEV_ID_82541ER_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
174         { 0x8086, E1000_DEV_ID_82541EI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
175         { 0x8086, E1000_DEV_ID_82541GI,         PCI_ANY_ID, PCI_ANY_ID, 0},
176         { 0x8086, E1000_DEV_ID_82541GI_LF,      PCI_ANY_ID, PCI_ANY_ID, 0},
177         { 0x8086, E1000_DEV_ID_82541GI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
178
179         { 0x8086, E1000_DEV_ID_82542,           PCI_ANY_ID, PCI_ANY_ID, 0},
180
181         { 0x8086, E1000_DEV_ID_82543GC_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
182         { 0x8086, E1000_DEV_ID_82543GC_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
183
184         { 0x8086, E1000_DEV_ID_82544EI_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
185         { 0x8086, E1000_DEV_ID_82544EI_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
186         { 0x8086, E1000_DEV_ID_82544GC_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
187         { 0x8086, E1000_DEV_ID_82544GC_LOM,     PCI_ANY_ID, PCI_ANY_ID, 0},
188
189         { 0x8086, E1000_DEV_ID_82545EM_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
190         { 0x8086, E1000_DEV_ID_82545EM_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
191         { 0x8086, E1000_DEV_ID_82545GM_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
192         { 0x8086, E1000_DEV_ID_82545GM_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
193         { 0x8086, E1000_DEV_ID_82545GM_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
194
195         { 0x8086, E1000_DEV_ID_82546EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
196         { 0x8086, E1000_DEV_ID_82546EB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
197         { 0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
198         { 0x8086, E1000_DEV_ID_82546GB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
199         { 0x8086, E1000_DEV_ID_82546GB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
200         { 0x8086, E1000_DEV_ID_82546GB_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
201         { 0x8086, E1000_DEV_ID_82546GB_PCIE,    PCI_ANY_ID, PCI_ANY_ID, 0},
202         { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
203         { 0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
204                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
205
206         { 0x8086, E1000_DEV_ID_82547EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
207         { 0x8086, E1000_DEV_ID_82547EI_MOBILE,  PCI_ANY_ID, PCI_ANY_ID, 0},
208         { 0x8086, E1000_DEV_ID_82547GI,         PCI_ANY_ID, PCI_ANY_ID, 0},
209
210         { 0x8086, E1000_DEV_ID_82571EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
211         { 0x8086, E1000_DEV_ID_82571EB_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
212         { 0x8086, E1000_DEV_ID_82571EB_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
213         { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
214                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
215         { 0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE,
216                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
217
218         { 0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
219                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
220         { 0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
221                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
222         { 0x8086, E1000_DEV_ID_82572EI_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
223         { 0x8086, E1000_DEV_ID_82572EI_FIBER,   PCI_ANY_ID, PCI_ANY_ID, 0},
224         { 0x8086, E1000_DEV_ID_82572EI_SERDES,  PCI_ANY_ID, PCI_ANY_ID, 0},
225         { 0x8086, E1000_DEV_ID_82572EI,         PCI_ANY_ID, PCI_ANY_ID, 0},
226
227         { 0x8086, E1000_DEV_ID_82573E,          PCI_ANY_ID, PCI_ANY_ID, 0},
228         { 0x8086, E1000_DEV_ID_82573E_IAMT,     PCI_ANY_ID, PCI_ANY_ID, 0},
229         { 0x8086, E1000_DEV_ID_82573L,          PCI_ANY_ID, PCI_ANY_ID, 0},
230
231         { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
232                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
233         { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
234                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
235         { 0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
236                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
237         { 0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
238                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
239
240         { 0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,  PCI_ANY_ID, PCI_ANY_ID, 0},
241         { 0x8086, E1000_DEV_ID_ICH8_IGP_AMT,    PCI_ANY_ID, PCI_ANY_ID, 0},
242         { 0x8086, E1000_DEV_ID_ICH8_IGP_C,      PCI_ANY_ID, PCI_ANY_ID, 0},
243         { 0x8086, E1000_DEV_ID_ICH8_IFE,        PCI_ANY_ID, PCI_ANY_ID, 0},
244         { 0x8086, E1000_DEV_ID_ICH8_IFE_GT,     PCI_ANY_ID, PCI_ANY_ID, 0},
245         { 0x8086, E1000_DEV_ID_ICH8_IFE_G,      PCI_ANY_ID, PCI_ANY_ID, 0},
246         { 0x8086, E1000_DEV_ID_ICH8_IGP_M,      PCI_ANY_ID, PCI_ANY_ID, 0},
247
248         { 0x8086, E1000_DEV_ID_ICH9_IGP_AMT,    PCI_ANY_ID, PCI_ANY_ID, 0},
249         { 0x8086, E1000_DEV_ID_ICH9_IGP_C,      PCI_ANY_ID, PCI_ANY_ID, 0},
250         { 0x8086, E1000_DEV_ID_ICH9_IFE,        PCI_ANY_ID, PCI_ANY_ID, 0},
251         { 0x8086, E1000_DEV_ID_ICH9_IFE_GT,     PCI_ANY_ID, PCI_ANY_ID, 0},
252         { 0x8086, E1000_DEV_ID_ICH9_IFE_G,      PCI_ANY_ID, PCI_ANY_ID, 0},
253
254         { 0x8086, E1000_DEV_ID_82575EB_COPPER,  PCI_ANY_ID, PCI_ANY_ID, 0},
255         { 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
256                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
257         { 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
258                                                 PCI_ANY_ID, PCI_ANY_ID, 0},
259         { 0x8086, 0x101A, PCI_ANY_ID, PCI_ANY_ID, 0},
260         { 0x8086, 0x1014, PCI_ANY_ID, PCI_ANY_ID, 0},
261         /* required last entry */
262         { 0, 0, 0, 0, 0}
263 };
264
265 /*********************************************************************
266  *  Table of branding strings for all supported NICs.
267  *********************************************************************/
268
269 static const char *em_strings[] = {
270         "Intel(R) PRO/1000 Network Connection"
271 };
272
273 /*********************************************************************
274  *  Function prototypes
275  *********************************************************************/
276 static int      em_probe(device_t);
277 static int      em_attach(device_t);
278 static int      em_detach(device_t);
279 static int      em_shutdown(device_t);
280 static void     em_intr(void *);
281 static int      em_suspend(device_t);
282 static int      em_resume(device_t);
283 static void     em_start(struct ifnet *);
284 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
285 static void     em_watchdog(struct ifnet *);
286 static void     em_init(void *);
287 static void     em_stop(void *);
288 static void     em_media_status(struct ifnet *, struct ifmediareq *);
289 static int      em_media_change(struct ifnet *);
290 static void     em_identify_hardware(struct adapter *);
291 static int      em_allocate_pci_resources(device_t);
292 static void     em_free_pci_resources(device_t);
293 static void     em_local_timer(void *);
294 static int      em_hardware_init(struct adapter *);
295 static void     em_setup_interface(device_t, struct adapter *);
296 static int      em_setup_transmit_structures(struct adapter *);
297 static void     em_initialize_transmit_unit(struct adapter *);
298 static int      em_setup_receive_structures(struct adapter *);
299 static void     em_initialize_receive_unit(struct adapter *);
300 static void     em_enable_intr(struct adapter *);
301 static void     em_disable_intr(struct adapter *);
302 static void     em_free_transmit_structures(struct adapter *);
303 static void     em_free_receive_structures(struct adapter *);
304 static void     em_update_stats_counters(struct adapter *);
305 static void     em_txeof(struct adapter *);
306 static int      em_allocate_receive_structures(struct adapter *);
307 static void     em_rxeof(struct adapter *, int);
308 static void     em_receive_checksum(struct adapter *, struct em_rx_desc *,
309                                     struct mbuf *);
310 static void     em_transmit_checksum_setup(struct adapter *, struct mbuf *,
311                                            uint32_t *, uint32_t *);
312 static void     em_set_promisc(struct adapter *);
313 static void     em_disable_promisc(struct adapter *);
314 static void     em_set_multi(struct adapter *);
315 static void     em_print_hw_stats(struct adapter *);
316 static void     em_update_link_status(struct adapter *);
317 static int      em_get_buf(int i, struct adapter *, struct mbuf *, int how);
318 static void     em_enable_vlans(struct adapter *);
319 static void     em_disable_vlans(struct adapter *);
320 static int      em_encap(struct adapter *, struct mbuf *);
321 static void     em_smartspeed(struct adapter *);
322 static int      em_82547_fifo_workaround(struct adapter *, int);
323 static void     em_82547_update_fifo_head(struct adapter *, int);
324 static int      em_82547_tx_fifo_reset(struct adapter *);
325 static void     em_82547_move_tail(void *);
326 static void     em_82547_move_tail_serialized(struct adapter *);
327 static int      em_dma_malloc(struct adapter *, bus_size_t,
328                               struct em_dma_alloc *);
329 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
330 static void     em_print_debug_info(struct adapter *);
331 static int      em_is_valid_ether_addr(uint8_t *);
332 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
333 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
334 static uint32_t em_fill_descriptors(bus_addr_t address, uint32_t length, 
335                                    PDESC_ARRAY desc_array);
336 static int      em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
337 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
338 static void     em_add_int_delay_sysctl(struct adapter *, const char *,
339                                         const char *,
340                                         struct em_int_delay_info *, int, int);
341
342 /*********************************************************************
343  *  FreeBSD Device Interface Entry Points
344  *********************************************************************/
345
346 static device_method_t em_methods[] = {
347         /* Device interface */
348         DEVMETHOD(device_probe, em_probe),
349         DEVMETHOD(device_attach, em_attach),
350         DEVMETHOD(device_detach, em_detach),
351         DEVMETHOD(device_shutdown, em_shutdown),
352         DEVMETHOD(device_suspend, em_suspend),
353         DEVMETHOD(device_resume, em_resume),
354         {0, 0}
355 };
356
357 static driver_t em_driver = {
358         "em", em_methods, sizeof(struct adapter),
359 };
360
361 static devclass_t em_devclass;
362
363 DECLARE_DUMMY_MODULE(if_em);
364 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, 0, 0);
365
366 /*********************************************************************
367  *  Tunable default values.
368  *********************************************************************/
369
370 #define E1000_TICKS_TO_USECS(ticks)     ((1024 * (ticks) + 500) / 1000)
371 #define E1000_USECS_TO_TICKS(usecs)     ((1000 * (usecs) + 512) / 1024)
372
373 static int em_tx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TIDV);
374 static int em_rx_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RDTR);
375 static int em_tx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_TADV);
376 static int em_rx_abs_int_delay_dflt = E1000_TICKS_TO_USECS(EM_RADV);
377 static int em_int_throttle_ceil = 10000;
378 static int em_rxd = EM_DEFAULT_RXD;
379 static int em_txd = EM_DEFAULT_TXD;
380 static int em_smart_pwr_down = FALSE;
381
382 TUNABLE_INT("hw.em.tx_int_delay", &em_tx_int_delay_dflt);
383 TUNABLE_INT("hw.em.rx_int_delay", &em_rx_int_delay_dflt);
384 TUNABLE_INT("hw.em.tx_abs_int_delay", &em_tx_abs_int_delay_dflt);
385 TUNABLE_INT("hw.em.rx_abs_int_delay", &em_rx_abs_int_delay_dflt);
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390
391 /*
392  * Kernel trace for characterization of operations
393  */
394 #if !defined(KTR_IF_EM)
395 #define KTR_IF_EM       KTR_ALL
396 #endif
397 KTR_INFO_MASTER(if_em);
398 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin", 0);
399 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end", 0);
400 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet", 0);
401 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet", 0);
402 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean", 0);
403 #define logif(name)     KTR_LOG(if_em_ ## name)
404
405 /*********************************************************************
406  *  Device identification routine
407  *
408  *  em_probe determines if the driver should be loaded on
409  *  adapter based on PCI vendor/device id of the adapter.
410  *
411  *  return 0 on success, positive on failure
412  *********************************************************************/
413
414 static int
415 em_probe(device_t dev)
416 {
417         em_vendor_info_t *ent;
418
419         uint16_t pci_vendor_id = 0;
420         uint16_t pci_device_id = 0;
421         uint16_t pci_subvendor_id = 0;
422         uint16_t pci_subdevice_id = 0;
423         char adapter_name[60];
424
425         INIT_DEBUGOUT("em_probe: begin");
426
427         pci_vendor_id = pci_get_vendor(dev);
428         if (pci_vendor_id != EM_VENDOR_ID)
429                 return (ENXIO);
430
431         pci_device_id = pci_get_device(dev);
432         pci_subvendor_id = pci_get_subvendor(dev);
433         pci_subdevice_id = pci_get_subdevice(dev);
434
435         ent = em_vendor_info_array;
436         while (ent->vendor_id != 0) {
437                 if ((pci_vendor_id == ent->vendor_id) &&
438                     (pci_device_id == ent->device_id) &&
439
440                     ((pci_subvendor_id == ent->subvendor_id) ||
441                      (ent->subvendor_id == PCI_ANY_ID)) &&
442
443                     ((pci_subdevice_id == ent->subdevice_id) ||
444                      (ent->subdevice_id == PCI_ANY_ID))) {
445                         ksnprintf(adapter_name, sizeof(adapter_name),
446                                  "%s, Version - %s",  em_strings[ent->index], 
447                                  em_driver_version);
448                         device_set_desc_copy(dev, adapter_name);
449                         device_set_async_attach(dev, TRUE);
450                         return (0);
451                 }
452                 ent++;
453         }
454
455         return (ENXIO);
456 }
457
458 /*********************************************************************
459  *  Device initialization routine
460  *
461  *  The attach entry point is called when the driver is being loaded.
462  *  This routine identifies the type of hardware, allocates all resources
463  *  and initializes the hardware.
464  *
465  *  return 0 on success, positive on failure
466  *********************************************************************/
467
468 static int
469 em_attach(device_t dev)
470 {
471         struct adapter *adapter;
472         int tsize, rsize;
473         int error = 0;
474
475         INIT_DEBUGOUT("em_attach: begin");
476
477         adapter = device_get_softc(dev);
478
479         callout_init(&adapter->timer);
480         callout_init(&adapter->tx_fifo_timer);
481
482         adapter->dev = dev;
483         adapter->osdep.dev = dev;
484
485         /* SYSCTL stuff */
486         sysctl_ctx_init(&adapter->sysctl_ctx);
487         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
488                                                SYSCTL_STATIC_CHILDREN(_hw),
489                                                OID_AUTO, 
490                                                device_get_nameunit(dev),
491                                                CTLFLAG_RD,
492                                                0, "");
493
494         if (adapter->sysctl_tree == NULL) {
495                 device_printf(dev, "Unable to create sysctl tree\n");
496                 return EIO;
497         }
498
499         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,  
500                         SYSCTL_CHILDREN(adapter->sysctl_tree),
501                         OID_AUTO, "debug_info", CTLTYPE_INT|CTLFLAG_RW, 
502                         (void *)adapter, 0,
503                         em_sysctl_debug_info, "I", "Debug Information");
504
505         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,  
506                         SYSCTL_CHILDREN(adapter->sysctl_tree),
507                         OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, 
508                         (void *)adapter, 0,
509                         em_sysctl_stats, "I", "Statistics");
510
511         /* Determine hardware revision */
512         em_identify_hardware(adapter);
513
514         /* Set up some sysctls for the tunable interrupt delays */
515         em_add_int_delay_sysctl(adapter, "rx_int_delay",
516                                 "receive interrupt delay in usecs",
517                                 &adapter->rx_int_delay,
518                                 E1000_REG_OFFSET(&adapter->hw, RDTR),
519                                 em_rx_int_delay_dflt);
520         em_add_int_delay_sysctl(adapter, "tx_int_delay",
521                                 "transmit interrupt delay in usecs",
522                                 &adapter->tx_int_delay,
523                                 E1000_REG_OFFSET(&adapter->hw, TIDV),
524                                 em_tx_int_delay_dflt);
525         if (adapter->hw.mac_type >= em_82540) {
526                 em_add_int_delay_sysctl(adapter, "rx_abs_int_delay",
527                                         "receive interrupt delay limit in usecs",
528                                         &adapter->rx_abs_int_delay,
529                                         E1000_REG_OFFSET(&adapter->hw, RADV),
530                                         em_rx_abs_int_delay_dflt);
531                 em_add_int_delay_sysctl(adapter, "tx_abs_int_delay",
532                                         "transmit interrupt delay limit in usecs",
533                                         &adapter->tx_abs_int_delay,
534                                         E1000_REG_OFFSET(&adapter->hw, TADV),
535                                         em_tx_abs_int_delay_dflt);
536                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
537                         SYSCTL_CHILDREN(adapter->sysctl_tree),
538                         OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
539                         adapter, 0, em_sysctl_int_throttle, "I", NULL);
540         }
541
542         /*
543          * Validate number of transmit and receive descriptors. It
544          * must not exceed hardware maximum, and must be multiple
545          * of EM_DBA_ALIGN.
