6abf0f7aa4aa0396959b6c6b66c1b2bbcd267c69
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95
96 /*
97  * NOTE:
98  *
99  * MSI-X MUST NOT be enabled on 82574:
100  *   <<82574 specification update>> errata #15
101  */
102
103 #include "opt_polling.h"
104
105 #include <sys/param.h>
106 #include <sys/bus.h>
107 #include <sys/endian.h>
108 #include <sys/interrupt.h>
109 #include <sys/kernel.h>
110 #include <sys/ktr.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/proc.h>
114 #include <sys/rman.h>
115 #include <sys/serialize.h>
116 #include <sys/socket.h>
117 #include <sys/sockio.h>
118 #include <sys/sysctl.h>
119 #include <sys/systm.h>
120
121 #include <net/bpf.h>
122 #include <net/ethernet.h>
123 #include <net/if.h>
124 #include <net/if_arp.h>
125 #include <net/if_dl.h>
126 #include <net/if_media.h>
127 #include <net/ifq_var.h>
128 #include <net/vlan/if_vlan_var.h>
129 #include <net/vlan/if_vlan_ether.h>
130
131 #include <netinet/in_systm.h>
132 #include <netinet/in.h>
133 #include <netinet/ip.h>
134 #include <netinet/tcp.h>
135 #include <netinet/udp.h>
136
137 #include <bus/pci/pcivar.h>
138 #include <bus/pci/pcireg.h>
139
140 #include <dev/netif/ig_hal/e1000_api.h>
141 #include <dev/netif/ig_hal/e1000_82571.h>
142 #include <dev/netif/em/if_em.h>
143
144 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
145 #define EM_VER  " 7.2.4"
146
147 #define _EM_DEVICE(id, ret)     \
148         { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
149 #define EM_EMX_DEVICE(id)       _EM_DEVICE(id, -100)
150 #define EM_DEVICE(id)           _EM_DEVICE(id, 0)
151 #define EM_DEVICE_NULL  { 0, 0, 0, NULL }
152
153 static const struct em_vendor_info em_vendor_info_array[] = {
154         EM_DEVICE(82540EM),
155         EM_DEVICE(82540EM_LOM),
156         EM_DEVICE(82540EP),
157         EM_DEVICE(82540EP_LOM),
158         EM_DEVICE(82540EP_LP),
159
160         EM_DEVICE(82541EI),
161         EM_DEVICE(82541ER),
162         EM_DEVICE(82541ER_LOM),
163         EM_DEVICE(82541EI_MOBILE),
164         EM_DEVICE(82541GI),
165         EM_DEVICE(82541GI_LF),
166         EM_DEVICE(82541GI_MOBILE),
167
168         EM_DEVICE(82542),
169
170         EM_DEVICE(82543GC_FIBER),
171         EM_DEVICE(82543GC_COPPER),
172
173         EM_DEVICE(82544EI_COPPER),
174         EM_DEVICE(82544EI_FIBER),
175         EM_DEVICE(82544GC_COPPER),
176         EM_DEVICE(82544GC_LOM),
177
178         EM_DEVICE(82545EM_COPPER),
179         EM_DEVICE(82545EM_FIBER),
180         EM_DEVICE(82545GM_COPPER),
181         EM_DEVICE(82545GM_FIBER),
182         EM_DEVICE(82545GM_SERDES),
183
184         EM_DEVICE(82546EB_COPPER),
185         EM_DEVICE(82546EB_FIBER),
186         EM_DEVICE(82546EB_QUAD_COPPER),
187         EM_DEVICE(82546GB_COPPER),
188         EM_DEVICE(82546GB_FIBER),
189         EM_DEVICE(82546GB_SERDES),
190         EM_DEVICE(82546GB_PCIE),
191         EM_DEVICE(82546GB_QUAD_COPPER),
192         EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
193
194         EM_DEVICE(82547EI),
195         EM_DEVICE(82547EI_MOBILE),
196         EM_DEVICE(82547GI),
197
198         EM_EMX_DEVICE(82571EB_COPPER),
199         EM_EMX_DEVICE(82571EB_FIBER),
200         EM_EMX_DEVICE(82571EB_SERDES),
201         EM_EMX_DEVICE(82571EB_SERDES_DUAL),
202         EM_EMX_DEVICE(82571EB_SERDES_QUAD),
203         EM_EMX_DEVICE(82571EB_QUAD_COPPER),
204         EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
205         EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
206         EM_EMX_DEVICE(82571EB_QUAD_FIBER),
207         EM_EMX_DEVICE(82571PT_QUAD_COPPER),
208
209         EM_EMX_DEVICE(82572EI_COPPER),
210         EM_EMX_DEVICE(82572EI_FIBER),
211         EM_EMX_DEVICE(82572EI_SERDES),
212         EM_EMX_DEVICE(82572EI),
213
214         EM_EMX_DEVICE(82573E),
215         EM_EMX_DEVICE(82573E_IAMT),
216         EM_EMX_DEVICE(82573L),
217
218         EM_DEVICE(82583V),
219
220         EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
221         EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
222         EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
223         EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
224
225         EM_DEVICE(ICH8_IGP_M_AMT),
226         EM_DEVICE(ICH8_IGP_AMT),
227         EM_DEVICE(ICH8_IGP_C),
228         EM_DEVICE(ICH8_IFE),
229         EM_DEVICE(ICH8_IFE_GT),
230         EM_DEVICE(ICH8_IFE_G),
231         EM_DEVICE(ICH8_IGP_M),
232         EM_DEVICE(ICH8_82567V_3),
233
234         EM_DEVICE(ICH9_IGP_M_AMT),
235         EM_DEVICE(ICH9_IGP_AMT),
236         EM_DEVICE(ICH9_IGP_C),
237         EM_DEVICE(ICH9_IGP_M),
238         EM_DEVICE(ICH9_IGP_M_V),
239         EM_DEVICE(ICH9_IFE),
240         EM_DEVICE(ICH9_IFE_GT),
241         EM_DEVICE(ICH9_IFE_G),
242         EM_DEVICE(ICH9_BM),
243
244         EM_EMX_DEVICE(82574L),
245         EM_EMX_DEVICE(82574LA),
246
247         EM_DEVICE(ICH10_R_BM_LM),
248         EM_DEVICE(ICH10_R_BM_LF),
249         EM_DEVICE(ICH10_R_BM_V),
250         EM_DEVICE(ICH10_D_BM_LM),
251         EM_DEVICE(ICH10_D_BM_LF),
252         EM_DEVICE(ICH10_D_BM_V),
253
254         EM_DEVICE(PCH_M_HV_LM),
255         EM_DEVICE(PCH_M_HV_LC),
256         EM_DEVICE(PCH_D_HV_DM),
257         EM_DEVICE(PCH_D_HV_DC),
258
259         EM_DEVICE(PCH2_LV_LM),
260         EM_DEVICE(PCH2_LV_V),
261
262         /* required last entry */
263         EM_DEVICE_NULL
264 };
265
266 static int      em_probe(device_t);
267 static int      em_attach(device_t);
268 static int      em_detach(device_t);
269 static int      em_shutdown(device_t);
270 static int      em_suspend(device_t);
271 static int      em_resume(device_t);
272
273 static void     em_init(void *);
274 static void     em_stop(struct adapter *);
275 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
276 static void     em_start(struct ifnet *);
277 #ifdef DEVICE_POLLING
278 static void     em_poll(struct ifnet *, enum poll_cmd, int);
279 #endif
280 static void     em_watchdog(struct ifnet *);
281 static void     em_media_status(struct ifnet *, struct ifmediareq *);
282 static int      em_media_change(struct ifnet *);
283 static void     em_timer(void *);
284
285 static void     em_intr(void *);
286 static void     em_rxeof(struct adapter *, int);
287 static void     em_txeof(struct adapter *);
288 static void     em_tx_collect(struct adapter *);
289 static void     em_tx_purge(struct adapter *);
290 static void     em_enable_intr(struct adapter *);
291 static void     em_disable_intr(struct adapter *);
292
293 static int      em_dma_malloc(struct adapter *, bus_size_t,
294                     struct em_dma_alloc *);
295 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
296 static void     em_init_tx_ring(struct adapter *);
297 static int      em_init_rx_ring(struct adapter *);
298 static int      em_create_tx_ring(struct adapter *);
299 static int      em_create_rx_ring(struct adapter *);
300 static void     em_destroy_tx_ring(struct adapter *, int);
301 static void     em_destroy_rx_ring(struct adapter *, int);
302 static int      em_newbuf(struct adapter *, int, int);
303 static int      em_encap(struct adapter *, struct mbuf **);
304 static void     em_rxcsum(struct adapter *, struct e1000_rx_desc *,
305                     struct mbuf *);
306 static int      em_txcsum_pullup(struct adapter *, struct mbuf **);
307 static int      em_txcsum(struct adapter *, struct mbuf *,
308                     uint32_t *, uint32_t *);
309
310 static int      em_get_hw_info(struct adapter *);
311 static int      em_is_valid_eaddr(const uint8_t *);
312 static int      em_alloc_pci_res(struct adapter *);
313 static void     em_free_pci_res(struct adapter *);
314 static int      em_reset(struct adapter *);
315 static void     em_setup_ifp(struct adapter *);
316 static void     em_init_tx_unit(struct adapter *);
317 static void     em_init_rx_unit(struct adapter *);
318 static void     em_update_stats(struct adapter *);
319 static void     em_set_promisc(struct adapter *);
320 static void     em_disable_promisc(struct adapter *);
321 static void     em_set_multi(struct adapter *);
322 static void     em_update_link_status(struct adapter *);
323 static void     em_smartspeed(struct adapter *);
324 static void     em_set_itr(struct adapter *, uint32_t);
325 static void     em_disable_aspm(struct adapter *);
326
327 /* Hardware workarounds */
328 static int      em_82547_fifo_workaround(struct adapter *, int);
329 static void     em_82547_update_fifo_head(struct adapter *, int);
330 static int      em_82547_tx_fifo_reset(struct adapter *);
331 static void     em_82547_move_tail(void *);
332 static void     em_82547_move_tail_serialized(struct adapter *);
333 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
334
335 static void     em_print_debug_info(struct adapter *);
336 static void     em_print_nvm_info(struct adapter *);
337 static void     em_print_hw_stats(struct adapter *);
338
339 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
340 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
341 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
342 static int      em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
343 static void     em_add_sysctl(struct adapter *adapter);
344
345 /* Management and WOL Support */
346 static void     em_get_mgmt(struct adapter *);
347 static void     em_rel_mgmt(struct adapter *);
348 static void     em_get_hw_control(struct adapter *);
349 static void     em_rel_hw_control(struct adapter *);
350 static void     em_enable_wol(device_t);
351
352 static device_method_t em_methods[] = {
353         /* Device interface */
354         DEVMETHOD(device_probe,         em_probe),
355         DEVMETHOD(device_attach,        em_attach),
356         DEVMETHOD(device_detach,        em_detach),
357         DEVMETHOD(device_shutdown,      em_shutdown),
358         DEVMETHOD(device_suspend,       em_suspend),
359         DEVMETHOD(device_resume,        em_resume),
360         { 0, 0 }
361 };
362
363 static driver_t em_driver = {
364         "em",
365         em_methods,
366         sizeof(struct adapter),
367 };
368
369 static devclass_t em_devclass;
370
371 DECLARE_DUMMY_MODULE(if_em);
372 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
373 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
374
375 /*
376  * Tunables
377  */
378 static int      em_int_throttle_ceil = EM_DEFAULT_ITR;
379 static int      em_rxd = EM_DEFAULT_RXD;
380 static int      em_txd = EM_DEFAULT_TXD;
381 static int      em_smart_pwr_down = 0;
382
383 /* Controls whether promiscuous also shows bad packets */
384 static int      em_debug_sbp = FALSE;
385
386 static int      em_82573_workaround = 1;
387 static int      em_msi_enable = 1;
388
389 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
390 TUNABLE_INT("hw.em.rxd", &em_rxd);
391 TUNABLE_INT("hw.em.txd", &em_txd);
392 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
393 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
394 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
395 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
396
397 /* Global used in WOL setup with multiport cards */
398 static int      em_global_quad_port_a = 0;
399
400 /* Set this to one to display debug statistics */
401 static int      em_display_debug_stats = 0;
402
403 #if !defined(KTR_IF_EM)
404 #define KTR_IF_EM       KTR_ALL
405 #endif
406 KTR_INFO_MASTER(if_em);
407 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
408 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
409 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
410 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
411 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
412 #define logif(name)     KTR_LOG(if_em_ ## name)
413
414 static int
415 em_probe(device_t dev)
416 {
417         const struct em_vendor_info *ent;
418         uint16_t vid, did;
419
420         vid = pci_get_vendor(dev);
421         did = pci_get_device(dev);
422
423         for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
424                 if (vid == ent->vendor_id && did == ent->device_id) {
425                         device_set_desc(dev, ent->desc);
426                         device_set_async_attach(dev, TRUE);
427                         return (ent->ret);
428                 }
429         }
430         return (ENXIO);
431 }
432
433 static int
434 em_attach(device_t dev)
435 {
436         struct adapter *adapter = device_get_softc(dev);
437         struct ifnet *ifp = &adapter->arpcom.ac_if;
438         int tsize, rsize;
439         int error = 0;
440         uint16_t eeprom_data, device_id, apme_mask;
441
442         adapter->dev = adapter->osdep.dev = dev;
443
444         callout_init_mp(&adapter->timer);
445         callout_init_mp(&adapter->tx_fifo_timer);
446
447         /* Determine hardware and mac info */
448         error = em_get_hw_info(adapter);
449         if (error) {
450                 device_printf(dev, "Identify hardware failed\n");
451                 goto fail;
452         }
453
454         /* Setup PCI resources */
455         error = em_alloc_pci_res(adapter);
456         if (error) {
457                 device_printf(dev, "Allocation of PCI resources failed\n");
458                 goto fail;
459         }
460
461         /*
462          * For ICH8 and family we need to map the flash memory,
463          * and this must happen after the MAC is identified.
464          */
465         if (adapter->hw.mac.type == e1000_ich8lan ||
466             adapter->hw.mac.type == e1000_ich9lan ||
467             adapter->hw.mac.type == e1000_ich10lan ||
468             adapter->hw.mac.type == e1000_pchlan ||
469             adapter->hw.mac.type == e1000_pch2lan) {
470                 adapter->flash_rid = EM_BAR_FLASH;
471
472                 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
473                                         &adapter->flash_rid, RF_ACTIVE);
474                 if (adapter->flash == NULL) {
475                         device_printf(dev, "Mapping of Flash failed\n");
476                         error = ENXIO;
477                         goto fail;
478                 }
479                 adapter->osdep.flash_bus_space_tag =
480                     rman_get_bustag(adapter->flash);
481                 adapter->osdep.flash_bus_space_handle =
482                     rman_get_bushandle(adapter->flash);
483
484                 /*
485                  * This is used in the shared code
486                  * XXX this goof is actually not used.
487                  */
488                 adapter->hw.flash_address = (uint8_t *)adapter->flash;
489         }
490
491         /* Do Shared Code initialization */
492         if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
493                 device_printf(dev, "Setup of Shared code failed\n");
494                 error = ENXIO;
495                 goto fail;
496         }
497
498         e1000_get_bus_info(&adapter->hw);
499
500         /*
501          * Validate number of transmit and receive descriptors.  It
502          * must not exceed hardware maximum, and must be multiple
503          * of E1000_DBA_ALIGN.
