sys/vfs/hammer: Rename hammer_directory_namekey() to hammer_direntry_namekey()
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 #include <vm/vm_page2.h>
36
37 #include "hammer.h"
38
39 static int      hammer_unload_inode(struct hammer_inode *ip);
40 static void     hammer_free_inode(hammer_inode_t ip);
41 static void     hammer_flush_inode_core(hammer_inode_t ip,
42                                         hammer_flush_group_t flg, int flags);
43 static int      hammer_setup_child_callback(hammer_record_t rec, void *data);
44 #if 0
45 static int      hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
46 #endif
47 static int      hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
48                                         hammer_flush_group_t flg);
49 static int      hammer_setup_parent_inodes_helper(hammer_record_t record,
50                                         int depth, hammer_flush_group_t flg);
51 static void     hammer_inode_wakereclaims(hammer_inode_t ip);
52 static struct hammer_inostats *hammer_inode_inostats(hammer_mount_t hmp,
53                                         pid_t pid);
54 static struct hammer_inode *__hammer_find_inode(hammer_transaction_t trans,
55                                         int64_t obj_id, hammer_tid_t asof,
56                                         uint32_t localization);
57
58 struct krate hammer_gen_krate = { 1 };
59
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66         if (ip1->obj_localization < ip2->obj_localization)
67                 return(-1);
68         if (ip1->obj_localization > ip2->obj_localization)
69                 return(1);
70         if (ip1->obj_id < ip2->obj_id)
71                 return(-1);
72         if (ip1->obj_id > ip2->obj_id)
73                 return(1);
74         if (ip1->obj_asof < ip2->obj_asof)
75                 return(-1);
76         if (ip1->obj_asof > ip2->obj_asof)
77                 return(1);
78         return(0);
79 }
80
81 int
82 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
83 {
84         if (ip1->redo_fifo_start < ip2->redo_fifo_start)
85                 return(-1);
86         if (ip1->redo_fifo_start > ip2->redo_fifo_start)
87                 return(1);
88         return(0);
89 }
90
91 /*
92  * RB-Tree support for inode structures / special LOOKUP_INFO
93  */
94 static int
95 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
96 {
97         if (info->obj_localization < ip->obj_localization)
98                 return(-1);
99         if (info->obj_localization > ip->obj_localization)
100                 return(1);
101         if (info->obj_id < ip->obj_id)
102                 return(-1);
103         if (info->obj_id > ip->obj_id)
104                 return(1);
105         if (info->obj_asof < ip->obj_asof)
106                 return(-1);
107         if (info->obj_asof > ip->obj_asof)
108                 return(1);
109         return(0);
110 }
111
112 /*
113  * Used by hammer_scan_inode_snapshots() to locate all of an object's
114  * snapshots.  Note that the asof field is not tested, which we can get
115  * away with because it is the lowest-priority field.
116  */
117 static int
118 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
119 {
120         hammer_inode_info_t info = data;
121
122         if (ip->obj_localization > info->obj_localization)
123                 return(1);
124         if (ip->obj_localization < info->obj_localization)
125                 return(-1);
126         if (ip->obj_id > info->obj_id)
127                 return(1);
128         if (ip->obj_id < info->obj_id)
129                 return(-1);
130         return(0);
131 }
132
133 /*
134  * Used by hammer_unload_pseudofs() to locate all inodes associated with
135  * a particular PFS.
136  */
137 static int
138 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
139 {
140         uint32_t localization = *(uint32_t *)data;
141         if (ip->obj_localization > localization)
142                 return(1);
143         if (ip->obj_localization < localization)
144                 return(-1);
145         return(0);
146 }
147
148 /*
149  * RB-Tree support for pseudofs structures
150  */
151 static int
152 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
153 {
154         if (p1->localization < p2->localization)
155                 return(-1);
156         if (p1->localization > p2->localization)
157                 return(1);
158         return(0);
159 }
160
161
162 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
163 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
164                 hammer_inode_info_cmp, hammer_inode_info_t);
165 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
166              hammer_pfs_rb_compare, uint32_t, localization);
167
168 /*
169  * The kernel is not actively referencing this vnode but is still holding
170  * it cached.
171  *
172  * This is called from the frontend.
173  *
174  * MPALMOSTSAFE
175  */
176 int
177 hammer_vop_inactive(struct vop_inactive_args *ap)
178 {
179         struct hammer_inode *ip = VTOI(ap->a_vp);
180         hammer_mount_t hmp;
181
182         /*
183          * Degenerate case
184          */
185         if (ip == NULL) {
186                 vrecycle(ap->a_vp);
187                 return(0);
188         }
189
190         /*
191          * If the inode no longer has visibility in the filesystem try to
192          * recycle it immediately, even if the inode is dirty.  Recycling
193          * it quickly allows the system to reclaim buffer cache and VM
194          * resources which can matter a lot in a heavily loaded system.
195          *
196          * This can deadlock in vfsync() if we aren't careful.
197          *
198          * Do not queue the inode to the flusher if we still have visibility,
199          * otherwise namespace calls such as chmod will unnecessarily generate
200          * multiple inode updates.
201          */
202         if (ip->ino_data.nlinks == 0) {
203                 hmp = ip->hmp;
204                 lwkt_gettoken(&hmp->fs_token);
205                 hammer_inode_unloadable_check(ip, 0);
206                 if (ip->flags & HAMMER_INODE_MODMASK)
207                         hammer_flush_inode(ip, 0);
208                 lwkt_reltoken(&hmp->fs_token);
209                 vrecycle(ap->a_vp);
210         }
211         return(0);
212 }
213
214 /*
215  * Release the vnode association.  This is typically (but not always)
216  * the last reference on the inode.
217  *
218  * Once the association is lost we are on our own with regards to
219  * flushing the inode.
220  *
221  * We must interlock ip->vp so hammer_get_vnode() can avoid races.
222  */
223 int
224 hammer_vop_reclaim(struct vop_reclaim_args *ap)
225 {
226         struct hammer_inode *ip;
227         hammer_mount_t hmp;
228         struct vnode *vp;
229
230         vp = ap->a_vp;
231
232         if ((ip = vp->v_data) != NULL) {
233                 hmp = ip->hmp;
234                 lwkt_gettoken(&hmp->fs_token);
235                 hammer_lock_ex(&ip->lock);
236                 vp->v_data = NULL;
237                 ip->vp = NULL;
238
239                 if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
240                         ++hammer_count_reclaims;
241                         ++hmp->count_reclaims;
242                         ip->flags |= HAMMER_INODE_RECLAIM;
243                 }
244                 hammer_unlock(&ip->lock);
245                 vclrisdirty(vp);
246                 hammer_rel_inode(ip, 1);
247                 lwkt_reltoken(&hmp->fs_token);
248         }
249         return(0);
250 }
251
252 /*
253  * Inform the kernel that the inode is dirty.  This will be checked
254  * by vn_unlock().
255  *
256  * Theoretically in order to reclaim a vnode the hammer_vop_reclaim()
257  * must be called which will interlock against our inode lock, so
258  * if VRECLAIMED is not set vp->v_mount (as used by vsetisdirty())
259  * should be stable without having to acquire any new locks.
260  */
261 void
262 hammer_inode_dirty(struct hammer_inode *ip)
263 {
264         struct vnode *vp;
265
266         if ((ip->flags & HAMMER_INODE_MODMASK) &&
267             (vp = ip->vp) != NULL &&
268             (vp->v_flag & (VRECLAIMED | VISDIRTY)) == 0) {
269                 vsetisdirty(vp);
270         }
271 }
272
273 /*
274  * Return a locked vnode for the specified inode.  The inode must be
275  * referenced but NOT LOCKED on entry and will remain referenced on
276  * return.
277  *
278  * Called from the frontend.
279  */
280 int
281 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
282 {
283         hammer_mount_t hmp;
284         struct vnode *vp;
285         int error = 0;
286         uint8_t obj_type;
287
288         hmp = ip->hmp;
289
290         for (;;) {
291                 if ((vp = ip->vp) == NULL) {
292                         error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
293                         if (error)
294                                 break;
295                         hammer_lock_ex(&ip->lock);
296                         if (ip->vp != NULL) {
297                                 hammer_unlock(&ip->lock);
298                                 vp = *vpp;
299                                 vp->v_type = VBAD;
300                                 vx_put(vp);
301                                 continue;
302                         }
303                         hammer_ref(&ip->lock);
304                         vp = *vpp;
305                         ip->vp = vp;
306
307                         obj_type = ip->ino_data.obj_type;
308                         vp->v_type = hammer_get_vnode_type(obj_type);
309
310                         hammer_inode_wakereclaims(ip);
311
312                         switch(ip->ino_data.obj_type) {
313                         case HAMMER_OBJTYPE_CDEV:
314                         case HAMMER_OBJTYPE_BDEV:
315                                 vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
316                                 addaliasu(vp, ip->ino_data.rmajor,
317                                           ip->ino_data.rminor);
318                                 break;
319                         case HAMMER_OBJTYPE_FIFO:
320                                 vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
321                                 break;
322                         case HAMMER_OBJTYPE_REGFILE:
323                                 break;
324                         default:
325                                 break;
326                         }
327
328                         /*
329                          * Only mark as the root vnode if the ip is not
330                          * historical, otherwise the VFS cache will get
331                          * confused.  The other half of the special handling
332                          * is in hammer_vop_nlookupdotdot().
333                          *
334                          * Pseudo-filesystem roots can be accessed via
335                          * non-root filesystem paths and setting VROOT may
336                          * confuse the namecache.  Set VPFSROOT instead.
337                          */
338                         if (ip->obj_id == HAMMER_OBJID_ROOT) {
339                                 if (ip->obj_asof == hmp->asof) {
340                                         if (ip->obj_localization ==
341                                                 HAMMER_DEF_LOCALIZATION)
342                                                 vsetflags(vp, VROOT);
343                                         else
344                                                 vsetflags(vp, VPFSROOT);
345                                 } else {
346                                         vsetflags(vp, VPFSROOT);
347                                 }
348                         }
349
350                         vp->v_data = (void *)ip;
351                         /* vnode locked by getnewvnode() */
352                         /* make related vnode dirty if inode dirty? */
353                         hammer_unlock(&ip->lock);
354                         if (vp->v_type == VREG) {
355                                 vinitvmio(vp, ip->ino_data.size,
356                                           hammer_blocksize(ip->ino_data.size),
357                                           hammer_blockoff(ip->ino_data.size));
358                         }
359                         break;
360                 }
361
362                 /*
363                  * Interlock vnode clearing.  This does not prevent the
364                  * vnode from going into a reclaimed state but it does
365                  * prevent it from being destroyed or reused so the vget()
366                  * will properly fail.
367                  */
368                 hammer_lock_ex(&ip->lock);
369                 if ((vp = ip->vp) == NULL) {
370                         hammer_unlock(&ip->lock);
371                         continue;
372                 }
373                 vhold(vp);
374                 hammer_unlock(&ip->lock);
375
376                 /*
377                  * loop if the vget fails (aka races), or if the vp
378                  * no longer matches ip->vp.
379                  */
380                 if (vget(vp, LK_EXCLUSIVE) == 0) {
381                         if (vp == ip->vp) {
382                                 vdrop(vp);
383                                 break;
384                         }
385                         vput(vp);
386                 }
387                 vdrop(vp);
388         }
389         *vpp = vp;
390         return(error);
391 }
392
393 /*
394  * Locate all copies of the inode for obj_id compatible with the specified
395  * asof, reference, and issue the related call-back.  This routine is used
396  * for direct-io invalidation and does not create any new inodes.
397  */
398 void
399 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
400                             int (*callback)(hammer_inode_t ip, void *data),
401                             void *data)
402 {
403         hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
404                                    hammer_inode_info_cmp_all_history,
405                                    callback, iinfo);
406 }
407
408 /*
409  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
410  * do not attach or detach the related vnode (use hammer_get_vnode() for
411  * that).
412  *
413  * The flags argument is only applied for newly created inodes, and only
414  * certain flags are inherited.
415  *
416  * Called from the frontend.
417  */
418 struct hammer_inode *
419 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
420                  int64_t obj_id, hammer_tid_t asof, uint32_t localization,
421                  int flags, int *errorp)
422 {
423         hammer_mount_t hmp = trans->hmp;
424         struct hammer_node_cache *cachep;
425         struct hammer_cursor cursor;
426         struct hammer_inode *ip;
427
428
429         /*
430          * Determine if we already have an inode cached.  If we do then
431          * we are golden.
432          *
433          * If we find an inode with no vnode we have to mark the
434          * transaction such that hammer_inode_waitreclaims() is
435          * called later on to avoid building up an infinite number
436          * of inodes.  Otherwise we can continue to * add new inodes
437          * faster then they can be disposed of, even with the tsleep
438          * delay.
439          *
440          * If we find a dummy inode we return a failure so dounlink
441          * (which does another lookup) doesn't try to mess with the
442          * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
443          * to ref dummy inodes.
444          */
445 loop:
446         *errorp = 0;
447         ip = __hammer_find_inode(trans, obj_id, asof, localization);
448         if (ip) {
449                 if (ip->flags & HAMMER_INODE_DUMMY) {
450                         *errorp = ENOENT;
451                         return(NULL);
452                 }
453                 hammer_ref(&ip->lock);
454                 return(ip);
455         }
456
457         /*
458          * Allocate a new inode structure and deal with races later.