546          */
547         if (((em_txd * sizeof(struct em_tx_desc)) % EM_DBA_ALIGN) != 0 ||
548             (adapter->hw.mac_type >= em_82544 && em_txd > EM_MAX_TXD) ||
549             (adapter->hw.mac_type < em_82544 && em_txd > EM_MAX_TXD_82543) ||
550             (em_txd < EM_MIN_TXD)) {
551                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
552                               EM_DEFAULT_TXD, em_txd);
553                 adapter->num_tx_desc = EM_DEFAULT_TXD;
554         } else {
555                 adapter->num_tx_desc = em_txd;
556         }
557  
558         if (((em_rxd * sizeof(struct em_rx_desc)) % EM_DBA_ALIGN) != 0 ||
559             (adapter->hw.mac_type >= em_82544 && em_rxd > EM_MAX_RXD) ||
560             (adapter->hw.mac_type < em_82544 && em_rxd > EM_MAX_RXD_82543) ||
561             (em_rxd < EM_MIN_RXD)) {
562                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
563                               EM_DEFAULT_RXD, em_rxd);
564                 adapter->num_rx_desc = EM_DEFAULT_RXD;
565         } else {
566                 adapter->num_rx_desc = em_rxd;
567         }
568
569         SYSCTL_ADD_INT(&adapter->sysctl_ctx,
570                        SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "rxd",
571                        CTLFLAG_RD, &adapter->num_rx_desc, 0, NULL);
572         SYSCTL_ADD_INT(&adapter->sysctl_ctx,
573                        SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO, "txd",
574                        CTLFLAG_RD, &adapter->num_tx_desc, 0, NULL);
575
576         adapter->hw.autoneg = DO_AUTO_NEG;
577         adapter->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT;
578         adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
579         adapter->hw.tbi_compatibility_en = TRUE;
580         adapter->rx_buffer_len = EM_RXBUFFER_2048;
581
582         adapter->hw.phy_init_script = 1;
583         adapter->hw.phy_reset_disable = FALSE;
584
585 #ifndef EM_MASTER_SLAVE
586         adapter->hw.master_slave = em_ms_hw_default;
587 #else
588         adapter->hw.master_slave = EM_MASTER_SLAVE;
589 #endif
590
591         /*
592          * Set the max frame size assuming standard ethernet
593          * sized frames.
594          */   
595         adapter->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
596
597         adapter->hw.min_frame_size =
598             MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN;
599
600         /*
601          * This controls when hardware reports transmit completion
602          * status.
603          */
604         adapter->hw.report_tx_early = 1;
605
606         error = em_allocate_pci_resources(dev);
607         if (error)
608                 goto fail;
609
610         /* Initialize eeprom parameters */
611         em_init_eeprom_params(&adapter->hw);
612
613         tsize = roundup2(adapter->num_tx_desc * sizeof(struct em_tx_desc),
614                          EM_DBA_ALIGN);
615
616         /* Allocate Transmit Descriptor ring */
617         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
618         if (error) {
619                 device_printf(dev, "Unable to allocate TxDescriptor memory\n");
620                 goto fail;
621         }
622         adapter->tx_desc_base = (struct em_tx_desc *)adapter->txdma.dma_vaddr;
623
624         rsize = roundup2(adapter->num_rx_desc * sizeof(struct em_rx_desc),
625                          EM_DBA_ALIGN);
626
627         /* Allocate Receive Descriptor ring */
628         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
629         if (error) {
630                 device_printf(dev, "Unable to allocate rx_desc memory\n");
631                 goto fail;
632         }
633         adapter->rx_desc_base = (struct em_rx_desc *)adapter->rxdma.dma_vaddr;
634
635         /* Initialize the hardware */
636         if (em_hardware_init(adapter)) {
637                 device_printf(dev, "Unable to initialize the hardware\n");
638                 error = EIO;
639                 goto fail;
640         }
641
642         /* Copy the permanent MAC address out of the EEPROM */
643         if (em_read_mac_addr(&adapter->hw) < 0) {
644                 device_printf(dev,
645                               "EEPROM read error while reading MAC address\n");
646                 error = EIO;
647                 goto fail;
648         }
649
650         if (!em_is_valid_ether_addr(adapter->hw.mac_addr)) {
651                 device_printf(dev, "Invalid MAC address\n");
652                 error = EIO;
653                 goto fail;
654         }
655
656         /* Setup OS specific network interface */
657         em_setup_interface(dev, adapter);
658
659         /* Initialize statistics */
660         em_clear_hw_cntrs(&adapter->hw);
661         em_update_stats_counters(adapter);
662         adapter->hw.get_link_status = 1;
663         em_update_link_status(adapter);
664
665         /* Indicate SOL/IDER usage */
666         if (em_check_phy_reset_block(&adapter->hw)) {
667                 device_printf(dev, "PHY reset is blocked due to "
668                               "SOL/IDER session.\n");
669         }
670  
671         /* Identify 82544 on PCIX */
672         em_get_bus_info(&adapter->hw);
673         if (adapter->hw.bus_type == em_bus_type_pcix &&
674             adapter->hw.mac_type == em_82544)
675                 adapter->pcix_82544 = TRUE;
676         else
677                 adapter->pcix_82544 = FALSE;
678
679         error = bus_setup_intr(dev, adapter->res_interrupt, INTR_NETSAFE,
680                            em_intr, adapter,
681                            &adapter->int_handler_tag,
682                            adapter->interface_data.ac_if.if_serializer);
683         if (error) {
684                 device_printf(dev, "Error registering interrupt handler!\n");
685                 ether_ifdetach(&adapter->interface_data.ac_if);
686                 goto fail;
687         }
688
689         INIT_DEBUGOUT("em_attach: end");
690         return(0);
691
692 fail:
693         em_detach(dev);
694         return(error);
695 }
696
697 /*********************************************************************
698  *  Device removal routine
699  *
700  *  The detach entry point is called when the driver is being removed.
701  *  This routine stops the adapter and deallocates all the resources
702  *  that were allocated for driver operation.
703  *
704  *  return 0 on success, positive on failure
705  *********************************************************************/
706
707 static int
708 em_detach(device_t dev)
709 {
710         struct adapter *adapter = device_get_softc(dev);
711
712         INIT_DEBUGOUT("em_detach: begin");
713
714         if (device_is_attached(dev)) {
715                 struct ifnet *ifp = &adapter->interface_data.ac_if;
716
717                 lwkt_serialize_enter(ifp->if_serializer);
718                 adapter->in_detach = 1;
719                 em_stop(adapter);
720                 em_phy_hw_reset(&adapter->hw);
721                 bus_teardown_intr(dev, adapter->res_interrupt, 
722                                   adapter->int_handler_tag);
723                 lwkt_serialize_exit(ifp->if_serializer);
724
725                 ether_ifdetach(ifp);
726         }
727         bus_generic_detach(dev);
728
729         em_free_pci_resources(dev);
730
731         /* Free Transmit Descriptor ring */
732         if (adapter->tx_desc_base != NULL) {
733                 em_dma_free(adapter, &adapter->txdma);
734                 adapter->tx_desc_base = NULL;
735         }
736
737         /* Free Receive Descriptor ring */
738         if (adapter->rx_desc_base != NULL) {
739                 em_dma_free(adapter, &adapter->rxdma);
740                 adapter->rx_desc_base = NULL;
741         }
742
743         /* Free sysctl tree */
744         if (adapter->sysctl_tree != NULL) {
745                 adapter->sysctl_tree = NULL;
746                 sysctl_ctx_free(&adapter->sysctl_ctx);
747         }
748
749         return (0);
750 }
751
752 /*********************************************************************
753  *
754  *  Shutdown entry point
755  *
756  **********************************************************************/
757
758 static int
759 em_shutdown(device_t dev)
760 {
761         struct adapter *adapter = device_get_softc(dev);
762         struct ifnet *ifp = &adapter->interface_data.ac_if;
763
764         lwkt_serialize_enter(ifp->if_serializer);
765         em_stop(adapter);
766         lwkt_serialize_exit(ifp->if_serializer);
767
768         return (0);
769 }
770
771 /*
772  * Suspend/resume device methods.
773  */
774 static int
775 em_suspend(device_t dev)
776 {
777         struct adapter *adapter = device_get_softc(dev);
778         struct ifnet *ifp = &adapter->interface_data.ac_if;
779
780         lwkt_serialize_enter(ifp->if_serializer);
781         em_stop(adapter);
782         lwkt_serialize_exit(ifp->if_serializer);
783         return (0);
784 }
785
786 static int
787 em_resume(device_t dev)
788 {
789         struct adapter *adapter = device_get_softc(dev);
790         struct ifnet *ifp = &adapter->interface_data.ac_if;
791
792         lwkt_serialize_enter(ifp->if_serializer);
793         ifp->if_flags &= ~IFF_RUNNING;
794         em_init(adapter);
795         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
796                 em_start(ifp);
797         lwkt_serialize_exit(ifp->if_serializer);
798
799         return bus_generic_resume(dev);
800 }
801
802 /*********************************************************************
803  *  Transmit entry point
804  *
805  *  em_start is called by the stack to initiate a transmit.
806  *  The driver will remain in this routine as long as there are
807  *  packets to transmit and transmit resources are available.
808  *  In case resources are not available stack is notified and
809  *  the packet is requeued.
810  **********************************************************************/
811
812 static void
813 em_start(struct ifnet *ifp)
814 {
815         struct mbuf *m_head;
816         struct adapter *adapter = ifp->if_softc;
817
818         ASSERT_SERIALIZED(ifp->if_serializer);
819
820         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
821                 return;
822         if (!adapter->link_active)
823                 return;
824         while (!ifq_is_empty(&ifp->if_snd)) {
825                 m_head = ifq_poll(&ifp->if_snd);
826
827                 if (m_head == NULL)
828                         break;
829
830                 logif(pkt_txqueue);
831                 if (em_encap(adapter, m_head)) {
832                         ifp->if_flags |= IFF_OACTIVE;
833                         break;
834                 }
835                 ifq_dequeue(&ifp->if_snd, m_head);
836
837                 /* Send a copy of the frame to the BPF listener */
838                 ETHER_BPF_MTAP(ifp, m_head);
839
840                 /* Set timeout in case hardware has problems transmitting. */
841                 ifp->if_timer = EM_TX_TIMEOUT;
842         }
843 }
844
845 /*********************************************************************
846  *  Ioctl entry point
847  *
848  *  em_ioctl is called when the user wants to configure the
849  *  interface.
850  *
851  *  return 0 on success, positive on failure
852  **********************************************************************/
853
854 static int
855 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
856 {
857         int max_frame_size, mask, error = 0, reinit = 0;
858         struct ifreq *ifr = (struct ifreq *) data;
859         struct adapter *adapter = ifp->if_softc;
860         uint16_t eeprom_data = 0;
861
862         ASSERT_SERIALIZED(ifp->if_serializer);
863
864         if (adapter->in_detach)
865                 return 0;
866
867         switch (command) {
868         case SIOCSIFMTU:
869                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
870                 switch (adapter->hw.mac_type) {
871                 case em_82573:
872                         /*
873                          * 82573 only supports jumbo frames
874                          * if ASPM is disabled.
875                          */
876                         em_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3,
877                             1, &eeprom_data);
878                         if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
879                                 max_frame_size = ETHER_MAX_LEN;
880                                 break;
881                         }
882                         /* Allow Jumbo frames */
883                         /* FALLTHROUGH */
884                 case em_82571:
885                 case em_82572:
886                 case em_ich9lan:
887                 case em_80003es2lan:    /* Limit Jumbo Frame size */
888                         max_frame_size = 9234;
889                         break;
890                 case em_ich8lan:
891                         /* ICH8 does not support jumbo frames */
892                         max_frame_size = ETHER_MAX_LEN;
893                         break;
894                 default:
895                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
896                         break;
897                 }
898                 if (ifr->ifr_mtu >
899                         max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
900                         error = EINVAL;
901                 } else {
902                         ifp->if_mtu = ifr->ifr_mtu;
903                         adapter->hw.max_frame_size = 
904                         ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
905                         ifp->if_flags &= ~IFF_RUNNING;
906                         em_init(adapter);
907                 }
908                 break;
909         case SIOCSIFFLAGS:
910                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS "
911                                "(Set Interface Flags)");
912                 if (ifp->if_flags & IFF_UP) {
913                         if (!(ifp->if_flags & IFF_RUNNING)) {
914                                 em_init(adapter);
915                         } else if ((ifp->if_flags ^ adapter->if_flags) &
916                                    IFF_PROMISC) {
917                                 em_disable_promisc(adapter);
918                                 em_set_promisc(adapter);
919                         }
920                 } else {
921                         if (ifp->if_flags & IFF_RUNNING)
922                                 em_stop(adapter);
923                 }
924                 adapter->if_flags = ifp->if_flags;
925                 break;
926         case SIOCADDMULTI:
927         case SIOCDELMULTI:
928                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
929                 if (ifp->if_flags & IFF_RUNNING) {
930                         em_disable_intr(adapter);
931                         em_set_multi(adapter);
932                         if (adapter->hw.mac_type == em_82542_rev2_0)
933                                 em_initialize_receive_unit(adapter);
934 #ifdef DEVICE_POLLING
935                         /* Do not enable interrupt if polling(4) is enabled */
936                         if ((ifp->if_flags & IFF_POLLING) == 0)
937 #endif
938                         em_enable_intr(adapter);
939                 }
940                 break;
941         case SIOCSIFMEDIA:
942                 /* Check SOL/IDER usage */
943                 if (em_check_phy_reset_block(&adapter->hw)) {
944                         if_printf(ifp, "Media change is blocked due to "
945                                   "SOL/IDER session.\n");
946                         break;
947                 }
948                 /* FALLTHROUGH */
949         case SIOCGIFMEDIA:
950                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA "
951                                "(Get/Set Interface Media)");
952                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
953                 break;
954         case SIOCSIFCAP:
955                 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
956                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
957                 if (mask & IFCAP_HWCSUM) {
958                         ifp->if_capenable ^= IFCAP_HWCSUM;
959                         reinit = 1;
960                 }
961                 if (mask & IFCAP_VLAN_HWTAGGING) {
962                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
963                         reinit = 1;
964                 }
965                 if (reinit && (ifp->if_flags & IFF_RUNNING)) {
966                         ifp->if_flags &= ~IFF_RUNNING;
967                         em_init(adapter);
968                 }
969                 break;
970         default:
971                 error = ether_ioctl(ifp, command, data);
972                 break;
973         }
974
975         return (error);
976 }
977
978 /*********************************************************************
979  *  Watchdog entry point
980  *
981  *  This routine is called whenever hardware quits transmitting.
982  *
983  **********************************************************************/
984
985 static void
986 em_watchdog(struct ifnet *ifp)
987 {
988         struct adapter *adapter = ifp->if_softc;
989
990         /*
991          * If we are in this routine because of pause frames, then
992          * don't reset the hardware.
993          */
994         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF) {
995                 ifp->if_timer = EM_TX_TIMEOUT;
996                 return;
997         }
998
999         if (em_check_for_link(&adapter->hw) == 0)
1000                 if_printf(ifp, "watchdog timeout -- resetting\n");
1001
1002         ifp->if_flags &= ~IFF_RUNNING;
1003         em_init(adapter);
1004
1005         adapter->watchdog_timeouts++;
1006 }
1007
1008 /*********************************************************************
1009  *  Init entry point
1010  *
1011  *  This routine is used in two ways. It is used by the stack as
1012  *  init entry point in network interface structure. It is also used
1013  *  by the driver as a hw/sw initialization routine to get to a
1014  *  consistent state.