504          */
505         if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
506             (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
507             (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
508             em_txd < EM_MIN_TXD) {
509                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
510                     EM_DEFAULT_TXD, em_txd);
511                 adapter->num_tx_desc = EM_DEFAULT_TXD;
512         } else {
513                 adapter->num_tx_desc = em_txd;
514         }
515         if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
516             (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
517             (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
518             em_rxd < EM_MIN_RXD) {
519                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
520                     EM_DEFAULT_RXD, em_rxd);
521                 adapter->num_rx_desc = EM_DEFAULT_RXD;
522         } else {
523                 adapter->num_rx_desc = em_rxd;
524         }
525
526         adapter->hw.mac.autoneg = DO_AUTO_NEG;
527         adapter->hw.phy.autoneg_wait_to_complete = FALSE;
528         adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
529         adapter->rx_buffer_len = MCLBYTES;
530
531         /*
532          * Interrupt throttle rate
533          */
534         if (em_int_throttle_ceil == 0) {
535                 adapter->int_throttle_ceil = 0;
536         } else {
537                 int throttle = em_int_throttle_ceil;
538
539                 if (throttle < 0)
540                         throttle = EM_DEFAULT_ITR;
541
542                 /* Recalculate the tunable value to get the exact frequency. */
543                 throttle = 1000000000 / 256 / throttle;
544
545                 /* Upper 16bits of ITR is reserved and should be zero */
546                 if (throttle & 0xffff0000)
547                         throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
548
549                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
550         }
551
552         e1000_init_script_state_82541(&adapter->hw, TRUE);
553         e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
554
555         /* Copper options */
556         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
557                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
558                 adapter->hw.phy.disable_polarity_correction = FALSE;
559                 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
560         }
561
562         /* Set the frame limits assuming standard ethernet sized frames. */
563         adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
564         adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
565
566         /* This controls when hardware reports transmit completion status. */
567         adapter->hw.mac.report_tx_early = 1;
568
569         /*
570          * Create top level busdma tag
571          */
572         error = bus_dma_tag_create(NULL, 1, 0,
573                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
574                         NULL, NULL,
575                         BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
576                         0, &adapter->parent_dtag);
577         if (error) {
578                 device_printf(dev, "could not create top level DMA tag\n");
579                 goto fail;
580         }
581
582         /*
583          * Allocate Transmit Descriptor ring
584          */
585         tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
586                          EM_DBA_ALIGN);
587         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
588         if (error) {
589                 device_printf(dev, "Unable to allocate tx_desc memory\n");
590                 goto fail;
591         }
592         adapter->tx_desc_base = adapter->txdma.dma_vaddr;
593
594         /*
595          * Allocate Receive Descriptor ring
596          */
597         rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
598                          EM_DBA_ALIGN);
599         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
600         if (error) {
601                 device_printf(dev, "Unable to allocate rx_desc memory\n");
602                 goto fail;
603         }
604         adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
605
606         /* Allocate multicast array memory. */
607         adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
608             M_DEVBUF, M_WAITOK);
609
610         /* Indicate SOL/IDER usage */
611         if (e1000_check_reset_block(&adapter->hw)) {
612                 device_printf(dev,
613                     "PHY reset is blocked due to SOL/IDER session.\n");
614         }
615
616         /*
617          * Start from a known state, this is important in reading the
618          * nvm and mac from that.
619          */
620         e1000_reset_hw(&adapter->hw);
621
622         /* Make sure we have a good EEPROM before we read from it */
623         if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
624                 /*
625                  * Some PCI-E parts fail the first check due to
626                  * the link being in sleep state, call it again,
627                  * if it fails a second time its a real issue.
628                  */
629                 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
630                         device_printf(dev,
631                             "The EEPROM Checksum Is Not Valid\n");
632                         error = EIO;
633                         goto fail;
634                 }
635         }
636
637         /* Copy the permanent MAC address out of the EEPROM */
638         if (e1000_read_mac_addr(&adapter->hw) < 0) {
639                 device_printf(dev, "EEPROM read error while reading MAC"
640                     " address\n");
641                 error = EIO;
642                 goto fail;
643         }
644         if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
645                 device_printf(dev, "Invalid MAC address\n");
646                 error = EIO;
647                 goto fail;
648         }
649
650         /* Allocate transmit descriptors and buffers */
651         error = em_create_tx_ring(adapter);
652         if (error) {
653                 device_printf(dev, "Could not setup transmit structures\n");
654                 goto fail;
655         }
656
657         /* Allocate receive descriptors and buffers */
658         error = em_create_rx_ring(adapter);
659         if (error) {
660                 device_printf(dev, "Could not setup receive structures\n");
661                 goto fail;
662         }
663
664         /* Manually turn off all interrupts */
665         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
666
667         /* Determine if we have to control management hardware */
668         adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
669
670         /*
671          * Setup Wake-on-Lan
672          */
673         apme_mask = EM_EEPROM_APME;
674         eeprom_data = 0;
675         switch (adapter->hw.mac.type) {
676         case e1000_82542:
677         case e1000_82543:
678                 break;
679
680         case e1000_82573:
681         case e1000_82583:
682                 adapter->has_amt = 1;
683                 /* FALL THROUGH */
684
685         case e1000_82546:
686         case e1000_82546_rev_3:
687         case e1000_82571:
688         case e1000_82572:
689         case e1000_80003es2lan:
690                 if (adapter->hw.bus.func == 1) {
691                         e1000_read_nvm(&adapter->hw,
692                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
693                 } else {
694                         e1000_read_nvm(&adapter->hw,
695                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
696                 }
697                 break;
698
699         case e1000_ich8lan:
700         case e1000_ich9lan:
701         case e1000_ich10lan:
702         case e1000_pchlan:
703         case e1000_pch2lan:
704                 apme_mask = E1000_WUC_APME;
705                 adapter->has_amt = TRUE;
706                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
707                 break;
708
709         default:
710                 e1000_read_nvm(&adapter->hw,
711                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
712                 break;
713         }
714         if (eeprom_data & apme_mask)
715                 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
716
717         /*
718          * We have the eeprom settings, now apply the special cases
719          * where the eeprom may be wrong or the board won't support
720          * wake on lan on a particular port
721          */
722         device_id = pci_get_device(dev);
723         switch (device_id) {
724         case E1000_DEV_ID_82546GB_PCIE:
725                 adapter->wol = 0;
726                 break;
727
728         case E1000_DEV_ID_82546EB_FIBER:
729         case E1000_DEV_ID_82546GB_FIBER:
730         case E1000_DEV_ID_82571EB_FIBER:
731                 /*
732                  * Wake events only supported on port A for dual fiber
733                  * regardless of eeprom setting
734                  */
735                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
736                     E1000_STATUS_FUNC_1)
737                         adapter->wol = 0;
738                 break;
739
740         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
741         case E1000_DEV_ID_82571EB_QUAD_COPPER:
742         case E1000_DEV_ID_82571EB_QUAD_FIBER:
743         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
744                 /* if quad port adapter, disable WoL on all but port A */
745                 if (em_global_quad_port_a != 0)
746                         adapter->wol = 0;
747                 /* Reset for multiple quad port adapters */
748                 if (++em_global_quad_port_a == 4)
749                         em_global_quad_port_a = 0;
750                 break;
751         }
752
753         /* XXX disable wol */
754         adapter->wol = 0;
755
756         /* Setup OS specific network interface */
757         em_setup_ifp(adapter);
758
759         /* Add sysctl tree, must after em_setup_ifp() */
760         em_add_sysctl(adapter);
761
762         /* Reset the hardware */
763         error = em_reset(adapter);
764         if (error) {
765                 device_printf(dev, "Unable to reset the hardware\n");
766                 goto fail;
767         }
768
769         /* Initialize statistics */
770         em_update_stats(adapter);
771
772         adapter->hw.mac.get_link_status = 1;
773         em_update_link_status(adapter);
774
775         /* Do we need workaround for 82544 PCI-X adapter? */
776         if (adapter->hw.bus.type == e1000_bus_type_pcix &&
777             adapter->hw.mac.type == e1000_82544)
778                 adapter->pcix_82544 = TRUE;
779         else
780                 adapter->pcix_82544 = FALSE;
781
782         if (adapter->pcix_82544) {
783                 /*
784                  * 82544 on PCI-X may split one TX segment
785                  * into two TX descs, so we double its number
786                  * of spare TX desc here.
787                  */
788                 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
789         } else {
790                 adapter->spare_tx_desc = EM_TX_SPARE;
791         }
792
793         /*
794          * Keep following relationship between spare_tx_desc, oact_tx_desc
795          * and tx_int_nsegs:
796          * (spare_tx_desc + EM_TX_RESERVED) <=
797          * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
798          */
799         adapter->oact_tx_desc = adapter->num_tx_desc / 8;
800         if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
801                 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
802         if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
803                 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
804
805         adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
806         if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
807                 adapter->tx_int_nsegs = adapter->oact_tx_desc;
808
809         /* Non-AMT based hardware can now take control from firmware */
810         if (adapter->has_manage && !adapter->has_amt &&
811             adapter->hw.mac.type >= e1000_82571)
812                 em_get_hw_control(adapter);
813
814         error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
815                                em_intr, adapter, &adapter->intr_tag,
816                                ifp->if_serializer);
817         if (error) {
818                 device_printf(dev, "Failed to register interrupt handler");
819                 ether_ifdetach(&adapter->arpcom.ac_if);
820                 goto fail;
821         }
822
823         ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
824         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
825         return (0);
826 fail:
827         em_detach(dev);
828         return (error);
829 }
830
831 static int
832 em_detach(device_t dev)
833 {
834         struct adapter *adapter = device_get_softc(dev);
835
836         if (device_is_attached(dev)) {
837                 struct ifnet *ifp = &adapter->arpcom.ac_if;
838
839                 lwkt_serialize_enter(ifp->if_serializer);
840
841                 em_stop(adapter);
842
843                 e1000_phy_hw_reset(&adapter->hw);
844
845                 em_rel_mgmt(adapter);
846                 em_rel_hw_control(adapter);
847
848                 if (adapter->wol) {
849                         E1000_WRITE_REG(&adapter->hw, E1000_WUC,
850                                         E1000_WUC_PME_EN);
851                         E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
852                         em_enable_wol(dev);
853                 }
854
855                 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
856
857                 lwkt_serialize_exit(ifp->if_serializer);
858
859                 ether_ifdetach(ifp);
860         } else {
861                 em_rel_hw_control(adapter);
862         }
863         bus_generic_detach(dev);
864
865         em_free_pci_res(adapter);
866
867         em_destroy_tx_ring(adapter, adapter->num_tx_desc);
868         em_destroy_rx_ring(adapter, adapter->num_rx_desc);
869
870         /* Free Transmit Descriptor ring */
871         if (adapter->tx_desc_base)
872                 em_dma_free(adapter, &adapter->txdma);
873
874         /* Free Receive Descriptor ring */
875         if (adapter->rx_desc_base)
876                 em_dma_free(adapter, &adapter->rxdma);
877
878         /* Free top level busdma tag */
879         if (adapter->parent_dtag != NULL)
880                 bus_dma_tag_destroy(adapter->parent_dtag);
881
882         /* Free sysctl tree */
883         if (adapter->sysctl_tree != NULL)
884                 sysctl_ctx_free(&adapter->sysctl_ctx);
885
886         return (0);
887 }
888
889 static int
890 em_shutdown(device_t dev)
891 {
892         return em_suspend(dev);
893 }
894
895 static int
896 em_suspend(device_t dev)
897 {
898         struct adapter *adapter = device_get_softc(dev);
899         struct ifnet *ifp = &adapter->arpcom.ac_if;
900
901         lwkt_serialize_enter(ifp->if_serializer);
902
903         em_stop(adapter);
904
905         em_rel_mgmt(adapter);
906         em_rel_hw_control(adapter);
907
908         if (adapter->wol) {
909                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
910                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
911                 em_enable_wol(dev);
912         }
913
914         lwkt_serialize_exit(ifp->if_serializer);
915
916         return bus_generic_suspend(dev);
917 }
918
919 static int
920 em_resume(device_t dev)
921 {
922         struct adapter *adapter = device_get_softc(dev);
923         struct ifnet *ifp = &adapter->arpcom.ac_if;
924
925         lwkt_serialize_enter(ifp->if_serializer);
926
927         em_init(adapter);
928         em_get_mgmt(adapter);
929         if_devstart(ifp);
930
931         lwkt_serialize_exit(ifp->if_serializer);
932
933         return bus_generic_resume(dev);
934 }
935
936 static void
937 em_start(struct ifnet *ifp)
938 {
939         struct adapter *adapter = ifp->if_softc;
940         struct mbuf *m_head;
941
942         ASSERT_SERIALIZED(ifp->if_serializer);
943
944         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
945                 return;
946
947         if (!adapter->link_active) {
948                 ifq_purge(&ifp->if_snd);
949                 return;
950         }
951
952         while (!ifq_is_empty(&ifp->if_snd)) {
953                 /* Now do we at least have a minimal? */
954                 if (EM_IS_OACTIVE(adapter)) {
955                         em_tx_collect(adapter);
956                         if (EM_IS_OACTIVE(adapter)) {
957                                 ifp->if_flags |= IFF_OACTIVE;
958                                 adapter->no_tx_desc_avail1++;
959                                 break;
960                         }
961                 }
962
963                 logif(pkt_txqueue);
964                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
965                 if (m_head == NULL)
966                         break;
967
968                 if (em_encap(adapter, &m_head)) {
969                         ifp->if_oerrors++;
970                         em_tx_collect(adapter);
971                         continue;
972                 }
973
974                 /* Send a copy of the frame to the BPF listener */
975                 ETHER_BPF_MTAP(ifp, m_head);
976
977                 /* Set timeout in case hardware has problems transmitting. */
978                 ifp->if_timer = EM_TX_TIMEOUT;
979         }
980 }
981
982 static int
983 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
984 {
985         struct adapter *adapter = ifp->if_softc;
986         struct ifreq *ifr = (struct ifreq *)data;
987         uint16_t eeprom_data = 0;
988         int max_frame_size, mask, reinit;
989         int error = 0;
990
991         ASSERT_SERIALIZED(ifp->if_serializer);
992
993         switch (command) {
994         case SIOCSIFMTU:
995                 switch (adapter->hw.mac.type) {
996                 case e1000_82573:
997                         /*
998                          * 82573 only supports jumbo frames
999                          * if ASPM is disabled.
1000                          */
1001                         e1000_read_nvm(&adapter->hw,
1002                             NVM_INIT_3GIO_3, 1, &eeprom_data);
1003                         if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1004                                 max_frame_size = ETHER_MAX_LEN;
1005                                 break;
1006                         }
1007                         /* FALL THROUGH */
1008
1009                 /* Limit Jumbo Frame size */
1010                 case e1000_82571:
1011                 case e1000_82572:
1012                 case e1000_ich9lan:
1013                 case e1000_ich10lan:
1014                 case e1000_pch2lan:
1015                 case e1000_82574:
1016                 case e1000_82583:
1017                 case e1000_80003es2lan:
1018                         max_frame_size = 9234;
1019                         break;
1020
1021                 case e1000_pchlan:
1022                         max_frame_size = 4096;
1023                         break;
1024
1025                 /* Adapters that do not support jumbo frames */
1026                 case e1000_82542:
1027                 case e1000_ich8lan:
1028                         max_frame_size = ETHER_MAX_LEN;
1029                         break;
1030
1031                 default:
1032                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1033                         break;
1034                 }
1035                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1036                     ETHER_CRC_LEN) {
1037                         error = EINVAL;
1038                         break;
1039                 }
1040
1041                 ifp->if_mtu = ifr->ifr_mtu;
1042                 adapter->max_frame_size =
1043                     ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1044
1045                 if (ifp->if_flags & IFF_RUNNING)
1046                         em_init(adapter);
1047                 break;
1048
1049         case SIOCSIFFLAGS:
1050                 if (ifp->if_flags & IFF_UP) {
1051                         if ((ifp->if_flags & IFF_RUNNING)) {
1052                                 if ((ifp->if_flags ^ adapter->if_flags) &
1053                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1054                                         em_disable_promisc(adapter);
1055                                         em_set_promisc(adapter);
1056                                 }
1057                         } else {
1058                                 em_init(adapter);
1059                         }
1060                 } else if (ifp->if_flags & IFF_RUNNING) {
1061                         em_stop(adapter);
1062                 }
1063                 adapter->if_flags = ifp->if_flags;
1064                 break;
1065
1066         case SIOCADDMULTI:
1067         case SIOCDELMULTI:
1068                 if (ifp->if_flags & IFF_RUNNING) {
1069                         em_disable_intr(adapter);
1070                         em_set_multi(adapter);
1071                         if (adapter->hw.mac.type == e1000_82542 &&
1072                             adapter->hw.revision_id == E1000_REVISION_2)
1073                                 em_init_rx_unit(adapter);
1074 #ifdef DEVICE_POLLING
1075                         if (!(ifp->if_flags & IFF_POLLING))
1076 #endif
1077                                 em_enable_intr(adapter);
1078                 }
1079                 break;
1080
1081         case SIOCSIFMEDIA:
1082                 /* Check SOL/IDER usage */
1083                 if (e1000_check_reset_block(&adapter->hw)) {
1084                         device_printf(adapter->dev, "Media change is"
1085                             " blocked due to SOL/IDER session.\n");
1086                         break;
1087                 }
1088                 /* FALL THROUGH */
1089
1090         case SIOCGIFMEDIA:
1091                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1092                 break;
1093
1094         case SIOCSIFCAP:
1095                 reinit = 0;
1096                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1097                 if (mask & IFCAP_HWCSUM) {
1098                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
1099                         reinit = 1;
1100                 }
1101                 if (mask & IFCAP_VLAN_HWTAGGING) {
1102                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1103                         reinit = 1;
1104                 }
1105                 if (reinit && (ifp->if_flags & IFF_RUNNING))
1106                         em_init(adapter);
1107                 break;
1108
1109         default:
1110                 error = ether_ioctl(ifp, command, data);
1111                 break;
1112         }
1113         return (error);
1114 }
1115
1116 static void
1117 em_watchdog(struct ifnet *ifp)
1118 {
1119         struct adapter *adapter = ifp->if_softc;
1120
1121         ASSERT_SERIALIZED(ifp->if_serializer);
1122
1123         /*
1124          * The timer is set to 5 every time start queues a packet.