459          */
460         ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
461         ++hammer_count_inodes;
462         ++hmp->count_inodes;
463         ip->obj_id = obj_id;
464         ip->obj_asof = asof;
465         ip->obj_localization = localization;
466         ip->hmp = hmp;
467         ip->flags = flags & HAMMER_INODE_RO;
468         ip->cache[0].ip = ip;
469         ip->cache[1].ip = ip;
470         ip->cache[2].ip = ip;
471         ip->cache[3].ip = ip;
472         if (hmp->ronly)
473                 ip->flags |= HAMMER_INODE_RO;
474         ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
475                 0x7FFFFFFFFFFFFFFFLL;
476         RB_INIT(&ip->rec_tree);
477         TAILQ_INIT(&ip->target_list);
478         hammer_ref(&ip->lock);
479
480         /*
481          * Locate the on-disk inode.  If this is a PFS root we always
482          * access the current version of the root inode and (if it is not
483          * a master) always access information under it with a snapshot
484          * TID.
485          *
486          * We cache recent inode lookups in this directory in dip->cache[2].
487          * If we can't find it we assume the inode we are looking for is
488          * close to the directory inode.
489          */
490 retry:
491         cachep = NULL;
492         if (dip) {
493                 if (dip->cache[2].node)
494                         cachep = &dip->cache[2];
495                 else
496                         cachep = &dip->cache[0];
497         }
498         hammer_init_cursor(trans, &cursor, cachep, NULL);
499         cursor.key_beg.localization = localization | HAMMER_LOCALIZE_INODE;
500         cursor.key_beg.obj_id = ip->obj_id;
501         cursor.key_beg.key = 0;
502         cursor.key_beg.create_tid = 0;
503         cursor.key_beg.delete_tid = 0;
504         cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
505         cursor.key_beg.obj_type = 0;
506
507         cursor.asof = asof;
508         cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
509                        HAMMER_CURSOR_ASOF;
510
511         *errorp = hammer_btree_lookup(&cursor);
512         if (*errorp == EDEADLK) {
513                 hammer_done_cursor(&cursor);
514                 goto retry;
515         }
516
517         /*
518          * On success the B-Tree lookup will hold the appropriate
519          * buffer cache buffers and provide a pointer to the requested
520          * information.  Copy the information to the in-memory inode
521          * and cache the B-Tree node to improve future operations.
522          */
523         if (*errorp == 0) {
524                 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
525                 ip->ino_data = cursor.data->inode;
526
527                 /*
528                  * cache[0] tries to cache the location of the object inode.
529                  * The assumption is that it is near the directory inode.
530                  *
531                  * cache[1] tries to cache the location of the object data.
532                  * We might have something in the governing directory from
533                  * scan optimizations (see the strategy code in
534                  * hammer_vnops.c).
535                  *
536                  * We update dip->cache[2], if possible, with the location
537                  * of the object inode for future directory shortcuts.
538                  */
539                 hammer_cache_node(&ip->cache[0], cursor.node);
540                 if (dip) {
541                         if (dip->cache[3].node) {
542                                 hammer_cache_node(&ip->cache[1],
543                                                   dip->cache[3].node);
544                         }
545                         hammer_cache_node(&dip->cache[2], cursor.node);
546                 }
547
548                 /*
549                  * The file should not contain any data past the file size
550                  * stored in the inode.  Setting save_trunc_off to the
551                  * file size instead of max reduces B-Tree lookup overheads
552                  * on append by allowing the flusher to avoid checking for
553                  * record overwrites.
554                  */
555                 ip->save_trunc_off = ip->ino_data.size;
556
557                 /*
558                  * Locate and assign the pseudofs management structure to
559                  * the inode.
560                  */
561                 if (dip && dip->obj_localization == ip->obj_localization) {
562                         ip->pfsm = dip->pfsm;
563                         hammer_ref(&ip->pfsm->lock);
564                 } else {
565                         ip->pfsm = hammer_load_pseudofs(trans,
566                                                         ip->obj_localization,
567                                                         errorp);
568                         *errorp = 0;    /* ignore ENOENT */
569                 }
570         }
571
572         /*
573          * The inode is placed on the red-black tree and will be synced to
574          * the media when flushed or by the filesystem sync.  If this races
575          * another instantiation/lookup the insertion will fail.
576          */
577         if (*errorp == 0) {
578                 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
579                         hammer_free_inode(ip);
580                         hammer_done_cursor(&cursor);
581                         goto loop;
582                 }
583                 ip->flags |= HAMMER_INODE_ONDISK;
584         } else {
585                 if (ip->flags & HAMMER_INODE_RSV_INODES) {
586                         ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
587                         --hmp->rsv_inodes;
588                 }
589
590                 hammer_free_inode(ip);
591                 ip = NULL;
592         }
593         hammer_done_cursor(&cursor);
594
595         /*
596          * NEWINODE is only set if the inode becomes dirty later,
597          * setting it here just leads to unnecessary stalls.
598          *
599          * trans->flags |= HAMMER_TRANSF_NEWINODE;
600          */
601         return (ip);
602 }
603
604 /*
605  * Get a dummy inode to placemark a broken directory entry.
606  */
607 struct hammer_inode *
608 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
609                  int64_t obj_id, hammer_tid_t asof, uint32_t localization,
610                  int flags, int *errorp)
611 {
612         hammer_mount_t hmp = trans->hmp;
613         struct hammer_inode *ip;
614
615         /*
616          * Determine if we already have an inode cached.  If we do then
617          * we are golden.
618          *
619          * If we find an inode with no vnode we have to mark the
620          * transaction such that hammer_inode_waitreclaims() is
621          * called later on to avoid building up an infinite number
622          * of inodes.  Otherwise we can continue to * add new inodes
623          * faster then they can be disposed of, even with the tsleep
624          * delay.
625          *
626          * If we find a non-fake inode we return an error.  Only fake
627          * inodes can be returned by this routine.
628          */
629 loop:
630         *errorp = 0;
631         ip = __hammer_find_inode(trans, obj_id, asof, localization);
632         if (ip) {
633                 if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
634                         *errorp = ENOENT;
635                         return(NULL);
636                 }
637                 hammer_ref(&ip->lock);
638                 return(ip);
639         }
640
641         /*
642          * Allocate a new inode structure and deal with races later.
643          */
644         ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
645         ++hammer_count_inodes;
646         ++hmp->count_inodes;
647         ip->obj_id = obj_id;
648         ip->obj_asof = asof;
649         ip->obj_localization = localization;
650         ip->hmp = hmp;
651         ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
652         ip->cache[0].ip = ip;
653         ip->cache[1].ip = ip;
654         ip->cache[2].ip = ip;
655         ip->cache[3].ip = ip;
656         ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
657                 0x7FFFFFFFFFFFFFFFLL;
658         RB_INIT(&ip->rec_tree);
659         TAILQ_INIT(&ip->target_list);
660         hammer_ref(&ip->lock);
661
662         /*
663          * Populate the dummy inode.  Leave everything zero'd out.
664          *
665          * (ip->ino_leaf and ip->ino_data)
666          *
667          * Make the dummy inode a FIFO object which most copy programs
668          * will properly ignore.
669          */
670         ip->save_trunc_off = ip->ino_data.size;
671         ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
672
673         /*
674          * Locate and assign the pseudofs management structure to
675          * the inode.
676          */
677         if (dip && dip->obj_localization == ip->obj_localization) {
678                 ip->pfsm = dip->pfsm;
679                 hammer_ref(&ip->pfsm->lock);
680         } else {
681                 ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
682                                                 errorp);
683                 *errorp = 0;    /* ignore ENOENT */
684         }
685
686         /*
687          * The inode is placed on the red-black tree and will be synced to
688          * the media when flushed or by the filesystem sync.  If this races
689          * another instantiation/lookup the insertion will fail.
690          *
691          * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
692          */
693         if (*errorp == 0) {
694                 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
695                         hammer_free_inode(ip);
696                         goto loop;
697                 }
698         } else {
699                 if (ip->flags & HAMMER_INODE_RSV_INODES) {
700                         ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
701                         --hmp->rsv_inodes;
702                 }
703                 hammer_free_inode(ip);
704                 ip = NULL;
705         }
706         trans->flags |= HAMMER_TRANSF_NEWINODE;
707         return (ip);
708 }
709
710 /*
711  * Return a referenced inode only if it is in our inode cache.
712  * Dummy inodes do not count.
713  */
714 struct hammer_inode *
715 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
716                   hammer_tid_t asof, uint32_t localization)
717 {
718         struct hammer_inode *ip;
719
720         ip = __hammer_find_inode(trans, obj_id, asof, localization);
721         if (ip) {
722                 if (ip->flags & HAMMER_INODE_DUMMY)
723                         ip = NULL;
724                 else
725                         hammer_ref(&ip->lock);
726         }
727         return(ip);
728 }
729
730 /*
731  * Return a referenced inode only if it is in our inode cache.
732  * This function does not reference inode.
733  */
734 static struct hammer_inode *
735 __hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
736                   hammer_tid_t asof, uint32_t localization)
737 {
738         hammer_mount_t hmp = trans->hmp;
739         struct hammer_inode_info iinfo;
740         struct hammer_inode *ip;
741
742         iinfo.obj_id = obj_id;
743         iinfo.obj_asof = asof;
744         iinfo.obj_localization = localization;
745
746         ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
747
748         return(ip);
749 }
750
751 /*
752  * Create a new filesystem object, returning the inode in *ipp.  The
753  * returned inode will be referenced.  The inode is created in-memory.
754  *
755  * If pfsm is non-NULL the caller wishes to create the root inode for
756  * a non-root PFS.
757  */
758 int
759 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
760                     struct ucred *cred,
761                     hammer_inode_t dip, const char *name, int namelen,
762                     hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
763 {
764         hammer_mount_t hmp;
765         hammer_inode_t ip;
766         uid_t xuid;
767         int error;
768         int64_t namekey;
769         uint32_t dummy;
770
771         hmp = trans->hmp;
772
773         /*
774          * Disallow the creation of new inodes in directories which
775          * have been deleted.  In HAMMER, this will cause a record
776          * syncing assertion later on in the flush code.
777          */
778         if (dip && dip->ino_data.nlinks == 0) {
779                 *ipp = NULL;
780                 return (EINVAL);
781         }
782
783         /*
784          * Allocate inode
785          */
786         ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
787         ++hammer_count_inodes;
788         ++hmp->count_inodes;
789         trans->flags |= HAMMER_TRANSF_NEWINODE;
790
791         if (pfsm) {
792                 KKASSERT(pfsm->localization != HAMMER_DEF_LOCALIZATION);
793                 ip->obj_id = HAMMER_OBJID_ROOT;
794                 ip->obj_localization = pfsm->localization;
795         } else {
796                 KKASSERT(dip != NULL);
797                 namekey = hammer_direntry_namekey(dip, name, namelen, &dummy);
798                 ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
799                 ip->obj_localization = dip->obj_localization;
800         }
801
802         KKASSERT(ip->obj_id != 0);
803         ip->obj_asof = hmp->asof;
804         ip->hmp = hmp;
805         ip->flush_state = HAMMER_FST_IDLE;
806         ip->flags = HAMMER_INODE_DDIRTY |
807                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
808         ip->cache[0].ip = ip;
809         ip->cache[1].ip = ip;
810         ip->cache[2].ip = ip;
811         ip->cache[3].ip = ip;
812
813         ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
814         /* ip->save_trunc_off = 0; (already zero) */
815         RB_INIT(&ip->rec_tree);
816         TAILQ_INIT(&ip->target_list);
817
818         ip->ino_data.atime = trans->time;
819         ip->ino_data.mtime = trans->time;
820         ip->ino_data.size = 0;
821         ip->ino_data.nlinks = 0;
822
823         /*
824          * A nohistory designator on the parent directory is inherited by
825          * the child.  We will do this even for pseudo-fs creation... the
826          * sysad can turn it off.
827          */
828         if (dip) {
829                 ip->ino_data.uflags = dip->ino_data.uflags &
830                                       (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
831         }
832
833         ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
834         ip->ino_leaf.base.localization = ip->obj_localization |
835                                          HAMMER_LOCALIZE_INODE;
836         ip->ino_leaf.base.obj_id = ip->obj_id;
837         ip->ino_leaf.base.key = 0;
838         ip->ino_leaf.base.create_tid = 0;
839         ip->ino_leaf.base.delete_tid = 0;
840         ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
841         ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
842
843         ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
844         ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
845         ip->ino_data.mode = vap->va_mode;
846         ip->ino_data.ctime = trans->time;
847
848         /*
849          * If we are running version 2 or greater directory entries are
850          * inode-localized instead of data-localized.
851          */
852         if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
853                 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
854                         ip->ino_data.cap_flags |=
855                                 HAMMER_INODE_CAP_DIR_LOCAL_INO;
856                 }
857         }
858         if (trans->hmp->version >= HAMMER_VOL_VERSION_SIX) {
859                 if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
860                         ip->ino_data.cap_flags |=
861                                 HAMMER_INODE_CAP_DIRHASH_ALG1;
862                 }
863         }
864
865         /*
866          * Setup the ".." pointer.  This only needs to be done for directories
867          * but we do it for all objects as a recovery aid if dip exists.
868          * The inode is probably a PFS root if dip is NULL.
869          */
870         if (dip)
871                 ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
872
873         switch(ip->ino_leaf.base.obj_type) {
874         case HAMMER_OBJTYPE_CDEV:
875         case HAMMER_OBJTYPE_BDEV:
876                 ip->ino_data.rmajor = vap->va_rmajor;
877                 ip->ino_data.rminor = vap->va_rminor;
878                 break;
879         default:
880                 break;
881         }
882
883         /*
884          * Calculate default uid/gid and overwrite with information from
885          * the vap.