1015  *
1016  *  return 0 on success, positive on failure
1017  **********************************************************************/
1018
1019 static void
1020 em_init(void *arg)
1021 {
1022         struct adapter *adapter = arg;
1023         uint32_t pba;
1024         struct ifnet *ifp = &adapter->interface_data.ac_if;
1025
1026         ASSERT_SERIALIZED(ifp->if_serializer);
1027
1028         INIT_DEBUGOUT("em_init: begin");
1029
1030         if (ifp->if_flags & IFF_RUNNING)
1031                 return;
1032
1033         em_stop(adapter);
1034
1035         /*
1036          * Packet Buffer Allocation (PBA)
1037          * Writing PBA sets the receive portion of the buffer
1038          * the remainder is used for the transmit buffer.
1039          *
1040          * Devices before the 82547 had a Packet Buffer of 64K.
1041          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1042          * After the 82547 the buffer was reduced to 40K.
1043          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1044          *   Note: default does not leave enough room for Jumbo Frame >10k.
1045          */
1046         switch (adapter->hw.mac_type) {
1047         case em_82547:
1048         case em_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1049                 if (adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1050                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1051                 else
1052                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1053
1054                 adapter->tx_fifo_head = 0;
1055                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1056                 adapter->tx_fifo_size =
1057                         (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1058                 break;
1059         /* Total Packet Buffer on these is 48K */
1060         case em_82571:
1061         case em_82572:
1062         case em_80003es2lan:
1063                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1064                 break;
1065         case em_82573: /* 82573: Total Packet Buffer is 32K */
1066                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1067                 break;
1068         case em_ich8lan:
1069                 pba = E1000_PBA_8K;
1070                 break;
1071         case em_ich9lan:
1072 #define E1000_PBA_10K   0x000A
1073                 pba = E1000_PBA_10K;
1074                 break;
1075         default:
1076                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1077                 if(adapter->hw.max_frame_size > EM_RXBUFFER_8192)
1078                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1079                 else
1080                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1081         }
1082
1083         INIT_DEBUGOUT1("em_init: pba=%dK",pba);
1084         E1000_WRITE_REG(&adapter->hw, PBA, pba);
1085
1086         /* Get the latest mac address, User can use a LAA */
1087         bcopy(adapter->interface_data.ac_enaddr, adapter->hw.mac_addr,
1088               ETHER_ADDR_LEN);
1089
1090         /* Initialize the hardware */
1091         if (em_hardware_init(adapter)) {
1092                 if_printf(ifp, "Unable to initialize the hardware\n");
1093                 return;
1094         }
1095         em_update_link_status(adapter);
1096
1097         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1098                 em_enable_vlans(adapter);
1099
1100         /* Set hardware offload abilities */
1101         if (adapter->hw.mac_type >= em_82543) {
1102                 if (ifp->if_capenable & IFCAP_TXCSUM)
1103                         ifp->if_hwassist = EM_CHECKSUM_FEATURES;
1104                 else
1105                         ifp->if_hwassist = 0;
1106         }
1107
1108         /* Prepare transmit descriptors and buffers */
1109         if (em_setup_transmit_structures(adapter)) {
1110                 if_printf(ifp, "Could not setup transmit structures\n");
1111                 em_stop(adapter);
1112                 return;
1113         }
1114         em_initialize_transmit_unit(adapter);
1115
1116         /* Setup Multicast table */
1117         em_set_multi(adapter);
1118
1119         /* Prepare receive descriptors and buffers */
1120         if (em_setup_receive_structures(adapter)) {
1121                 if_printf(ifp, "Could not setup receive structures\n");
1122                 em_stop(adapter);
1123                 return;
1124         }
1125         em_initialize_receive_unit(adapter);
1126
1127         /* Don't lose promiscuous settings */
1128         em_set_promisc(adapter);
1129
1130         ifp->if_flags |= IFF_RUNNING;
1131         ifp->if_flags &= ~IFF_OACTIVE;
1132
1133         callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1134         em_clear_hw_cntrs(&adapter->hw);
1135
1136 #ifdef DEVICE_POLLING
1137         /* Do not enable interrupt if polling(4) is enabled */
1138         if (ifp->if_flags & IFF_POLLING)
1139                 em_disable_intr(adapter);
1140         else
1141 #endif
1142         em_enable_intr(adapter);
1143
1144         /* Don't reset the phy next time init gets called */
1145         adapter->hw.phy_reset_disable = TRUE;
1146 }
1147
1148 #ifdef DEVICE_POLLING
1149
1150 static void
1151 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1152 {
1153         struct adapter *adapter = ifp->if_softc;
1154         uint32_t reg_icr;
1155
1156         ASSERT_SERIALIZED(ifp->if_serializer);
1157
1158         switch(cmd) {
1159         case POLL_REGISTER:
1160                 em_disable_intr(adapter);
1161                 break;
1162         case POLL_DEREGISTER:
1163                 em_enable_intr(adapter);
1164                 break;
1165         case POLL_AND_CHECK_STATUS:
1166                 reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1167                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1168                         callout_stop(&adapter->timer);
1169                         adapter->hw.get_link_status = 1;
1170                         em_check_for_link(&adapter->hw);
1171                         em_update_link_status(adapter);
1172                         callout_reset(&adapter->timer, hz, em_local_timer,
1173                                       adapter);
1174                 }
1175                 /* fall through */
1176         case POLL_ONLY:
1177                 if (ifp->if_flags & IFF_RUNNING) {
1178                         em_rxeof(adapter, count);
1179                         em_txeof(adapter);
1180
1181                         if (!ifq_is_empty(&ifp->if_snd))
1182                                 em_start(ifp);
1183                 }
1184                 break;
1185         }
1186 }
1187
1188 #endif /* DEVICE_POLLING */
1189
1190 /*********************************************************************
1191  *
1192  *  Interrupt Service routine
1193  *
1194  *********************************************************************/
1195 static void
1196 em_intr(void *arg)
1197 {
1198         uint32_t reg_icr;
1199         struct ifnet *ifp;
1200         struct adapter *adapter = arg;
1201
1202         ifp = &adapter->interface_data.ac_if;  
1203
1204         logif(intr_beg);
1205         ASSERT_SERIALIZED(ifp->if_serializer);
1206
1207         reg_icr = E1000_READ_REG(&adapter->hw, ICR);
1208         if ((adapter->hw.mac_type >= em_82571 &&
1209              (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1210             reg_icr == 0) {
1211                 logif(intr_end);
1212                 return;
1213         }
1214
1215         /*
1216          * XXX: some laptops trigger several spurious interrupts on em(4)
1217          * when in the resume cycle. The ICR register reports all-ones
1218          * value in this case. Processing such interrupts would lead to
1219          * a freeze. I don't know why.
1220          */
1221         if (reg_icr == 0xffffffff) {
1222                 logif(intr_end);
1223                 return;
1224         }
1225
1226         /*
1227          * note: do not attempt to improve efficiency by looping.  This 
1228          * only results in unnecessary piecemeal collection of received
1229          * packets and unnecessary piecemeal cleanups of the transmit ring.
1230          */
1231         if (ifp->if_flags & IFF_RUNNING) {
1232                 em_rxeof(adapter, -1);
1233                 em_txeof(adapter);
1234         }
1235
1236         /* Link status change */
1237         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1238                 callout_stop(&adapter->timer);
1239                 adapter->hw.get_link_status = 1;
1240                 em_check_for_link(&adapter->hw);
1241                 em_update_link_status(adapter);
1242                 callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1243         }
1244
1245         if (reg_icr & E1000_ICR_RXO)
1246                 adapter->rx_overruns++;
1247
1248         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1249                 em_start(ifp);
1250         logif(intr_end);
1251 }
1252
1253 /*********************************************************************
1254  *
1255  *  Media Ioctl callback
1256  *
1257  *  This routine is called whenever the user queries the status of
1258  *  the interface using ifconfig.
1259  *
1260  **********************************************************************/
1261 static void
1262 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1263 {
1264         struct adapter *adapter = ifp->if_softc;
1265         u_char fiber_type = IFM_1000_SX;
1266
1267         INIT_DEBUGOUT("em_media_status: begin");
1268
1269         ASSERT_SERIALIZED(ifp->if_serializer);
1270
1271         em_check_for_link(&adapter->hw);
1272         em_update_link_status(adapter);
1273
1274         ifmr->ifm_status = IFM_AVALID;
1275         ifmr->ifm_active = IFM_ETHER;
1276
1277         if (!adapter->link_active)
1278                 return;
1279
1280         ifmr->ifm_status |= IFM_ACTIVE;
1281
1282         if (adapter->hw.media_type == em_media_type_fiber ||
1283             adapter->hw.media_type == em_media_type_internal_serdes) {
1284                 if (adapter->hw.mac_type == em_82545)
1285                         fiber_type = IFM_1000_LX;
1286                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1287         } else {
1288                 switch (adapter->link_speed) {
1289                 case 10:
1290                         ifmr->ifm_active |= IFM_10_T;
1291                         break;
1292                 case 100:
1293                         ifmr->ifm_active |= IFM_100_TX;
1294                         break;
1295                 case 1000:
1296                         ifmr->ifm_active |= IFM_1000_T;
1297                         break;
1298                 }
1299                 if (adapter->link_duplex == FULL_DUPLEX)
1300                         ifmr->ifm_active |= IFM_FDX;
1301                 else
1302                         ifmr->ifm_active |= IFM_HDX;
1303         }
1304 }
1305
1306 /*********************************************************************
1307  *
1308  *  Media Ioctl callback
1309  *
1310  *  This routine is called when the user changes speed/duplex using
1311  *  media/mediopt option with ifconfig.
1312  *
1313  **********************************************************************/
1314 static int
1315 em_media_change(struct ifnet *ifp)
1316 {
1317         struct adapter *adapter = ifp->if_softc;
1318         struct ifmedia *ifm = &adapter->media;
1319
1320         INIT_DEBUGOUT("em_media_change: begin");
1321
1322         ASSERT_SERIALIZED(ifp->if_serializer);
1323
1324         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1325                 return (EINVAL);
1326
1327         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1328         case IFM_AUTO:
1329                 adapter->hw.autoneg = DO_AUTO_NEG;
1330                 adapter->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1331                 break;
1332         case IFM_1000_LX:
1333         case IFM_1000_SX:
1334         case IFM_1000_T:
1335                 adapter->hw.autoneg = DO_AUTO_NEG;
1336                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
1337                 break;
1338         case IFM_100_TX:
1339                 adapter->hw.autoneg = FALSE;
1340                 adapter->hw.autoneg_advertised = 0;
1341                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1342                         adapter->hw.forced_speed_duplex = em_100_full;
1343                 else
1344                         adapter->hw.forced_speed_duplex = em_100_half;
1345                 break;
1346         case IFM_10_T:
1347                 adapter->hw.autoneg = FALSE;
1348                 adapter->hw.autoneg_advertised = 0;
1349                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1350                         adapter->hw.forced_speed_duplex = em_10_full;
1351                 else
1352                         adapter->hw.forced_speed_duplex = em_10_half;
1353                 break;
1354         default:
1355                 if_printf(ifp, "Unsupported media type\n");
1356         }
1357         /*
1358          * As the speed/duplex settings may have changed we need to
1359          * reset the PHY.
1360          */
1361         adapter->hw.phy_reset_disable = FALSE;
1362
1363         ifp->if_flags &= ~IFF_RUNNING;
1364         em_init(adapter);
1365
1366         return(0);
1367 }
1368
1369 static void
1370 em_tx_cb(void *arg, bus_dma_segment_t *seg, int nsegs, bus_size_t mapsize,
1371          int error)
1372 {
1373         struct em_q *q = arg;
1374
1375         if (error)
1376                 return;
1377         KASSERT(nsegs <= EM_MAX_SCATTER,
1378                 ("Too many DMA segments returned when mapping tx packet"));
1379         q->nsegs = nsegs;
1380         bcopy(seg, q->segs, nsegs * sizeof(seg[0]));
1381 }
1382
1383 /*********************************************************************
1384  *
1385  *  This routine maps the mbufs to tx descriptors.
1386  *
1387  *  return 0 on success, positive on failure
1388  **********************************************************************/
1389 static int
1390 em_encap(struct adapter *adapter, struct mbuf *m_head)
1391 {
1392         uint32_t txd_upper = 0, txd_lower = 0, txd_used = 0, txd_saved = 0;
1393         int i, j, error, last = 0;
1394
1395         struct em_q q;
1396         struct em_buffer *tx_buffer = NULL, *tx_buffer_first;
1397         bus_dmamap_t map;
1398         struct em_tx_desc *current_tx_desc = NULL;
1399         struct ifnet *ifp = &adapter->interface_data.ac_if;
1400
1401         /*
1402          * Force a cleanup if number of TX descriptors
1403          * available hits the threshold
1404          */
1405         if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1406                 em_txeof(adapter);
1407                 if (adapter->num_tx_desc_avail <= EM_TX_CLEANUP_THRESHOLD) {
1408                         adapter->no_tx_desc_avail1++;
1409                         return (ENOBUFS);
1410                 }
1411         }
1412
1413         /*
1414          * Capture the first descriptor index, this descriptor will have
1415          * the index of the EOP which is the only one that now gets a
1416          * DONE bit writeback.
1417          */
1418         tx_buffer_first = &adapter->tx_buffer_area[adapter->next_avail_tx_desc];
1419
1420         /*
1421          * Map the packet for DMA.
1422          */
1423         map = tx_buffer_first->map;
1424         error = bus_dmamap_load_mbuf(adapter->txtag, map, m_head, em_tx_cb,
1425                                      &q, BUS_DMA_NOWAIT);
1426         if (error != 0) {
1427                 adapter->no_tx_dma_setup++;
1428                 return (error);
1429         }
1430         KASSERT(q.nsegs != 0, ("em_encap: empty packet"));
1431
1432         if (q.nsegs > (adapter->num_tx_desc_avail - 2)) {
1433                 adapter->no_tx_desc_avail2++;
1434                 error = ENOBUFS;
1435                 goto fail;
1436         }
1437
1438         if (ifp->if_hwassist > 0) {
1439                 em_transmit_checksum_setup(adapter,  m_head,
1440                                            &txd_upper, &txd_lower);
1441         }
1442
1443         i = adapter->next_avail_tx_desc;
1444         if (adapter->pcix_82544)
1445                 txd_saved = i;
1446
1447         /* Set up our transmit descriptors */
1448         for (j = 0; j < q.nsegs; j++) {
1449                 /* If adapter is 82544 and on PCIX bus */
1450                 if(adapter->pcix_82544) {
1451                         DESC_ARRAY desc_array;
1452                         uint32_t array_elements, counter;
1453
1454                         /* 
1455                          * Check the Address and Length combination and
1456                          * split the data accordingly
1457                          */
1458                         array_elements = em_fill_descriptors(q.segs[j].ds_addr,
1459                                                 q.segs[j].ds_len, &desc_array);
1460                         for (counter = 0; counter < array_elements; counter++) {
1461                                 if (txd_used == adapter->num_tx_desc_avail) {
1462                                         adapter->next_avail_tx_desc = txd_saved;
1463                                         adapter->no_tx_desc_avail2++;
1464                                         error = ENOBUFS;
1465                                         goto fail;
1466                                 }
1467                                 tx_buffer = &adapter->tx_buffer_area[i];
1468                                 current_tx_desc = &adapter->tx_desc_base[i];
1469                                 current_tx_desc->buffer_addr = htole64(
1470                                         desc_array.descriptor[counter].address);
1471                                 current_tx_desc->lower.data = htole32(
1472                                         adapter->txd_cmd | txd_lower |
1473                                         (uint16_t)desc_array.descriptor[counter].length);
1474                                 current_tx_desc->upper.data = htole32(txd_upper);
1475
1476                                 last = i;
1477                                 if (++i == adapter->num_tx_desc)
1478                                         i = 0;
1479
1480                                 tx_buffer->m_head = NULL;
1481                                 tx_buffer->next_eop = -1;
1482                                 txd_used++;
1483                         }
1484                 } else {
1485                         tx_buffer = &adapter->tx_buffer_area[i];
1486                         current_tx_desc = &adapter->tx_desc_base[i];
1487
1488                         current_tx_desc->buffer_addr = htole64(q.segs[j].ds_addr);
1489                         current_tx_desc->lower.data = htole32(
1490                                 adapter->txd_cmd | txd_lower | q.segs[j].ds_len);
1491                         current_tx_desc->upper.data = htole32(txd_upper);
1492
1493                         last = i;
1494                         if (++i == adapter->num_tx_desc)
1495                                 i = 0;
1496
1497                         tx_buffer->m_head = NULL;
1498                         tx_buffer->next_eop = -1;
1499                 }
1500         }
1501
1502         adapter->next_avail_tx_desc = i;
1503         if (adapter->pcix_82544)
1504                 adapter->num_tx_desc_avail -= txd_used;
1505         else
1506                 adapter->num_tx_desc_avail -= q.nsegs;
1507
1508         /* Find out if we are in vlan mode */
1509         if (m_head->m_flags & M_VLANTAG) {
1510                 /* Set the vlan id */
1511                 current_tx_desc->upper.fields.special =
1512                         htole16(m_head->m_pkthdr.ether_vlantag);
1513
1514                 /* Tell hardware to add tag */
1515                 current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE);
1516         }
1517
1518         tx_buffer->m_head = m_head;
1519         tx_buffer_first->map = tx_buffer->map;
1520         tx_buffer->map = map;
1521         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1522
1523         /*
1524          * Last Descriptor of Packet needs End Of Packet (EOP)
1525          * and Report Status (RS)
1526          */
1527         current_tx_desc->lower.data |=
1528                 htole32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
1529
1530         /*
1531          * Keep track in the first buffer which descriptor will be
1532          * written back.