1125          * Then txeof keeps resetting it as long as it cleans at
1126          * least one descriptor.
1127          * Finally, anytime all descriptors are clean the timer is
1128          * set to 0.
1129          */
1130
1131         if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1132             E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1133                 /*
1134                  * If we reach here, all TX jobs are completed and
1135                  * the TX engine should have been idled for some time.
1136                  * We don't need to call if_devstart() here.
1137                  */
1138                 ifp->if_flags &= ~IFF_OACTIVE;
1139                 ifp->if_timer = 0;
1140                 return;
1141         }
1142
1143         /*
1144          * If we are in this routine because of pause frames, then
1145          * don't reset the hardware.
1146          */
1147         if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1148             E1000_STATUS_TXOFF) {
1149                 ifp->if_timer = EM_TX_TIMEOUT;
1150                 return;
1151         }
1152
1153         if (e1000_check_for_link(&adapter->hw) == 0)
1154                 if_printf(ifp, "watchdog timeout -- resetting\n");
1155
1156         ifp->if_oerrors++;
1157         adapter->watchdog_events++;
1158
1159         em_init(adapter);
1160
1161         if (!ifq_is_empty(&ifp->if_snd))
1162                 if_devstart(ifp);
1163 }
1164
1165 static void
1166 em_init(void *xsc)
1167 {
1168         struct adapter *adapter = xsc;
1169         struct ifnet *ifp = &adapter->arpcom.ac_if;
1170         device_t dev = adapter->dev;
1171         uint32_t pba;
1172
1173         ASSERT_SERIALIZED(ifp->if_serializer);
1174
1175         em_stop(adapter);
1176
1177         /*
1178          * Packet Buffer Allocation (PBA)
1179          * Writing PBA sets the receive portion of the buffer
1180          * the remainder is used for the transmit buffer.
1181          *
1182          * Devices before the 82547 had a Packet Buffer of 64K.
1183          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1184          * After the 82547 the buffer was reduced to 40K.
1185          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1186          *   Note: default does not leave enough room for Jumbo Frame >10k.
1187          */
1188         switch (adapter->hw.mac.type) {
1189         case e1000_82547:
1190         case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1191                 if (adapter->max_frame_size > 8192)
1192                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1193                 else
1194                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1195                 adapter->tx_fifo_head = 0;
1196                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1197                 adapter->tx_fifo_size =
1198                     (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1199                 break;
1200
1201         /* Total Packet Buffer on these is 48K */
1202         case e1000_82571:
1203         case e1000_82572:
1204         case e1000_80003es2lan:
1205                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1206                 break;
1207
1208         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1209                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1210                 break;
1211
1212         case e1000_82574:
1213         case e1000_82583:
1214                 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1215                 break;
1216
1217         case e1000_ich8lan:
1218                 pba = E1000_PBA_8K;
1219                 break;
1220
1221         case e1000_ich9lan:
1222         case e1000_ich10lan:
1223 #define E1000_PBA_10K   0x000A
1224                 pba = E1000_PBA_10K;
1225                 break;
1226
1227         case e1000_pchlan:
1228         case e1000_pch2lan:
1229                 pba = E1000_PBA_26K;
1230                 break;
1231
1232         default:
1233                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1234                 if (adapter->max_frame_size > 8192)
1235                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1236                 else
1237                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1238         }
1239         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1240
1241         /* Get the latest mac address, User can use a LAA */
1242         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1243
1244         /* Put the address into the Receive Address Array */
1245         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1246
1247         /*
1248          * With the 82571 adapter, RAR[0] may be overwritten
1249          * when the other port is reset, we make a duplicate
1250          * in RAR[14] for that eventuality, this assures
1251          * the interface continues to function.
1252          */
1253         if (adapter->hw.mac.type == e1000_82571) {
1254                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1255                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1256                     E1000_RAR_ENTRIES - 1);
1257         }
1258
1259         /* Reset the hardware */
1260         if (em_reset(adapter)) {
1261                 device_printf(dev, "Unable to reset the hardware\n");
1262                 /* XXX em_stop()? */
1263                 return;
1264         }
1265         em_update_link_status(adapter);
1266
1267         /* Setup VLAN support, basic and offload if available */
1268         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1269
1270         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1271                 uint32_t ctrl;
1272
1273                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1274                 ctrl |= E1000_CTRL_VME;
1275                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1276         }
1277
1278         /* Set hardware offload abilities */
1279         if (ifp->if_capenable & IFCAP_TXCSUM)
1280                 ifp->if_hwassist = EM_CSUM_FEATURES;
1281         else
1282                 ifp->if_hwassist = 0;
1283
1284         /* Configure for OS presence */
1285         em_get_mgmt(adapter);
1286
1287         /* Prepare transmit descriptors and buffers */
1288         em_init_tx_ring(adapter);
1289         em_init_tx_unit(adapter);
1290
1291         /* Setup Multicast table */
1292         em_set_multi(adapter);
1293
1294         /* Prepare receive descriptors and buffers */
1295         if (em_init_rx_ring(adapter)) {
1296                 device_printf(dev, "Could not setup receive structures\n");
1297                 em_stop(adapter);
1298                 return;
1299         }
1300         em_init_rx_unit(adapter);
1301
1302         /* Don't lose promiscuous settings */
1303         em_set_promisc(adapter);
1304
1305         ifp->if_flags |= IFF_RUNNING;
1306         ifp->if_flags &= ~IFF_OACTIVE;
1307
1308         callout_reset(&adapter->timer, hz, em_timer, adapter);
1309         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1310
1311         /* MSI/X configuration for 82574 */
1312         if (adapter->hw.mac.type == e1000_82574) {
1313                 int tmp;
1314
1315                 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1316                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1317                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1318                 /*
1319                  * XXX MSIX
1320                  * Set the IVAR - interrupt vector routing.
1321                  * Each nibble represents a vector, high bit
1322                  * is enable, other 3 bits are the MSIX table
1323                  * entry, we map RXQ0 to 0, TXQ0 to 1, and
1324                  * Link (other) to 2, hence the magic number.
1325                  */
1326                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1327         }
1328
1329 #ifdef DEVICE_POLLING
1330         /*
1331          * Only enable interrupts if we are not polling, make sure
1332          * they are off otherwise.
1333          */
1334         if (ifp->if_flags & IFF_POLLING)
1335                 em_disable_intr(adapter);
1336         else
1337 #endif /* DEVICE_POLLING */
1338                 em_enable_intr(adapter);
1339
1340         /* AMT based hardware can now take control from firmware */
1341         if (adapter->has_manage && adapter->has_amt &&
1342             adapter->hw.mac.type >= e1000_82571)
1343                 em_get_hw_control(adapter);
1344
1345         /* Don't reset the phy next time init gets called */
1346         adapter->hw.phy.reset_disable = TRUE;
1347 }
1348
1349 #ifdef DEVICE_POLLING
1350
1351 static void
1352 em_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1353 {
1354         struct adapter *adapter = ifp->if_softc;
1355         uint32_t reg_icr;
1356
1357         ASSERT_SERIALIZED(ifp->if_serializer);
1358
1359         switch (cmd) {
1360         case POLL_REGISTER:
1361                 em_disable_intr(adapter);
1362                 break;
1363
1364         case POLL_DEREGISTER:
1365                 em_enable_intr(adapter);
1366                 break;
1367
1368         case POLL_AND_CHECK_STATUS:
1369                 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1370                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1371                         callout_stop(&adapter->timer);
1372                         adapter->hw.mac.get_link_status = 1;
1373                         em_update_link_status(adapter);
1374                         callout_reset(&adapter->timer, hz, em_timer, adapter);
1375                 }
1376                 /* FALL THROUGH */
1377         case POLL_ONLY:
1378                 if (ifp->if_flags & IFF_RUNNING) {
1379                         em_rxeof(adapter, count);
1380                         em_txeof(adapter);
1381
1382                         if (!ifq_is_empty(&ifp->if_snd))
1383                                 if_devstart(ifp);
1384                 }
1385                 break;
1386         }
1387 }
1388
1389 #endif /* DEVICE_POLLING */
1390
1391 static void
1392 em_intr(void *xsc)
1393 {
1394         struct adapter *adapter = xsc;
1395         struct ifnet *ifp = &adapter->arpcom.ac_if;
1396         uint32_t reg_icr;
1397
1398         logif(intr_beg);
1399         ASSERT_SERIALIZED(ifp->if_serializer);
1400
1401         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1402
1403         if ((adapter->hw.mac.type >= e1000_82571 &&
1404              (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1405             reg_icr == 0) {
1406                 logif(intr_end);
1407                 return;
1408         }
1409
1410         /*
1411          * XXX: some laptops trigger several spurious interrupts
1412          * on em(4) when in the resume cycle. The ICR register
1413          * reports all-ones value in this case. Processing such
1414          * interrupts would lead to a freeze. I don't know why.
1415          */
1416         if (reg_icr == 0xffffffff) {
1417                 logif(intr_end);
1418                 return;
1419         }
1420
1421         if (ifp->if_flags & IFF_RUNNING) {
1422                 if (reg_icr &
1423                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1424                         em_rxeof(adapter, -1);
1425                 if (reg_icr & E1000_ICR_TXDW) {
1426                         em_txeof(adapter);
1427                         if (!ifq_is_empty(&ifp->if_snd))
1428                                 if_devstart(ifp);
1429                 }
1430         }
1431
1432         /* Link status change */
1433         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1434                 callout_stop(&adapter->timer);
1435                 adapter->hw.mac.get_link_status = 1;
1436                 em_update_link_status(adapter);
1437
1438                 /* Deal with TX cruft when link lost */
1439                 em_tx_purge(adapter);
1440
1441                 callout_reset(&adapter->timer, hz, em_timer, adapter);
1442         }
1443
1444         if (reg_icr & E1000_ICR_RXO)
1445                 adapter->rx_overruns++;
1446
1447         logif(intr_end);
1448 }
1449
1450 static void
1451 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1452 {
1453         struct adapter *adapter = ifp->if_softc;
1454         u_char fiber_type = IFM_1000_SX;
1455
1456         ASSERT_SERIALIZED(ifp->if_serializer);
1457
1458         em_update_link_status(adapter);
1459
1460         ifmr->ifm_status = IFM_AVALID;
1461         ifmr->ifm_active = IFM_ETHER;
1462
1463         if (!adapter->link_active)
1464                 return;
1465
1466         ifmr->ifm_status |= IFM_ACTIVE;
1467
1468         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1469             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1470                 if (adapter->hw.mac.type == e1000_82545)
1471                         fiber_type = IFM_1000_LX;
1472                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1473         } else {
1474                 switch (adapter->link_speed) {
1475                 case 10:
1476                         ifmr->ifm_active |= IFM_10_T;
1477                         break;
1478                 case 100:
1479                         ifmr->ifm_active |= IFM_100_TX;
1480                         break;
1481
1482                 case 1000:
1483                         ifmr->ifm_active |= IFM_1000_T;
1484                         break;
1485                 }
1486                 if (adapter->link_duplex == FULL_DUPLEX)
1487                         ifmr->ifm_active |= IFM_FDX;
1488                 else
1489                         ifmr->ifm_active |= IFM_HDX;
1490         }
1491 }
1492
1493 static int
1494 em_media_change(struct ifnet *ifp)
1495 {
1496         struct adapter *adapter = ifp->if_softc;
1497         struct ifmedia *ifm = &adapter->media;
1498
1499         ASSERT_SERIALIZED(ifp->if_serializer);
1500
1501         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1502                 return (EINVAL);
1503
1504         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1505         case IFM_AUTO:
1506                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1507                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1508                 break;
1509
1510         case IFM_1000_LX:
1511         case IFM_1000_SX:
1512         case IFM_1000_T:
1513                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1514                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1515                 break;
1516
1517         case IFM_100_TX:
1518                 adapter->hw.mac.autoneg = FALSE;
1519                 adapter->hw.phy.autoneg_advertised = 0;
1520                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1521                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1522                 else
1523                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1524                 break;
1525
1526         case IFM_10_T:
1527                 adapter->hw.mac.autoneg = FALSE;
1528                 adapter->hw.phy.autoneg_advertised = 0;
1529                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1530                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1531                 else
1532                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1533                 break;
1534
1535         default:
1536                 if_printf(ifp, "Unsupported media type\n");
1537                 break;
1538         }
1539
1540         /*
1541          * As the speed/duplex settings my have changed we need to
1542          * reset the PHY.
1543          */
1544         adapter->hw.phy.reset_disable = FALSE;
1545
1546         em_init(adapter);
1547
1548         return (0);
1549 }
1550
1551 static int
1552 em_encap(struct adapter *adapter, struct mbuf **m_headp)
1553 {
1554         bus_dma_segment_t segs[EM_MAX_SCATTER];
1555         bus_dmamap_t map;
1556         struct em_buffer *tx_buffer, *tx_buffer_mapped;
1557         struct e1000_tx_desc *ctxd = NULL;
1558         struct mbuf *m_head = *m_headp;
1559         uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1560         int maxsegs, nsegs, i, j, first, last = 0, error;
1561
1562         if (m_head->m_len < EM_TXCSUM_MINHL &&
1563             (m_head->m_flags & EM_CSUM_FEATURES)) {
1564                 /*
1565                  * Make sure that ethernet header and ip.ip_hl are in
1566                  * contiguous memory, since if TXCSUM is enabled, later
1567                  * TX context descriptor's setup need to access ip.ip_hl.
1568                  */
1569                 error = em_txcsum_pullup(adapter, m_headp);
1570                 if (error) {
1571                         KKASSERT(*m_headp == NULL);
1572                         return error;
1573                 }
1574                 m_head = *m_headp;
1575         }
1576
1577         txd_upper = txd_lower = 0;
1578         txd_used = 0;
1579
1580         /*
1581          * Capture the first descriptor index, this descriptor
1582          * will have the index of the EOP which is the only one
1583          * that now gets a DONE bit writeback.