886          */
887         if (dip) {
888                 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
889                 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
890                                              xuid, cred, &vap->va_mode);
891         } else {
892                 xuid = 0;
893         }
894         ip->ino_data.mode = vap->va_mode;
895
896         if (vap->va_vaflags & VA_UID_UUID_VALID)
897                 ip->ino_data.uid = vap->va_uid_uuid;
898         else if (vap->va_uid != (uid_t)VNOVAL)
899                 hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
900         else
901                 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
902
903         if (vap->va_vaflags & VA_GID_UUID_VALID)
904                 ip->ino_data.gid = vap->va_gid_uuid;
905         else if (vap->va_gid != (gid_t)VNOVAL)
906                 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
907         else if (dip)
908                 ip->ino_data.gid = dip->ino_data.gid;
909
910         hammer_ref(&ip->lock);
911
912         if (pfsm) {
913                 ip->pfsm = pfsm;
914                 hammer_ref(&pfsm->lock);
915                 error = 0;
916         } else if (dip->obj_localization == ip->obj_localization) {
917                 ip->pfsm = dip->pfsm;
918                 hammer_ref(&ip->pfsm->lock);
919                 error = 0;
920         } else {
921                 ip->pfsm = hammer_load_pseudofs(trans,
922                                                 ip->obj_localization,
923                                                 &error);
924                 error = 0;      /* ignore ENOENT */
925         }
926
927         if (error) {
928                 hammer_free_inode(ip);
929                 ip = NULL;
930         } else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
931                 hpanic("duplicate obj_id %llx", (long long)ip->obj_id);
932                 /* not reached */
933                 hammer_free_inode(ip);
934         }
935         *ipp = ip;
936         return(error);
937 }
938
939 /*
940  * Final cleanup / freeing of an inode structure
941  */
942 static void
943 hammer_free_inode(hammer_inode_t ip)
944 {
945         struct hammer_mount *hmp;
946
947         hmp = ip->hmp;
948         KKASSERT(hammer_oneref(&ip->lock));
949         hammer_uncache_node(&ip->cache[0]);
950         hammer_uncache_node(&ip->cache[1]);
951         hammer_uncache_node(&ip->cache[2]);
952         hammer_uncache_node(&ip->cache[3]);
953         hammer_inode_wakereclaims(ip);
954         if (ip->objid_cache)
955                 hammer_clear_objid(ip);
956         --hammer_count_inodes;
957         --hmp->count_inodes;
958         if (ip->pfsm) {
959                 hammer_rel_pseudofs(hmp, ip->pfsm);
960                 ip->pfsm = NULL;
961         }
962         kfree(ip, hmp->m_inodes);
963 }
964
965 /*
966  * Retrieve pseudo-fs data.  NULL will never be returned.
967  *
968  * If an error occurs *errorp will be set and a default template is returned,
969  * otherwise *errorp is set to 0.  Typically when an error occurs it will
970  * be ENOENT.
971  */
972 hammer_pseudofs_inmem_t
973 hammer_load_pseudofs(hammer_transaction_t trans,
974                      uint32_t localization, int *errorp)
975 {
976         hammer_mount_t hmp = trans->hmp;
977         hammer_inode_t ip;
978         hammer_pseudofs_inmem_t pfsm;
979         struct hammer_cursor cursor;
980         int bytes;
981
982 retry:
983         pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
984         if (pfsm) {
985                 hammer_ref(&pfsm->lock);
986                 *errorp = 0;
987                 return(pfsm);
988         }
989
990         /*
991          * PFS records are associated with the root inode (not the PFS root
992          * inode, but the real root).  Avoid an infinite recursion if loading
993          * the PFS for the real root.
994          */
995         if (localization) {
996                 ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
997                                       HAMMER_MAX_TID,
998                                       HAMMER_DEF_LOCALIZATION, 0, errorp);
999         } else {
1000                 ip = NULL;
1001         }
1002
1003         pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
1004         pfsm->localization = localization;
1005         pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
1006         pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
1007
1008         hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
1009         cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION |
1010                                       HAMMER_LOCALIZE_MISC;
1011         cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1012         cursor.key_beg.create_tid = 0;
1013         cursor.key_beg.delete_tid = 0;
1014         cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1015         cursor.key_beg.obj_type = 0;
1016         cursor.key_beg.key = localization;
1017         cursor.asof = HAMMER_MAX_TID;
1018         cursor.flags |= HAMMER_CURSOR_ASOF;
1019
1020         if (ip)
1021                 *errorp = hammer_ip_lookup(&cursor);
1022         else
1023                 *errorp = hammer_btree_lookup(&cursor);
1024         if (*errorp == 0) {
1025                 *errorp = hammer_ip_resolve_data(&cursor);
1026                 if (*errorp == 0) {
1027                         if (hammer_is_pfs_deleted(&cursor.data->pfsd)) {
1028                                 *errorp = ENOENT;
1029                         } else {
1030                                 bytes = cursor.leaf->data_len;
1031                                 if (bytes > sizeof(pfsm->pfsd))
1032                                         bytes = sizeof(pfsm->pfsd);
1033                                 bcopy(cursor.data, &pfsm->pfsd, bytes);
1034                         }
1035                 }
1036         }
1037         hammer_done_cursor(&cursor);
1038
1039         pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1040         hammer_ref(&pfsm->lock);
1041         if (ip)
1042                 hammer_rel_inode(ip, 0);
1043         if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
1044                 kfree(pfsm, hmp->m_misc);
1045                 goto retry;
1046         }
1047         return(pfsm);
1048 }
1049
1050 /*
1051  * Store pseudo-fs data.  The backend will automatically delete any prior
1052  * on-disk pseudo-fs data but we have to delete in-memory versions.
1053  */
1054 int
1055 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1056 {
1057         struct hammer_cursor cursor;
1058         hammer_record_t record;
1059         hammer_inode_t ip;
1060         int error;
1061
1062         /*
1063          * PFS records are associated with the root inode (not the PFS root
1064          * inode, but the real root).
1065          */
1066         ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1067                               HAMMER_DEF_LOCALIZATION, 0, &error);
1068 retry:
1069         pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1070         hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1071         cursor.key_beg.localization = ip->obj_localization |
1072                                       HAMMER_LOCALIZE_MISC;
1073         cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1074         cursor.key_beg.create_tid = 0;
1075         cursor.key_beg.delete_tid = 0;
1076         cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1077         cursor.key_beg.obj_type = 0;
1078         cursor.key_beg.key = pfsm->localization;
1079         cursor.asof = HAMMER_MAX_TID;
1080         cursor.flags |= HAMMER_CURSOR_ASOF;
1081
1082         /*
1083          * Replace any in-memory version of the record.
1084          */
1085         error = hammer_ip_lookup(&cursor);
1086         if (error == 0 && hammer_cursor_inmem(&cursor)) {
1087                 record = cursor.iprec;
1088                 if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1089                         KKASSERT(cursor.deadlk_rec == NULL);
1090                         hammer_ref(&record->lock);
1091                         cursor.deadlk_rec = record;
1092                         error = EDEADLK;
1093                 } else {
1094                         record->flags |= HAMMER_RECF_DELETED_FE;
1095                         error = 0;
1096                 }
1097         }
1098
1099         /*
1100          * Allocate replacement general record.  The backend flush will
1101          * delete any on-disk version of the record.
1102          */
1103         if (error == 0 || error == ENOENT) {
1104                 record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1105                 record->type = HAMMER_MEM_RECORD_GENERAL;
1106
1107                 record->leaf.base.localization = ip->obj_localization |
1108                                                  HAMMER_LOCALIZE_MISC;
1109                 record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1110                 record->leaf.base.key = pfsm->localization;
1111                 record->leaf.data_len = sizeof(pfsm->pfsd);
1112                 bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1113                 error = hammer_ip_add_record(trans, record);
1114         }
1115         hammer_done_cursor(&cursor);
1116         if (error == EDEADLK)
1117                 goto retry;
1118         hammer_rel_inode(ip, 0);
1119         return(error);
1120 }
1121
1122 /*
1123  * Create a root directory for a PFS if one does not alredy exist.
1124  *
1125  * The PFS root stands alone so we must also bump the nlinks count
1126  * to prevent it from being destroyed on release.
1127  *
1128  * Make sure a caller isn't creating a PFS from non-root PFS.
1129  */
1130 int
1131 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1132                        hammer_pseudofs_inmem_t pfsm, hammer_inode_t dip)
1133 {
1134         hammer_inode_t ip;
1135         struct vattr vap;
1136         int error;
1137
1138         ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1139                               pfsm->localization, 0, &error);
1140         if (ip == NULL) {
1141                 if (lo_to_pfs(dip->obj_localization) != HAMMER_ROOT_PFSID) {
1142                         hmkprintf(trans->hmp,
1143                                 "Warning: creating a PFS from non-root PFS "
1144                                 "is not allowed\n");
1145                         return(EINVAL);
1146                 }
1147                 vattr_null(&vap);
1148                 vap.va_mode = 0755;
1149                 vap.va_type = VDIR;
1150                 error = hammer_create_inode(trans, &vap, cred,
1151                                             NULL, NULL, 0,
1152                                             pfsm, &ip);
1153                 if (error == 0) {
1154                         ++ip->ino_data.nlinks;
1155                         hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
1156                 }
1157         }
1158         if (ip)
1159                 hammer_rel_inode(ip, 0);
1160         return(error);
1161 }
1162
1163 /*
1164  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1165  * if we are unable to disassociate all the inodes.
1166  */
1167 static
1168 int
1169 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1170 {
1171         int res;
1172
1173         hammer_ref(&ip->lock);
1174         if (ip->vp && (ip->vp->v_flag & VPFSROOT)) {
1175                 /*
1176                  * The hammer pfs-upgrade directive itself might have the
1177                  * root of the pfs open.  Just allow it.
1178                  */
1179                 res = 0;
1180         } else {
1181                 /*
1182                  * Don't allow any subdirectories or files to be open.
1183                  */
1184                 if (hammer_isactive(&ip->lock) == 2 && ip->vp)
1185                         vclean_unlocked(ip->vp);
1186                 if (hammer_isactive(&ip->lock) == 1 && ip->vp == NULL)
1187                         res = 0;
1188                 else
1189                         res = -1;       /* stop, someone is using the inode */
1190         }
1191         hammer_rel_inode(ip, 0);
1192         return(res);
1193 }
1194
1195 int
1196 hammer_unload_pseudofs(hammer_transaction_t trans, uint32_t localization)
1197 {
1198         int res;
1199         int try;
1200
1201         for (try = res = 0; try < 4; ++try) {
1202                 res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1203                                            hammer_inode_pfs_cmp,
1204                                            hammer_unload_pseudofs_callback,
1205                                            &localization);
1206                 if (res == 0 && try > 1)
1207                         break;
1208                 hammer_flusher_sync(trans->hmp);
1209         }
1210         if (res != 0)
1211                 res = ENOTEMPTY;
1212         return(res);
1213 }
1214
1215
1216 /*
1217  * Release a reference on a PFS
1218  */
1219 void
1220 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1221 {
1222         hammer_rel(&pfsm->lock);
1223         if (hammer_norefs(&pfsm->lock)) {
1224                 RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1225                 kfree(pfsm, hmp->m_misc);
1226         }
1227 }
1228
1229 /*
1230  * Called by hammer_sync_inode().
1231  */
1232 static int
1233 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1234 {
1235         hammer_transaction_t trans = cursor->trans;
1236         hammer_record_t record;
1237         int error;
1238         int redirty;
1239
1240 retry:
1241         error = 0;
1242
1243         /*
1244          * If the inode has a presence on-disk then locate it and mark
1245          * it deleted, setting DELONDISK.
1246          *
1247          * The record may or may not be physically deleted, depending on
1248          * the retention policy.
1249          */
1250         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1251             HAMMER_INODE_ONDISK) {
1252                 hammer_normalize_cursor(cursor);
1253                 cursor->key_beg.localization = ip->obj_localization |
1254                                                HAMMER_LOCALIZE_INODE;
1255                 cursor->key_beg.obj_id = ip->obj_id;
1256                 cursor->key_beg.key = 0;
1257                 cursor->key_beg.create_tid = 0;
1258                 cursor->key_beg.delete_tid = 0;
1259                 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1260                 cursor->key_beg.obj_type = 0;
1261                 cursor->asof = ip->obj_asof;
1262                 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1263                 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1264                 cursor->flags |= HAMMER_CURSOR_BACKEND;
1265
1266                 error = hammer_btree_lookup(cursor);
1267                 if (hammer_debug_inode)
1268                         hdkprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1269
1270                 if (error == 0) {
1271                         error = hammer_ip_delete_record(cursor, ip, trans->tid);
1272                         if (hammer_debug_inode)
1273                                 hdkprintf("error %d\n", error);
1274                         if (error == 0) {
1275                                 ip->flags |= HAMMER_INODE_DELONDISK;
1276                         }
1277                         if (cursor->node)
1278                                 hammer_cache_node(&ip->cache[0], cursor->node);
1279                 }
1280                 if (error == EDEADLK) {
1281                         hammer_done_cursor(cursor);
1282                         error = hammer_init_cursor(trans, cursor,
1283                                                    &ip->cache[0], ip);
1284                         if (hammer_debug_inode)
1285                                 hdkprintf("IPDED %p %d\n", ip, error);
1286                         if (error == 0)
1287                                 goto retry;
1288                 }
1289         }
1290
1291         /*
1292          * Ok, write out the initial record or a new record (after deleting
1293          * the old one), unless the DELETED flag is set.  This routine will
1294          * clear DELONDISK if it writes out a record.
1295          *
1296          * Update our inode statistics if this is the first application of
1297          * the inode on-disk.
1298          */
1299         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1300                 /*
1301                  * Generate a record and write it to the media.  We clean-up
1302                  * the state before releasing so we do not have to set-up
1303                  * a flush_group.