1533          */
1534         tx_buffer_first->next_eop = last;
1535
1536         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
1537                         BUS_DMASYNC_PREWRITE);
1538
1539         /* 
1540          * Advance the Transmit Descriptor Tail (Tdt), this tells the E1000
1541          * that this frame is available to transmit.
1542          */
1543         if (adapter->hw.mac_type == em_82547 &&
1544             adapter->link_duplex == HALF_DUPLEX) {
1545                 em_82547_move_tail_serialized(adapter);
1546         } else {
1547                 E1000_WRITE_REG(&adapter->hw, TDT, i);
1548                 if (adapter->hw.mac_type == em_82547) {
1549                         em_82547_update_fifo_head(adapter,
1550                                                   m_head->m_pkthdr.len);
1551                 }
1552         }
1553
1554         return (0);
1555 fail:
1556         bus_dmamap_unload(adapter->txtag, map);
1557         return error;
1558 }
1559
1560 /*********************************************************************
1561  *
1562  * 82547 workaround to avoid controller hang in half-duplex environment.
1563  * The workaround is to avoid queuing a large packet that would span
1564  * the internal Tx FIFO ring boundary. We need to reset the FIFO pointers
1565  * in this case. We do that only when FIFO is quiescent.
1566  *
1567  **********************************************************************/
1568 static void
1569 em_82547_move_tail(void *arg)
1570 {
1571         struct adapter *adapter = arg;
1572         struct ifnet *ifp = &adapter->interface_data.ac_if;
1573
1574         lwkt_serialize_enter(ifp->if_serializer);
1575         em_82547_move_tail_serialized(adapter);
1576         lwkt_serialize_exit(ifp->if_serializer);
1577 }
1578
1579 static void
1580 em_82547_move_tail_serialized(struct adapter *adapter)
1581 {
1582         uint16_t hw_tdt;
1583         uint16_t sw_tdt;
1584         struct em_tx_desc *tx_desc;
1585         uint16_t length = 0;
1586         boolean_t eop = 0;
1587
1588         hw_tdt = E1000_READ_REG(&adapter->hw, TDT);
1589         sw_tdt = adapter->next_avail_tx_desc;
1590
1591         while (hw_tdt != sw_tdt) {
1592                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1593                 length += tx_desc->lower.flags.length;
1594                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1595                 if (++hw_tdt == adapter->num_tx_desc)
1596                         hw_tdt = 0;
1597
1598                 if (eop) {
1599                         if (em_82547_fifo_workaround(adapter, length)) {
1600                                 adapter->tx_fifo_wrk_cnt++;
1601                                 callout_reset(&adapter->tx_fifo_timer, 1,
1602                                         em_82547_move_tail, adapter);
1603                                 break;
1604                         }
1605                         E1000_WRITE_REG(&adapter->hw, TDT, hw_tdt);
1606                         em_82547_update_fifo_head(adapter, length);
1607                         length = 0;
1608                 }
1609         }       
1610 }
1611
1612 static int
1613 em_82547_fifo_workaround(struct adapter *adapter, int len)
1614 {       
1615         int fifo_space, fifo_pkt_len;
1616
1617         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1618
1619         if (adapter->link_duplex == HALF_DUPLEX) {
1620                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1621
1622                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1623                         if (em_82547_tx_fifo_reset(adapter))
1624                                 return (0);
1625                         else
1626                                 return (1);
1627                 }
1628         }
1629
1630         return (0);
1631 }
1632
1633 static void
1634 em_82547_update_fifo_head(struct adapter *adapter, int len)
1635 {
1636         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1637
1638         /* tx_fifo_head is always 16 byte aligned */
1639         adapter->tx_fifo_head += fifo_pkt_len;
1640         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1641                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1642 }
1643
1644 static int
1645 em_82547_tx_fifo_reset(struct adapter *adapter)
1646 {
1647         uint32_t tctl;
1648
1649         if (E1000_READ_REG(&adapter->hw, TDT) == E1000_READ_REG(&adapter->hw, TDH) &&
1650             E1000_READ_REG(&adapter->hw, TDFT) == E1000_READ_REG(&adapter->hw, TDFH) &&
1651             E1000_READ_REG(&adapter->hw, TDFTS) == E1000_READ_REG(&adapter->hw, TDFHS) &&
1652             E1000_READ_REG(&adapter->hw, TDFPC) == 0) {
1653                 /* Disable TX unit */
1654                 tctl = E1000_READ_REG(&adapter->hw, TCTL);
1655                 E1000_WRITE_REG(&adapter->hw, TCTL, tctl & ~E1000_TCTL_EN);
1656
1657                 /* Reset FIFO pointers */
1658                 E1000_WRITE_REG(&adapter->hw, TDFT,  adapter->tx_head_addr);
1659                 E1000_WRITE_REG(&adapter->hw, TDFH,  adapter->tx_head_addr);
1660                 E1000_WRITE_REG(&adapter->hw, TDFTS, adapter->tx_head_addr);
1661                 E1000_WRITE_REG(&adapter->hw, TDFHS, adapter->tx_head_addr);
1662
1663                 /* Re-enable TX unit */
1664                 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
1665                 E1000_WRITE_FLUSH(&adapter->hw);
1666
1667                 adapter->tx_fifo_head = 0;
1668                 adapter->tx_fifo_reset_cnt++;
1669
1670                 return (TRUE);
1671         } else {
1672                 return (FALSE);
1673         }
1674 }
1675
1676 static void
1677 em_set_promisc(struct adapter *adapter)
1678 {
1679         uint32_t reg_rctl;
1680         struct ifnet *ifp = &adapter->interface_data.ac_if;
1681
1682         reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1683
1684         adapter->em_insert_vlan_header = 0;
1685         if (ifp->if_flags & IFF_PROMISC) {
1686                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1687                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1688
1689                 /*
1690                  * Disable VLAN stripping in promiscous mode.
1691                  * This enables bridging of vlan tagged frames to occur 
1692                  * and also allows vlan tags to be seen in tcpdump.
1693                  */
1694                 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1695                         em_disable_vlans(adapter);
1696                 adapter->em_insert_vlan_header = 1;
1697         } else if (ifp->if_flags & IFF_ALLMULTI) {
1698                 reg_rctl |= E1000_RCTL_MPE;
1699                 reg_rctl &= ~E1000_RCTL_UPE;
1700                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1701         }
1702 }
1703
1704 static void
1705 em_disable_promisc(struct adapter *adapter)
1706 {
1707         struct ifnet *ifp = &adapter->interface_data.ac_if;
1708
1709         uint32_t reg_rctl;
1710
1711         reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1712
1713         reg_rctl &= (~E1000_RCTL_UPE);
1714         reg_rctl &= (~E1000_RCTL_MPE);
1715         E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1716
1717         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1718                 em_enable_vlans(adapter);
1719         adapter->em_insert_vlan_header = 0;
1720 }
1721
1722 /*********************************************************************
1723  *  Multicast Update
1724  *
1725  *  This routine is called whenever multicast address list is updated.
1726  *
1727  **********************************************************************/
1728
1729 static void
1730 em_set_multi(struct adapter *adapter)
1731 {
1732         uint32_t reg_rctl = 0;
1733         uint8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS];
1734         struct ifmultiaddr *ifma;
1735         int mcnt = 0;
1736         struct ifnet *ifp = &adapter->interface_data.ac_if;
1737
1738         IOCTL_DEBUGOUT("em_set_multi: begin");
1739
1740         if (adapter->hw.mac_type == em_82542_rev2_0) {
1741                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1742                 if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1743                         em_pci_clear_mwi(&adapter->hw);
1744                 reg_rctl |= E1000_RCTL_RST;
1745                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1746                 msec_delay(5);
1747         }
1748
1749         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1750                 if (ifma->ifma_addr->sa_family != AF_LINK)
1751                         continue;
1752
1753                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1754                         break;
1755
1756                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1757                       &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS);
1758                 mcnt++;
1759         }
1760
1761         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1762                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1763                 reg_rctl |= E1000_RCTL_MPE;
1764                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1765         } else {
1766                 em_mc_addr_list_update(&adapter->hw, mta, mcnt, 0, 1);
1767         }
1768
1769         if (adapter->hw.mac_type == em_82542_rev2_0) {
1770                 reg_rctl = E1000_READ_REG(&adapter->hw, RCTL);
1771                 reg_rctl &= ~E1000_RCTL_RST;
1772                 E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
1773                 msec_delay(5);
1774                 if (adapter->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1775                         em_pci_set_mwi(&adapter->hw);
1776         }
1777 }
1778
1779 /*********************************************************************
1780  *  Timer routine
1781  *
1782  *  This routine checks for link status and updates statistics.
1783  *
1784  **********************************************************************/
1785
1786 static void
1787 em_local_timer(void *arg)
1788 {
1789         struct ifnet *ifp;
1790         struct adapter *adapter = arg;
1791         ifp = &adapter->interface_data.ac_if;
1792
1793         lwkt_serialize_enter(ifp->if_serializer);
1794
1795         em_check_for_link(&adapter->hw);
1796         em_update_link_status(adapter);
1797         em_update_stats_counters(adapter);
1798         if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING)
1799                 em_print_hw_stats(adapter);
1800         em_smartspeed(adapter);
1801
1802         callout_reset(&adapter->timer, hz, em_local_timer, adapter);
1803
1804         lwkt_serialize_exit(ifp->if_serializer);
1805 }
1806
1807 static void
1808 em_update_link_status(struct adapter *adapter)
1809 {
1810         struct ifnet *ifp;
1811         ifp = &adapter->interface_data.ac_if;
1812
1813         if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
1814                 if (adapter->link_active == 0) {
1815                         em_get_speed_and_duplex(&adapter->hw, 
1816                                                 &adapter->link_speed, 
1817                                                 &adapter->link_duplex);
1818                         /* Check if we may set SPEED_MODE bit on PCI-E */
1819                         if (adapter->link_speed == SPEED_1000 &&
1820                             (adapter->hw.mac_type == em_82571 ||
1821                              adapter->hw.mac_type == em_82572)) {
1822                                 int tarc0;
1823
1824                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
1825                                 tarc0 |= SPEED_MODE_BIT;
1826                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
1827                         }
1828                         if (bootverbose) {
1829                                 if_printf(&adapter->interface_data.ac_if,
1830                                           "Link is up %d Mbps %s\n",
1831                                           adapter->link_speed,
1832                                           adapter->link_duplex == FULL_DUPLEX ?
1833                                                 "Full Duplex" : "Half Duplex");
1834                         }
1835                         adapter->link_active = 1;
1836                         adapter->smartspeed = 0;
1837                         ifp->if_baudrate = adapter->link_speed * 1000000;
1838                         ifp->if_link_state = LINK_STATE_UP;
1839                         if_link_state_change(ifp);
1840                 }
1841         } else {
1842                 if (adapter->link_active == 1) {
1843                         ifp->if_baudrate = 0;
1844                         adapter->link_speed = 0;
1845                         adapter->link_duplex = 0;
1846                         if (bootverbose) {
1847                                 if_printf(&adapter->interface_data.ac_if,
1848                                           "Link is Down\n");
1849                         }
1850                         adapter->link_active = 0;
1851                         ifp->if_link_state = LINK_STATE_DOWN;
1852                         if_link_state_change(ifp);
1853                 }
1854         }
1855 }
1856
1857 /*********************************************************************
1858  *
1859  *  This routine disables all traffic on the adapter by issuing a
1860  *  global reset on the MAC and deallocates TX/RX buffers.
1861  *
1862  **********************************************************************/
1863
1864 static void
1865 em_stop(void *arg)
1866 {
1867         struct ifnet   *ifp;
1868         struct adapter * adapter = arg;
1869         ifp = &adapter->interface_data.ac_if;
1870
1871         ASSERT_SERIALIZED(ifp->if_serializer);
1872
1873         INIT_DEBUGOUT("em_stop: begin");
1874         em_disable_intr(adapter);
1875         em_reset_hw(&adapter->hw);
1876         callout_stop(&adapter->timer);
1877         callout_stop(&adapter->tx_fifo_timer);
1878         em_free_transmit_structures(adapter);
1879         em_free_receive_structures(adapter);
1880
1881         /* Tell the stack that the interface is no longer active */
1882         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1883         ifp->if_timer = 0;
1884 }
1885
1886 /*********************************************************************
1887  *
1888  *  Determine hardware revision.