1584          */
1585         first = adapter->next_avail_tx_desc;
1586         tx_buffer = &adapter->tx_buffer_area[first];
1587         tx_buffer_mapped = tx_buffer;
1588         map = tx_buffer->map;
1589
1590         maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1591         KASSERT(maxsegs >= adapter->spare_tx_desc,
1592                 ("not enough spare TX desc"));
1593         if (adapter->pcix_82544) {
1594                 /* Half it; see the comment in em_attach() */
1595                 maxsegs >>= 1;
1596         }
1597         if (maxsegs > EM_MAX_SCATTER)
1598                 maxsegs = EM_MAX_SCATTER;
1599
1600         error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1601                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1602         if (error) {
1603                 if (error == ENOBUFS)
1604                         adapter->mbuf_alloc_failed++;
1605                 else
1606                         adapter->no_tx_dma_setup++;
1607
1608                 m_freem(*m_headp);
1609                 *m_headp = NULL;
1610                 return error;
1611         }
1612         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1613
1614         m_head = *m_headp;
1615         adapter->tx_nsegs += nsegs;
1616
1617         if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1618                 /* TX csum offloading will consume one TX desc */
1619                 adapter->tx_nsegs += em_txcsum(adapter, m_head,
1620                                                &txd_upper, &txd_lower);
1621         }
1622         i = adapter->next_avail_tx_desc;
1623
1624         /* Set up our transmit descriptors */
1625         for (j = 0; j < nsegs; j++) {
1626                 /* If adapter is 82544 and on PCIX bus */
1627                 if(adapter->pcix_82544) {
1628                         DESC_ARRAY desc_array;
1629                         uint32_t array_elements, counter;
1630
1631                         /*
1632                          * Check the Address and Length combination and
1633                          * split the data accordingly
1634                          */
1635                         array_elements = em_82544_fill_desc(segs[j].ds_addr,
1636                                                 segs[j].ds_len, &desc_array);
1637                         for (counter = 0; counter < array_elements; counter++) {
1638                                 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1639
1640                                 tx_buffer = &adapter->tx_buffer_area[i];
1641                                 ctxd = &adapter->tx_desc_base[i];
1642
1643                                 ctxd->buffer_addr = htole64(
1644                                     desc_array.descriptor[counter].address);
1645                                 ctxd->lower.data = htole32(
1646                                     E1000_TXD_CMD_IFCS | txd_lower |
1647                                     desc_array.descriptor[counter].length);
1648                                 ctxd->upper.data = htole32(txd_upper);
1649
1650                                 last = i;
1651                                 if (++i == adapter->num_tx_desc)
1652                                         i = 0;
1653
1654                                 txd_used++;
1655                         }
1656                 } else {
1657                         tx_buffer = &adapter->tx_buffer_area[i];
1658                         ctxd = &adapter->tx_desc_base[i];
1659
1660                         ctxd->buffer_addr = htole64(segs[j].ds_addr);
1661                         ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1662                                                    txd_lower | segs[j].ds_len);
1663                         ctxd->upper.data = htole32(txd_upper);
1664
1665                         last = i;
1666                         if (++i == adapter->num_tx_desc)
1667                                 i = 0;
1668                 }
1669         }
1670
1671         adapter->next_avail_tx_desc = i;
1672         if (adapter->pcix_82544) {
1673                 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1674                 adapter->num_tx_desc_avail -= txd_used;
1675         } else {
1676                 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1677                 adapter->num_tx_desc_avail -= nsegs;
1678         }
1679
1680         /* Handle VLAN tag */
1681         if (m_head->m_flags & M_VLANTAG) {
1682                 /* Set the vlan id. */
1683                 ctxd->upper.fields.special =
1684                     htole16(m_head->m_pkthdr.ether_vlantag);
1685
1686                 /* Tell hardware to add tag */
1687                 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1688         }
1689
1690         tx_buffer->m_head = m_head;
1691         tx_buffer_mapped->map = tx_buffer->map;
1692         tx_buffer->map = map;
1693
1694         if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1695                 adapter->tx_nsegs = 0;
1696
1697                 /*
1698                  * Report Status (RS) is turned on
1699                  * every tx_int_nsegs descriptors.
1700                  */
1701                 cmd = E1000_TXD_CMD_RS;
1702
1703                 /*
1704                  * Keep track of the descriptor, which will
1705                  * be written back by hardware.
1706                  */
1707                 adapter->tx_dd[adapter->tx_dd_tail] = last;
1708                 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1709                 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1710         }
1711
1712         /*
1713          * Last Descriptor of Packet needs End Of Packet (EOP)
1714          */
1715         ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1716
1717         /*
1718          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
1719          * that this frame is available to transmit.
1720          */
1721         if (adapter->hw.mac.type == e1000_82547 &&
1722             adapter->link_duplex == HALF_DUPLEX) {
1723                 em_82547_move_tail_serialized(adapter);
1724         } else {
1725                 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1726                 if (adapter->hw.mac.type == e1000_82547) {
1727                         em_82547_update_fifo_head(adapter,
1728                             m_head->m_pkthdr.len);
1729                 }
1730         }
1731         return (0);
1732 }
1733
1734 /*
1735  * 82547 workaround to avoid controller hang in half-duplex environment.
1736  * The workaround is to avoid queuing a large packet that would span
1737  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1738  * in this case.  We do that only when FIFO is quiescent.
1739  */
1740 static void
1741 em_82547_move_tail_serialized(struct adapter *adapter)
1742 {
1743         struct e1000_tx_desc *tx_desc;
1744         uint16_t hw_tdt, sw_tdt, length = 0;
1745         bool eop = 0;
1746
1747         ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1748
1749         hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1750         sw_tdt = adapter->next_avail_tx_desc;
1751
1752         while (hw_tdt != sw_tdt) {
1753                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1754                 length += tx_desc->lower.flags.length;
1755                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1756                 if (++hw_tdt == adapter->num_tx_desc)
1757                         hw_tdt = 0;
1758
1759                 if (eop) {
1760                         if (em_82547_fifo_workaround(adapter, length)) {
1761                                 adapter->tx_fifo_wrk_cnt++;
1762                                 callout_reset(&adapter->tx_fifo_timer, 1,
1763                                         em_82547_move_tail, adapter);
1764                                 break;
1765                         }
1766                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1767                         em_82547_update_fifo_head(adapter, length);
1768                         length = 0;
1769                 }
1770         }
1771 }
1772
1773 static void
1774 em_82547_move_tail(void *xsc)
1775 {
1776         struct adapter *adapter = xsc;
1777         struct ifnet *ifp = &adapter->arpcom.ac_if;
1778
1779         lwkt_serialize_enter(ifp->if_serializer);
1780         em_82547_move_tail_serialized(adapter);
1781         lwkt_serialize_exit(ifp->if_serializer);
1782 }
1783
1784 static int
1785 em_82547_fifo_workaround(struct adapter *adapter, int len)
1786 {       
1787         int fifo_space, fifo_pkt_len;
1788
1789         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1790
1791         if (adapter->link_duplex == HALF_DUPLEX) {
1792                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1793
1794                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1795                         if (em_82547_tx_fifo_reset(adapter))
1796                                 return (0);
1797                         else
1798                                 return (1);
1799                 }
1800         }
1801         return (0);
1802 }
1803
1804 static void
1805 em_82547_update_fifo_head(struct adapter *adapter, int len)
1806 {
1807         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1808
1809         /* tx_fifo_head is always 16 byte aligned */
1810         adapter->tx_fifo_head += fifo_pkt_len;
1811         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1812                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1813 }
1814
1815 static int
1816 em_82547_tx_fifo_reset(struct adapter *adapter)
1817 {
1818         uint32_t tctl;
1819
1820         if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1821              E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1822             (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
1823              E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1824             (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1825              E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1826             (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1827                 /* Disable TX unit */
1828                 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1829                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1830                     tctl & ~E1000_TCTL_EN);
1831
1832                 /* Reset FIFO pointers */
1833                 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1834                     adapter->tx_head_addr);
1835                 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1836                     adapter->tx_head_addr);
1837                 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1838                     adapter->tx_head_addr);
1839                 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1840                     adapter->tx_head_addr);
1841
1842                 /* Re-enable TX unit */
1843                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1844                 E1000_WRITE_FLUSH(&adapter->hw);
1845
1846                 adapter->tx_fifo_head = 0;
1847                 adapter->tx_fifo_reset_cnt++;
1848
1849                 return (TRUE);
1850         } else {
1851                 return (FALSE);
1852         }
1853 }
1854
1855 static void
1856 em_set_promisc(struct adapter *adapter)
1857 {
1858         struct ifnet *ifp = &adapter->arpcom.ac_if;
1859         uint32_t reg_rctl;
1860
1861         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1862
1863         if (ifp->if_flags & IFF_PROMISC) {
1864                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1865                 /* Turn this on if you want to see bad packets */
1866                 if (em_debug_sbp)
1867                         reg_rctl |= E1000_RCTL_SBP;
1868                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1869         } else if (ifp->if_flags & IFF_ALLMULTI) {
1870                 reg_rctl |= E1000_RCTL_MPE;
1871                 reg_rctl &= ~E1000_RCTL_UPE;
1872                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1873         }
1874 }
1875
1876 static void
1877 em_disable_promisc(struct adapter *adapter)
1878 {
1879         uint32_t reg_rctl;
1880
1881         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1882
1883         reg_rctl &= ~E1000_RCTL_UPE;
1884         reg_rctl &= ~E1000_RCTL_MPE;
1885         reg_rctl &= ~E1000_RCTL_SBP;
1886         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1887 }
1888
1889 static void
1890 em_set_multi(struct adapter *adapter)
1891 {
1892         struct ifnet *ifp = &adapter->arpcom.ac_if;
1893         struct ifmultiaddr *ifma;
1894         uint32_t reg_rctl = 0;
1895         uint8_t *mta;
1896         int mcnt = 0;
1897
1898         mta = adapter->mta;
1899         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1900
1901         if (adapter->hw.mac.type == e1000_82542 && 
1902             adapter->hw.revision_id == E1000_REVISION_2) {
1903                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1904                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1905                         e1000_pci_clear_mwi(&adapter->hw);
1906                 reg_rctl |= E1000_RCTL_RST;
1907                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1908                 msec_delay(5);
1909         }
1910
1911         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1912                 if (ifma->ifma_addr->sa_family != AF_LINK)
1913                         continue;
1914
1915                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1916                         break;
1917
1918                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1919                     &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1920                 mcnt++;
1921         }
1922
1923         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1924                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1925                 reg_rctl |= E1000_RCTL_MPE;
1926                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1927         } else {
1928                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1929         }
1930
1931         if (adapter->hw.mac.type == e1000_82542 && 
1932             adapter->hw.revision_id == E1000_REVISION_2) {
1933                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1934                 reg_rctl &= ~E1000_RCTL_RST;
1935                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1936                 msec_delay(5);
1937                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1938                         e1000_pci_set_mwi(&adapter->hw);
1939         }
1940 }
1941
1942 /*
1943  * This routine checks for link status and updates statistics.
1944  */
1945 static void
1946 em_timer(void *xsc)
1947 {
1948         struct adapter *adapter = xsc;
1949         struct ifnet *ifp = &adapter->arpcom.ac_if;
1950
1951         lwkt_serialize_enter(ifp->if_serializer);
1952
1953         em_update_link_status(adapter);
1954         em_update_stats(adapter);
1955
1956         /* Reset LAA into RAR[0] on 82571 */
1957         if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1958                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1959
1960         if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1961                 em_print_hw_stats(adapter);
1962
1963         em_smartspeed(adapter);
1964
1965         callout_reset(&adapter->timer, hz, em_timer, adapter);
1966
1967         lwkt_serialize_exit(ifp->if_serializer);
1968 }
1969
1970 static void
1971 em_update_link_status(struct adapter *adapter)
1972 {
1973         struct e1000_hw *hw = &adapter->hw;
1974         struct ifnet *ifp = &adapter->arpcom.ac_if;
1975         device_t dev = adapter->dev;
1976         uint32_t link_check = 0;
1977
1978         /* Get the cached link value or read phy for real */
1979         switch (hw->phy.media_type) {
1980         case e1000_media_type_copper:
1981                 if (hw->mac.get_link_status) {
1982                         /* Do the work to read phy */
1983                         e1000_check_for_link(hw);
1984                         link_check = !hw->mac.get_link_status;
1985                         if (link_check) /* ESB2 fix */
1986                                 e1000_cfg_on_link_up(hw);
1987                 } else {
1988                         link_check = TRUE;
1989                 }
1990                 break;
1991
1992         case e1000_media_type_fiber:
1993                 e1000_check_for_link(hw);
1994                 link_check =
1995                         E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1996                 break;
1997
1998         case e1000_media_type_internal_serdes:
1999                 e1000_check_for_link(hw);
2000                 link_check = adapter->hw.mac.serdes_has_link;
2001                 break;
2002
2003         case e1000_media_type_unknown:
2004         default:
2005                 break;
2006         }
2007
2008         /* Now check for a transition */
2009         if (link_check && adapter->link_active == 0) {
2010                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2011                     &adapter->link_duplex);
2012
2013                 /*
2014                  * Check if we should enable/disable SPEED_MODE bit on
2015                  * 82571/82572
2016                  */
2017                 if (adapter->link_speed != SPEED_1000 &&
2018                     (hw->mac.type == e1000_82571 ||
2019                      hw->mac.type == e1000_82572)) {
2020                         int tarc0;
2021
2022                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2023                         tarc0 &= ~SPEED_MODE_BIT;
2024                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2025                 }
2026                 if (bootverbose) {
2027                         device_printf(dev, "Link is up %d Mbps %s\n",
2028                             adapter->link_speed,
2029                             ((adapter->link_duplex == FULL_DUPLEX) ?