1304                  */
1305                 record = hammer_alloc_mem_record(ip, 0);
1306                 record->type = HAMMER_MEM_RECORD_INODE;
1307                 record->flush_state = HAMMER_FST_FLUSH;
1308                 record->leaf = ip->sync_ino_leaf;
1309                 record->leaf.base.create_tid = trans->tid;
1310                 record->leaf.data_len = sizeof(ip->sync_ino_data);
1311                 record->leaf.create_ts = trans->time32;
1312                 record->data = (void *)&ip->sync_ino_data;
1313                 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1314
1315                 /*
1316                  * If this flag is set we cannot sync the new file size
1317                  * because we haven't finished related truncations.  The
1318                  * inode will be flushed in another flush group to finish
1319                  * the job.
1320                  */
1321                 if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1322                     ip->sync_ino_data.size != ip->ino_data.size) {
1323                         redirty = 1;
1324                         ip->sync_ino_data.size = ip->ino_data.size;
1325                 } else {
1326                         redirty = 0;
1327                 }
1328
1329                 for (;;) {
1330                         error = hammer_ip_sync_record_cursor(cursor, record);
1331                         if (hammer_debug_inode)
1332                                 hdkprintf("GENREC %p rec %08x %d\n",
1333                                         ip, record->flags, error);
1334                         if (error != EDEADLK)
1335                                 break;
1336                         hammer_done_cursor(cursor);
1337                         error = hammer_init_cursor(trans, cursor,
1338                                                    &ip->cache[0], ip);
1339                         if (hammer_debug_inode)
1340                                 hdkprintf("GENREC reinit %d\n", error);
1341                         if (error)
1342                                 break;
1343                 }
1344
1345                 /*
1346                  * Note:  The record was never on the inode's record tree
1347                  * so just wave our hands importantly and destroy it.
1348                  */
1349                 record->flags |= HAMMER_RECF_COMMITTED;
1350                 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1351                 record->flush_state = HAMMER_FST_IDLE;
1352                 ++ip->rec_generation;
1353                 hammer_rel_mem_record(record);
1354
1355                 /*
1356                  * Finish up.
1357                  */
1358                 if (error == 0) {
1359                         if (hammer_debug_inode)
1360                                 hdkprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1361                         ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1362                                             HAMMER_INODE_SDIRTY |
1363                                             HAMMER_INODE_ATIME |
1364                                             HAMMER_INODE_MTIME);
1365                         ip->flags &= ~HAMMER_INODE_DELONDISK;
1366                         if (redirty)
1367                                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1368
1369                         /*
1370                          * Root volume count of inodes
1371                          */
1372                         hammer_sync_lock_sh(trans);
1373                         if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1374                                 hammer_modify_volume_field(trans,
1375                                                            trans->rootvol,
1376                                                            vol0_stat_inodes);
1377                                 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1378                                 hammer_modify_volume_done(trans->rootvol);
1379                                 ip->flags |= HAMMER_INODE_ONDISK;
1380                                 if (hammer_debug_inode)
1381                                         hdkprintf("NOWONDISK %p\n", ip);
1382                         }
1383                         hammer_sync_unlock(trans);
1384                 }
1385         }
1386
1387         /*
1388          * If the inode has been destroyed, clean out any left-over flags
1389          * that may have been set by the frontend.
1390          */
1391         if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1392                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1393                                     HAMMER_INODE_SDIRTY |
1394                                     HAMMER_INODE_ATIME |
1395                                     HAMMER_INODE_MTIME);
1396         }
1397         return(error);
1398 }
1399
1400 /*
1401  * Update only the itimes fields.
1402  *
1403  * ATIME can be updated without generating any UNDO.  MTIME is updated
1404  * with UNDO so it is guaranteed to be synchronized properly in case of
1405  * a crash.
1406  *
1407  * Neither field is included in the B-Tree leaf element's CRC, which is how
1408  * we can get away with updating ATIME the way we do.
1409  */
1410 static int
1411 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1412 {
1413         hammer_transaction_t trans = cursor->trans;
1414         int error;
1415
1416 retry:
1417         if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1418             HAMMER_INODE_ONDISK) {
1419                 return(0);
1420         }
1421
1422         hammer_normalize_cursor(cursor);
1423         cursor->key_beg.localization = ip->obj_localization |
1424                                        HAMMER_LOCALIZE_INODE;
1425         cursor->key_beg.obj_id = ip->obj_id;
1426         cursor->key_beg.key = 0;
1427         cursor->key_beg.create_tid = 0;
1428         cursor->key_beg.delete_tid = 0;
1429         cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1430         cursor->key_beg.obj_type = 0;
1431         cursor->asof = ip->obj_asof;
1432         cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1433         cursor->flags |= HAMMER_CURSOR_ASOF;
1434         cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1435         cursor->flags |= HAMMER_CURSOR_GET_DATA;
1436         cursor->flags |= HAMMER_CURSOR_BACKEND;
1437
1438         error = hammer_btree_lookup(cursor);
1439         if (error == 0) {
1440                 hammer_cache_node(&ip->cache[0], cursor->node);
1441                 if (ip->sync_flags & HAMMER_INODE_MTIME) {
1442                         /*
1443                          * Updating MTIME requires an UNDO.  Just cover
1444                          * both atime and mtime.
1445                          */
1446                         hammer_sync_lock_sh(trans);
1447                         hammer_modify_buffer(trans, cursor->data_buffer,
1448                                 &cursor->data->inode.mtime,
1449                                 sizeof(cursor->data->inode.atime) +
1450                                 sizeof(cursor->data->inode.mtime));
1451                         cursor->data->inode.atime = ip->sync_ino_data.atime;
1452                         cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1453                         hammer_modify_buffer_done(cursor->data_buffer);
1454                         hammer_sync_unlock(trans);
1455                 } else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1456                         /*
1457                          * Updating atime only can be done in-place with
1458                          * no UNDO.
1459                          */
1460                         hammer_sync_lock_sh(trans);
1461                         hammer_modify_buffer_noundo(trans, cursor->data_buffer);
1462                         cursor->data->inode.atime = ip->sync_ino_data.atime;
1463                         hammer_modify_buffer_done(cursor->data_buffer);
1464                         hammer_sync_unlock(trans);
1465                 }
1466                 ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1467         }
1468         if (error == EDEADLK) {
1469                 hammer_done_cursor(cursor);
1470                 error = hammer_init_cursor(trans, cursor, &ip->cache[0], ip);
1471                 if (error == 0)
1472                         goto retry;
1473         }
1474         return(error);
1475 }
1476
1477 /*
1478  * Release a reference on an inode, flush as requested.
1479  *
1480  * On the last reference we queue the inode to the flusher for its final
1481  * disposition.
1482  */
1483 void
1484 hammer_rel_inode(struct hammer_inode *ip, int flush)
1485 {
1486         /*
1487          * Handle disposition when dropping the last ref.
1488          */
1489         for (;;) {
1490                 if (hammer_oneref(&ip->lock)) {
1491                         /*
1492                          * Determine whether on-disk action is needed for
1493                          * the inode's final disposition.
1494                          */
1495                         KKASSERT(ip->vp == NULL);
1496                         hammer_inode_unloadable_check(ip, 0);
1497                         if (ip->flags & HAMMER_INODE_MODMASK) {
1498                                 hammer_flush_inode(ip, 0);
1499                         } else if (hammer_oneref(&ip->lock)) {
1500                                 hammer_unload_inode(ip);
1501                                 break;
1502                         }
1503                 } else {
1504                         if (flush)
1505                                 hammer_flush_inode(ip, 0);
1506
1507                         /*
1508                          * The inode still has multiple refs, try to drop
1509                          * one ref.
1510                          */
1511                         KKASSERT(hammer_isactive(&ip->lock) >= 1);
1512                         if (hammer_isactive(&ip->lock) > 1) {
1513                                 hammer_rel(&ip->lock);
1514                                 break;
1515                         }
1516                 }
1517         }
1518 }
1519
1520 /*
1521  * Unload and destroy the specified inode.  Must be called with one remaining
1522  * reference.  The reference is disposed of.
1523  *
1524  * The inode must be completely clean.
1525  */
1526 static int
1527 hammer_unload_inode(struct hammer_inode *ip)
1528 {
1529         hammer_mount_t hmp = ip->hmp;
1530
1531         KASSERT(hammer_oneref(&ip->lock),
1532                 ("hammer_unload_inode: %d refs", hammer_isactive(&ip->lock)));
1533         KKASSERT(ip->vp == NULL);
1534         KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1535         KKASSERT(ip->cursor_ip_refs == 0);
1536         KKASSERT(hammer_notlocked(&ip->lock));
1537         KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1538
1539         KKASSERT(RB_EMPTY(&ip->rec_tree));
1540         KKASSERT(TAILQ_EMPTY(&ip->target_list));
1541
1542         if (ip->flags & HAMMER_INODE_RDIRTY) {
1543                 RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1544                 ip->flags &= ~HAMMER_INODE_RDIRTY;
1545         }
1546         RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1547
1548         hammer_free_inode(ip);
1549         return(0);
1550 }
1551
1552 /*
1553  * Called during unmounting if a critical error occured.  The in-memory
1554  * inode and all related structures are destroyed.
1555  *
1556  * If a critical error did not occur the unmount code calls the standard
1557  * release and asserts that the inode is gone.
1558  */
1559 int
1560 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1561 {
1562         hammer_record_t rec;
1563
1564         /*
1565          * Get rid of the inodes in-memory records, regardless of their
1566          * state, and clear the mod-mask.
1567          */
1568         while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1569                 TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1570                 rec->target_ip = NULL;
1571                 if (rec->flush_state == HAMMER_FST_SETUP)
1572                         rec->flush_state = HAMMER_FST_IDLE;
1573         }
1574         while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1575                 if (rec->flush_state == HAMMER_FST_FLUSH)
1576                         --rec->flush_group->refs;
1577                 else
1578                         hammer_ref(&rec->lock);
1579                 KKASSERT(hammer_oneref(&rec->lock));
1580                 rec->flush_state = HAMMER_FST_IDLE;
1581                 rec->flush_group = NULL;
1582                 rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1583                 rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1584                 ++ip->rec_generation;
1585                 hammer_rel_mem_record(rec);
1586         }
1587         ip->flags &= ~HAMMER_INODE_MODMASK;
1588         ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1589         KKASSERT(ip->vp == NULL);
1590
1591         /*
1592          * Remove the inode from any flush group, force it idle.  FLUSH
1593          * and SETUP states have an inode ref.
1594          */
1595         switch(ip->flush_state) {
1596         case HAMMER_FST_FLUSH:
1597                 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1598                 --ip->flush_group->refs;
1599                 ip->flush_group = NULL;
1600                 /* fall through */
1601         case HAMMER_FST_SETUP:
1602                 hammer_rel(&ip->lock);
1603                 ip->flush_state = HAMMER_FST_IDLE;
1604                 /* fall through */
1605         case HAMMER_FST_IDLE:
1606                 break;
1607         }
1608
1609         /*
1610          * There shouldn't be any associated vnode.  The unload needs at
1611          * least one ref, if we do have a vp steal its ip ref.
1612          */
1613         if (ip->vp) {
1614                 hdkprintf("Unexpected vnode association ip %p vp %p\n",
1615                         ip, ip->vp);
1616                 ip->vp->v_data = NULL;
1617                 ip->vp = NULL;
1618         } else {
1619                 hammer_ref(&ip->lock);
1620         }
1621         hammer_unload_inode(ip);
1622         return(0);
1623 }
1624
1625 /*
1626  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1627  * the read-only flag for cached inodes.
1628  *
1629  * This routine is called from a RB_SCAN().
1630  */
1631 int
1632 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1633 {
1634         hammer_mount_t hmp = ip->hmp;
1635
1636         if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1637                 ip->flags |= HAMMER_INODE_RO;
1638         else
1639                 ip->flags &= ~HAMMER_INODE_RO;
1640         return(0);
1641 }
1642
1643 /*
1644  * A transaction has modified an inode, requiring updates as specified by
1645  * the passed flags.
1646  *
1647  * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1648  *                      and not including size changes due to write-append
1649  *                      (but other size changes are included).
1650  * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1651  *                      write-append.
1652  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1653  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1654  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1655  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1656  */
1657 void
1658 hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
1659 {
1660         /*
1661          * ronly of 0 or 2 does not trigger assertion.
1662          * 2 is a special error state
1663          */
1664         KKASSERT(ip->hmp->ronly != 1 ||
1665                   (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1666                             HAMMER_INODE_SDIRTY |
1667                             HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1668                             HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1669         if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1670                 ip->flags |= HAMMER_INODE_RSV_INODES;
1671                 ++ip->hmp->rsv_inodes;
1672         }
1673
1674         /*
1675          * Set the NEWINODE flag in the transaction if the inode
1676          * transitions to a dirty state.  This is used to track
1677          * the load on the inode cache.
1678          */
1679         if (trans &&
1680             (ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1681             (flags & HAMMER_INODE_MODMASK)) {
1682                 trans->flags |= HAMMER_TRANSF_NEWINODE;
1683         }
1684         if (flags & HAMMER_INODE_MODMASK)
1685                 hammer_inode_dirty(ip);
1686         ip->flags |= flags;
1687 }
1688
1689 /*
1690  * Attempt to quickly update the atime for a hammer inode.  Return 0 on
1691  * success, -1 on failure.
1692  *
1693  * We attempt to update the atime with only the ip lock and not the
1694  * whole filesystem lock in order to improve concurrency.  We can only
1695  * do this safely if the ATIME flag is already pending on the inode.