1889  *
1890  **********************************************************************/
1891 static void
1892 em_identify_hardware(struct adapter *adapter)
1893 {
1894         device_t dev = adapter->dev;
1895
1896         /* Make sure our PCI config space has the necessary stuff set */
1897         adapter->hw.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
1898         if (!((adapter->hw.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
1899               (adapter->hw.pci_cmd_word & PCIM_CMD_MEMEN))) {
1900                 device_printf(dev, "Memory Access and/or Bus Master bits "
1901                               "were not set!\n");
1902                 adapter->hw.pci_cmd_word |= PCIM_CMD_BUSMASTEREN |
1903                                             PCIM_CMD_MEMEN;
1904                 pci_write_config(dev, PCIR_COMMAND,
1905                                  adapter->hw.pci_cmd_word, 2);
1906         }
1907
1908         /* Save off the information about this board */
1909         adapter->hw.vendor_id = pci_get_vendor(dev);
1910         adapter->hw.device_id = pci_get_device(dev);
1911         adapter->hw.revision_id = pci_get_revid(dev);
1912         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
1913         adapter->hw.subsystem_id = pci_get_subdevice(dev);
1914
1915         /* Identify the MAC */
1916         if (em_set_mac_type(&adapter->hw))
1917                 device_printf(dev, "Unknown MAC Type\n");
1918
1919         if (adapter->hw.mac_type == em_82541 ||
1920             adapter->hw.mac_type == em_82541_rev_2 ||
1921             adapter->hw.mac_type == em_82547 ||
1922             adapter->hw.mac_type == em_82547_rev_2)
1923                 adapter->hw.phy_init_script = TRUE;
1924 }
1925
1926 static int
1927 em_allocate_pci_resources(device_t dev)
1928 {
1929         struct adapter *adapter = device_get_softc(dev);
1930         int rid;
1931
1932         rid = PCIR_BAR(0);
1933         adapter->res_memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1934                                                      &rid, RF_ACTIVE);
1935         if (adapter->res_memory == NULL) {
1936                 device_printf(dev, "Unable to allocate bus resource: memory\n");
1937                 return ENXIO;
1938         }
1939         adapter->osdep.mem_bus_space_tag =
1940                 rman_get_bustag(adapter->res_memory);
1941         adapter->osdep.mem_bus_space_handle =
1942             rman_get_bushandle(adapter->res_memory);
1943         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
1944
1945         if (adapter->hw.mac_type > em_82543) {
1946                 /* Figure our where our IO BAR is ? */
1947                 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
1948                         uint32_t val;
1949
1950                         val = pci_read_config(dev, rid, 4);
1951                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
1952                                 adapter->io_rid = rid;
1953                                 break;
1954                         }
1955                         rid += 4;
1956                         /* check for 64bit BAR */
1957                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
1958                                 rid += 4;
1959                 }
1960                 if (rid >= PCIR_CIS) {
1961                         device_printf(dev, "Unable to locate IO BAR\n");
1962                         return (ENXIO);
1963                 }
1964
1965                 adapter->res_ioport = bus_alloc_resource_any(dev,
1966                     SYS_RES_IOPORT, &adapter->io_rid, RF_ACTIVE);
1967                 if (!(adapter->res_ioport)) {
1968                         device_printf(dev, "Unable to allocate bus resource: "
1969                                       "ioport\n");
1970                         return ENXIO;
1971                 }
1972                 adapter->hw.io_base = 0;
1973                 adapter->osdep.io_bus_space_tag =
1974                         rman_get_bustag(adapter->res_ioport);
1975                 adapter->osdep.io_bus_space_handle =
1976                         rman_get_bushandle(adapter->res_ioport);
1977         }
1978
1979         /* For ICH8 we need to find the flash memory. */
1980         if ((adapter->hw.mac_type == em_ich8lan) ||
1981             (adapter->hw.mac_type == em_ich9lan)) {
1982                 rid = EM_FLASH;
1983                 adapter->flash_mem = bus_alloc_resource_any(dev,
1984                     SYS_RES_MEMORY, &rid, RF_ACTIVE);
1985                 if (adapter->flash_mem == NULL) {
1986                         device_printf(dev, "Unable to allocate bus resource: "
1987                                       "flash memory\n");
1988                         return ENXIO;
1989                 }
1990                 adapter->osdep.flash_bus_space_tag =
1991                     rman_get_bustag(adapter->flash_mem);
1992                 adapter->osdep.flash_bus_space_handle =
1993                     rman_get_bushandle(adapter->flash_mem);
1994         }
1995
1996         rid = 0x0;
1997         adapter->res_interrupt = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1998             &rid, RF_SHAREABLE | RF_ACTIVE);
1999         if (adapter->res_interrupt == NULL) {
2000                 device_printf(dev, "Unable to allocate bus resource: "
2001                               "interrupt\n");
2002                 return ENXIO;
2003         }
2004
2005         adapter->hw.back = &adapter->osdep;
2006
2007         return 0;
2008 }
2009
2010 static void
2011 em_free_pci_resources(device_t dev)
2012 {
2013         struct adapter *adapter = device_get_softc(dev);
2014
2015         if (adapter->res_interrupt != NULL) {
2016                 bus_release_resource(dev, SYS_RES_IRQ, 0, 
2017                                      adapter->res_interrupt);
2018         }
2019         if (adapter->res_memory != NULL) {
2020                 bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), 
2021                                      adapter->res_memory);
2022         }
2023
2024         if (adapter->res_ioport != NULL) {
2025                 bus_release_resource(dev, SYS_RES_IOPORT, adapter->io_rid, 
2026                                      adapter->res_ioport);
2027         }
2028
2029         if (adapter->flash_mem != NULL) {
2030                 bus_release_resource(dev, SYS_RES_MEMORY, EM_FLASH,
2031                                      adapter->flash_mem);
2032         }
2033 }
2034
2035 /*********************************************************************
2036  *
2037  *  Initialize the hardware to a configuration as specified by the
2038  *  adapter structure. The controller is reset, the EEPROM is
2039  *  verified, the MAC address is set, then the shared initialization
2040  *  routines are called.
2041  *
2042  **********************************************************************/
2043 static int
2044 em_hardware_init(struct adapter *adapter)
2045 {
2046         uint16_t        rx_buffer_size;
2047
2048         INIT_DEBUGOUT("em_hardware_init: begin");
2049         /* Issue a global reset */
2050         em_reset_hw(&adapter->hw);
2051
2052         /* When hardware is reset, fifo_head is also reset */
2053         adapter->tx_fifo_head = 0;
2054
2055         /* Make sure we have a good EEPROM before we read from it */
2056         if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2057                 if (em_validate_eeprom_checksum(&adapter->hw) < 0) {
2058                         device_printf(adapter->dev,
2059                                       "The EEPROM Checksum Is Not Valid\n");
2060                         return (EIO);
2061                 }
2062         }
2063
2064         if (em_read_part_num(&adapter->hw, &(adapter->part_num)) < 0) {
2065                 device_printf(adapter->dev,
2066                               "EEPROM read error while reading part number\n");
2067                 return (EIO);
2068         }
2069
2070         /* Set up smart power down as default off on newer adapters. */
2071         if (!em_smart_pwr_down &&
2072             (adapter->hw.mac_type == em_82571 ||
2073              adapter->hw.mac_type == em_82572)) {
2074                 uint16_t phy_tmp = 0;
2075
2076                 /* Speed up time to link by disabling smart power down. */
2077                 em_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2078                                 &phy_tmp);
2079                 phy_tmp &= ~IGP02E1000_PM_SPD;
2080                 em_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
2081                                  phy_tmp);
2082         }
2083
2084         /*
2085          * These parameters control the automatic generation (Tx) and
2086          * response (Rx) to Ethernet PAUSE frames.
2087          * - High water mark should allow for at least two frames to be
2088          *   received after sending an XOFF.
2089          * - Low water mark works best when it is very near the high water mark.
2090          *   This allows the receiver to restart by sending XON when it has
2091          *   drained a bit.  Here we use an arbitary value of 1500 which will
2092          *   restart after one full frame is pulled from the buffer.  There
2093          *   could be several smaller frames in the buffer and if so they will
2094          *   not trigger the XON until their total number reduces the buffer
2095          *   by 1500.
2096          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2097          */
2098         rx_buffer_size = ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff) << 10);
2099
2100         adapter->hw.fc_high_water =
2101             rx_buffer_size - roundup2(adapter->hw.max_frame_size, 1024); 
2102         adapter->hw.fc_low_water = adapter->hw.fc_high_water - 1500;
2103         if (adapter->hw.mac_type == em_80003es2lan)
2104                 adapter->hw.fc_pause_time = 0xFFFF;
2105         else
2106                 adapter->hw.fc_pause_time = 1000;
2107         adapter->hw.fc_send_xon = TRUE;
2108         adapter->hw.fc = E1000_FC_FULL;
2109
2110         if (em_init_hw(&adapter->hw) < 0) {
2111                 device_printf(adapter->dev, "Hardware Initialization Failed");
2112                 return (EIO);
2113         }
2114
2115         em_check_for_link(&adapter->hw);
2116
2117         return (0);
2118 }
2119
2120 /*********************************************************************
2121  *
2122  *  Setup networking device structure and register an interface.
2123  *
2124  **********************************************************************/
2125 static void
2126 em_setup_interface(device_t dev, struct adapter *adapter)
2127 {
2128         struct ifnet *ifp;
2129         u_char fiber_type = IFM_1000_SX;        /* default type */
2130         INIT_DEBUGOUT("em_setup_interface: begin");
2131
2132         ifp = &adapter->interface_data.ac_if;
2133         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2134         ifp->if_mtu = ETHERMTU;
2135         ifp->if_baudrate = 1000000000;
2136         ifp->if_init =  em_init;
2137         ifp->if_softc = adapter;
2138         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2139         ifp->if_ioctl = em_ioctl;
2140         ifp->if_start = em_start;
2141 #ifdef DEVICE_POLLING
2142         ifp->if_poll = em_poll;
2143 #endif
2144         ifp->if_watchdog = em_watchdog;
2145         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2146         ifq_set_ready(&ifp->if_snd);
2147
2148         if (adapter->hw.mac_type >= em_82543)
2149                 ifp->if_capabilities |= IFCAP_HWCSUM;
2150
2151         ifp->if_capenable = ifp->if_capabilities;
2152
2153         ether_ifattach(ifp, adapter->hw.mac_addr, NULL);
2154
2155 #ifdef PROFILE_SERIALIZER
2156         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2157                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2158                         "serializer_sleep", CTLFLAG_RW,
2159                         &ifp->if_serializer->sleep_cnt, 0, NULL);
2160         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2161                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2162                         "serializer_tryfail", CTLFLAG_RW,
2163                         &ifp->if_serializer->tryfail_cnt, 0, NULL);
2164         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2165                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2166                         "serializer_enter", CTLFLAG_RW,
2167                         &ifp->if_serializer->enter_cnt, 0, NULL);
2168         SYSCTL_ADD_UINT(&adapter->sysctl_ctx,
2169                         SYSCTL_CHILDREN(adapter->sysctl_tree), OID_AUTO,
2170                         "serializer_try", CTLFLAG_RW,
2171                         &ifp->if_serializer->try_cnt, 0, NULL);
2172 #endif
2173
2174         /*
2175          * Tell the upper layer(s) we support long frames.
2176          */
2177         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2178         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2179 #if 0
2180         ifp->if_capenable |= IFCAP_VLAN_MTU;
2181 #endif
2182
2183         /*
2184          * Specify the media types supported by this adapter and register
2185          * callbacks to update media and link information
2186          */
2187         ifmedia_init(&adapter->media, IFM_IMASK, em_media_change,
2188                      em_media_status);
2189         if (adapter->hw.media_type == em_media_type_fiber ||
2190             adapter->hw.media_type == em_media_type_internal_serdes) {
2191                 if (adapter->hw.mac_type == em_82545)
2192                         fiber_type = IFM_1000_LX;
2193                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2194                             0, NULL);
2195                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2196         } else {
2197                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2198                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2199                             0, NULL);
2200                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2201                             0, NULL);
2202                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2203                             0, NULL);
2204                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T | IFM_FDX,
2205                             0, NULL);
2206                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_T, 0, NULL);
2207         }
2208         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2209         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2210 }
2211
2212 /*********************************************************************
2213  *
2214  *  Workaround for SmartSpeed on 82541 and 82547 controllers
2215  *
2216  **********************************************************************/
2217 static void
2218 em_smartspeed(struct adapter *adapter)
2219 {
2220         uint16_t phy_tmp;
2221
2222         if (adapter->link_active || (adapter->hw.phy_type != em_phy_igp) ||
2223             !adapter->hw.autoneg ||
2224             !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
2225                 return;
2226
2227         if (adapter->smartspeed == 0) {
2228                 /*
2229                  * If Master/Slave config fault is asserted twice,
2230                  * we assume back-to-back.
2231                  */
2232                 em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2233                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2234                         return;
2235                 em_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2236                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2237                         em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2238                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2239                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2240                                 em_write_phy_reg(&adapter->hw,
2241                                                  PHY_1000T_CTRL, phy_tmp);
2242                                 adapter->smartspeed++;
2243                                 if (adapter->hw.autoneg &&
2244                                     !em_phy_setup_autoneg(&adapter->hw) &&
2245                                     !em_read_phy_reg(&adapter->hw, PHY_CTRL,
2246                                                      &phy_tmp)) {
2247                                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2248                                                     MII_CR_RESTART_AUTO_NEG);
2249                                         em_write_phy_reg(&adapter->hw,
2250                                                          PHY_CTRL, phy_tmp);
2251                                 }
2252                         }
2253                 }
2254                 return;
2255         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2256                 /* If still no link, perhaps using 2/3 pair cable */
2257                 em_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2258                 phy_tmp |= CR_1000T_MS_ENABLE;
2259                 em_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2260                 if (adapter->hw.autoneg &&
2261                     !em_phy_setup_autoneg(&adapter->hw) &&
2262                     !em_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_tmp)) {
2263                         phy_tmp |= (MII_CR_AUTO_NEG_EN |
2264                                     MII_CR_RESTART_AUTO_NEG);
2265                         em_write_phy_reg(&adapter->hw, PHY_CTRL, phy_tmp);
2266                 }
2267         }
2268         /* Restart process after EM_SMARTSPEED_MAX iterations */
2269         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2270                 adapter->smartspeed = 0;
2271 }
2272
2273 /*
2274  * Manage DMA'able memory.
2275  */
2276 static void
2277 em_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2278 {
2279         if (error)
2280                 return;
2281         *(bus_addr_t *)arg = segs->ds_addr;
2282 }
2283
2284 static int
2285 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2286               struct em_dma_alloc *dma)
2287 {
2288         device_t dev = adapter->dev;
2289         int error;
2290
2291         error = bus_dma_tag_create(NULL,                /* parent */
2292                                    EM_DBA_ALIGN, 0,     /* alignment, bounds */
2293                                    BUS_SPACE_MAXADDR,   /* lowaddr */
2294                                    BUS_SPACE_MAXADDR,   /* highaddr */
2295                                    NULL, NULL,          /* filter, filterarg */
2296                                    size,                /* maxsize */
2297                                    1,                   /* nsegments */
2298                                    size,                /* maxsegsize */
2299                                    0,                   /* flags */
2300                                    &dma->dma_tag);
2301         if (error) {
2302                 device_printf(dev, "%s: bus_dma_tag_create failed; error %d\n",
2303                               __func__, error);
2304                 return error;
2305         }
2306
2307         error = bus_dmamem_alloc(dma->dma_tag, (void**)&dma->dma_vaddr,
2308                                  BUS_DMA_WAITOK, &dma->dma_map);
2309         if (error) {
2310                 device_printf(dev, "%s: bus_dmammem_alloc failed; "
2311                               "size %llu, error %d\n",
2312                               __func__, (uintmax_t)size, error);
2313                 goto fail;
2314         }
2315
2316         error = bus_dmamap_load(dma->dma_tag, dma->dma_map,
2317                                 dma->dma_vaddr, size,
2318                                 em_dmamap_cb, &dma->dma_paddr,
2319                                 BUS_DMA_WAITOK);
2320         if (error) {
2321                 device_printf(dev, "%s: bus_dmamap_load failed; error %u\n",
2322                               __func__, error);
2323                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2324                 goto fail;
2325         }
2326
2327         return 0;
2328 fail:
2329         bus_dma_tag_destroy(dma->dma_tag);
2330         dma->dma_tag = NULL;
2331         return error;
2332 }
2333
2334 static void
2335 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2336 {
2337         if (dma->dma_tag != NULL) {
2338                 bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2339                 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2340                 bus_dma_tag_destroy(dma->dma_tag);
2341                 dma->dma_tag = NULL;
2342         }
2343 }
2344
2345 /*********************************************************************
2346  *
2347  *  Allocate and initialize transmit structures.
2348  *
2349  **********************************************************************/
2350 static int
2351 em_setup_transmit_structures(struct adapter *adapter)
2352 {
2353         struct em_buffer *tx_buffer;
2354         bus_size_t size;
2355         int error, i;
2356
2357         /*
2358          * Setup DMA descriptor areas.
2359          */
2360         size = roundup2(adapter->hw.max_frame_size, MCLBYTES);
2361         if (bus_dma_tag_create(NULL,                    /* parent */
2362                                1, 0,                    /* alignment, bounds */
2363                                BUS_SPACE_MAXADDR,       /* lowaddr */ 
2364                                BUS_SPACE_MAXADDR,       /* highaddr */
2365                                NULL, NULL,              /* filter, filterarg */
2366                                size,                    /* maxsize */
2367                                EM_MAX_SCATTER,          /* nsegments */
2368                                size,                    /* maxsegsize */
2369                                0,                       /* flags */ 
2370                                &adapter->txtag)) {
2371                 device_printf(adapter->dev, "Unable to allocate TX DMA tag\n");
2372                 return(ENOMEM);
2373         }
2374
2375         adapter->tx_buffer_area =
2376                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2377                         M_DEVBUF, M_WAITOK | M_ZERO);
2378
2379         bzero(adapter->tx_desc_base,
2380               sizeof(struct em_tx_desc) * adapter->num_tx_desc);
2381         tx_buffer = adapter->tx_buffer_area;
2382         for (i = 0; i < adapter->num_tx_desc; i++) {
2383                 error = bus_dmamap_create(adapter->txtag, 0, &tx_buffer->map);
2384                 if (error) {
2385                         device_printf(adapter->dev,
2386                                       "Unable to create TX DMA map\n");
2387                         goto fail;
2388                 }
2389                 tx_buffer++;
2390         }
2391
2392         adapter->next_avail_tx_desc = 0;
2393         adapter->next_tx_to_clean = 0;
2394
2395         /* Set number of descriptors available */
2396         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2397
2398         /* Set checksum context */
2399         adapter->active_checksum_context = OFFLOAD_NONE;
2400
2401         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2402                         BUS_DMASYNC_PREWRITE);
2403
2404         return (0);
2405 fail:
2406         em_free_transmit_structures(adapter);
2407         return (error);
2408 }
2409
2410 /*********************************************************************
2411  *
2412  *  Enable transmit unit.