2030                             "Full Duplex" : "Half Duplex"));
2031                 }
2032                 adapter->link_active = 1;
2033                 adapter->smartspeed = 0;
2034                 ifp->if_baudrate = adapter->link_speed * 1000000;
2035                 ifp->if_link_state = LINK_STATE_UP;
2036                 if_link_state_change(ifp);
2037         } else if (!link_check && adapter->link_active == 1) {
2038                 ifp->if_baudrate = adapter->link_speed = 0;
2039                 adapter->link_duplex = 0;
2040                 if (bootverbose)
2041                         device_printf(dev, "Link is Down\n");
2042                 adapter->link_active = 0;
2043 #if 0
2044                 /* Link down, disable watchdog */
2045                 if->if_timer = 0;
2046 #endif
2047                 ifp->if_link_state = LINK_STATE_DOWN;
2048                 if_link_state_change(ifp);
2049         }
2050 }
2051
2052 static void
2053 em_stop(struct adapter *adapter)
2054 {
2055         struct ifnet *ifp = &adapter->arpcom.ac_if;
2056         int i;
2057
2058         ASSERT_SERIALIZED(ifp->if_serializer);
2059
2060         em_disable_intr(adapter);
2061
2062         callout_stop(&adapter->timer);
2063         callout_stop(&adapter->tx_fifo_timer);
2064
2065         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2066         ifp->if_timer = 0;
2067
2068         e1000_reset_hw(&adapter->hw);
2069         if (adapter->hw.mac.type >= e1000_82544)
2070                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2071
2072         for (i = 0; i < adapter->num_tx_desc; i++) {
2073                 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2074
2075                 if (tx_buffer->m_head != NULL) {
2076                         bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2077                         m_freem(tx_buffer->m_head);
2078                         tx_buffer->m_head = NULL;
2079                 }
2080         }
2081
2082         for (i = 0; i < adapter->num_rx_desc; i++) {
2083                 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2084
2085                 if (rx_buffer->m_head != NULL) {
2086                         bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2087                         m_freem(rx_buffer->m_head);
2088                         rx_buffer->m_head = NULL;
2089                 }
2090         }
2091
2092         if (adapter->fmp != NULL)
2093                 m_freem(adapter->fmp);
2094         adapter->fmp = NULL;
2095         adapter->lmp = NULL;
2096
2097         adapter->csum_flags = 0;
2098         adapter->csum_ehlen = 0;
2099         adapter->csum_iphlen = 0;
2100
2101         adapter->tx_dd_head = 0;
2102         adapter->tx_dd_tail = 0;
2103         adapter->tx_nsegs = 0;
2104 }
2105
2106 static int
2107 em_get_hw_info(struct adapter *adapter)
2108 {
2109         device_t dev = adapter->dev;
2110
2111         /* Save off the information about this board */
2112         adapter->hw.vendor_id = pci_get_vendor(dev);
2113         adapter->hw.device_id = pci_get_device(dev);
2114         adapter->hw.revision_id = pci_get_revid(dev);
2115         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2116         adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2117
2118         /* Do Shared Code Init and Setup */
2119         if (e1000_set_mac_type(&adapter->hw))
2120                 return ENXIO;
2121         return 0;
2122 }
2123
2124 static int
2125 em_alloc_pci_res(struct adapter *adapter)
2126 {
2127         device_t dev = adapter->dev;
2128         u_int intr_flags;
2129         int val, rid, msi_enable;
2130
2131         /* Enable bus mastering */
2132         pci_enable_busmaster(dev);
2133
2134         adapter->memory_rid = EM_BAR_MEM;
2135         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2136                                 &adapter->memory_rid, RF_ACTIVE);
2137         if (adapter->memory == NULL) {
2138                 device_printf(dev, "Unable to allocate bus resource: memory\n");
2139                 return (ENXIO);
2140         }
2141         adapter->osdep.mem_bus_space_tag =
2142             rman_get_bustag(adapter->memory);
2143         adapter->osdep.mem_bus_space_handle =
2144             rman_get_bushandle(adapter->memory);
2145
2146         /* XXX This is quite goofy, it is not actually used */
2147         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2148
2149         /* Only older adapters use IO mapping */
2150         if (adapter->hw.mac.type > e1000_82543 &&
2151             adapter->hw.mac.type < e1000_82571) {
2152                 /* Figure our where our IO BAR is ? */
2153                 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2154                         val = pci_read_config(dev, rid, 4);
2155                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2156                                 adapter->io_rid = rid;
2157                                 break;
2158                         }
2159                         rid += 4;
2160                         /* check for 64bit BAR */
2161                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2162                                 rid += 4;
2163                 }
2164                 if (rid >= PCIR_CARDBUSCIS) {
2165                         device_printf(dev, "Unable to locate IO BAR\n");
2166                         return (ENXIO);
2167                 }
2168                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2169                                         &adapter->io_rid, RF_ACTIVE);
2170                 if (adapter->ioport == NULL) {
2171                         device_printf(dev, "Unable to allocate bus resource: "
2172                             "ioport\n");
2173                         return (ENXIO);
2174                 }
2175                 adapter->hw.io_base = 0;
2176                 adapter->osdep.io_bus_space_tag =
2177                     rman_get_bustag(adapter->ioport);
2178                 adapter->osdep.io_bus_space_handle =
2179                     rman_get_bushandle(adapter->ioport);
2180         }
2181
2182         /*
2183          * Don't enable MSI on PCI/PCI-X chips, see:
2184          * 82540EP and 82545GM specification update
2185          *
2186          * Don't enable MSI on 82571/82572, see:
2187          * 82571EB/82572EI specification update
2188          */
2189         msi_enable = em_msi_enable;
2190         if (msi_enable &&
2191             (!pci_is_pcie(dev) ||
2192              adapter->hw.mac.type == e1000_82571 ||
2193              adapter->hw.mac.type == e1000_82572))
2194                 msi_enable = 0;
2195
2196         adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2197             &adapter->intr_rid, &intr_flags);
2198
2199         adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2200             &adapter->intr_rid, intr_flags);
2201         if (adapter->intr_res == NULL) {
2202                 device_printf(dev, "Unable to allocate bus resource: "
2203                     "interrupt\n");
2204                 return (ENXIO);
2205         }
2206
2207         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2208         adapter->hw.back = &adapter->osdep;
2209         return (0);
2210 }
2211
2212 static void
2213 em_free_pci_res(struct adapter *adapter)
2214 {
2215         device_t dev = adapter->dev;
2216
2217         if (adapter->intr_res != NULL) {
2218                 bus_release_resource(dev, SYS_RES_IRQ,
2219                     adapter->intr_rid, adapter->intr_res);
2220         }
2221
2222         if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2223                 pci_release_msi(dev);
2224
2225         if (adapter->memory != NULL) {
2226                 bus_release_resource(dev, SYS_RES_MEMORY,
2227                     adapter->memory_rid, adapter->memory);
2228         }
2229
2230         if (adapter->flash != NULL) {
2231                 bus_release_resource(dev, SYS_RES_MEMORY,
2232                     adapter->flash_rid, adapter->flash);
2233         }
2234
2235         if (adapter->ioport != NULL) {
2236                 bus_release_resource(dev, SYS_RES_IOPORT,
2237                     adapter->io_rid, adapter->ioport);
2238         }
2239 }
2240
2241 static int
2242 em_reset(struct adapter *adapter)
2243 {
2244         device_t dev = adapter->dev;
2245         uint16_t rx_buffer_size;
2246
2247         /* When hardware is reset, fifo_head is also reset */
2248         adapter->tx_fifo_head = 0;
2249
2250         /* Set up smart power down as default off on newer adapters. */
2251         if (!em_smart_pwr_down &&
2252             (adapter->hw.mac.type == e1000_82571 ||
2253              adapter->hw.mac.type == e1000_82572)) {
2254                 uint16_t phy_tmp = 0;
2255
2256                 /* Speed up time to link by disabling smart power down. */
2257                 e1000_read_phy_reg(&adapter->hw,
2258                     IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2259                 phy_tmp &= ~IGP02E1000_PM_SPD;
2260                 e1000_write_phy_reg(&adapter->hw,
2261                     IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2262         }
2263
2264         /*
2265          * These parameters control the automatic generation (Tx) and
2266          * response (Rx) to Ethernet PAUSE frames.
2267          * - High water mark should allow for at least two frames to be
2268          *   received after sending an XOFF.
2269          * - Low water mark works best when it is very near the high water mark.
2270          *   This allows the receiver to restart by sending XON when it has
2271          *   drained a bit. Here we use an arbitary value of 1500 which will
2272          *   restart after one full frame is pulled from the buffer. There
2273          *   could be several smaller frames in the buffer and if so they will
2274          *   not trigger the XON until their total number reduces the buffer
2275          *   by 1500.
2276          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2277          */
2278         rx_buffer_size =
2279                 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2280
2281         adapter->hw.fc.high_water = rx_buffer_size -
2282                                     roundup2(adapter->max_frame_size, 1024);
2283         adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2284
2285         if (adapter->hw.mac.type == e1000_80003es2lan)
2286                 adapter->hw.fc.pause_time = 0xFFFF;
2287         else
2288                 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2289
2290         adapter->hw.fc.send_xon = TRUE;
2291
2292         adapter->hw.fc.requested_mode = e1000_fc_full;
2293
2294         /* Workaround: no TX flow ctrl for PCH */
2295         if (adapter->hw.mac.type == e1000_pchlan)
2296                 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2297
2298         /* Override - settings for PCH2LAN, ya its magic :) */
2299         if (adapter->hw.mac.type == e1000_pch2lan) {
2300                 adapter->hw.fc.high_water = 0x5C20;
2301                 adapter->hw.fc.low_water = 0x5048;
2302                 adapter->hw.fc.pause_time = 0x0650;
2303                 adapter->hw.fc.refresh_time = 0x0400;
2304
2305                 /* Jumbos need adjusted PBA */
2306                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2307                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2308                 else
2309                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2310         }
2311
2312         /* Issue a global reset */
2313         e1000_reset_hw(&adapter->hw);
2314         if (adapter->hw.mac.type >= e1000_82544)
2315                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2316         em_disable_aspm(adapter);
2317
2318         if (e1000_init_hw(&adapter->hw) < 0) {
2319                 device_printf(dev, "Hardware Initialization Failed\n");
2320                 return (EIO);
2321         }
2322
2323         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2324         e1000_get_phy_info(&adapter->hw);
2325         e1000_check_for_link(&adapter->hw);
2326
2327         return (0);
2328 }
2329
2330 static void
2331 em_setup_ifp(struct adapter *adapter)
2332 {
2333         struct ifnet *ifp = &adapter->arpcom.ac_if;
2334
2335         if_initname(ifp, device_get_name(adapter->dev),
2336                     device_get_unit(adapter->dev));
2337         ifp->if_softc = adapter;
2338         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2339         ifp->if_init =  em_init;
2340         ifp->if_ioctl = em_ioctl;
2341         ifp->if_start = em_start;
2342 #ifdef DEVICE_POLLING
2343         ifp->if_poll = em_poll;
2344 #endif
2345         ifp->if_watchdog = em_watchdog;
2346         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2347         ifq_set_ready(&ifp->if_snd);
2348
2349         ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2350
2351         if (adapter->hw.mac.type >= e1000_82543)
2352                 ifp->if_capabilities = IFCAP_HWCSUM;
2353
2354         ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2355         ifp->if_capenable = ifp->if_capabilities;
2356
2357         if (ifp->if_capenable & IFCAP_TXCSUM)
2358                 ifp->if_hwassist = EM_CSUM_FEATURES;
2359
2360         /*
2361          * Tell the upper layer(s) we support long frames.
2362          */
2363         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2364
2365         /*
2366          * Specify the media types supported by this adapter and register
2367          * callbacks to update media and link information
2368          */
2369         ifmedia_init(&adapter->media, IFM_IMASK,
2370                      em_media_change, em_media_status);
2371         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2372             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2373                 u_char fiber_type = IFM_1000_SX; /* default type */
2374
2375                 if (adapter->hw.mac.type == e1000_82545)
2376                         fiber_type = IFM_1000_LX;
2377                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2378                             0, NULL);
2379                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2380         } else {
2381                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2382                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2383                             0, NULL);
2384                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2385                             0, NULL);
2386                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2387                             0, NULL);
2388                 if (adapter->hw.phy.type != e1000_phy_ife) {
2389                         ifmedia_add(&adapter->media,
2390                                 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2391                         ifmedia_add(&adapter->media,
2392                                 IFM_ETHER | IFM_1000_T, 0, NULL);
2393                 }
2394         }
2395         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2396         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2397 }
2398
2399
2400 /*
2401  * Workaround for SmartSpeed on 82541 and 82547 controllers
2402  */
2403 static void
2404 em_smartspeed(struct adapter *adapter)
2405 {
2406         uint16_t phy_tmp;
2407
2408         if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2409             adapter->hw.mac.autoneg == 0 ||
2410             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2411                 return;
2412
2413         if (adapter->smartspeed == 0) {
2414                 /*
2415                  * If Master/Slave config fault is asserted twice,
2416                  * we assume back-to-back
2417                  */
2418                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2419                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2420                         return;
2421                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2422                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2423                         e1000_read_phy_reg(&adapter->hw,
2424                             PHY_1000T_CTRL, &phy_tmp);
2425                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2426                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2427                                 e1000_write_phy_reg(&adapter->hw,
2428                                     PHY_1000T_CTRL, phy_tmp);
2429                                 adapter->smartspeed++;
2430                                 if (adapter->hw.mac.autoneg &&
2431                                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2432                                     !e1000_read_phy_reg(&adapter->hw,
2433                                      PHY_CONTROL, &phy_tmp)) {
2434                                         phy_tmp |= MII_CR_AUTO_NEG_EN |
2435                                                    MII_CR_RESTART_AUTO_NEG;
2436                                         e1000_write_phy_reg(&adapter->hw,
2437                                             PHY_CONTROL, phy_tmp);
2438                                 }
2439                         }
2440                 }
2441                 return;
2442         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2443                 /* If still no link, perhaps using 2/3 pair cable */
2444                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2445                 phy_tmp |= CR_1000T_MS_ENABLE;
2446                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2447                 if (adapter->hw.mac.autoneg &&
2448                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2449                     !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2450                         phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2451                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2452                 }
2453         }
2454
2455         /* Restart process after EM_SMARTSPEED_MAX iterations */
2456         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2457                 adapter->smartspeed = 0;
2458 }
2459
2460 static int
2461 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2462               struct em_dma_alloc *dma)
2463 {
2464         dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2465                                 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2466                                 &dma->dma_tag, &dma->dma_map,
2467                                 &dma->dma_paddr);
2468         if (dma->dma_vaddr == NULL)
2469                 return ENOMEM;
2470         else
2471                 return 0;
2472 }
2473
2474 static void
2475 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2476 {
2477         if (dma->dma_tag == NULL)
2478                 return;
2479         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2480         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2481         bus_dma_tag_destroy(dma->dma_tag);
2482 }
2483
2484 static int
2485 em_create_tx_ring(struct adapter *adapter)
2486 {
2487         device_t dev = adapter->dev;
2488         struct em_buffer *tx_buffer;
2489         int error, i;
2490
2491         adapter->tx_buffer_area =
2492                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2493                         M_DEVBUF, M_WAITOK | M_ZERO);
2494
2495         /*
2496          * Create DMA tags for tx buffers
2497          */
2498         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2499                         1, 0,                   /* alignment, bounds */
2500                         BUS_SPACE_MAXADDR,      /* lowaddr */
2501                         BUS_SPACE_MAXADDR,      /* highaddr */
2502                         NULL, NULL,             /* filter, filterarg */
2503                         EM_TSO_SIZE,            /* maxsize */
2504                         EM_MAX_SCATTER,         /* nsegments */
2505                         EM_MAX_SEGSIZE,         /* maxsegsize */
2506                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2507                         BUS_DMA_ONEBPAGE,       /* flags */
2508                         &adapter->txtag);
2509         if (error) {
2510                 device_printf(dev, "Unable to allocate TX DMA tag\n");
2511                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2512                 adapter->tx_buffer_area = NULL;
2513                 return error;
2514         }
2515
2516         /*
2517          * Create DMA maps for tx buffers
2518          */
2519         for (i = 0; i < adapter->num_tx_desc; i++) {
2520                 tx_buffer = &adapter->tx_buffer_area[i];
2521
2522                 error = bus_dmamap_create(adapter->txtag,
2523                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2524                                           &tx_buffer->map);
2525                 if (error) {
2526                         device_printf(dev, "Unable to create TX DMA map\n");
2527                         em_destroy_tx_ring(adapter, i);
2528                         return error;
2529                 }
2530         }
2531         return (0);
2532 }
2533
2534 static void
2535 em_init_tx_ring(struct adapter *adapter)
2536 {
2537         /* Clear the old ring contents */
2538         bzero(adapter->tx_desc_base,
2539             (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2540
2541         /* Reset state */
2542         adapter->next_avail_tx_desc = 0;
2543         adapter->next_tx_to_clean = 0;
2544         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2545 }
2546
2547 static void
2548 em_init_tx_unit(struct adapter *adapter)
2549 {
2550         uint32_t tctl, tarc, tipg = 0;
2551         uint64_t bus_addr;
2552
2553         /* Setup the Base and Length of the Tx Descriptor Ring */
2554         bus_addr = adapter->txdma.dma_paddr;
2555         E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2556             adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2557         E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2558             (uint32_t)(bus_addr >> 32));
2559         E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2560             (uint32_t)bus_addr);
2561         /* Setup the HW Tx Head and Tail descriptor pointers */
2562         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2563         E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2564
2565         /* Set the default values for the Tx Inter Packet Gap timer */
2566         switch (adapter->hw.mac.type) {
2567         case e1000_82542:
2568                 tipg = DEFAULT_82542_TIPG_IPGT;
2569                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2570                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2571                 break;
2572
2573         case e1000_80003es2lan:
2574                 tipg = DEFAULT_82543_TIPG_IPGR1;
2575                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2576                     E1000_TIPG_IPGR2_SHIFT;
2577                 break;
2578
2579         default:
2580                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2581                     adapter->hw.phy.media_type ==
2582                     e1000_media_type_internal_serdes)
2583                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2584                 else
2585                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2586                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2587                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2588                 break;
2589         }
2590
2591         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2592
2593         /* NOTE: 0 is not allowed for TIDV */
2594         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2595         if(adapter->hw.mac.type >= e1000_82540)
2596                 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2597
2598         if (adapter->hw.mac.type == e1000_82571 ||
2599             adapter->hw.mac.type == e1000_82572) {
2600                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2601                 tarc |= SPEED_MODE_BIT;
2602                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2603         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2604                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2605                 tarc |= 1;
2606                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2607                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2608                 tarc |= 1;
2609                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2610         }
2611
2612         /* Program the Transmit Control Register */
2613         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2614         tctl &= ~E1000_TCTL_CT;
2615         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2616                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2617
2618         if (adapter->hw.mac.type >= e1000_82571)
2619                 tctl |= E1000_TCTL_MULR;
2620
2621         /* This write will effectively turn on the transmit unit. */
2622         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2623 }
2624
2625 static void
2626 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2627 {
2628         struct em_buffer *tx_buffer;
2629         int i;
2630
2631         if (adapter->tx_buffer_area == NULL)
2632                 return;
2633
2634         for (i = 0; i < ndesc; i++) {
2635                 tx_buffer = &adapter->tx_buffer_area[i];
2636
2637                 KKASSERT(tx_buffer->m_head == NULL);
2638                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2639         }
2640         bus_dma_tag_destroy(adapter->txtag);
2641
2642         kfree(adapter->tx_buffer_area, M_DEVBUF);
2643         adapter->tx_buffer_area = NULL;
2644 }
2645
2646 /*
2647  * The offload context needs to be set when we transfer the first
2648  * packet of a particular protocol (TCP/UDP).  This routine has been
2649  * enhanced to deal with inserted VLAN headers.