1696  *
1697  * This function is called via a vnops path (ip pointer is stable) without
1698  * fs_token held.
1699  */
1700 int
1701 hammer_update_atime_quick(hammer_inode_t ip)
1702 {
1703         struct timeval tv;
1704         int res = -1;
1705
1706         if ((ip->flags & HAMMER_INODE_RO) ||
1707             (ip->hmp->mp->mnt_flag & MNT_NOATIME)) {
1708                 /*
1709                  * Silently indicate success on read-only mount/snap
1710                  */
1711                 res = 0;
1712         } else if (ip->flags & HAMMER_INODE_ATIME) {
1713                 /*
1714                  * Double check with inode lock held against backend.  This
1715                  * is only safe if all we need to do is update
1716                  * ino_data.atime.
1717                  */
1718                 getmicrotime(&tv);
1719                 hammer_lock_ex(&ip->lock);
1720                 if (ip->flags & HAMMER_INODE_ATIME) {
1721                         ip->ino_data.atime =
1722                             (unsigned long)tv.tv_sec * 1000000ULL + tv.tv_usec;
1723                         res = 0;
1724                 }
1725                 hammer_unlock(&ip->lock);
1726         }
1727         return res;
1728 }
1729
1730 /*
1731  * Request that an inode be flushed.  This whole mess cannot block and may
1732  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1733  * actively flush the inode until the flush can be done.
1734  *
1735  * The inode may already be flushing, or may be in a setup state.  We can
1736  * place the inode in a flushing state if it is currently idle and flag it
1737  * to reflush if it is currently flushing.
1738  *
1739  * Upon return if the inode could not be flushed due to a setup
1740  * dependancy, then it will be automatically flushed when the dependancy
1741  * is satisfied.
1742  */
1743 void
1744 hammer_flush_inode(hammer_inode_t ip, int flags)
1745 {
1746         hammer_mount_t hmp;
1747         hammer_flush_group_t flg;
1748         int good;
1749
1750         /*
1751          * fill_flush_group is the first flush group we may be able to
1752          * continue filling, it may be open or closed but it will always
1753          * be past the currently flushing (running) flg.
1754          *
1755          * next_flush_group is the next open flush group.
1756          */
1757         hmp = ip->hmp;
1758         while ((flg = hmp->fill_flush_group) != NULL) {
1759                 KKASSERT(flg->running == 0);
1760                 if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit &&
1761                     flg->total_count <= hammer_autoflush) {
1762                         break;
1763                 }
1764                 hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
1765                 hammer_flusher_async(ip->hmp, flg);
1766         }
1767         if (flg == NULL) {
1768                 flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1769                 flg->seq = hmp->flusher.next++;
1770                 if (hmp->next_flush_group == NULL)
1771                         hmp->next_flush_group = flg;
1772                 if (hmp->fill_flush_group == NULL)
1773                         hmp->fill_flush_group = flg;
1774                 RB_INIT(&flg->flush_tree);
1775                 TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1776         }
1777
1778         /*
1779          * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1780          * state we have to put it back into an IDLE state so we can
1781          * drop the extra ref.
1782          *
1783          * If we have a parent dependancy we must still fall through
1784          * so we can run it.
1785          */
1786         if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1787                 if (ip->flush_state == HAMMER_FST_SETUP &&
1788                     TAILQ_EMPTY(&ip->target_list)) {
1789                         ip->flush_state = HAMMER_FST_IDLE;
1790                         hammer_rel_inode(ip, 0);
1791                 }
1792                 if (ip->flush_state == HAMMER_FST_IDLE)
1793                         return;
1794         }
1795
1796         /*
1797          * Our flush action will depend on the current state.
1798          */
1799         switch(ip->flush_state) {
1800         case HAMMER_FST_IDLE:
1801                 /*
1802                  * We have no dependancies and can flush immediately.  Some
1803                  * our children may not be flushable so we have to re-test
1804                  * with that additional knowledge.
1805                  */
1806                 hammer_flush_inode_core(ip, flg, flags);
1807                 break;
1808         case HAMMER_FST_SETUP:
1809                 /*
1810                  * Recurse upwards through dependancies via target_list
1811                  * and start their flusher actions going if possible.
1812                  *
1813                  * 'good' is our connectivity.  -1 means we have none and
1814                  * can't flush, 0 means there weren't any dependancies, and
1815                  * 1 means we have good connectivity.
1816                  */
1817                 good = hammer_setup_parent_inodes(ip, 0, flg);
1818
1819                 if (good >= 0) {
1820                         /*
1821                          * We can continue if good >= 0.  Determine how
1822                          * many records under our inode can be flushed (and
1823                          * mark them).
1824                          */
1825                         hammer_flush_inode_core(ip, flg, flags);
1826                 } else {
1827                         /*
1828                          * Parent has no connectivity, tell it to flush
1829                          * us as soon as it does.
1830                          *
1831                          * The REFLUSH flag is also needed to trigger
1832                          * dependancy wakeups.
1833                          */
1834                         ip->flags |= HAMMER_INODE_CONN_DOWN |
1835                                      HAMMER_INODE_REFLUSH;
1836                         if (flags & HAMMER_FLUSH_SIGNAL) {
1837                                 ip->flags |= HAMMER_INODE_RESIGNAL;
1838                                 hammer_flusher_async(ip->hmp, flg);
1839                         }
1840                 }
1841                 break;
1842         case HAMMER_FST_FLUSH:
1843                 /*
1844                  * We are already flushing, flag the inode to reflush
1845                  * if needed after it completes its current flush.
1846                  *
1847                  * The REFLUSH flag is also needed to trigger
1848                  * dependancy wakeups.
1849                  */
1850                 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1851                         ip->flags |= HAMMER_INODE_REFLUSH;
1852                 if (flags & HAMMER_FLUSH_SIGNAL) {
1853                         ip->flags |= HAMMER_INODE_RESIGNAL;
1854                         hammer_flusher_async(ip->hmp, flg);
1855                 }
1856                 break;
1857         }
1858 }
1859
1860 /*
1861  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1862  * ip which reference our ip.
1863  *
1864  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1865  *     so for now do not ref/deref the structures.  Note that if we use the
1866  *     ref/rel code later, the rel CAN block.
1867  */
1868 static int
1869 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1870                            hammer_flush_group_t flg)
1871 {
1872         hammer_record_t depend;
1873         int good;
1874         int r;
1875
1876         /*
1877          * If we hit our recursion limit and we have parent dependencies
1878          * We cannot continue.  Returning < 0 will cause us to be flagged
1879          * for reflush.  Returning -2 cuts off additional dependency checks
1880          * because they are likely to also hit the depth limit.
1881          *
1882          * We cannot return < 0 if there are no dependencies or there might
1883          * not be anything to wakeup (ip).
1884          */
1885         if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1886                 if (hammer_debug_general & 0x10000)
1887                         hkrateprintf(&hammer_gen_krate,
1888                             "Warning: depth limit reached on "
1889                             "setup recursion, inode %p %016llx\n",
1890                             ip, (long long)ip->obj_id);
1891                 return(-2);
1892         }
1893
1894         /*
1895          * Scan dependencies
1896          */
1897         good = 0;
1898         TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1899                 r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1900                 KKASSERT(depend->target_ip == ip);
1901                 if (r < 0 && good == 0)
1902                         good = -1;
1903                 if (r > 0)
1904                         good = 1;
1905
1906                 /*
1907                  * If we failed due to the recursion depth limit then stop
1908                  * now.
1909                  */
1910                 if (r == -2)
1911                         break;
1912         }
1913         return(good);
1914 }
1915
1916 /*
1917  * This helper function takes a record representing the dependancy between
1918  * the parent inode and child inode.
1919  *
1920  * record               = record in question (*rec in below)
1921  * record->ip           = parent inode (*pip in below)
1922  * record->target_ip    = child inode (*ip in below)
1923  *
1924  * *pip--------------\
1925  *    ^               \rec_tree
1926  *     \               \
1927  *      \ip            /\\\\\ rbtree of recs from parent inode's view
1928  *       \            //\\\\\\
1929  *        \          / ........
1930  *         \        /
1931  *          \------*rec------target_ip------>*ip
1932  *               ...target_entry<----...----->target_list<---...
1933  *                                            list of recs from inode's view
1934  *
1935  * We are asked to recurse upwards and convert the record from SETUP
1936  * to FLUSH if possible.
1937  *
1938  * Return 1 if the record gives us connectivity
1939  *
1940  * Return 0 if the record is not relevant
1941  *
1942  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1943  */
1944 static int
1945 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1946                                   hammer_flush_group_t flg)
1947 {
1948         hammer_inode_t pip;
1949         int good;
1950
1951         KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1952         pip = record->ip;
1953
1954         /*
1955          * If the record is already flushing, is it in our flush group?
1956          *
1957          * If it is in our flush group but it is a general record or a
1958          * delete-on-disk, it does not improve our connectivity (return 0),
1959          * and if the target inode is not trying to destroy itself we can't
1960          * allow the operation yet anyway (the second return -1).
1961          */
1962         if (record->flush_state == HAMMER_FST_FLUSH) {
1963                 /*
1964                  * If not in our flush group ask the parent to reflush
1965                  * us as soon as possible.
1966                  */
1967                 if (record->flush_group != flg) {
1968                         pip->flags |= HAMMER_INODE_REFLUSH;
1969                         record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1970                         return(-1);
1971                 }
1972
1973                 /*
1974                  * If in our flush group everything is already set up,
1975                  * just return whether the record will improve our
1976                  * visibility or not.
1977                  */
1978                 if (record->type == HAMMER_MEM_RECORD_ADD)
1979                         return(1);
1980                 return(0);
1981         }
1982
1983         /*
1984          * It must be a setup record.  Try to resolve the setup dependancies
1985          * by recursing upwards so we can place ip on the flush list.
1986          *
1987          * Limit ourselves to 20 levels of recursion to avoid blowing out
1988          * the kernel stack.  If we hit the recursion limit we can't flush
1989          * until the parent flushes.  The parent will flush independantly
1990          * on its own and ultimately a deep recursion will be resolved.
1991          */
1992         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1993
1994         good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1995
1996         /*
1997          * If good < 0 the parent has no connectivity and we cannot safely
1998          * flush the directory entry, which also means we can't flush our
1999          * ip.  Flag us for downward recursion once the parent's
2000          * connectivity is resolved.  Flag the parent for [re]flush or it
2001          * may not check for downward recursions.
2002          */
2003         if (good < 0) {
2004                 pip->flags |= HAMMER_INODE_REFLUSH;
2005                 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2006                 return(good);
2007         }
2008
2009         /*
2010          * We are go, place the parent inode in a flushing state so we can
2011          * place its record in a flushing state.  Note that the parent
2012          * may already be flushing.  The record must be in the same flush
2013          * group as the parent.
2014          */
2015         if (pip->flush_state != HAMMER_FST_FLUSH)
2016                 hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
2017         KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
2018
2019         /*
2020          * It is possible for a rename to create a loop in the recursion
2021          * and revisit a record.  This will result in the record being
2022          * placed in a flush state unexpectedly.  This check deals with
2023          * the case.
2024          */
2025         if (record->flush_state == HAMMER_FST_FLUSH) {
2026                 if (record->type == HAMMER_MEM_RECORD_ADD)
2027                         return(1);
2028                 return(0);
2029         }
2030
2031         KKASSERT(record->flush_state == HAMMER_FST_SETUP);
2032
2033 #if 0
2034         if (record->type == HAMMER_MEM_RECORD_DEL &&
2035             (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
2036                 /*
2037                  * Regardless of flushing state we cannot sync this path if the
2038                  * record represents a delete-on-disk but the target inode
2039                  * is not ready to sync its own deletion.
2040                  *
2041                  * XXX need to count effective nlinks to determine whether
2042                  * the flush is ok, otherwise removing a hardlink will
2043                  * just leave the DEL record to rot.
2044                  */
2045                 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
2046                 return(-1);
2047         } else
2048 #endif
2049         if (pip->flush_group == flg) {
2050                 /*
2051                  * Because we have not calculated nlinks yet we can just
2052                  * set records to the flush state if the parent is in
2053                  * the same flush group as we are.
2054                  */
2055                 record->flush_state = HAMMER_FST_FLUSH;
2056                 record->flush_group = flg;
2057                 ++record->flush_group->refs;
2058                 hammer_ref(&record->lock);
2059
2060                 /*
2061                  * A general directory-add contributes to our visibility.
2062                  *
2063                  * Otherwise it is probably a directory-delete or
2064                  * delete-on-disk record and does not contribute to our
2065                  * visbility (but we can still flush it).
2066                  */
2067                 if (record->type == HAMMER_MEM_RECORD_ADD)
2068                         return(1);
2069                 return(0);
2070         } else {
2071                 /*
2072                  * If the parent is not in our flush group we cannot
2073                  * flush this record yet, there is no visibility.
2074                  * We tell the parent to reflush and mark ourselves
2075                  * so the parent knows it should flush us too.
2076                  */
2077                 pip->flags |= HAMMER_INODE_REFLUSH;
2078                 record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2079                 return(-1);
2080         }
2081 }
2082
2083 /*
2084  * This is the core routine placing an inode into the FST_FLUSH state.
2085  */
2086 static void
2087 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
2088 {
2089         hammer_mount_t hmp = ip->hmp;
2090         int go_count;
2091
2092         /*
2093          * Set flush state and prevent the flusher from cycling into
2094          * the next flush group.  Do not place the ip on the list yet.
2095          * Inodes not in the idle state get an extra reference.