2413  *
2414  **********************************************************************/
2415 static void
2416 em_initialize_transmit_unit(struct adapter *adapter)
2417 {
2418         uint32_t reg_tctl;
2419         uint32_t reg_tipg = 0;
2420         uint64_t bus_addr;
2421
2422         INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
2423
2424         /* Setup the Base and Length of the Tx Descriptor Ring */
2425         bus_addr = adapter->txdma.dma_paddr;
2426         E1000_WRITE_REG(&adapter->hw, TDLEN,
2427                         adapter->num_tx_desc * sizeof(struct em_tx_desc));
2428         E1000_WRITE_REG(&adapter->hw, TDBAH, (uint32_t)(bus_addr >> 32));
2429         E1000_WRITE_REG(&adapter->hw, TDBAL, (uint32_t)bus_addr);
2430
2431         /* Setup the HW Tx Head and Tail descriptor pointers */
2432         E1000_WRITE_REG(&adapter->hw, TDT, 0);
2433         E1000_WRITE_REG(&adapter->hw, TDH, 0);
2434
2435         HW_DEBUGOUT2("Base = %x, Length = %x\n",
2436                      E1000_READ_REG(&adapter->hw, TDBAL),
2437                      E1000_READ_REG(&adapter->hw, TDLEN));
2438
2439         /* Set the default values for the Tx Inter Packet Gap timer */
2440         switch (adapter->hw.mac_type) {
2441         case em_82542_rev2_0:
2442         case em_82542_rev2_1:
2443                 reg_tipg = DEFAULT_82542_TIPG_IPGT;
2444                 reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2445                 reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2446                 break;
2447         case em_80003es2lan:
2448                 reg_tipg = DEFAULT_82543_TIPG_IPGR1;
2449                 reg_tipg |=
2450                     DEFAULT_80003ES2LAN_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2451                 break;
2452         default:
2453                 if (adapter->hw.media_type == em_media_type_fiber ||
2454                     adapter->hw.media_type == em_media_type_internal_serdes)
2455                         reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2456                 else
2457                         reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2458                 reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2459                 reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2460         }
2461
2462         E1000_WRITE_REG(&adapter->hw, TIPG, reg_tipg);
2463         E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay.value);
2464         if (adapter->hw.mac_type >= em_82540) {
2465                 E1000_WRITE_REG(&adapter->hw, TADV,
2466                                 adapter->tx_abs_int_delay.value);
2467         }
2468
2469         /* Program the Transmit Control Register */
2470         reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
2471                    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2472         if (adapter->hw.mac_type >= em_82571)
2473                 reg_tctl |= E1000_TCTL_MULR;
2474         if (adapter->link_duplex == 1)
2475                 reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2476         else
2477                 reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT;
2478
2479         /* This write will effectively turn on the transmit unit. */
2480         E1000_WRITE_REG(&adapter->hw, TCTL, reg_tctl);
2481
2482         /* Setup Transmit Descriptor Base Settings */
2483         adapter->txd_cmd = E1000_TXD_CMD_IFCS;
2484
2485         if (adapter->tx_int_delay.value > 0)
2486                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2487 }
2488
2489 /*********************************************************************
2490  *
2491  *  Free all transmit related data structures.
2492  *
2493  **********************************************************************/
2494 static void
2495 em_free_transmit_structures(struct adapter *adapter)
2496 {
2497         struct em_buffer *tx_buffer;
2498         int i;
2499
2500         INIT_DEBUGOUT("free_transmit_structures: begin");
2501
2502         if (adapter->tx_buffer_area != NULL) {
2503                 tx_buffer = adapter->tx_buffer_area;
2504                 for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
2505                         if (tx_buffer->m_head != NULL) {
2506                                 bus_dmamap_unload(adapter->txtag,
2507                                                   tx_buffer->map);
2508                                 m_freem(tx_buffer->m_head);
2509                         }
2510
2511                         if (tx_buffer->map != NULL) {
2512                                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2513                                 tx_buffer->map = NULL;
2514                         }
2515                         tx_buffer->m_head = NULL;
2516                 }
2517         }
2518         if (adapter->tx_buffer_area != NULL) {
2519                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2520                 adapter->tx_buffer_area = NULL;
2521         }
2522         if (adapter->txtag != NULL) {
2523                 bus_dma_tag_destroy(adapter->txtag);
2524                 adapter->txtag = NULL;
2525         }
2526 }
2527
2528 /*********************************************************************
2529  *
2530  *  The offload context needs to be set when we transfer the first
2531  *  packet of a particular protocol (TCP/UDP). We change the
2532  *  context only if the protocol type changes.
2533  *
2534  **********************************************************************/
2535 static void
2536 em_transmit_checksum_setup(struct adapter *adapter,
2537                            struct mbuf *mp,
2538                            uint32_t *txd_upper,
2539                            uint32_t *txd_lower) 
2540 {
2541         struct em_context_desc *TXD;
2542         struct em_buffer *tx_buffer;
2543         int curr_txd;
2544
2545         if (mp->m_pkthdr.csum_flags) {
2546                 if (mp->m_pkthdr.csum_flags & CSUM_TCP) {
2547                         *txd_upper = E1000_TXD_POPTS_TXSM << 8;
2548                         *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2549                         if (adapter->active_checksum_context == OFFLOAD_TCP_IP)
2550                                 return;
2551                         else
2552                                 adapter->active_checksum_context = OFFLOAD_TCP_IP;
2553                 } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) {
2554                         *txd_upper = E1000_TXD_POPTS_TXSM << 8;
2555                         *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2556                         if (adapter->active_checksum_context == OFFLOAD_UDP_IP)
2557                                 return;
2558                         else
2559                                 adapter->active_checksum_context = OFFLOAD_UDP_IP;
2560                 } else {
2561                         *txd_upper = 0;
2562                         *txd_lower = 0;
2563                         return;
2564                 }
2565         } else {
2566                 *txd_upper = 0;
2567                 *txd_lower = 0;
2568                 return;
2569         }
2570
2571         /*
2572          * If we reach this point, the checksum offload context
2573          * needs to be reset.
2574          */
2575         curr_txd = adapter->next_avail_tx_desc;
2576         tx_buffer = &adapter->tx_buffer_area[curr_txd];
2577         TXD = (struct em_context_desc *) &adapter->tx_desc_base[curr_txd];
2578
2579         TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN;
2580         TXD->lower_setup.ip_fields.ipcso =
2581             ETHER_HDR_LEN + offsetof(struct ip, ip_sum);
2582         TXD->lower_setup.ip_fields.ipcse =
2583             htole16(ETHER_HDR_LEN + sizeof(struct ip) - 1);
2584
2585         TXD->upper_setup.tcp_fields.tucss =
2586             ETHER_HDR_LEN + sizeof(struct ip);
2587         TXD->upper_setup.tcp_fields.tucse = htole16(0);
2588
2589         if (adapter->active_checksum_context == OFFLOAD_TCP_IP) {
2590                 TXD->upper_setup.tcp_fields.tucso =
2591                         ETHER_HDR_LEN + sizeof(struct ip) +
2592                         offsetof(struct tcphdr, th_sum);
2593         } else if (adapter->active_checksum_context == OFFLOAD_UDP_IP) {
2594                 TXD->upper_setup.tcp_fields.tucso =
2595                         ETHER_HDR_LEN + sizeof(struct ip) +
2596                         offsetof(struct udphdr, uh_sum);
2597         }
2598
2599         TXD->tcp_seg_setup.data = htole32(0);
2600         TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT);
2601
2602         tx_buffer->m_head = NULL;
2603         tx_buffer->next_eop = -1;
2604
2605         if (++curr_txd == adapter->num_tx_desc)
2606                 curr_txd = 0;
2607
2608         adapter->num_tx_desc_avail--;
2609         adapter->next_avail_tx_desc = curr_txd;
2610 }
2611
2612 /**********************************************************************
2613  *
2614  *  Examine each tx_buffer in the used queue. If the hardware is done
2615  *  processing the packet then free associated resources. The
2616  *  tx_buffer is put back on the free queue.
2617  *
2618  **********************************************************************/
2619
2620 static void
2621 em_txeof(struct adapter *adapter)
2622 {
2623         int first, last, done, num_avail;
2624         struct em_buffer *tx_buffer;
2625         struct em_tx_desc *tx_desc, *eop_desc;
2626         struct ifnet *ifp = &adapter->interface_data.ac_if;
2627
2628         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2629                 return;
2630
2631         num_avail = adapter->num_tx_desc_avail; 
2632         first = adapter->next_tx_to_clean;
2633         tx_desc = &adapter->tx_desc_base[first];
2634         tx_buffer = &adapter->tx_buffer_area[first];
2635         last = tx_buffer->next_eop;
2636         KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2637         eop_desc = &adapter->tx_desc_base[last];
2638
2639         /*
2640          * Now caculate the terminating index for the cleanup loop below
2641          */
2642         if (++last == adapter->num_tx_desc)
2643                 last = 0;
2644         done = last;
2645
2646         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2647                         BUS_DMASYNC_POSTREAD);
2648
2649         while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2650                 while (first != done) {
2651                         tx_desc->upper.data = 0;
2652                         tx_desc->lower.data = 0;
2653                         num_avail++;
2654
2655                         logif(pkt_txclean);
2656
2657                         if (tx_buffer->m_head) {
2658                                 ifp->if_opackets++;
2659                                 bus_dmamap_sync(adapter->txtag, tx_buffer->map,
2660                                                 BUS_DMASYNC_POSTWRITE);
2661                                 bus_dmamap_unload(adapter->txtag,
2662                                                   tx_buffer->map);
2663
2664                                 m_freem(tx_buffer->m_head);
2665                                 tx_buffer->m_head = NULL;
2666                         }
2667                         tx_buffer->next_eop = -1;
2668
2669                         if (++first == adapter->num_tx_desc)
2670                                 first = 0;
2671
2672                         tx_buffer = &adapter->tx_buffer_area[first];
2673                         tx_desc = &adapter->tx_desc_base[first];
2674                 }
2675                 /* See if we can continue to the next packet */
2676                 last = tx_buffer->next_eop;
2677                 if (last != -1) {
2678                         KKASSERT(last >= 0 && last < adapter->num_tx_desc);
2679                         eop_desc = &adapter->tx_desc_base[last];
2680                         if (++last == adapter->num_tx_desc)
2681                                 last = 0;
2682                         done = last;
2683                 } else {
2684                         break;
2685                 }
2686         }
2687
2688         bus_dmamap_sync(adapter->txdma.dma_tag, adapter->txdma.dma_map,
2689                         BUS_DMASYNC_PREWRITE);
2690
2691         adapter->next_tx_to_clean = first;
2692
2693         /*
2694          * If we have enough room, clear IFF_OACTIVE to tell the stack
2695          * that it is OK to send packets.
2696          * If there are no pending descriptors, clear the timeout. Otherwise,
2697          * if some descriptors have been freed, restart the timeout.
2698          */
2699         if (num_avail > EM_TX_CLEANUP_THRESHOLD) {
2700                 ifp->if_flags &= ~IFF_OACTIVE;
2701                 if (num_avail == adapter->num_tx_desc)
2702                         ifp->if_timer = 0;
2703                 else if (num_avail == adapter->num_tx_desc_avail)
2704                         ifp->if_timer = EM_TX_TIMEOUT;
2705         }
2706         adapter->num_tx_desc_avail = num_avail;
2707 }
2708
2709 /*********************************************************************
2710  *
2711  *  Get a buffer from system mbuf buffer pool.
2712  *
2713  **********************************************************************/
2714 static int
2715 em_get_buf(int i, struct adapter *adapter, struct mbuf *nmp, int how)
2716 {
2717         struct mbuf *mp = nmp;
2718         struct em_buffer *rx_buffer;
2719         struct ifnet *ifp;
2720         bus_addr_t paddr;
2721         int error;
2722
2723         ifp = &adapter->interface_data.ac_if;
2724
2725         if (mp == NULL) {
2726                 mp = m_getcl(how, MT_DATA, M_PKTHDR);
2727                 if (mp == NULL) {
2728                         adapter->mbuf_cluster_failed++;
2729                         return (ENOBUFS);
2730                 }
2731                 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2732         } else {
2733                 mp->m_len = mp->m_pkthdr.len = MCLBYTES;
2734                 mp->m_data = mp->m_ext.ext_buf;
2735                 mp->m_next = NULL;
2736         }
2737
2738         if (ifp->if_mtu <= ETHERMTU)
2739                 m_adj(mp, ETHER_ALIGN);
2740
2741         rx_buffer = &adapter->rx_buffer_area[i];
2742
2743         /*
2744          * Using memory from the mbuf cluster pool, invoke the
2745          * bus_dma machinery to arrange the memory mapping.
2746          */
2747         error = bus_dmamap_load(adapter->rxtag, rx_buffer->map,
2748                                 mtod(mp, void *), mp->m_len,
2749                                 em_dmamap_cb, &paddr, 0);
2750         if (error) {
2751                 m_freem(mp);
2752                 return (error);
2753         }
2754         rx_buffer->m_head = mp;
2755         adapter->rx_desc_base[i].buffer_addr = htole64(paddr);
2756         bus_dmamap_sync(adapter->rxtag, rx_buffer->map, BUS_DMASYNC_PREREAD);
2757
2758         return (0);
2759 }
2760
2761 /*********************************************************************
2762  *
2763  *  Allocate memory for rx_buffer structures. Since we use one
2764  *  rx_buffer per received packet, the maximum number of rx_buffer's
2765  *  that we'll need is equal to the number of receive descriptors
2766  *  that we've allocated.
2767  *
2768  **********************************************************************/
2769 static int
2770 em_allocate_receive_structures(struct adapter *adapter)
2771 {
2772         int i, error, size;
2773         struct em_buffer *rx_buffer;
2774
2775         size = adapter->num_rx_desc * sizeof(struct em_buffer);
2776         adapter->rx_buffer_area = kmalloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
2777
2778         error = bus_dma_tag_create(NULL,                /* parent */
2779                                    1, 0,                /* alignment, bounds */
2780                                    BUS_SPACE_MAXADDR,   /* lowaddr */
2781                                    BUS_SPACE_MAXADDR,   /* highaddr */
2782                                    NULL, NULL,          /* filter, filterarg */
2783                                    MCLBYTES,            /* maxsize */
2784                                    1,                   /* nsegments */
2785                                    MCLBYTES,            /* maxsegsize */
2786                                    0,                   /* flags */
2787                                    &adapter->rxtag);
2788         if (error) {
2789                 device_printf(adapter->dev, "%s: bus_dma_tag_create failed; "
2790                               "error %u\n", __func__, error);
2791                 goto fail;
2792         }
2793  
2794         rx_buffer = adapter->rx_buffer_area;
2795         for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2796                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_NOWAIT,
2797                                           &rx_buffer->map);
2798                 if (error) {
2799                         device_printf(adapter->dev,
2800                                       "%s: bus_dmamap_create failed; "
2801                                       "error %u\n", __func__, error);
2802                         goto fail;
2803                 }
2804         }
2805
2806         for (i = 0; i < adapter->num_rx_desc; i++) {
2807                 error = em_get_buf(i, adapter, NULL, MB_DONTWAIT);
2808                 if (error)
2809                         goto fail;
2810         }
2811
2812         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
2813                         BUS_DMASYNC_PREWRITE);
2814
2815         return (0);
2816 fail:
2817         em_free_receive_structures(adapter);
2818         return (error);
2819 }
2820
2821 /*********************************************************************
2822  *
2823  *  Allocate and initialize receive structures.
2824  *
2825  **********************************************************************/
2826 static int
2827 em_setup_receive_structures(struct adapter *adapter)
2828 {
2829         int error;
2830
2831         bzero(adapter->rx_desc_base,
2832               sizeof(struct em_rx_desc) * adapter->num_rx_desc);
2833
2834         error = em_allocate_receive_structures(adapter);
2835         if (error)
2836                 return (error);
2837
2838         /* Setup our descriptor pointers */
2839         adapter->next_rx_desc_to_check = 0;
2840
2841         return (0);
2842 }
2843
2844 /*********************************************************************
2845  *
2846  *  Enable receive unit.