2650  *
2651  * If the new packet's ether header length, ip header length and
2652  * csum offloading type are same as the previous packet, we should
2653  * avoid allocating a new csum context descriptor; mainly to take
2654  * advantage of the pipeline effect of the TX data read request.
2655  *
2656  * This function returns number of TX descrptors allocated for
2657  * csum context.
2658  */
2659 static int
2660 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2661           uint32_t *txd_upper, uint32_t *txd_lower)
2662 {
2663         struct e1000_context_desc *TXD;
2664         struct em_buffer *tx_buffer;
2665         struct ether_vlan_header *eh;
2666         struct ip *ip;
2667         int curr_txd, ehdrlen, csum_flags;
2668         uint32_t cmd, hdr_len, ip_hlen;
2669         uint16_t etype;
2670
2671         /*
2672          * Determine where frame payload starts.
2673          * Jump over vlan headers if already present,
2674          * helpful for QinQ too.
2675          */
2676         KASSERT(mp->m_len >= ETHER_HDR_LEN,
2677                 ("em_txcsum_pullup is not called (eh)?"));
2678         eh = mtod(mp, struct ether_vlan_header *);
2679         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
2680                 KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
2681                         ("em_txcsum_pullup is not called (evh)?"));
2682                 etype = ntohs(eh->evl_proto);
2683                 ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
2684         } else {
2685                 etype = ntohs(eh->evl_encap_proto);
2686                 ehdrlen = ETHER_HDR_LEN;
2687         }
2688
2689         /*
2690          * We only support TCP/UDP for IPv4 for the moment.
2691          * TODO: Support SCTP too when it hits the tree.
2692          */
2693         if (etype != ETHERTYPE_IP)
2694                 return 0;
2695
2696         KASSERT(mp->m_len >= ehdrlen + EM_IPVHL_SIZE,
2697                 ("em_txcsum_pullup is not called (eh+ip_vhl)?"));
2698
2699         /* NOTE: We could only safely access ip.ip_vhl part */
2700         ip = (struct ip *)(mp->m_data + ehdrlen);
2701         ip_hlen = ip->ip_hl << 2;
2702
2703         csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2704
2705         if (adapter->csum_ehlen == ehdrlen &&
2706             adapter->csum_iphlen == ip_hlen &&
2707             adapter->csum_flags == csum_flags) {
2708                 /*
2709                  * Same csum offload context as the previous packets;
2710                  * just return.
2711                  */
2712                 *txd_upper = adapter->csum_txd_upper;
2713                 *txd_lower = adapter->csum_txd_lower;
2714                 return 0;
2715         }
2716
2717         /*
2718          * Setup a new csum offload context.
2719          */
2720
2721         curr_txd = adapter->next_avail_tx_desc;
2722         tx_buffer = &adapter->tx_buffer_area[curr_txd];
2723         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2724
2725         cmd = 0;
2726
2727         /* Setup of IP header checksum. */
2728         if (csum_flags & CSUM_IP) {
2729                 /*
2730                  * Start offset for header checksum calculation.
2731                  * End offset for header checksum calculation.
2732                  * Offset of place to put the checksum.
2733                  */
2734                 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2735                 TXD->lower_setup.ip_fields.ipcse =
2736                     htole16(ehdrlen + ip_hlen - 1);
2737                 TXD->lower_setup.ip_fields.ipcso =
2738                     ehdrlen + offsetof(struct ip, ip_sum);
2739                 cmd |= E1000_TXD_CMD_IP;
2740                 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2741         }
2742         hdr_len = ehdrlen + ip_hlen;
2743
2744         if (csum_flags & CSUM_TCP) {
2745                 /*
2746                  * Start offset for payload checksum calculation.
2747                  * End offset for payload checksum calculation.
2748                  * Offset of place to put the checksum.
2749                  */
2750                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2751                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2752                 TXD->upper_setup.tcp_fields.tucso =
2753                     hdr_len + offsetof(struct tcphdr, th_sum);
2754                 cmd |= E1000_TXD_CMD_TCP;
2755                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2756         } else if (csum_flags & CSUM_UDP) {
2757                 /*
2758                  * Start offset for header checksum calculation.
2759                  * End offset for header checksum calculation.
2760                  * Offset of place to put the checksum.
2761                  */
2762                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2763                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2764                 TXD->upper_setup.tcp_fields.tucso =
2765                     hdr_len + offsetof(struct udphdr, uh_sum);
2766                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2767         }
2768
2769         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
2770                      E1000_TXD_DTYP_D;          /* Data descr */
2771
2772         /* Save the information for this csum offloading context */
2773         adapter->csum_ehlen = ehdrlen;
2774         adapter->csum_iphlen = ip_hlen;
2775         adapter->csum_flags = csum_flags;
2776         adapter->csum_txd_upper = *txd_upper;
2777         adapter->csum_txd_lower = *txd_lower;
2778
2779         TXD->tcp_seg_setup.data = htole32(0);
2780         TXD->cmd_and_length =
2781             htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2782
2783         if (++curr_txd == adapter->num_tx_desc)
2784                 curr_txd = 0;
2785
2786         KKASSERT(adapter->num_tx_desc_avail > 0);
2787         adapter->num_tx_desc_avail--;
2788
2789         adapter->next_avail_tx_desc = curr_txd;
2790         return 1;
2791 }
2792
2793 static int
2794 em_txcsum_pullup(struct adapter *adapter, struct mbuf **m0)
2795 {
2796         struct mbuf *m = *m0;
2797         struct ether_header *eh;
2798         int len;
2799
2800         adapter->tx_csum_try_pullup++;
2801
2802         len = ETHER_HDR_LEN + EM_IPVHL_SIZE;
2803
2804         if (__predict_false(!M_WRITABLE(m))) {
2805                 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2806                         adapter->tx_csum_drop1++;
2807                         m_freem(m);
2808                         *m0 = NULL;
2809                         return ENOBUFS;
2810                 }
2811                 eh = mtod(m, struct ether_header *);
2812
2813                 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2814                         len += EVL_ENCAPLEN;
2815
2816                 if (m->m_len < len) {
2817                         adapter->tx_csum_drop2++;
2818                         m_freem(m);
2819                         *m0 = NULL;
2820                         return ENOBUFS;
2821                 }
2822                 return 0;
2823         }
2824
2825         if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2826                 adapter->tx_csum_pullup1++;
2827                 m = m_pullup(m, ETHER_HDR_LEN);
2828                 if (m == NULL) {
2829                         adapter->tx_csum_pullup1_failed++;
2830                         *m0 = NULL;
2831                         return ENOBUFS;
2832                 }
2833                 *m0 = m;
2834         }
2835         eh = mtod(m, struct ether_header *);
2836
2837         if (eh->ether_type == htons(ETHERTYPE_VLAN))
2838                 len += EVL_ENCAPLEN;
2839
2840         if (m->m_len < len) {
2841                 adapter->tx_csum_pullup2++;
2842                 m = m_pullup(m, len);
2843                 if (m == NULL) {
2844                         adapter->tx_csum_pullup2_failed++;
2845                         *m0 = NULL;
2846                         return ENOBUFS;
2847                 }
2848                 *m0 = m;
2849         }
2850         return 0;
2851 }
2852
2853 static void
2854 em_txeof(struct adapter *adapter)
2855 {
2856         struct ifnet *ifp = &adapter->arpcom.ac_if;
2857         struct em_buffer *tx_buffer;
2858         int first, num_avail;
2859
2860         if (adapter->tx_dd_head == adapter->tx_dd_tail)
2861                 return;
2862
2863         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2864                 return;
2865
2866         num_avail = adapter->num_tx_desc_avail;
2867         first = adapter->next_tx_to_clean;
2868
2869         while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2870                 struct e1000_tx_desc *tx_desc;
2871                 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2872
2873                 tx_desc = &adapter->tx_desc_base[dd_idx];
2874                 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2875                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2876
2877                         if (++dd_idx == adapter->num_tx_desc)
2878                                 dd_idx = 0;
2879
2880                         while (first != dd_idx) {
2881                                 logif(pkt_txclean);
2882
2883                                 num_avail++;
2884
2885                                 tx_buffer = &adapter->tx_buffer_area[first];
2886                                 if (tx_buffer->m_head) {
2887                                         ifp->if_opackets++;
2888                                         bus_dmamap_unload(adapter->txtag,
2889                                                           tx_buffer->map);
2890                                         m_freem(tx_buffer->m_head);
2891                                         tx_buffer->m_head = NULL;
2892                                 }
2893
2894                                 if (++first == adapter->num_tx_desc)
2895                                         first = 0;
2896                         }
2897                 } else {
2898                         break;
2899                 }
2900         }
2901         adapter->next_tx_to_clean = first;
2902         adapter->num_tx_desc_avail = num_avail;
2903
2904         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2905                 adapter->tx_dd_head = 0;
2906                 adapter->tx_dd_tail = 0;
2907         }
2908
2909         if (!EM_IS_OACTIVE(adapter)) {
2910                 ifp->if_flags &= ~IFF_OACTIVE;
2911
2912                 /* All clean, turn off the timer */
2913                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2914                         ifp->if_timer = 0;
2915         }
2916 }
2917
2918 static void
2919 em_tx_collect(struct adapter *adapter)
2920 {
2921         struct ifnet *ifp = &adapter->arpcom.ac_if;
2922         struct em_buffer *tx_buffer;
2923         int tdh, first, num_avail, dd_idx = -1;
2924
2925         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2926                 return;
2927
2928         tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2929         if (tdh == adapter->next_tx_to_clean)
2930                 return;
2931
2932         if (adapter->tx_dd_head != adapter->tx_dd_tail)
2933                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2934
2935         num_avail = adapter->num_tx_desc_avail;
2936         first = adapter->next_tx_to_clean;
2937
2938         while (first != tdh) {
2939                 logif(pkt_txclean);
2940
2941                 num_avail++;
2942
2943                 tx_buffer = &adapter->tx_buffer_area[first];
2944                 if (tx_buffer->m_head) {
2945                         ifp->if_opackets++;
2946                         bus_dmamap_unload(adapter->txtag,
2947                                           tx_buffer->map);
2948                         m_freem(tx_buffer->m_head);
2949                         tx_buffer->m_head = NULL;
2950                 }
2951
2952                 if (first == dd_idx) {
2953                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2954                         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2955                                 adapter->tx_dd_head = 0;
2956                                 adapter->tx_dd_tail = 0;
2957                                 dd_idx = -1;
2958                         } else {
2959                                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2960                         }
2961                 }
2962
2963                 if (++first == adapter->num_tx_desc)
2964                         first = 0;
2965         }
2966         adapter->next_tx_to_clean = first;
2967         adapter->num_tx_desc_avail = num_avail;
2968
2969         if (!EM_IS_OACTIVE(adapter)) {
2970                 ifp->if_flags &= ~IFF_OACTIVE;
2971
2972                 /* All clean, turn off the timer */
2973                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2974                         ifp->if_timer = 0;
2975         }
2976 }
2977
2978 /*
2979  * When Link is lost sometimes there is work still in the TX ring
2980  * which will result in a watchdog, rather than allow that do an
2981  * attempted cleanup and then reinit here.  Note that this has been
2982  * seens mostly with fiber adapters.
2983  */
2984 static void
2985 em_tx_purge(struct adapter *adapter)
2986 {
2987         struct ifnet *ifp = &adapter->arpcom.ac_if;
2988
2989         if (!adapter->link_active && ifp->if_timer) {
2990                 em_tx_collect(adapter);
2991                 if (ifp->if_timer) {
2992                         if_printf(ifp, "Link lost, TX pending, reinit\n");
2993                         ifp->if_timer = 0;
2994                         em_init(adapter);
2995                 }
2996         }
2997 }
2998
2999 static int
3000 em_newbuf(struct adapter *adapter, int i, int init)
3001 {
3002         struct mbuf *m;
3003         bus_dma_segment_t seg;
3004         bus_dmamap_t map;
3005         struct em_buffer *rx_buffer;
3006         int error, nseg;
3007
3008         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3009         if (m == NULL) {
3010                 adapter->mbuf_cluster_failed++;
3011                 if (init) {
3012                         if_printf(&adapter->arpcom.ac_if,
3013                                   "Unable to allocate RX mbuf\n");
3014                 }
3015                 return (ENOBUFS);
3016         }
3017         m->m_len = m->m_pkthdr.len = MCLBYTES;
3018
3019         if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3020                 m_adj(m, ETHER_ALIGN);
3021
3022         error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3023                         adapter->rx_sparemap, m,
3024                         &seg, 1, &nseg, BUS_DMA_NOWAIT);
3025         if (error) {
3026                 m_freem(m);
3027                 if (init) {
3028                         if_printf(&adapter->arpcom.ac_if,
3029                                   "Unable to load RX mbuf\n");
3030                 }
3031                 return (error);
3032         }
3033
3034         rx_buffer = &adapter->rx_buffer_area[i];
3035         if (rx_buffer->m_head != NULL)
3036                 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3037
3038         map = rx_buffer->map;
3039         rx_buffer->map = adapter->rx_sparemap;
3040         adapter->rx_sparemap = map;
3041
3042         rx_buffer->m_head = m;
3043
3044         adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3045         return (0);
3046 }
3047
3048 static int
3049 em_create_rx_ring(struct adapter *adapter)
3050 {
3051         device_t dev = adapter->dev;
3052         struct em_buffer *rx_buffer;
3053         int i, error;
3054
3055         adapter->rx_buffer_area =
3056                 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3057                         M_DEVBUF, M_WAITOK | M_ZERO);
3058
3059         /*
3060          * Create DMA tag for rx buffers
3061          */
3062         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3063                         1, 0,                   /* alignment, bounds */
3064                         BUS_SPACE_MAXADDR,      /* lowaddr */
3065                         BUS_SPACE_MAXADDR,      /* highaddr */
3066                         NULL, NULL,             /* filter, filterarg */
3067                         MCLBYTES,               /* maxsize */
3068                         1,                      /* nsegments */
3069                         MCLBYTES,               /* maxsegsize */
3070                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3071                         &adapter->rxtag);
3072         if (error) {
3073                 device_printf(dev, "Unable to allocate RX DMA tag\n");
3074                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3075                 adapter->rx_buffer_area = NULL;
3076                 return error;
3077         }
3078
3079         /*
3080          * Create spare DMA map for rx buffers
3081          */
3082         error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3083                                   &adapter->rx_sparemap);
3084         if (error) {
3085                 device_printf(dev, "Unable to create spare RX DMA map\n");
3086                 bus_dma_tag_destroy(adapter->rxtag);
3087                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3088                 adapter->rx_buffer_area = NULL;
3089                 return error;
3090         }
3091
3092         /*
3093          * Create DMA maps for rx buffers
3094          */
3095         for (i = 0; i < adapter->num_rx_desc; i++) {
3096                 rx_buffer = &adapter->rx_buffer_area[i];
3097
3098                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3099                                           &rx_buffer->map);
3100                 if (error) {
3101                         device_printf(dev, "Unable to create RX DMA map\n");
3102                         em_destroy_rx_ring(adapter, i);
3103                         return error;
3104                 }
3105         }
3106         return (0);
3107 }
3108
3109 static int
3110 em_init_rx_ring(struct adapter *adapter)
3111 {
3112         int i, error;
3113
3114         /* Reset descriptor ring */
3115         bzero(adapter->rx_desc_base,
3116             (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3117
3118         /* Allocate new ones. */
3119         for (i = 0; i < adapter->num_rx_desc; i++) {
3120                 error = em_newbuf(adapter, i, 1);
3121                 if (error)
3122                         return (error);
3123         }
3124
3125         /* Setup our descriptor pointers */
3126         adapter->next_rx_desc_to_check = 0;
3127
3128         return (0);
3129 }
3130
3131 static void
3132 em_init_rx_unit(struct adapter *adapter)
3133 {
3134         struct ifnet *ifp = &adapter->arpcom.ac_if;
3135         uint64_t bus_addr;
3136         uint32_t rctl;
3137
3138         /*
3139          * Make sure receives are disabled while setting
3140          * up the descriptor ring
3141          */
3142         rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3143         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3144
3145         if (adapter->hw.mac.type >= e1000_82540) {
3146                 uint32_t itr;
3147
3148                 /*
3149                  * Set the interrupt throttling rate. Value is calculated
3150                  * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3151                  */
3152                 if (adapter->int_throttle_ceil)
3153                         itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3154                 else
3155                         itr = 0;
3156                 em_set_itr(adapter, itr);
3157         }
3158
3159         /* Disable accelerated ackknowledge */
3160         if (adapter->hw.mac.type == e1000_82574) {
3161                 E1000_WRITE_REG(&adapter->hw,
3162                     E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3163         }
3164
3165         /* Receive Checksum Offload for TCP and UDP */
3166         if (ifp->if_capenable & IFCAP_RXCSUM) {
3167                 uint32_t rxcsum;
3168
3169                 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3170                 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3171                 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3172         }
3173
3174         /*
3175          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3176          * long latencies are observed, like Lenovo X60. This
3177          * change eliminates the problem, but since having positive
3178          * values in RDTR is a known source of problems on other
3179          * platforms another solution is being sought.