2096          */
2097         KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
2098         if (ip->flush_state == HAMMER_FST_IDLE)
2099                 hammer_ref(&ip->lock);
2100         ip->flush_state = HAMMER_FST_FLUSH;
2101         ip->flush_group = flg;
2102         ++hmp->flusher.group_lock;
2103         ++hmp->count_iqueued;
2104         ++hammer_count_iqueued;
2105         ++flg->total_count;
2106         hammer_redo_fifo_start_flush(ip);
2107
2108 #if 0
2109         /*
2110          * We need to be able to vfsync/truncate from the backend.
2111          *
2112          * XXX Any truncation from the backend will acquire the vnode
2113          *     independently.
2114          */
2115         KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
2116         if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
2117                 ip->flags |= HAMMER_INODE_VHELD;
2118                 vref(ip->vp);
2119         }
2120 #endif
2121
2122         /*
2123          * Figure out how many in-memory records we can actually flush
2124          * (not including inode meta-data, buffers, etc).
2125          */
2126         KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
2127         if (flags & HAMMER_FLUSH_RECURSION) {
2128                 /*
2129                  * If this is a upwards recursion we do not want to
2130                  * recurse down again!
2131                  */
2132                 go_count = 1;
2133 #if 0
2134         } else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2135                 /*
2136                  * No new records are added if we must complete a flush
2137                  * from a previous cycle, but we do have to move the records
2138                  * from the previous cycle to the current one.
2139                  */
2140 #if 0
2141                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2142                                    hammer_syncgrp_child_callback, NULL);
2143 #endif
2144                 go_count = 1;
2145 #endif
2146         } else {
2147                 /*
2148                  * Normal flush, scan records and bring them into the flush.
2149                  * Directory adds and deletes are usually skipped (they are
2150                  * grouped with the related inode rather then with the
2151                  * directory).
2152                  *
2153                  * go_count can be negative, which means the scan aborted
2154                  * due to the flush group being over-full and we should
2155                  * flush what we have.
2156                  */
2157                 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2158                                    hammer_setup_child_callback, NULL);
2159         }
2160
2161         /*
2162          * This is a more involved test that includes go_count.  If we
2163          * can't flush, flag the inode and return.  If go_count is 0 we
2164          * were are unable to flush any records in our rec_tree and
2165          * must ignore the XDIRTY flag.
2166          */
2167         if (go_count == 0) {
2168                 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2169                         --hmp->count_iqueued;
2170                         --hammer_count_iqueued;
2171
2172                         --flg->total_count;
2173                         ip->flush_state = HAMMER_FST_SETUP;
2174                         ip->flush_group = NULL;
2175                         if (flags & HAMMER_FLUSH_SIGNAL) {
2176                                 ip->flags |= HAMMER_INODE_REFLUSH |
2177                                              HAMMER_INODE_RESIGNAL;
2178                         } else {
2179                                 ip->flags |= HAMMER_INODE_REFLUSH;
2180                         }
2181 #if 0
2182                         if (ip->flags & HAMMER_INODE_VHELD) {
2183                                 ip->flags &= ~HAMMER_INODE_VHELD;
2184                                 vrele(ip->vp);
2185                         }
2186 #endif
2187
2188                         /*
2189                          * REFLUSH is needed to trigger dependancy wakeups
2190                          * when an inode is in SETUP.
2191                          */
2192                         ip->flags |= HAMMER_INODE_REFLUSH;
2193                         if (--hmp->flusher.group_lock == 0)
2194                                 wakeup(&hmp->flusher.group_lock);
2195                         return;
2196                 }
2197         }
2198
2199         /*
2200          * Snapshot the state of the inode for the backend flusher.
2201          *
2202          * We continue to retain save_trunc_off even when all truncations
2203          * have been resolved as an optimization to determine if we can
2204          * skip the B-Tree lookup for overwrite deletions.
2205          *
2206          * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2207          * and stays in ip->flags.  Once set, it stays set until the
2208          * inode is destroyed.
2209          */
2210         if (ip->flags & HAMMER_INODE_TRUNCATED) {
2211                 KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2212                 ip->sync_trunc_off = ip->trunc_off;
2213                 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2214                 ip->flags &= ~HAMMER_INODE_TRUNCATED;
2215                 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2216
2217                 /*
2218                  * The save_trunc_off used to cache whether the B-Tree
2219                  * holds any records past that point is not used until
2220                  * after the truncation has succeeded, so we can safely
2221                  * set it now.
2222                  */
2223                 if (ip->save_trunc_off > ip->sync_trunc_off)
2224                         ip->save_trunc_off = ip->sync_trunc_off;
2225         }
2226         ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2227                            ~HAMMER_INODE_TRUNCATED);
2228         ip->sync_ino_leaf = ip->ino_leaf;
2229         ip->sync_ino_data = ip->ino_data;
2230         ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2231
2232         /*
2233          * The flusher list inherits our inode and reference.
2234          */
2235         KKASSERT(flg->running == 0);
2236         RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2237         if (--hmp->flusher.group_lock == 0)
2238                 wakeup(&hmp->flusher.group_lock);
2239
2240         /*
2241          * Auto-flush the group if it grows too large.  Make sure the
2242          * inode reclaim wait pipeline continues to work.
2243          */
2244         if (flg->total_count >= hammer_autoflush ||
2245             flg->total_count >= hammer_limit_reclaims / 4) {
2246                 if (hmp->fill_flush_group == flg)
2247                         hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
2248                 hammer_flusher_async(hmp, flg);
2249         }
2250 }
2251
2252 /*
2253  * Callback for scan of ip->rec_tree.  Try to include each record in our
2254  * flush.  ip->flush_group has been set but the inode has not yet been
2255  * moved into a flushing state.
2256  *
2257  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2258  * both inodes.
2259  *
2260  * We return 1 for any record placed or found in FST_FLUSH, which prevents
2261  * the caller from shortcutting the flush.
2262  */
2263 static int
2264 hammer_setup_child_callback(hammer_record_t rec, void *data)
2265 {
2266         hammer_flush_group_t flg;
2267         hammer_inode_t target_ip;
2268         hammer_inode_t ip;
2269         int r;
2270
2271         /*
2272          * Records deleted or committed by the backend are ignored.
2273          * Note that the flush detects deleted frontend records at
2274          * multiple points to deal with races.  This is just the first
2275          * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
2276          * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2277          * messes up link-count calculations.
2278          *
2279          * NOTE: Don't get confused between record deletion and, say,
2280          * directory entry deletion.  The deletion of a directory entry
2281          * which is on-media has nothing to do with the record deletion
2282          * flags.
2283          */
2284         if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2285                           HAMMER_RECF_COMMITTED)) {
2286                 if (rec->flush_state == HAMMER_FST_FLUSH) {
2287                         KKASSERT(rec->flush_group == rec->ip->flush_group);
2288                         r = 1;
2289                 } else {
2290                         r = 0;
2291                 }
2292                 return(r);
2293         }
2294
2295         /*
2296          * If the record is in an idle state it has no dependancies and
2297          * can be flushed.
2298          */
2299         ip = rec->ip;
2300         flg = ip->flush_group;
2301         r = 0;
2302
2303         switch(rec->flush_state) {
2304         case HAMMER_FST_IDLE:
2305                 /*
2306                  * The record has no setup dependancy, we can flush it.
2307                  */
2308                 KKASSERT(rec->target_ip == NULL);
2309                 rec->flush_state = HAMMER_FST_FLUSH;
2310                 rec->flush_group = flg;
2311                 ++flg->refs;
2312                 hammer_ref(&rec->lock);
2313                 r = 1;
2314                 break;
2315         case HAMMER_FST_SETUP:
2316                 /*
2317                  * The record has a setup dependancy.  These are typically
2318                  * directory entry adds and deletes.  Such entries will be
2319                  * flushed when their inodes are flushed so we do not
2320                  * usually have to add them to the flush here.  However,
2321                  * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2322                  * it is asking us to flush this record (and it).
2323                  */
2324                 target_ip = rec->target_ip;
2325                 KKASSERT(target_ip != NULL);
2326                 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2327
2328                 /*
2329                  * If the target IP is already flushing in our group
2330                  * we could associate the record, but target_ip has
2331                  * already synced ino_data to sync_ino_data and we
2332                  * would also have to adjust nlinks.   Plus there are
2333                  * ordering issues for adds and deletes.
2334                  *
2335                  * Reflush downward if this is an ADD, and upward if
2336                  * this is a DEL.
2337                  */
2338                 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2339                         if (rec->type == HAMMER_MEM_RECORD_ADD)
2340                                 ip->flags |= HAMMER_INODE_REFLUSH;
2341                         else
2342                                 target_ip->flags |= HAMMER_INODE_REFLUSH;
2343                         break;
2344                 }
2345
2346                 /*
2347                  * Target IP is not yet flushing.  This can get complex
2348                  * because we have to be careful about the recursion.
2349                  *
2350                  * Directories create an issue for us in that if a flush
2351                  * of a directory is requested the expectation is to flush
2352                  * any pending directory entries, but this will cause the
2353                  * related inodes to recursively flush as well.  We can't
2354                  * really defer the operation so just get as many as we
2355                  * can and
2356                  */
2357 #if 0
2358                 if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2359                     (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2360                         /*
2361                          * We aren't reclaiming and the target ip was not
2362                          * previously prevented from flushing due to this
2363                          * record dependancy.  Do not flush this record.
2364                          */
2365                         /*r = 0;*/
2366                 } else
2367 #endif
2368                 if (flg->total_count + flg->refs >
2369                            ip->hmp->undo_rec_limit) {
2370                         /*
2371                          * Our flush group is over-full and we risk blowing
2372                          * out the UNDO FIFO.  Stop the scan, flush what we
2373                          * have, then reflush the directory.
2374                          *
2375                          * The directory may be forced through multiple
2376                          * flush groups before it can be completely
2377                          * flushed.
2378                          */
2379                         ip->flags |= HAMMER_INODE_RESIGNAL |
2380                                      HAMMER_INODE_REFLUSH;
2381                         r = -1;
2382                 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2383                         /*
2384                          * If the target IP is not flushing we can force
2385                          * it to flush, even if it is unable to write out
2386                          * any of its own records we have at least one in
2387                          * hand that we CAN deal with.
2388                          */
2389                         rec->flush_state = HAMMER_FST_FLUSH;
2390                         rec->flush_group = flg;
2391                         ++flg->refs;
2392                         hammer_ref(&rec->lock);
2393                         hammer_flush_inode_core(target_ip, flg,
2394                                                 HAMMER_FLUSH_RECURSION);
2395                         r = 1;
2396                 } else {
2397                         /*
2398                          * General or delete-on-disk record.
2399                          *
2400                          * XXX this needs help.  If a delete-on-disk we could
2401                          * disconnect the target.  If the target has its own
2402                          * dependancies they really need to be flushed.
2403                          *
2404                          * XXX
2405                          */
2406                         rec->flush_state = HAMMER_FST_FLUSH;
2407                         rec->flush_group = flg;
2408                         ++flg->refs;
2409                         hammer_ref(&rec->lock);
2410                         hammer_flush_inode_core(target_ip, flg,
2411                                                 HAMMER_FLUSH_RECURSION);
2412                         r = 1;
2413                 }
2414                 break;
2415         case HAMMER_FST_FLUSH:
2416                 /*
2417                  * The record could be part of a previous flush group if the
2418                  * inode is a directory (the record being a directory entry).
2419                  * Once the flush group was closed a hammer_test_inode()
2420                  * function can cause a new flush group to be setup, placing
2421                  * the directory inode itself in a new flush group.
2422                  *
2423                  * When associated with a previous flush group we count it
2424                  * as if it were in our current flush group, since it will
2425                  * effectively be flushed by the time we flush our current
2426                  * flush group.
2427                  */
2428                 KKASSERT(
2429                     rec->ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY ||
2430                     rec->flush_group == flg);
2431                 r = 1;
2432                 break;
2433         }
2434         return(r);
2435 }
2436
2437 #if 0
2438 /*
2439  * This version just moves records already in a flush state to the new
2440  * flush group and that is it.
2441  */
2442 static int
2443 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2444 {
2445         hammer_inode_t ip = rec->ip;
2446
2447         switch(rec->flush_state) {
2448         case HAMMER_FST_FLUSH:
2449                 KKASSERT(rec->flush_group == ip->flush_group);
2450                 break;
2451         default:
2452                 break;
2453         }
2454         return(0);
2455 }
2456 #endif
2457
2458 /*
2459  * Wait for a previously queued flush to complete.
2460  *
2461  * If a critical error occured we don't try to wait.
2462  */
2463 void
2464 hammer_wait_inode(hammer_inode_t ip)
2465 {
2466         /*
2467          * The inode can be in a SETUP state in which case RESIGNAL
2468          * should be set.  If RESIGNAL is not set then the previous
2469          * flush completed and a later operation placed the inode
2470          * in a passive setup state again, so we're done.
2471          *
2472          * The inode can be in a FLUSH state in which case we
2473          * can just wait for completion.
2474          */
2475         while (ip->flush_state == HAMMER_FST_FLUSH ||
2476             (ip->flush_state == HAMMER_FST_SETUP &&
2477              (ip->flags & HAMMER_INODE_RESIGNAL))) {
2478                 /*
2479                  * Don't try to flush on a critical error
2480                  */
2481                 if (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
2482                         break;
2483
2484                 /*
2485                  * If the inode was already being flushed its flg
2486                  * may not have been queued to the backend.  We
2487                  * have to make sure it gets queued or we can wind
2488                  * up blocked or deadlocked (particularly if we are
2489                  * the vnlru thread).