2847  *
2848  **********************************************************************/
2849 static void
2850 em_initialize_receive_unit(struct adapter *adapter)
2851 {
2852         uint32_t reg_rctl;
2853         uint32_t reg_rxcsum;
2854         struct ifnet *ifp;
2855         uint64_t bus_addr;
2856  
2857         INIT_DEBUGOUT("em_initialize_receive_unit: begin");
2858
2859         ifp = &adapter->interface_data.ac_if;
2860
2861         /*
2862          * Make sure receives are disabled while setting
2863          * up the descriptor ring
2864          */
2865         E1000_WRITE_REG(&adapter->hw, RCTL, 0);
2866
2867         /* Set the Receive Delay Timer Register */
2868         E1000_WRITE_REG(&adapter->hw, RDTR, 
2869                         adapter->rx_int_delay.value | E1000_RDT_FPDB);
2870
2871         if(adapter->hw.mac_type >= em_82540) {
2872                 E1000_WRITE_REG(&adapter->hw, RADV,
2873                                 adapter->rx_abs_int_delay.value);
2874
2875                 /* Set the interrupt throttling rate in 256ns increments */  
2876                 if (em_int_throttle_ceil) {
2877                         E1000_WRITE_REG(&adapter->hw, ITR,
2878                                 1000000000 / 256 / em_int_throttle_ceil);
2879                 } else {
2880                         E1000_WRITE_REG(&adapter->hw, ITR, 0);
2881                 }
2882         }
2883
2884         /* Setup the Base and Length of the Rx Descriptor Ring */
2885         bus_addr = adapter->rxdma.dma_paddr;
2886         E1000_WRITE_REG(&adapter->hw, RDLEN, adapter->num_rx_desc *
2887                         sizeof(struct em_rx_desc));
2888         E1000_WRITE_REG(&adapter->hw, RDBAH, (uint32_t)(bus_addr >> 32));
2889         E1000_WRITE_REG(&adapter->hw, RDBAL, (uint32_t)bus_addr);
2890
2891         /* Setup the Receive Control Register */
2892         reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2893                    E1000_RCTL_RDMTS_HALF |
2894                    (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
2895
2896         if (adapter->hw.tbi_compatibility_on == TRUE)
2897                 reg_rctl |= E1000_RCTL_SBP;
2898
2899         switch (adapter->rx_buffer_len) {
2900         default:
2901         case EM_RXBUFFER_2048:
2902                 reg_rctl |= E1000_RCTL_SZ_2048;
2903                 break;
2904         case EM_RXBUFFER_4096:
2905                 reg_rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX |
2906                             E1000_RCTL_LPE;
2907                 break;            
2908         case EM_RXBUFFER_8192:
2909                 reg_rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX |
2910                             E1000_RCTL_LPE;
2911                 break;
2912         case EM_RXBUFFER_16384:
2913                 reg_rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX |
2914                             E1000_RCTL_LPE;
2915                 break;
2916         }
2917
2918         if (ifp->if_mtu > ETHERMTU)
2919                 reg_rctl |= E1000_RCTL_LPE;
2920
2921         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2922         if ((adapter->hw.mac_type >= em_82543) &&
2923             (ifp->if_capenable & IFCAP_RXCSUM)) {
2924                 reg_rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
2925                 reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
2926                 E1000_WRITE_REG(&adapter->hw, RXCSUM, reg_rxcsum);
2927         }
2928
2929 #ifdef EM_X60_WORKAROUND
2930         if (adapter->hw.mac_type == em_82573)
2931                 E1000_WRITE_REG(&adapter->hw, RDTR, 32);
2932 #endif
2933
2934         /* Enable Receives */
2935         E1000_WRITE_REG(&adapter->hw, RCTL, reg_rctl);
2936
2937         /* Setup the HW Rx Head and Tail Descriptor Pointers */
2938         E1000_WRITE_REG(&adapter->hw, RDH, 0);
2939         E1000_WRITE_REG(&adapter->hw, RDT, adapter->num_rx_desc - 1);
2940 }
2941
2942 /*********************************************************************
2943  *
2944  *  Free receive related data structures.
2945  *
2946  **********************************************************************/
2947 static void
2948 em_free_receive_structures(struct adapter *adapter)
2949 {
2950         struct em_buffer *rx_buffer;
2951         int i;
2952
2953         INIT_DEBUGOUT("free_receive_structures: begin");
2954
2955         if (adapter->rx_buffer_area != NULL) {
2956                 rx_buffer = adapter->rx_buffer_area;
2957                 for (i = 0; i < adapter->num_rx_desc; i++, rx_buffer++) {
2958                         if (rx_buffer->m_head != NULL) {
2959                                 bus_dmamap_unload(adapter->rxtag,
2960                                                   rx_buffer->map);
2961                                 m_freem(rx_buffer->m_head);
2962                                 rx_buffer->m_head = NULL;
2963                         }
2964                         if (rx_buffer->map != NULL) {
2965                                 bus_dmamap_destroy(adapter->rxtag,
2966                                                    rx_buffer->map);
2967                                 rx_buffer->map = NULL;
2968                         }
2969                 }
2970         }
2971         if (adapter->rx_buffer_area != NULL) {
2972                 kfree(adapter->rx_buffer_area, M_DEVBUF);
2973                 adapter->rx_buffer_area = NULL;
2974         }
2975         if (adapter->rxtag != NULL) {
2976                 bus_dma_tag_destroy(adapter->rxtag);
2977                 adapter->rxtag = NULL;
2978         }
2979 }
2980
2981 /*********************************************************************
2982  *
2983  *  This routine executes in interrupt context. It replenishes
2984  *  the mbufs in the descriptor and sends data which has been
2985  *  dma'ed into host memory to upper layer.
2986  *
2987  *  We loop at most count times if count is > 0, or until done if
2988  *  count < 0.
2989  *
2990  *********************************************************************/
2991 static void
2992 em_rxeof(struct adapter *adapter, int count)
2993 {
2994         struct ifnet *ifp;
2995         struct mbuf *mp;
2996         uint8_t accept_frame = 0;
2997         uint8_t eop = 0;
2998         uint16_t len, desc_len, prev_len_adj;
2999         int i;
3000 #ifdef ETHER_INPUT_CHAIN
3001         struct mbuf_chain chain[MAXCPU];
3002         int j;
3003 #endif
3004
3005         /* Pointer to the receive descriptor being examined. */
3006         struct em_rx_desc *current_desc;
3007
3008         ifp = &adapter->interface_data.ac_if;
3009         i = adapter->next_rx_desc_to_check;
3010         current_desc = &adapter->rx_desc_base[i];
3011
3012         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3013                         BUS_DMASYNC_POSTREAD);
3014
3015         if (!(current_desc->status & E1000_RXD_STAT_DD))
3016                 return;
3017
3018 #ifdef ETHER_INPUT_CHAIN
3019         for (j = 0; j < ncpus; ++j)
3020                 chain[j].mc_head = chain[j].mc_tail = NULL;
3021 #endif
3022
3023         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3024                 logif(pkt_receive);
3025                 mp = adapter->rx_buffer_area[i].m_head;
3026                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3027                                 BUS_DMASYNC_POSTREAD);
3028                 bus_dmamap_unload(adapter->rxtag,
3029                                   adapter->rx_buffer_area[i].map);
3030
3031                 accept_frame = 1;
3032                 prev_len_adj = 0;
3033                 desc_len = le16toh(current_desc->length);
3034                 if (current_desc->status & E1000_RXD_STAT_EOP) {
3035                         count--;
3036                         eop = 1;
3037                         if (desc_len < ETHER_CRC_LEN) {
3038                                 len = 0;
3039                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3040                         } else {
3041                                 len = desc_len - ETHER_CRC_LEN;
3042                         }
3043                 } else {
3044                         eop = 0;
3045                         len = desc_len;
3046                 }
3047
3048                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3049                         uint8_t last_byte;
3050                         uint32_t pkt_len = desc_len;
3051
3052                         if (adapter->fmp != NULL)
3053                                 pkt_len += adapter->fmp->m_pkthdr.len; 
3054
3055                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3056
3057                         if (TBI_ACCEPT(&adapter->hw, current_desc->status, 
3058                                        current_desc->errors, 
3059                                        pkt_len, last_byte)) {
3060                                 em_tbi_adjust_stats(&adapter->hw, 
3061                                                     &adapter->stats, 
3062                                                     pkt_len, 
3063                                                     adapter->hw.mac_addr);
3064                                 if (len > 0)
3065                                         len--;
3066                         } else {
3067                                 accept_frame = 0;
3068                         }
3069                 }
3070
3071                 if (accept_frame) {
3072                         if (em_get_buf(i, adapter, NULL, MB_DONTWAIT) == ENOBUFS) {
3073                                 adapter->dropped_pkts++;
3074                                 em_get_buf(i, adapter, mp, MB_DONTWAIT);
3075                                 if (adapter->fmp != NULL)
3076                                         m_freem(adapter->fmp);
3077                                 adapter->fmp = NULL;
3078                                 adapter->lmp = NULL;
3079                                 goto skip;
3080                         }
3081
3082                         /* Assign correct length to the current fragment */
3083                         mp->m_len = len;
3084
3085                         if (adapter->fmp == NULL) {
3086                                 mp->m_pkthdr.len = len;
3087                                 adapter->fmp = mp;       /* Store the first mbuf */
3088                                 adapter->lmp = mp;
3089                         } else {
3090                                 /* Chain mbuf's together */
3091                                 /* 
3092                                  * Adjust length of previous mbuf in chain if
3093                                  * we received less than 4 bytes in the last
3094                                  * descriptor.
3095                                  */
3096                                 if (prev_len_adj > 0) {
3097                                         adapter->lmp->m_len -= prev_len_adj;
3098                                         adapter->fmp->m_pkthdr.len -= prev_len_adj;
3099                                 }
3100                                 adapter->lmp->m_next = mp;
3101                                 adapter->lmp = adapter->lmp->m_next;
3102                                 adapter->fmp->m_pkthdr.len += len;
3103                         }
3104
3105                         if (eop) {
3106                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3107                                 ifp->if_ipackets++;
3108
3109                                 em_receive_checksum(adapter, current_desc,
3110                                                     adapter->fmp);
3111                                 if (current_desc->status & E1000_RXD_STAT_VP) {
3112                                         VLAN_INPUT_TAG(adapter->fmp,
3113                                                        (current_desc->special & 
3114                                                         E1000_RXD_SPC_VLAN_MASK));
3115                                 } else {
3116 #ifdef ETHER_INPUT_CHAIN
3117                                         ether_input_chain(ifp, adapter->fmp,
3118                                                           chain);
3119 #else
3120                                         ifp->if_input(ifp, adapter->fmp);
3121 #endif
3122                                 }
3123                                 adapter->fmp = NULL;
3124                                 adapter->lmp = NULL;
3125                         }
3126                 } else {
3127                         adapter->dropped_pkts++;
3128                         em_get_buf(i, adapter, mp, MB_DONTWAIT);
3129                         if (adapter->fmp != NULL) 
3130                                 m_freem(adapter->fmp);
3131                         adapter->fmp = NULL;
3132                         adapter->lmp = NULL;
3133                 }
3134
3135 skip:
3136                 /* Zero out the receive descriptors status. */
3137                 current_desc->status = 0;
3138
3139                 /* Advance our pointers to the next descriptor. */
3140                 if (++i == adapter->num_rx_desc) {
3141                         i = 0;
3142                         current_desc = adapter->rx_desc_base;
3143                 } else {
3144                         current_desc++;
3145                 }
3146         }
3147
3148 #ifdef ETHER_INPUT_CHAIN
3149         ether_input_dispatch(chain);
3150 #endif
3151
3152         bus_dmamap_sync(adapter->rxdma.dma_tag, adapter->rxdma.dma_map,
3153                         BUS_DMASYNC_PREWRITE);
3154
3155         adapter->next_rx_desc_to_check = i;
3156
3157         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3158         if (--i < 0)
3159                 i = adapter->num_rx_desc - 1;
3160
3161         E1000_WRITE_REG(&adapter->hw, RDT, i);
3162 }
3163
3164 /*********************************************************************
3165  *
3166  *  Verify that the hardware indicated that the checksum is valid.
3167  *  Inform the stack about the status of checksum so that stack
3168  *  doesn't spend time verifying the checksum.
3169  *
3170  *********************************************************************/
3171 static void
3172 em_receive_checksum(struct adapter *adapter,
3173                     struct em_rx_desc *rx_desc,
3174                     struct mbuf *mp)
3175 {
3176         /* 82543 or newer only */
3177         if ((adapter->hw.mac_type < em_82543) ||
3178             /* Ignore Checksum bit is set */
3179             (rx_desc->status & E1000_RXD_STAT_IXSM)) {
3180                 mp->m_pkthdr.csum_flags = 0;
3181                 return;
3182         }
3183
3184         if (rx_desc->status & E1000_RXD_STAT_IPCS) {
3185                 /* Did it pass? */
3186                 if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3187                         /* IP Checksum Good */
3188                         mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
3189                         mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3190                 } else {
3191                         mp->m_pkthdr.csum_flags = 0;
3192                 }
3193         }
3194
3195         if (rx_desc->status & E1000_RXD_STAT_TCPCS) {
3196                 /* Did it pass? */
3197                 if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3198                         mp->m_pkthdr.csum_flags |=
3199                         (CSUM_DATA_VALID | CSUM_PSEUDO_HDR |
3200                          CSUM_FRAG_NOT_CHECKED);
3201                         mp->m_pkthdr.csum_data = htons(0xffff);
3202                 }
3203         }
3204 }
3205
3206
3207 static void 
3208 em_enable_vlans(struct adapter *adapter)
3209 {
3210         uint32_t ctrl;
3211
3212         E1000_WRITE_REG(&adapter->hw, VET, ETHERTYPE_VLAN);
3213
3214         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3215         ctrl |= E1000_CTRL_VME;
3216         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3217 }
3218
3219 static void
3220 em_disable_vlans(struct adapter *adapter)
3221 {
3222         uint32_t ctrl;
3223
3224         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
3225         ctrl &= ~E1000_CTRL_VME;
3226         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
3227 }
3228
3229 /*
3230  * note: we must call bus_enable_intr() prior to enabling the hardware
3231  * interrupt and bus_disable_intr() after disabling the hardware interrupt
3232  * in order to avoid handler execution races from scheduled interrupt
3233  * threads.
3234  */
3235 static void
3236 em_enable_intr(struct adapter *adapter)
3237 {
3238         struct ifnet *ifp = &adapter->interface_data.ac_if;
3239         
3240         if ((ifp->if_flags & IFF_POLLING) == 0) {
3241                 lwkt_serialize_handler_enable(ifp->if_serializer);
3242                 E1000_WRITE_REG(&adapter->hw, IMS, (IMS_ENABLE_MASK));
3243         }
3244 }
3245
3246 static void
3247 em_disable_intr(struct adapter *adapter)
3248 {
3249         /*
3250          * The first version of 82542 had an errata where when link was forced
3251          * it would stay up even up even if the cable was disconnected.
3252          * Sequence errors were used to detect the disconnect and then the
3253          * driver would unforce the link.  This code in the in the ISR.  For
3254          * this to work correctly the Sequence error interrupt had to be
3255          * enabled all the time.