3180          */
3181         if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3182                 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3183                 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3184         }
3185
3186         /*
3187          * Setup the Base and Length of the Rx Descriptor Ring
3188          */
3189         bus_addr = adapter->rxdma.dma_paddr;
3190         E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3191             adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3192         E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3193             (uint32_t)(bus_addr >> 32));
3194         E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3195             (uint32_t)bus_addr);
3196
3197         /*
3198          * Setup the HW Rx Head and Tail Descriptor Pointers
3199          */
3200         E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3201         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3202
3203         /* Set early receive threshold on appropriate hw */
3204         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3205             (adapter->hw.mac.type == e1000_pch2lan) ||
3206             (adapter->hw.mac.type == e1000_ich10lan)) &&
3207             (ifp->if_mtu > ETHERMTU)) {
3208                 uint32_t rxdctl;
3209
3210                 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3211                 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3212                 E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3213         }
3214
3215         if (adapter->hw.mac.type == e1000_pch2lan) {
3216                 if (ifp->if_mtu > ETHERMTU)
3217                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3218                 else
3219                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3220         }
3221
3222         /* Setup the Receive Control Register */
3223         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3224         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3225                 E1000_RCTL_RDMTS_HALF |
3226                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3227
3228         /* Make sure VLAN Filters are off */
3229         rctl &= ~E1000_RCTL_VFE;
3230
3231         if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3232                 rctl |= E1000_RCTL_SBP;
3233         else
3234                 rctl &= ~E1000_RCTL_SBP;
3235
3236         switch (adapter->rx_buffer_len) {
3237         default:
3238         case 2048:
3239                 rctl |= E1000_RCTL_SZ_2048;
3240                 break;
3241
3242         case 4096:
3243                 rctl |= E1000_RCTL_SZ_4096 |
3244                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3245                 break;
3246
3247         case 8192:
3248                 rctl |= E1000_RCTL_SZ_8192 |
3249                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3250                 break;
3251
3252         case 16384:
3253                 rctl |= E1000_RCTL_SZ_16384 |
3254                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3255                 break;
3256         }
3257
3258         if (ifp->if_mtu > ETHERMTU)
3259                 rctl |= E1000_RCTL_LPE;
3260         else
3261                 rctl &= ~E1000_RCTL_LPE;
3262
3263         /* Enable Receives */
3264         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3265 }
3266
3267 static void
3268 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3269 {
3270         struct em_buffer *rx_buffer;
3271         int i;
3272
3273         if (adapter->rx_buffer_area == NULL)
3274                 return;
3275
3276         for (i = 0; i < ndesc; i++) {
3277                 rx_buffer = &adapter->rx_buffer_area[i];
3278
3279                 KKASSERT(rx_buffer->m_head == NULL);
3280                 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3281         }
3282         bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3283         bus_dma_tag_destroy(adapter->rxtag);
3284
3285         kfree(adapter->rx_buffer_area, M_DEVBUF);
3286         adapter->rx_buffer_area = NULL;
3287 }
3288
3289 static void
3290 em_rxeof(struct adapter *adapter, int count)
3291 {
3292         struct ifnet *ifp = &adapter->arpcom.ac_if;
3293         uint8_t status, accept_frame = 0, eop = 0;
3294         uint16_t len, desc_len, prev_len_adj;
3295         struct e1000_rx_desc *current_desc;
3296         struct mbuf *mp;
3297         int i;
3298
3299         i = adapter->next_rx_desc_to_check;
3300         current_desc = &adapter->rx_desc_base[i];
3301
3302         if (!(current_desc->status & E1000_RXD_STAT_DD))
3303                 return;
3304
3305         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3306                 struct mbuf *m = NULL;
3307
3308                 logif(pkt_receive);
3309
3310                 mp = adapter->rx_buffer_area[i].m_head;
3311
3312                 /*
3313                  * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3314                  * needs to access the last received byte in the mbuf.
3315                  */
3316                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3317                                 BUS_DMASYNC_POSTREAD);
3318
3319                 accept_frame = 1;
3320                 prev_len_adj = 0;
3321                 desc_len = le16toh(current_desc->length);
3322                 status = current_desc->status;
3323                 if (status & E1000_RXD_STAT_EOP) {
3324                         count--;
3325                         eop = 1;
3326                         if (desc_len < ETHER_CRC_LEN) {
3327                                 len = 0;
3328                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3329                         } else {
3330                                 len = desc_len - ETHER_CRC_LEN;
3331                         }
3332                 } else {
3333                         eop = 0;
3334                         len = desc_len;
3335                 }
3336
3337                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3338                         uint8_t last_byte;
3339                         uint32_t pkt_len = desc_len;
3340
3341                         if (adapter->fmp != NULL)
3342                                 pkt_len += adapter->fmp->m_pkthdr.len;
3343
3344                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3345                         if (TBI_ACCEPT(&adapter->hw, status,
3346                             current_desc->errors, pkt_len, last_byte,
3347                             adapter->min_frame_size, adapter->max_frame_size)) {
3348                                 e1000_tbi_adjust_stats_82543(&adapter->hw,
3349                                     &adapter->stats, pkt_len,
3350                                     adapter->hw.mac.addr,
3351                                     adapter->max_frame_size);
3352                                 if (len > 0)
3353                                         len--;
3354                         } else {
3355                                 accept_frame = 0;
3356                         }
3357                 }
3358
3359                 if (accept_frame) {
3360                         if (em_newbuf(adapter, i, 0) != 0) {
3361                                 ifp->if_iqdrops++;
3362                                 goto discard;
3363                         }
3364
3365                         /* Assign correct length to the current fragment */
3366                         mp->m_len = len;
3367
3368                         if (adapter->fmp == NULL) {
3369                                 mp->m_pkthdr.len = len;
3370                                 adapter->fmp = mp; /* Store the first mbuf */
3371                                 adapter->lmp = mp;
3372                         } else {
3373                                 /*
3374                                  * Chain mbuf's together
3375                                  */
3376
3377                                 /*
3378                                  * Adjust length of previous mbuf in chain if
3379                                  * we received less than 4 bytes in the last
3380                                  * descriptor.
3381                                  */
3382                                 if (prev_len_adj > 0) {
3383                                         adapter->lmp->m_len -= prev_len_adj;
3384                                         adapter->fmp->m_pkthdr.len -=
3385                                             prev_len_adj;
3386                                 }
3387                                 adapter->lmp->m_next = mp;
3388                                 adapter->lmp = adapter->lmp->m_next;
3389                                 adapter->fmp->m_pkthdr.len += len;
3390                         }
3391
3392                         if (eop) {
3393                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3394                                 ifp->if_ipackets++;
3395
3396                                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3397                                         em_rxcsum(adapter, current_desc,
3398                                                   adapter->fmp);
3399                                 }
3400
3401                                 if (status & E1000_RXD_STAT_VP) {
3402                                         adapter->fmp->m_pkthdr.ether_vlantag =
3403                                             (le16toh(current_desc->special) &
3404                                             E1000_RXD_SPC_VLAN_MASK);
3405                                         adapter->fmp->m_flags |= M_VLANTAG;
3406                                 }
3407                                 m = adapter->fmp;
3408                                 adapter->fmp = NULL;
3409                                 adapter->lmp = NULL;
3410                         }
3411                 } else {
3412                         ifp->if_ierrors++;
3413 discard:
3414 #ifdef foo
3415                         /* Reuse loaded DMA map and just update mbuf chain */
3416                         mp = adapter->rx_buffer_area[i].m_head;
3417                         mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3418                         mp->m_data = mp->m_ext.ext_buf;
3419                         mp->m_next = NULL;
3420                         if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3421                                 m_adj(mp, ETHER_ALIGN);
3422 #endif
3423                         if (adapter->fmp != NULL) {
3424                                 m_freem(adapter->fmp);
3425                                 adapter->fmp = NULL;
3426                                 adapter->lmp = NULL;
3427                         }
3428                         m = NULL;
3429                 }
3430
3431                 /* Zero out the receive descriptors status. */
3432                 current_desc->status = 0;
3433
3434                 if (m != NULL)
3435                         ifp->if_input(ifp, m);
3436
3437                 /* Advance our pointers to the next descriptor. */
3438                 if (++i == adapter->num_rx_desc)
3439                         i = 0;
3440                 current_desc = &adapter->rx_desc_base[i];
3441         }
3442         adapter->next_rx_desc_to_check = i;
3443
3444         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3445         if (--i < 0)
3446                 i = adapter->num_rx_desc - 1;
3447         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3448 }
3449
3450 static void
3451 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3452           struct mbuf *mp)
3453 {
3454         /* 82543 or newer only */
3455         if (adapter->hw.mac.type < e1000_82543 ||
3456             /* Ignore Checksum bit is set */
3457             (rx_desc->status & E1000_RXD_STAT_IXSM))
3458                 return;
3459
3460         if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3461             !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3462                 /* IP Checksum Good */
3463                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3464         }
3465
3466         if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3467             !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3468                 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3469                                            CSUM_PSEUDO_HDR |
3470                                            CSUM_FRAG_NOT_CHECKED;
3471                 mp->m_pkthdr.csum_data = htons(0xffff);
3472         }
3473 }
3474
3475 static void
3476 em_enable_intr(struct adapter *adapter)
3477 {
3478         uint32_t ims_mask = IMS_ENABLE_MASK;
3479
3480         lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3481
3482 #if 0
3483         /* XXX MSIX */
3484         if (adapter->hw.mac.type == e1000_82574) {
3485                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3486                 ims_mask |= EM_MSIX_MASK;
3487         }
3488 #endif
3489         E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3490 }
3491
3492 static void
3493 em_disable_intr(struct adapter *adapter)
3494 {
3495         uint32_t clear = 0xffffffff;
3496
3497         /*
3498          * The first version of 82542 had an errata where when link was forced
3499          * it would stay up even up even if the cable was disconnected.
3500          * Sequence errors were used to detect the disconnect and then the
3501          * driver would unforce the link.  This code in the in the ISR.  For
3502          * this to work correctly the Sequence error interrupt had to be
3503          * enabled all the time.
3504          */
3505         if (adapter->hw.mac.type == e1000_82542 &&
3506             adapter->hw.revision_id == E1000_REVISION_2)
3507                 clear &= ~E1000_ICR_RXSEQ;
3508         else if (adapter->hw.mac.type == e1000_82574)
3509                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3510
3511         E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3512
3513         lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3514 }
3515
3516 /*
3517  * Bit of a misnomer, what this really means is
3518  * to enable OS management of the system... aka
3519  * to disable special hardware management features 
3520  */
3521 static void
3522 em_get_mgmt(struct adapter *adapter)
3523 {
3524         /* A shared code workaround */
3525 #define E1000_82542_MANC2H E1000_MANC2H
3526         if (adapter->has_manage) {
3527                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3528                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3529
3530                 /* disable hardware interception of ARP */
3531                 manc &= ~(E1000_MANC_ARP_EN);
3532
3533                 /* enable receiving management packets to the host */
3534                 if (adapter->hw.mac.type >= e1000_82571) {
3535                         manc |= E1000_MANC_EN_MNG2HOST;
3536 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3537 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3538                         manc2h |= E1000_MNG2HOST_PORT_623;
3539                         manc2h |= E1000_MNG2HOST_PORT_664;
3540                         E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3541                 }
3542
3543                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3544         }
3545 }
3546
3547 /*
3548  * Give control back to hardware management
3549  * controller if there is one.
3550  */
3551 static void
3552 em_rel_mgmt(struct adapter *adapter)
3553 {
3554         if (adapter->has_manage) {
3555                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3556
3557                 /* re-enable hardware interception of ARP */
3558                 manc |= E1000_MANC_ARP_EN;
3559
3560                 if (adapter->hw.mac.type >= e1000_82571)
3561                         manc &= ~E1000_MANC_EN_MNG2HOST;
3562
3563                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3564         }
3565 }
3566
3567 /*
3568  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3569  * For ASF and Pass Through versions of f/w this means that
3570  * the driver is loaded.  For AMT version (only with 82573)
3571  * of the f/w this means that the network i/f is open.
3572  */
3573 static void
3574 em_get_hw_control(struct adapter *adapter)
3575 {
3576         /* Let firmware know the driver has taken over */
3577         if (adapter->hw.mac.type == e1000_82573) {
3578                 uint32_t swsm;
3579
3580                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3581                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3582                     swsm | E1000_SWSM_DRV_LOAD);
3583         } else {
3584                 uint32_t ctrl_ext;
3585
3586                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3587                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3588                     ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3589         }
3590         adapter->control_hw = 1;
3591 }
3592
3593 /*
3594  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3595  * For ASF and Pass Through versions of f/w this means that the
3596  * driver is no longer loaded.  For AMT version (only with 82573)
3597  * of the f/w this means that the network i/f is closed.
3598  */
3599 static void
3600 em_rel_hw_control(struct adapter *adapter)
3601 {
3602         if (!adapter->control_hw)
3603                 return;
3604         adapter->control_hw = 0;
3605
3606         /* Let firmware taken over control of h/w */
3607         if (adapter->hw.mac.type == e1000_82573) {
3608                 uint32_t swsm;
3609
3610                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3611                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3612                     swsm & ~E1000_SWSM_DRV_LOAD);
3613         } else {
3614                 uint32_t ctrl_ext;
3615
3616                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3617                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3618                     ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3619         }
3620 }
3621
3622 static int
3623 em_is_valid_eaddr(const uint8_t *addr)
3624 {
3625         char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3626
3627         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3628                 return (FALSE);
3629
3630         return (TRUE);
3631 }
3632
3633 /*
3634  * Enable PCI Wake On Lan capability
3635  */
3636 void
3637 em_enable_wol(device_t dev)
3638 {
3639         uint16_t cap, status;
3640         uint8_t id;
3641
3642         /* First find the capabilities pointer*/
3643         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3644
3645         /* Read the PM Capabilities */
3646         id = pci_read_config(dev, cap, 1);
3647         if (id != PCIY_PMG)     /* Something wrong */
3648                 return;
3649
3650         /*
3651          * OK, we have the power capabilities,
3652          * so now get the status register
3653          */
3654         cap += PCIR_POWER_STATUS;
3655         status = pci_read_config(dev, cap, 2);
3656         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3657         pci_write_config(dev, cap, status, 2);
3658 }
3659
3660
3661 /*
3662  * 82544 Coexistence issue workaround.
3663  *    There are 2 issues.
3664  *       1. Transmit Hang issue.
3665  *    To detect this issue, following equation can be used...
3666  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3667  *        If SUM[3:0] is in between 1 to 4, we will have this issue.
3668  *
3669  *       2. DAC issue.
3670  *    To detect this issue, following equation can be used...
3671  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3672  *        If SUM[3:0] is in between 9 to c, we will have this issue.
3673  *
3674  *    WORKAROUND:
3675  *        Make sure we do not have ending address
3676  *        as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3677  */
3678 static uint32_t
3679 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3680 {
3681         uint32_t safe_terminator;
3682
3683         /*
3684          * Since issue is sensitive to length and address.