2490                  */
2491                 if (ip->flush_state == HAMMER_FST_FLUSH) {
2492                         KKASSERT(ip->flush_group);
2493                         if (ip->flush_group->closed == 0) {
2494                                 if (hammer_debug_inode) {
2495                                         hkprintf("debug: forcing "
2496                                                 "async flush ip %016jx\n",
2497                                                 (intmax_t)ip->obj_id);
2498                                 }
2499                                 hammer_flusher_async(ip->hmp, ip->flush_group);
2500                                 continue; /* retest */
2501                         }
2502                 }
2503
2504                 /*
2505                  * In a flush state with the flg queued to the backend
2506                  * or in a setup state with RESIGNAL set, we can safely
2507                  * wait.
2508                  */
2509                 ip->flags |= HAMMER_INODE_FLUSHW;
2510                 tsleep(&ip->flags, 0, "hmrwin", 0);
2511         }
2512
2513 #if 0
2514         /*
2515          * The inode may have been in a passive setup state,
2516          * call flush to make sure we get signaled.
2517          */
2518         if (ip->flush_state == HAMMER_FST_SETUP)
2519                 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2520 #endif
2521
2522 }
2523
2524 /*
2525  * Called by the backend code when a flush has been completed.
2526  * The inode has already been removed from the flush list.
2527  *
2528  * A pipelined flush can occur, in which case we must re-enter the
2529  * inode on the list and re-copy its fields.
2530  */
2531 void
2532 hammer_flush_inode_done(hammer_inode_t ip, int error)
2533 {
2534         hammer_mount_t hmp;
2535         int dorel;
2536
2537         KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2538
2539         hmp = ip->hmp;
2540
2541         /*
2542          * Auto-reflush if the backend could not completely flush
2543          * the inode.  This fixes a case where a deferred buffer flush
2544          * could cause fsync to return early.
2545          */
2546         if (ip->sync_flags & HAMMER_INODE_MODMASK)
2547                 ip->flags |= HAMMER_INODE_REFLUSH;
2548
2549         /*
2550          * Merge left-over flags back into the frontend and fix the state.
2551          * Incomplete truncations are retained by the backend.
2552          */
2553         ip->error = error;
2554         ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2555         ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2556
2557         /*
2558          * The backend may have adjusted nlinks, so if the adjusted nlinks
2559          * does not match the fronttend set the frontend's DDIRTY flag again.
2560          */
2561         if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2562                 ip->flags |= HAMMER_INODE_DDIRTY;
2563
2564         /*
2565          * Fix up the dirty buffer status.
2566          */
2567         if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2568                 ip->flags |= HAMMER_INODE_BUFS;
2569         }
2570         hammer_redo_fifo_end_flush(ip);
2571
2572         /*
2573          * Re-set the XDIRTY flag if some of the inode's in-memory records
2574          * could not be flushed.
2575          */
2576         KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2577                   (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2578                  (!RB_EMPTY(&ip->rec_tree) &&
2579                   (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2580
2581         /*
2582          * Do not lose track of inodes which no longer have vnode
2583          * assocations, otherwise they may never get flushed again.
2584          *
2585          * The reflush flag can be set superfluously, causing extra pain
2586          * for no reason.  If the inode is no longer modified it no longer
2587          * needs to be flushed.
2588          */
2589         if (ip->flags & HAMMER_INODE_MODMASK) {
2590                 if (ip->vp == NULL)
2591                         ip->flags |= HAMMER_INODE_REFLUSH;
2592         } else {
2593                 ip->flags &= ~HAMMER_INODE_REFLUSH;
2594         }
2595
2596         /*
2597          * The fs token is held but the inode lock is not held.  Because this
2598          * is a backend flush it is possible that the vnode has no references
2599          * and cause a reclaim race inside vsetisdirty() if/when it blocks.
2600          *
2601          * Therefore, we must lock the inode around this particular dirtying
2602          * operation.  We don't have to around other dirtying operations
2603          * where the vnode is implicitly or explicitly held.
2604          */
2605         if (ip->flags & HAMMER_INODE_MODMASK) {
2606                 hammer_lock_ex(&ip->lock);
2607                 hammer_inode_dirty(ip);
2608                 hammer_unlock(&ip->lock);
2609         }
2610
2611         /*
2612          * Adjust the flush state.
2613          */
2614         if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2615                 /*
2616                  * We were unable to flush out all our records, leave the
2617                  * inode in a flush state and in the current flush group.
2618                  * The flush group will be re-run.
2619                  *
2620                  * This occurs if the UNDO block gets too full or there is
2621                  * too much dirty meta-data and allows the flusher to
2622                  * finalize the UNDO block and then re-flush.
2623                  */
2624                 ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2625                 dorel = 0;
2626         } else {
2627                 /*
2628                  * Remove from the flush_group
2629                  */
2630                 RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2631                 ip->flush_group = NULL;
2632
2633 #if 0
2634                 /*
2635                  * Clean up the vnode ref and tracking counts.
2636                  */
2637                 if (ip->flags & HAMMER_INODE_VHELD) {
2638                         ip->flags &= ~HAMMER_INODE_VHELD;
2639                         vrele(ip->vp);
2640                 }
2641 #endif
2642                 --hmp->count_iqueued;
2643                 --hammer_count_iqueued;
2644
2645                 /*
2646                  * And adjust the state.
2647                  */
2648                 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2649                         ip->flush_state = HAMMER_FST_IDLE;
2650                         dorel = 1;
2651                 } else {
2652                         ip->flush_state = HAMMER_FST_SETUP;
2653                         dorel = 0;
2654                 }
2655
2656                 /*
2657                  * If the frontend is waiting for a flush to complete,
2658                  * wake it up.
2659                  */
2660                 if (ip->flags & HAMMER_INODE_FLUSHW) {
2661                         ip->flags &= ~HAMMER_INODE_FLUSHW;
2662                         wakeup(&ip->flags);
2663                 }
2664
2665                 /*
2666                  * If the frontend made more changes and requested another
2667                  * flush, then try to get it running.
2668                  *
2669                  * Reflushes are aborted when the inode is errored out.
2670                  */
2671                 if (ip->flags & HAMMER_INODE_REFLUSH) {
2672                         ip->flags &= ~HAMMER_INODE_REFLUSH;
2673                         if (ip->flags & HAMMER_INODE_RESIGNAL) {
2674                                 ip->flags &= ~HAMMER_INODE_RESIGNAL;
2675                                 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2676                         } else {
2677                                 hammer_flush_inode(ip, 0);
2678                         }
2679                 }
2680         }
2681
2682         /*
2683          * If we have no parent dependancies we can clear CONN_DOWN
2684          */
2685         if (TAILQ_EMPTY(&ip->target_list))
2686                 ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2687
2688         /*
2689          * If the inode is now clean drop the space reservation.
2690          */
2691         if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2692             (ip->flags & HAMMER_INODE_RSV_INODES)) {
2693                 ip->flags &= ~HAMMER_INODE_RSV_INODES;
2694                 --hmp->rsv_inodes;
2695         }
2696
2697         ip->flags &= ~HAMMER_INODE_SLAVEFLUSH;
2698
2699         if (dorel)
2700                 hammer_rel_inode(ip, 0);
2701 }
2702
2703 /*
2704  * Called from hammer_sync_inode() to synchronize in-memory records
2705  * to the media.
2706  */
2707 static int
2708 hammer_sync_record_callback(hammer_record_t record, void *data)
2709 {
2710         hammer_cursor_t cursor = data;
2711         hammer_transaction_t trans = cursor->trans;
2712         hammer_mount_t hmp = trans->hmp;
2713         int error;
2714
2715         /*
2716          * Skip records that do not belong to the current flush.
2717          */
2718         ++hammer_stats_record_iterations;
2719         if (record->flush_state != HAMMER_FST_FLUSH)
2720                 return(0);
2721
2722         if (record->flush_group != record->ip->flush_group) {
2723                 hdkprintf("rec %p ip %p bad flush group %p %p\n",
2724                         record,
2725                         record->ip,
2726                         record->flush_group,
2727                         record->ip->flush_group);
2728                 if (hammer_debug_critical)
2729                         Debugger("blah2");
2730                 return(0);
2731         }
2732         KKASSERT(record->flush_group == record->ip->flush_group);
2733
2734         /*
2735          * Interlock the record using the BE flag.  Once BE is set the
2736          * frontend cannot change the state of FE.
2737          *
2738          * NOTE: If FE is set prior to us setting BE we still sync the
2739          * record out, but the flush completion code converts it to
2740          * a delete-on-disk record instead of destroying it.
2741          */
2742         KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2743         record->flags |= HAMMER_RECF_INTERLOCK_BE;
2744
2745         /*
2746          * The backend has already disposed of the record.
2747          */
2748         if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2749                 error = 0;
2750                 goto done;
2751         }
2752
2753         /*
2754          * If the whole inode is being deleted and all on-disk records will
2755          * be deleted very soon, we can't sync any new records to disk
2756          * because they will be deleted in the same transaction they were
2757          * created in (delete_tid == create_tid), which will assert.
2758          *
2759          * XXX There may be a case with RECORD_ADD with DELETED_FE set
2760          * that we currently panic on.
2761          */
2762         if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2763                 switch(record->type) {
2764                 case HAMMER_MEM_RECORD_DATA:
2765                         /*
2766                          * We don't have to do anything, if the record was
2767                          * committed the space will have been accounted for
2768                          * in the blockmap.
2769                          */
2770                         /* fall through */
2771                 case HAMMER_MEM_RECORD_GENERAL:
2772                         /*
2773                          * Set deleted-by-backend flag.  Do not set the
2774                          * backend committed flag, because we are throwing
2775                          * the record away.
2776                          */
2777                         record->flags |= HAMMER_RECF_DELETED_BE;
2778                         ++record->ip->rec_generation;
2779                         error = 0;
2780                         goto done;
2781                 case HAMMER_MEM_RECORD_ADD:
2782                         hpanic("illegal add during inode deletion record %p",
2783                                 record);
2784                         break; /* NOT REACHED */
2785                 case HAMMER_MEM_RECORD_INODE:
2786                         hpanic("attempt to sync inode record %p?", record);
2787                         break; /* NOT REACHED */
2788                 case HAMMER_MEM_RECORD_DEL:
2789                         /*
2790                          * Follow through and issue the on-disk deletion
2791                          */
2792                         break;
2793                 }
2794         }
2795
2796         /*
2797          * If DELETED_FE is set special handling is needed for directory
2798          * entries.  Dependant pieces related to the directory entry may
2799          * have already been synced to disk.  If this occurs we have to
2800          * sync the directory entry and then change the in-memory record
2801          * from an ADD to a DELETE to cover the fact that it's been
2802          * deleted by the frontend.
2803          *
2804          * A directory delete covering record (MEM_RECORD_DEL) can never
2805          * be deleted by the frontend.
2806          *
2807          * Any other record type (aka DATA) can be deleted by the frontend.
2808          * XXX At the moment the flusher must skip it because there may
2809          * be another data record in the flush group for the same block,
2810          * meaning that some frontend data changes can leak into the backend's
2811          * synchronization point.
2812          */
2813         if (record->flags & HAMMER_RECF_DELETED_FE) {
2814                 if (record->type == HAMMER_MEM_RECORD_ADD) {
2815                         /*
2816                          * Convert a front-end deleted directory-add to
2817                          * a directory-delete entry later.
2818                          */
2819                         record->flags |= HAMMER_RECF_CONVERT_DELETE;
2820                 } else {
2821                         /*
2822                          * Dispose of the record (race case).  Mark as
2823                          * deleted by backend (and not committed).
2824                          */
2825                         KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2826                         record->flags |= HAMMER_RECF_DELETED_BE;
2827                         ++record->ip->rec_generation;
2828                         error = 0;
2829                         goto done;
2830                 }
2831         }
2832
2833         /*
2834          * Assign the create_tid for new records.  Deletions already
2835          * have the record's entire key properly set up.
2836          */
2837         if (record->type != HAMMER_MEM_RECORD_DEL) {
2838                 record->leaf.base.create_tid = trans->tid;
2839                 record->leaf.create_ts = trans->time32;
2840         }
2841
2842         /*
2843          * This actually moves the record to the on-media B-Tree.  We
2844          * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2845          * indicating that the related REDO_WRITE(s) have been committed.
2846          *
2847          * During recovery any REDO_TERM's within the nominal recovery span
2848          * are ignored since the related meta-data is being undone, causing
2849          * any matching REDO_WRITEs to execute.  The REDO_TERMs outside
2850          * the nominal recovery span will match against REDO_WRITEs and
2851          * prevent them from being executed (because the meta-data has
2852          * already been synchronized).
2853          */
2854         if (record->flags & HAMMER_RECF_REDO) {
2855                 KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2856                 hammer_generate_redo(trans, record->ip,
2857                                      record->leaf.base.key -
2858                                          record->leaf.data_len,
2859                                      HAMMER_REDO_TERM_WRITE,
2860                                      NULL,
2861                                      record->leaf.data_len);
2862         }
2863
2864         for (;;) {
2865                 error = hammer_ip_sync_record_cursor(cursor, record);
2866                 if (error != EDEADLK)
2867                         break;
2868                 hammer_done_cursor(cursor);
2869                 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2870                                            record->ip);
2871                 if (error)
2872                         break;
2873         }
2874         record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2875
2876         if (error)
2877                 error = -error;
2878 done:
2879         hammer_flush_record_done(record, error);
2880
2881         /*
2882          * Do partial finalization if we have built up too many dirty
2883          * buffers.  Otherwise a buffer cache deadlock can occur when
2884          * doing things like creating tens of thousands of tiny files.
2885          *
2886          * We must release our cursor lock to avoid a 3-way deadlock
2887          * due to the exclusive sync lock the finalizer must get.