3256          */
3257         if (adapter->hw.mac_type == em_82542_rev2_0) {
3258                 E1000_WRITE_REG(&adapter->hw, IMC,
3259                                 (0xffffffff & ~E1000_IMC_RXSEQ));
3260         } else {
3261                 E1000_WRITE_REG(&adapter->hw, IMC, 0xffffffff);
3262         }
3263
3264         lwkt_serialize_handler_disable(adapter->interface_data.ac_if.if_serializer);
3265 }
3266
3267 static int
3268 em_is_valid_ether_addr(uint8_t *addr)
3269 {
3270         static const char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
3271
3272         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3273                 return (FALSE);
3274         else
3275                 return (TRUE);
3276 }
3277
3278 void
3279 em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3280 {
3281         pci_write_config(((struct em_osdep *)hw->back)->dev, reg, *value, 2);
3282 }
3283
3284 void
3285 em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3286 {
3287         *value = pci_read_config(((struct em_osdep *)hw->back)->dev, reg, 2);
3288 }
3289
3290 void
3291 em_pci_set_mwi(struct em_hw *hw)
3292 {
3293         pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3294                          (hw->pci_cmd_word | CMD_MEM_WRT_INVALIDATE), 2);
3295 }
3296
3297 void
3298 em_pci_clear_mwi(struct em_hw *hw)
3299 {
3300         pci_write_config(((struct em_osdep *)hw->back)->dev, PCIR_COMMAND,
3301                          (hw->pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE), 2);
3302 }
3303
3304 uint32_t
3305 em_io_read(struct em_hw *hw, unsigned long port)
3306 {
3307         struct em_osdep *io = hw->back;
3308
3309         return bus_space_read_4(io->io_bus_space_tag,
3310                                 io->io_bus_space_handle, port);
3311 }
3312
3313 void
3314 em_io_write(struct em_hw *hw, unsigned long port, uint32_t value)
3315 {
3316         struct em_osdep *io = hw->back;
3317
3318         bus_space_write_4(io->io_bus_space_tag,
3319                           io->io_bus_space_handle, port, value);
3320 }
3321
3322 /*
3323  * We may eventually really do this, but its unnecessary 
3324  * for now so we just return unsupported.
3325  */
3326 int32_t
3327 em_read_pcie_cap_reg(struct em_hw *hw, uint32_t reg, uint16_t *value)
3328 {
3329         return (0);
3330 }
3331
3332
3333 /*********************************************************************
3334  * 82544 Coexistence issue workaround.
3335  *    There are 2 issues.
3336  *      1. Transmit Hang issue.
3337  *    To detect this issue, following equation can be used...
3338  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3339  *          If SUM[3:0] is in between 1 to 4, we will have this issue.
3340  *
3341  *      2. DAC issue.
3342  *    To detect this issue, following equation can be used...
3343  *          SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3344  *          If SUM[3:0] is in between 9 to c, we will have this issue.
3345  *
3346  *
3347  *    WORKAROUND:
3348  *          Make sure we do not have ending address as 1,2,3,4(Hang) or
3349  *          9,a,b,c (DAC)
3350  *
3351 *************************************************************************/
3352 static uint32_t
3353 em_fill_descriptors(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3354 {
3355         /* Since issue is sensitive to length and address.*/
3356         /* Let us first check the address...*/
3357         uint32_t safe_terminator;
3358         if (length <= 4) {
3359                 desc_array->descriptor[0].address = address;
3360                 desc_array->descriptor[0].length = length;
3361                 desc_array->elements = 1;
3362                 return (desc_array->elements);
3363         }
3364         safe_terminator = (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3365         /* if it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */ 
3366         if (safe_terminator == 0 ||
3367             (safe_terminator > 4 && safe_terminator < 9) || 
3368             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3369                 desc_array->descriptor[0].address = address;
3370                 desc_array->descriptor[0].length = length;
3371                 desc_array->elements = 1;
3372                 return (desc_array->elements);
3373         }
3374
3375         desc_array->descriptor[0].address = address;
3376         desc_array->descriptor[0].length = length - 4;
3377         desc_array->descriptor[1].address = address + (length - 4);
3378         desc_array->descriptor[1].length = 4;
3379         desc_array->elements = 2;
3380         return (desc_array->elements);
3381 }
3382
3383 /**********************************************************************
3384  *
3385  *  Update the board statistics counters.
3386  *
3387  **********************************************************************/
3388 static void
3389 em_update_stats_counters(struct adapter *adapter)
3390 {
3391         struct ifnet   *ifp;
3392
3393         if (adapter->hw.media_type == em_media_type_copper ||
3394             (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
3395                 adapter->stats.symerrs += E1000_READ_REG(&adapter->hw, SYMERRS);
3396                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, SEC);
3397         }
3398         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, CRCERRS);
3399         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, MPC);
3400         adapter->stats.scc += E1000_READ_REG(&adapter->hw, SCC);
3401         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, ECOL);
3402
3403         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, MCC);
3404         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, LATECOL);
3405         adapter->stats.colc += E1000_READ_REG(&adapter->hw, COLC);
3406         adapter->stats.dc += E1000_READ_REG(&adapter->hw, DC);
3407         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, RLEC);
3408         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, XONRXC);
3409         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, XONTXC);
3410         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, XOFFRXC);
3411         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, XOFFTXC);
3412         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, FCRUC);
3413         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, PRC64);
3414         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, PRC127);
3415         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, PRC255);
3416         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, PRC511);
3417         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, PRC1023);
3418         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, PRC1522);
3419         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, GPRC);
3420         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, BPRC);
3421         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, MPRC);
3422         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, GPTC);
3423
3424         /* For the 64-bit byte counters the low dword must be read first. */
3425         /* Both registers clear on the read of the high dword */
3426
3427         adapter->stats.gorcl += E1000_READ_REG(&adapter->hw, GORCL);
3428         adapter->stats.gorch += E1000_READ_REG(&adapter->hw, GORCH);
3429         adapter->stats.gotcl += E1000_READ_REG(&adapter->hw, GOTCL);
3430         adapter->stats.gotch += E1000_READ_REG(&adapter->hw, GOTCH);
3431
3432         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, RNBC);
3433         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, RUC);
3434         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, RFC);
3435         adapter->stats.roc += E1000_READ_REG(&adapter->hw, ROC);
3436         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, RJC);
3437
3438         adapter->stats.torl += E1000_READ_REG(&adapter->hw, TORL);
3439         adapter->stats.torh += E1000_READ_REG(&adapter->hw, TORH);
3440         adapter->stats.totl += E1000_READ_REG(&adapter->hw, TOTL);
3441         adapter->stats.toth += E1000_READ_REG(&adapter->hw, TOTH);
3442
3443         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, TPR);
3444         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, TPT);
3445         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, PTC64);
3446         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, PTC127);
3447         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, PTC255);
3448         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, PTC511);
3449         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, PTC1023);
3450         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, PTC1522);
3451         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, MPTC);
3452         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, BPTC);
3453
3454         if (adapter->hw.mac_type >= em_82543) {
3455                 adapter->stats.algnerrc += 
3456                     E1000_READ_REG(&adapter->hw, ALGNERRC);
3457                 adapter->stats.rxerrc += 
3458                     E1000_READ_REG(&adapter->hw, RXERRC);
3459                 adapter->stats.tncrs += 
3460                     E1000_READ_REG(&adapter->hw, TNCRS);
3461                 adapter->stats.cexterr += 
3462                     E1000_READ_REG(&adapter->hw, CEXTERR);
3463                 adapter->stats.tsctc += 
3464                     E1000_READ_REG(&adapter->hw, TSCTC);
3465                 adapter->stats.tsctfc += 
3466                     E1000_READ_REG(&adapter->hw, TSCTFC);
3467         }
3468         ifp = &adapter->interface_data.ac_if;
3469
3470         /* Fill out the OS statistics structure */
3471         ifp->if_collisions = adapter->stats.colc;
3472
3473         /* Rx Errors */
3474         ifp->if_ierrors =
3475                 adapter->dropped_pkts +
3476                 adapter->stats.rxerrc +
3477                 adapter->stats.crcerrs +
3478                 adapter->stats.algnerrc +
3479                 adapter->stats.ruc + adapter->stats.roc +
3480                 adapter->stats.mpc + adapter->stats.cexterr +
3481                 adapter->rx_overruns;
3482
3483         /* Tx Errors */
3484         ifp->if_oerrors = adapter->stats.ecol + adapter->stats.latecol +
3485                           adapter->watchdog_timeouts;
3486 }
3487
3488
3489 /**********************************************************************
3490  *
3491  *  This routine is called only when em_display_debug_stats is enabled.
3492  *  This routine provides a way to take a look at important statistics
3493  *  maintained by the driver and hardware.
3494  *
3495  **********************************************************************/
3496 static void
3497 em_print_debug_info(struct adapter *adapter)
3498 {
3499         device_t dev= adapter->dev;
3500         uint8_t *hw_addr = adapter->hw.hw_addr;
3501
3502         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3503         device_printf(dev, "CTRL  = 0x%x RCTL = 0x%x\n",
3504                       E1000_READ_REG(&adapter->hw, CTRL),
3505                       E1000_READ_REG(&adapter->hw, RCTL));
3506         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk\n",
3507                       ((E1000_READ_REG(&adapter->hw, PBA) & 0xffff0000) >> 16),
3508                       (E1000_READ_REG(&adapter->hw, PBA) & 0xffff));
3509         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3510                       adapter->hw.fc_high_water, adapter->hw.fc_low_water);
3511         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3512                       E1000_READ_REG(&adapter->hw, TIDV),
3513                       E1000_READ_REG(&adapter->hw, TADV));
3514         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3515                       E1000_READ_REG(&adapter->hw, RDTR),
3516                       E1000_READ_REG(&adapter->hw, RADV));
3517         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3518                       (long long)adapter->tx_fifo_wrk_cnt,
3519                       (long long)adapter->tx_fifo_reset_cnt);
3520         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3521                       E1000_READ_REG(&adapter->hw, TDH),
3522                       E1000_READ_REG(&adapter->hw, TDT));
3523         device_printf(dev, "Num Tx descriptors avail = %d\n",
3524                       adapter->num_tx_desc_avail);
3525         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3526                       adapter->no_tx_desc_avail1);
3527         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3528                       adapter->no_tx_desc_avail2);
3529         device_printf(dev, "Std mbuf failed = %ld\n",
3530                       adapter->mbuf_alloc_failed);
3531         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3532                       adapter->mbuf_cluster_failed);
3533         device_printf(dev, "Driver dropped packets = %ld\n",
3534                       adapter->dropped_pkts);
3535 }
3536
3537 static void
3538 em_print_hw_stats(struct adapter *adapter)
3539 {
3540         device_t dev= adapter->dev;
3541
3542         device_printf(dev, "Excessive collisions = %lld\n",
3543                       (long long)adapter->stats.ecol);
3544         device_printf(dev, "Symbol errors = %lld\n",
3545                       (long long)adapter->stats.symerrs);
3546         device_printf(dev, "Sequence errors = %lld\n",
3547                       (long long)adapter->stats.sec);
3548         device_printf(dev, "Defer count = %lld\n",
3549                       (long long)adapter->stats.dc);
3550
3551         device_printf(dev, "Missed Packets = %lld\n",
3552                       (long long)adapter->stats.mpc);
3553         device_printf(dev, "Receive No Buffers = %lld\n",
3554                       (long long)adapter->stats.rnbc);
3555         /* RLEC is inaccurate on some hardware, calculate our own. */
3556         device_printf(dev, "Receive Length errors = %lld\n",
3557                       (long long)adapter->stats.roc +
3558                       (long long)adapter->stats.ruc);
3559         device_printf(dev, "Receive errors = %lld\n",
3560                       (long long)adapter->stats.rxerrc);
3561         device_printf(dev, "Crc errors = %lld\n",
3562                       (long long)adapter->stats.crcerrs);
3563         device_printf(dev, "Alignment errors = %lld\n",
3564                       (long long)adapter->stats.algnerrc);
3565         device_printf(dev, "Carrier extension errors = %lld\n",
3566                       (long long)adapter->stats.cexterr);
3567         device_printf(dev, "RX overruns = %lu\n", adapter->rx_overruns);
3568         device_printf(dev, "Watchdog timeouts = %lu\n",
3569                       adapter->watchdog_timeouts);
3570
3571         device_printf(dev, "XON Rcvd = %lld\n",
3572                       (long long)adapter->stats.xonrxc);
3573         device_printf(dev, "XON Xmtd = %lld\n",
3574                       (long long)adapter->stats.xontxc);
3575         device_printf(dev, "XOFF Rcvd = %lld\n",
3576                       (long long)adapter->stats.xoffrxc);
3577         device_printf(dev, "XOFF Xmtd = %lld\n",
3578                       (long long)adapter->stats.xofftxc);
3579
3580         device_printf(dev, "Good Packets Rcvd = %lld\n",
3581                       (long long)adapter->stats.gprc);
3582         device_printf(dev, "Good Packets Xmtd = %lld\n",
3583                       (long long)adapter->stats.gptc);
3584 }
3585
3586 static int
3587 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3588 {
3589         int error;
3590         int result;
3591         struct adapter *adapter;
3592
3593         result = -1;
3594         error = sysctl_handle_int(oidp, &result, 0, req);
3595
3596         if (error || !req->newptr)
3597                 return (error);
3598
3599         if (result == 1) {
3600                 adapter = (struct adapter *)arg1;
3601                 em_print_debug_info(adapter);
3602         }
3603
3604         return (error);
3605 }
3606
3607 static int
3608 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3609 {
3610         int error;
3611         int result;
3612         struct adapter *adapter;
3613
3614         result = -1;
3615         error = sysctl_handle_int(oidp, &result, 0, req);
3616
3617         if (error || !req->newptr)
3618                 return (error);
3619
3620         if (result == 1) {
3621                 adapter = (struct adapter *)arg1;
3622                 em_print_hw_stats(adapter);
3623         }
3624
3625         return (error);
3626 }
3627
3628 static int
3629 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
3630 {
3631         struct em_int_delay_info *info;
3632         struct adapter *adapter;
3633         uint32_t regval;
3634         int error;
3635         int usecs;
3636         int ticks;
3637
3638         info = (struct em_int_delay_info *)arg1;
3639         adapter = info->adapter;
3640         usecs = info->value;
3641         error = sysctl_handle_int(oidp, &usecs, 0, req);
3642         if (error != 0 || req->newptr == NULL)
3643                 return (error);
3644         if (usecs < 0 || usecs > E1000_TICKS_TO_USECS(65535))
3645                 return (EINVAL);
3646         info->value = usecs;
3647         ticks = E1000_USECS_TO_TICKS(usecs);
3648
3649         lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3650         regval = E1000_READ_OFFSET(&adapter->hw, info->offset);
3651         regval = (regval & ~0xffff) | (ticks & 0xffff);
3652         /* Handle a few special cases. */
3653         switch (info->offset) {
3654         case E1000_RDTR:
3655         case E1000_82542_RDTR:
3656                 regval |= E1000_RDT_FPDB;
3657                 break;
3658         case E1000_TIDV:
3659         case E1000_82542_TIDV:
3660                 if (ticks == 0) {
3661                         adapter->txd_cmd &= ~E1000_TXD_CMD_IDE;
3662                         /* Don't write 0 into the TIDV register. */
3663                         regval++;
3664                 } else
3665                         adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3666                 break;
3667         }
3668         E1000_WRITE_OFFSET(&adapter->hw, info->offset, regval);
3669         lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3670         return (0);
3671 }
3672
3673 static void
3674 em_add_int_delay_sysctl(struct adapter *adapter, const char *name,
3675                         const char *description, struct em_int_delay_info *info,
3676                         int offset, int value)
3677 {
3678         info->adapter = adapter;
3679         info->offset = offset;
3680         info->value = value;
3681         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
3682                         SYSCTL_CHILDREN(adapter->sysctl_tree),
3683                         OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW,
3684                         info, 0, em_sysctl_int_delay, "I", description);
3685 }
3686
3687 static int
3688 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3689 {
3690         struct adapter *adapter = (void *)arg1;
3691         int error;
3692         int throttle;
3693
3694         throttle = em_int_throttle_ceil;
3695         error = sysctl_handle_int(oidp, &throttle, 0, req);
3696         if (error || req->newptr == NULL)
3697                 return error;
3698         if (throttle < 0 || throttle > 1000000000 / 256)
3699                 return EINVAL;
3700         if (throttle) {
3701                 /*
3702                  * Set the interrupt throttling rate in 256ns increments,
3703                  * recalculate sysctl value assignment to get exact frequency.
3704                  */
3705                 throttle = 1000000000 / 256 / throttle;
3706                 lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3707                 em_int_throttle_ceil = 1000000000 / 256 / throttle;
3708                 E1000_WRITE_REG(&adapter->hw, ITR, throttle);
3709                 lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3710         } else {
3711                 lwkt_serialize_enter(adapter->interface_data.ac_if.if_serializer);
3712                 em_int_throttle_ceil = 0;
3713                 E1000_WRITE_REG(&adapter->hw, ITR, 0);
3714                 lwkt_serialize_exit(adapter->interface_data.ac_if.if_serializer);
3715         }
3716         device_printf(adapter->dev, "Interrupt moderation set to %d/sec\n", 
3717                         em_int_throttle_ceil);
3718         return 0;
3719 }