3685          * Let us first check the address...
3686          */
3687         if (length <= 4) {
3688                 desc_array->descriptor[0].address = address;
3689                 desc_array->descriptor[0].length = length;
3690                 desc_array->elements = 1;
3691                 return (desc_array->elements);
3692         }
3693
3694         safe_terminator =
3695         (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3696
3697         /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3698         if (safe_terminator == 0 ||
3699             (safe_terminator > 4 && safe_terminator < 9) ||
3700             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3701                 desc_array->descriptor[0].address = address;
3702                 desc_array->descriptor[0].length = length;
3703                 desc_array->elements = 1;
3704                 return (desc_array->elements);
3705         }
3706
3707         desc_array->descriptor[0].address = address;
3708         desc_array->descriptor[0].length = length - 4;
3709         desc_array->descriptor[1].address = address + (length - 4);
3710         desc_array->descriptor[1].length = 4;
3711         desc_array->elements = 2;
3712         return (desc_array->elements);
3713 }
3714
3715 static void
3716 em_update_stats(struct adapter *adapter)
3717 {
3718         struct ifnet *ifp = &adapter->arpcom.ac_if;
3719
3720         if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3721             (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3722                 adapter->stats.symerrs +=
3723                         E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3724                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3725         }
3726         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3727         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3728         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3729         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3730
3731         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3732         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3733         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3734         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3735         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3736         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3737         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3738         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3739         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3740         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3741         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3742         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3743         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3744         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3745         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3746         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3747         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3748         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3749         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3750         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3751
3752         /* For the 64-bit byte counters the low dword must be read first. */
3753         /* Both registers clear on the read of the high dword */
3754
3755         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3756         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3757
3758         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3759         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3760         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3761         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3762         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3763
3764         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3765         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3766
3767         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3768         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3769         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3770         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3771         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3772         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3773         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3774         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3775         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3776         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3777
3778         if (adapter->hw.mac.type >= e1000_82543) {
3779                 adapter->stats.algnerrc += 
3780                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3781                 adapter->stats.rxerrc += 
3782                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3783                 adapter->stats.tncrs += 
3784                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3785                 adapter->stats.cexterr += 
3786                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3787                 adapter->stats.tsctc += 
3788                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3789                 adapter->stats.tsctfc += 
3790                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3791         }
3792
3793         ifp->if_collisions = adapter->stats.colc;
3794
3795         /* Rx Errors */
3796         ifp->if_ierrors =
3797             adapter->dropped_pkts + adapter->stats.rxerrc +
3798             adapter->stats.crcerrs + adapter->stats.algnerrc +
3799             adapter->stats.ruc + adapter->stats.roc +
3800             adapter->stats.mpc + adapter->stats.cexterr;
3801
3802         /* Tx Errors */
3803         ifp->if_oerrors =
3804             adapter->stats.ecol + adapter->stats.latecol +
3805             adapter->watchdog_events;
3806 }
3807
3808 static void
3809 em_print_debug_info(struct adapter *adapter)
3810 {
3811         device_t dev = adapter->dev;
3812         uint8_t *hw_addr = adapter->hw.hw_addr;
3813
3814         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3815         device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3816             E1000_READ_REG(&adapter->hw, E1000_CTRL),
3817             E1000_READ_REG(&adapter->hw, E1000_RCTL));
3818         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3819             ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3820             (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3821         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3822             adapter->hw.fc.high_water,
3823             adapter->hw.fc.low_water);
3824         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3825             E1000_READ_REG(&adapter->hw, E1000_TIDV),
3826             E1000_READ_REG(&adapter->hw, E1000_TADV));
3827         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3828             E1000_READ_REG(&adapter->hw, E1000_RDTR),
3829             E1000_READ_REG(&adapter->hw, E1000_RADV));
3830         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3831             (long long)adapter->tx_fifo_wrk_cnt,
3832             (long long)adapter->tx_fifo_reset_cnt);
3833         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3834             E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3835             E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3836         device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3837             E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3838             E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3839         device_printf(dev, "Num Tx descriptors avail = %d\n",
3840             adapter->num_tx_desc_avail);
3841         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3842             adapter->no_tx_desc_avail1);
3843         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3844             adapter->no_tx_desc_avail2);
3845         device_printf(dev, "Std mbuf failed = %ld\n",
3846             adapter->mbuf_alloc_failed);
3847         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3848             adapter->mbuf_cluster_failed);
3849         device_printf(dev, "Driver dropped packets = %ld\n",
3850             adapter->dropped_pkts);
3851         device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3852             adapter->no_tx_dma_setup);
3853
3854         device_printf(dev, "TXCSUM try pullup = %lu\n",
3855             adapter->tx_csum_try_pullup);
3856         device_printf(dev, "TXCSUM m_pullup(eh) called = %lu\n",
3857             adapter->tx_csum_pullup1);
3858         device_printf(dev, "TXCSUM m_pullup(eh) failed = %lu\n",
3859             adapter->tx_csum_pullup1_failed);
3860         device_printf(dev, "TXCSUM m_pullup(eh+ip) called = %lu\n",
3861             adapter->tx_csum_pullup2);
3862         device_printf(dev, "TXCSUM m_pullup(eh+ip) failed = %lu\n",
3863             adapter->tx_csum_pullup2_failed);
3864         device_printf(dev, "TXCSUM non-writable(eh) droped = %lu\n",
3865             adapter->tx_csum_drop1);
3866         device_printf(dev, "TXCSUM non-writable(eh+ip) droped = %lu\n",
3867             adapter->tx_csum_drop2);
3868 }
3869
3870 static void
3871 em_print_hw_stats(struct adapter *adapter)
3872 {
3873         device_t dev = adapter->dev;
3874
3875         device_printf(dev, "Excessive collisions = %lld\n",
3876             (long long)adapter->stats.ecol);
3877 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3878         device_printf(dev, "Symbol errors = %lld\n",
3879             (long long)adapter->stats.symerrs);
3880 #endif
3881         device_printf(dev, "Sequence errors = %lld\n",
3882             (long long)adapter->stats.sec);
3883         device_printf(dev, "Defer count = %lld\n",
3884             (long long)adapter->stats.dc);
3885         device_printf(dev, "Missed Packets = %lld\n",
3886             (long long)adapter->stats.mpc);
3887         device_printf(dev, "Receive No Buffers = %lld\n",
3888             (long long)adapter->stats.rnbc);
3889         /* RLEC is inaccurate on some hardware, calculate our own. */
3890         device_printf(dev, "Receive Length Errors = %lld\n",
3891             ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3892         device_printf(dev, "Receive errors = %lld\n",
3893             (long long)adapter->stats.rxerrc);
3894         device_printf(dev, "Crc errors = %lld\n",
3895             (long long)adapter->stats.crcerrs);
3896         device_printf(dev, "Alignment errors = %lld\n",
3897             (long long)adapter->stats.algnerrc);
3898         device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3899             (long long)adapter->stats.cexterr);
3900         device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3901         device_printf(dev, "watchdog timeouts = %ld\n",
3902             adapter->watchdog_events);
3903         device_printf(dev, "XON Rcvd = %lld\n",
3904             (long long)adapter->stats.xonrxc);
3905         device_printf(dev, "XON Xmtd = %lld\n",
3906             (long long)adapter->stats.xontxc);
3907         device_printf(dev, "XOFF Rcvd = %lld\n",
3908             (long long)adapter->stats.xoffrxc);
3909         device_printf(dev, "XOFF Xmtd = %lld\n",
3910             (long long)adapter->stats.xofftxc);
3911         device_printf(dev, "Good Packets Rcvd = %lld\n",
3912             (long long)adapter->stats.gprc);
3913         device_printf(dev, "Good Packets Xmtd = %lld\n",
3914             (long long)adapter->stats.gptc);
3915 }
3916
3917 static void
3918 em_print_nvm_info(struct adapter *adapter)
3919 {
3920         uint16_t eeprom_data;
3921         int i, j, row = 0;
3922
3923         /* Its a bit crude, but it gets the job done */
3924         kprintf("\nInterface EEPROM Dump:\n");
3925         kprintf("Offset\n0x0000  ");
3926         for (i = 0, j = 0; i < 32; i++, j++) {
3927                 if (j == 8) { /* Make the offset block */
3928                         j = 0; ++row;
3929                         kprintf("\n0x00%x0  ",row);
3930                 }
3931                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3932                 kprintf("%04x ", eeprom_data);
3933         }
3934         kprintf("\n");
3935 }
3936
3937 static int
3938 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3939 {
3940         struct adapter *adapter;
3941         struct ifnet *ifp;
3942         int error, result;
3943
3944         result = -1;
3945         error = sysctl_handle_int(oidp, &result, 0, req);
3946         if (error || !req->newptr)
3947                 return (error);
3948
3949         adapter = (struct adapter *)arg1;
3950         ifp = &adapter->arpcom.ac_if;
3951
3952         lwkt_serialize_enter(ifp->if_serializer);
3953
3954         if (result == 1)
3955                 em_print_debug_info(adapter);
3956
3957         /*
3958          * This value will cause a hex dump of the
3959          * first 32 16-bit words of the EEPROM to
3960          * the screen.
3961          */
3962         if (result == 2)
3963                 em_print_nvm_info(adapter);
3964
3965         lwkt_serialize_exit(ifp->if_serializer);
3966
3967         return (error);
3968 }
3969
3970 static int
3971 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
3972 {
3973         int error, result;
3974
3975         result = -1;
3976         error = sysctl_handle_int(oidp, &result, 0, req);
3977         if (error || !req->newptr)
3978                 return (error);
3979
3980         if (result == 1) {
3981                 struct adapter *adapter = (struct adapter *)arg1;
3982                 struct ifnet *ifp = &adapter->arpcom.ac_if;
3983
3984                 lwkt_serialize_enter(ifp->if_serializer);
3985                 em_print_hw_stats(adapter);
3986                 lwkt_serialize_exit(ifp->if_serializer);
3987         }
3988         return (error);
3989 }
3990
3991 static void
3992 em_add_sysctl(struct adapter *adapter)
3993 {
3994         sysctl_ctx_init(&adapter->sysctl_ctx);
3995         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
3996                                         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3997                                         device_get_nameunit(adapter->dev),
3998                                         CTLFLAG_RD, 0, "");
3999         if (adapter->sysctl_tree == NULL) {
4000                 device_printf(adapter->dev, "can't add sysctl node\n");
4001         } else {
4002                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4003                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4004                     OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4005                     em_sysctl_debug_info, "I", "Debug Information");
4006
4007                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4008                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4009                     OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4010                     em_sysctl_stats, "I", "Statistics");
4011
4012                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4013                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4014                     OID_AUTO, "rxd", CTLFLAG_RD,
4015                     &adapter->num_rx_desc, 0, NULL);
4016                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4017                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4018                     OID_AUTO, "txd", CTLFLAG_RD,
4019                     &adapter->num_tx_desc, 0, NULL);
4020
4021                 if (adapter->hw.mac.type >= e1000_82540) {
4022                         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4023                             SYSCTL_CHILDREN(adapter->sysctl_tree),
4024                             OID_AUTO, "int_throttle_ceil",
4025                             CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4026                             em_sysctl_int_throttle, "I",
4027                             "interrupt throttling rate");
4028                 }
4029                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4030                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4031                     OID_AUTO, "int_tx_nsegs",
4032                     CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4033                     em_sysctl_int_tx_nsegs, "I",
4034                     "# segments per TX interrupt");
4035         }
4036 }
4037
4038 static int
4039 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4040 {
4041         struct adapter *adapter = (void *)arg1;
4042         struct ifnet *ifp = &adapter->arpcom.ac_if;
4043         int error, throttle;
4044
4045         throttle = adapter->int_throttle_ceil;
4046         error = sysctl_handle_int(oidp, &throttle, 0, req);
4047         if (error || req->newptr == NULL)
4048                 return error;
4049         if (throttle < 0 || throttle > 1000000000 / 256)
4050                 return EINVAL;
4051
4052         if (throttle) {
4053                 /*
4054                  * Set the interrupt throttling rate in 256ns increments,
4055                  * recalculate sysctl value assignment to get exact frequency.
4056                  */
4057                 throttle = 1000000000 / 256 / throttle;
4058
4059                 /* Upper 16bits of ITR is reserved and should be zero */
4060                 if (throttle & 0xffff0000)
4061                         return EINVAL;
4062         }
4063
4064         lwkt_serialize_enter(ifp->if_serializer);
4065
4066         if (throttle)
4067                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4068         else
4069                 adapter->int_throttle_ceil = 0;
4070
4071         if (ifp->if_flags & IFF_RUNNING)
4072                 em_set_itr(adapter, throttle);
4073
4074         lwkt_serialize_exit(ifp->if_serializer);
4075
4076         if (bootverbose) {
4077                 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4078                           adapter->int_throttle_ceil);
4079         }
4080         return 0;
4081 }
4082
4083 static int
4084 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4085 {
4086         struct adapter *adapter = (void *)arg1;
4087         struct ifnet *ifp = &adapter->arpcom.ac_if;
4088         int error, segs;
4089
4090         segs = adapter->tx_int_nsegs;
4091         error = sysctl_handle_int(oidp, &segs, 0, req);
4092         if (error || req->newptr == NULL)
4093                 return error;
4094         if (segs <= 0)
4095                 return EINVAL;
4096
4097         lwkt_serialize_enter(ifp->if_serializer);
4098
4099         /*
4100          * Don't allow int_tx_nsegs to become:
4101          * o  Less the oact_tx_desc
4102          * o  Too large that no TX desc will cause TX interrupt to
4103          *    be generated (OACTIVE will never recover)
4104          * o  Too small that will cause tx_dd[] overflow
4105          */
4106         if (segs < adapter->oact_tx_desc ||
4107             segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4108             segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4109                 error = EINVAL;
4110         } else {
4111                 error = 0;
4112                 adapter->tx_int_nsegs = segs;
4113         }
4114
4115         lwkt_serialize_exit(ifp->if_serializer);
4116
4117         return error;
4118 }
4119
4120 static void
4121 em_set_itr(struct adapter *adapter, uint32_t itr)
4122 {
4123         E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4124         if (adapter->hw.mac.type == e1000_82574) {
4125                 int i;
4126
4127                 /*
4128                  * When using MSIX interrupts we need to
4129                  * throttle using the EITR register
4130                  */
4131                 for (i = 0; i < 4; ++i) {
4132                         E1000_WRITE_REG(&adapter->hw,
4133                             E1000_EITR_82574(i), itr);
4134                 }
4135         }
4136 }
4137
4138 static void
4139 em_disable_aspm(struct adapter *adapter)
4140 {
4141         uint16_t link_cap, link_ctrl, disable;
4142         uint8_t pcie_ptr, reg;
4143         device_t dev = adapter->dev;
4144
4145         switch (adapter->hw.mac.type) {
4146         case e1000_82571:
4147         case e1000_82572:
4148         case e1000_82573:
4149                 /*
4150                  * 82573 specification update
4151                  * #8 disable L0s
4152                  * #41 disable L1
4153                  *
4154                  * 82571/82572 specification update
4155                  # #13 disable L1
4156                  * #68 disable L0s
4157                  */
4158                 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4159                 break;
4160
4161         case e1000_82574:
4162         case e1000_82583:
4163                 /*
4164                  * 82574 specification update #20
4165                  * 82583 specification update #9
4166                  *
4167                  * There is no need to disable L1
4168                  */
4169                 disable = PCIEM_LNKCTL_ASPM_L0S;
4170                 break;
4171
4172         default:
4173                 return;
4174         }
4175
4176         pcie_ptr = pci_get_pciecap_ptr(dev);
4177         if (pcie_ptr == 0)
4178                 return;
4179
4180         link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4181         if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4182                 return;
4183
4184         if (bootverbose) {
4185                 if_printf(&adapter->arpcom.ac_if,
4186                     "disable ASPM %#02x\n", disable);
4187         }
4188
4189         reg = pcie_ptr + PCIER_LINKCTRL;
4190         link_ctrl = pci_read_config(dev, reg, 2);
4191         link_ctrl &= ~disable;
4192         pci_write_config(dev, reg, link_ctrl, 2);
4193 }