2888          *
2889          * WARNING: See warnings in hammer_unlock_cursor() function.
2890          */
2891         if (hammer_flusher_meta_limit(hmp) ||
2892             vm_page_count_severe()) {
2893                 hammer_unlock_cursor(cursor);
2894                 hammer_flusher_finalize(trans, 0);
2895                 hammer_lock_cursor(cursor);
2896         }
2897         return(error);
2898 }
2899
2900 /*
2901  * Backend function called by the flusher to sync an inode to media.
2902  */
2903 int
2904 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2905 {
2906         struct hammer_cursor cursor;
2907         hammer_node_t tmp_node;
2908         hammer_record_t depend;
2909         hammer_record_t next;
2910         int error, tmp_error;
2911         uint64_t nlinks;
2912
2913         if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2914                 return(0);
2915
2916         error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2917         if (error)
2918                 goto done;
2919
2920         /*
2921          * Any directory records referencing this inode which are not in
2922          * our current flush group must adjust our nlink count for the
2923          * purposes of synchronizating to disk.
2924          *
2925          * Records which are in our flush group can be unlinked from our
2926          * inode now, potentially allowing the inode to be physically
2927          * deleted.
2928          *
2929          * This cannot block.
2930          */
2931         nlinks = ip->ino_data.nlinks;
2932         next = TAILQ_FIRST(&ip->target_list);
2933         while ((depend = next) != NULL) {
2934                 next = TAILQ_NEXT(depend, target_entry);
2935                 if (depend->flush_state == HAMMER_FST_FLUSH &&
2936                     depend->flush_group == ip->flush_group) {
2937                         /*
2938                          * If this is an ADD that was deleted by the frontend
2939                          * the frontend nlinks count will have already been
2940                          * decremented, but the backend is going to sync its
2941                          * directory entry and must account for it.  The
2942                          * record will be converted to a delete-on-disk when
2943                          * it gets synced.
2944                          *
2945                          * If the ADD was not deleted by the frontend we
2946                          * can remove the dependancy from our target_list.
2947                          */
2948                         if (depend->flags & HAMMER_RECF_DELETED_FE) {
2949                                 ++nlinks;
2950                         } else {
2951                                 TAILQ_REMOVE(&ip->target_list, depend,
2952                                              target_entry);
2953                                 depend->target_ip = NULL;
2954                         }
2955                 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2956                         /*
2957                          * Not part of our flush group and not deleted by
2958                          * the front-end, adjust the link count synced to
2959                          * the media (undo what the frontend did when it
2960                          * queued the record).
2961                          */
2962                         KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2963                         switch(depend->type) {
2964                         case HAMMER_MEM_RECORD_ADD:
2965                                 --nlinks;
2966                                 break;
2967                         case HAMMER_MEM_RECORD_DEL:
2968                                 ++nlinks;
2969                                 break;
2970                         default:
2971                                 break;
2972                         }
2973                 }
2974         }
2975
2976         /*
2977          * Set dirty if we had to modify the link count.
2978          */
2979         if (ip->sync_ino_data.nlinks != nlinks) {
2980                 KKASSERT((int64_t)nlinks >= 0);
2981                 ip->sync_ino_data.nlinks = nlinks;
2982                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
2983         }
2984
2985         /*
2986          * If there is a trunction queued destroy any data past the (aligned)
2987          * truncation point.  Userland will have dealt with the buffer
2988          * containing the truncation point for us.
2989          *
2990          * We don't flush pending frontend data buffers until after we've
2991          * dealt with the truncation.
2992          */
2993         if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2994                 /*
2995                  * Interlock trunc_off.  The VOP front-end may continue to
2996                  * make adjustments to it while we are blocked.
2997                  */
2998                 off_t trunc_off;
2999                 off_t aligned_trunc_off;
3000                 int blkmask;
3001
3002                 trunc_off = ip->sync_trunc_off;
3003                 blkmask = hammer_blocksize(trunc_off) - 1;
3004                 aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
3005
3006                 /*
3007                  * Delete any whole blocks on-media.  The front-end has
3008                  * already cleaned out any partial block and made it
3009                  * pending.  The front-end may have updated trunc_off
3010                  * while we were blocked so we only use sync_trunc_off.
3011                  *
3012                  * This operation can blow out the buffer cache, EWOULDBLOCK
3013                  * means we were unable to complete the deletion.  The
3014                  * deletion will update sync_trunc_off in that case.
3015                  */
3016                 error = hammer_ip_delete_range(&cursor, ip,
3017                                                 aligned_trunc_off,
3018                                                 0x7FFFFFFFFFFFFFFFLL, 2);
3019                 if (error == EWOULDBLOCK) {
3020                         ip->flags |= HAMMER_INODE_WOULDBLOCK;
3021                         error = 0;
3022                         goto defer_buffer_flush;
3023                 }
3024
3025                 if (error)
3026                         goto done;
3027
3028                 /*
3029                  * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
3030                  *
3031                  * XXX we do this even if we did not previously generate
3032                  * a REDO_TRUNC record.  This operation may enclosed the
3033                  * range for multiple prior truncation entries in the REDO
3034                  * log.
3035                  */
3036                 if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
3037                     (ip->flags & HAMMER_INODE_RDIRTY)) {
3038                         hammer_generate_redo(trans, ip, aligned_trunc_off,
3039                                              HAMMER_REDO_TERM_TRUNC,
3040                                              NULL, 0);
3041                 }
3042
3043                 /*
3044                  * Clear the truncation flag on the backend after we have
3045                  * completed the deletions.  Backend data is now good again
3046                  * (including new records we are about to sync, below).
3047                  *
3048                  * Leave sync_trunc_off intact.  As we write additional
3049                  * records the backend will update sync_trunc_off.  This
3050                  * tells the backend whether it can skip the overwrite
3051                  * test.  This should work properly even when the backend
3052                  * writes full blocks where the truncation point straddles
3053                  * the block because the comparison is against the base
3054                  * offset of the record.
3055                  */
3056                 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3057                 /* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
3058         } else {
3059                 error = 0;
3060         }
3061
3062         /*
3063          * Now sync related records.  These will typically be directory
3064          * entries, records tracking direct-writes, or delete-on-disk records.
3065          */
3066         if (error == 0) {
3067                 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
3068                                     hammer_sync_record_callback, &cursor);
3069                 if (tmp_error < 0)
3070                         tmp_error = -error;
3071                 if (tmp_error)
3072                         error = tmp_error;
3073         }
3074         hammer_cache_node(&ip->cache[1], cursor.node);
3075
3076         /*
3077          * Re-seek for inode update, assuming our cache hasn't been ripped
3078          * out from under us.
3079          */
3080         if (error == 0) {
3081                 tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
3082                 if (tmp_node) {
3083                         hammer_cursor_downgrade(&cursor);
3084                         hammer_lock_sh(&tmp_node->lock);
3085                         if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
3086                                 hammer_cursor_seek(&cursor, tmp_node, 0);
3087                         hammer_unlock(&tmp_node->lock);
3088                         hammer_rel_node(tmp_node);
3089                 }
3090                 error = 0;
3091         }
3092
3093         /*
3094          * If we are deleting the inode the frontend had better not have
3095          * any active references on elements making up the inode.
3096          *
3097          * The call to hammer_ip_delete_clean() cleans up auxillary records
3098          * but not DB or DATA records.  Those must have already been deleted
3099          * by the normal truncation mechanic.
3100          */
3101         if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
3102                 RB_EMPTY(&ip->rec_tree)  &&
3103             (ip->sync_flags & HAMMER_INODE_DELETING) &&
3104             (ip->flags & HAMMER_INODE_DELETED) == 0) {
3105                 int count1 = 0;
3106
3107                 error = hammer_ip_delete_clean(&cursor, ip, &count1);
3108                 if (error == 0) {
3109                         ip->flags |= HAMMER_INODE_DELETED;
3110                         ip->sync_flags &= ~HAMMER_INODE_DELETING;
3111                         ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3112                         KKASSERT(RB_EMPTY(&ip->rec_tree));
3113
3114                         /*
3115                          * Set delete_tid in both the frontend and backend
3116                          * copy of the inode record.  The DELETED flag handles
3117                          * this, do not set DDIRTY.
3118                          */
3119                         ip->ino_leaf.base.delete_tid = trans->tid;
3120                         ip->sync_ino_leaf.base.delete_tid = trans->tid;
3121                         ip->ino_leaf.delete_ts = trans->time32;
3122                         ip->sync_ino_leaf.delete_ts = trans->time32;
3123
3124
3125                         /*
3126                          * Adjust the inode count in the volume header
3127                          */
3128                         hammer_sync_lock_sh(trans);
3129                         if (ip->flags & HAMMER_INODE_ONDISK) {
3130                                 hammer_modify_volume_field(trans,
3131                                                            trans->rootvol,
3132                                                            vol0_stat_inodes);
3133                                 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
3134                                 hammer_modify_volume_done(trans->rootvol);
3135                         }
3136                         hammer_sync_unlock(trans);
3137                 }
3138         }
3139
3140         if (error)
3141                 goto done;
3142         ip->sync_flags &= ~HAMMER_INODE_BUFS;
3143
3144 defer_buffer_flush:
3145         /*
3146          * Now update the inode's on-disk inode-data and/or on-disk record.
3147          * DELETED and ONDISK are managed only in ip->flags.
3148          *
3149          * In the case of a defered buffer flush we still update the on-disk
3150          * inode to satisfy visibility requirements if there happen to be
3151          * directory dependancies.
3152          */
3153         switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
3154         case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
3155                 /*
3156                  * If deleted and on-disk, don't set any additional flags.
3157                  * the delete flag takes care of things.
3158                  *
3159                  * Clear flags which may have been set by the frontend.
3160                  */
3161                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3162                                     HAMMER_INODE_SDIRTY |
3163                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3164                                     HAMMER_INODE_DELETING);
3165                 break;
3166         case HAMMER_INODE_DELETED:
3167                 /*
3168                  * Take care of the case where a deleted inode was never
3169                  * flushed to the disk in the first place.
3170                  *
3171                  * Clear flags which may have been set by the frontend.
3172                  */
3173                 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3174                                     HAMMER_INODE_SDIRTY |
3175                                     HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3176                                     HAMMER_INODE_DELETING);
3177                 while (RB_ROOT(&ip->rec_tree)) {
3178                         hammer_record_t record = RB_ROOT(&ip->rec_tree);
3179                         hammer_ref(&record->lock);
3180                         KKASSERT(hammer_oneref(&record->lock));
3181                         record->flags |= HAMMER_RECF_DELETED_BE;
3182                         ++record->ip->rec_generation;
3183                         hammer_rel_mem_record(record);
3184                 }
3185                 break;
3186         case HAMMER_INODE_ONDISK:
3187                 /*
3188                  * If already on-disk, do not set any additional flags.
3189                  */
3190                 break;
3191         default:
3192                 /*
3193                  * If not on-disk and not deleted, set DDIRTY to force
3194                  * an initial record to be written.
3195                  *
3196                  * Also set the create_tid in both the frontend and backend
3197                  * copy of the inode record.
3198                  */
3199                 ip->ino_leaf.base.create_tid = trans->tid;
3200                 ip->ino_leaf.create_ts = trans->time32;
3201                 ip->sync_ino_leaf.base.create_tid = trans->tid;
3202                 ip->sync_ino_leaf.create_ts = trans->time32;
3203                 ip->sync_flags |= HAMMER_INODE_DDIRTY;
3204                 break;
3205         }
3206
3207         /*
3208          * If DDIRTY or SDIRTY is set, write out a new record.
3209          * If the inode is already on-disk the old record is marked as
3210          * deleted.
3211          *
3212          * If DELETED is set hammer_update_inode() will delete the existing
3213          * record without writing out a new one.
3214          */
3215         if (ip->flags & HAMMER_INODE_DELETED) {
3216                 error = hammer_update_inode(&cursor, ip);
3217         } else
3218         if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3219             (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3220                 error = hammer_update_itimes(&cursor, ip);
3221         } else
3222         if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3223                               HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3224                 error = hammer_update_inode(&cursor, ip);
3225         }
3226 done:
3227         if (ip->flags & HAMMER_INODE_MODMASK)
3228                 hammer_inode_dirty(ip);
3229         if (error) {
3230                 hammer_critical_error(ip->hmp, ip, error,
3231                                       "while syncing inode");
3232         }
3233         hammer_done_cursor(&cursor);
3234         return(error);
3235 }
3236
3237 /*
3238  * This routine is called when the OS is no longer actively referencing
3239  * the inode (but might still be keeping it cached), or when releasing
3240  * the last reference to an inode.
3241  *
3242  * At this point if the inode's nlinks count is zero we want to destroy
3243  * it, which may mean destroying it on-media too.
3244  */
3245 void
3246 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3247 {
3248         struct vnode *vp;
3249
3250         /*
3251          * Set the DELETING flag when the link count drops to 0 and the
3252          * OS no longer has any opens on the inode.
3253          *
3254          * The backend will clear DELETING (a mod flag) and set DELETED
3255          * (a state flag) when it is actually able to perform the
3256          * operation.
3257          *
3258          * Don't reflag the deletion if the flusher is currently syncing
3259          * one that was already flagged.  A previously set DELETING flag
3260          * may bounce around flags and sync_flags until the operation is
3261          * completely done.
3262          *
3263          * Do not attempt to modify a snapshot inode (one set to read-only).
3264          */
3265         if (ip->ino_data.nlinks == 0 &&
3266             ((ip->flags | ip->sync_flags) & (HAMMER_INODE_RO|HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3267                 ip->flags |= HAMMER_INODE_DELETING;
3268                 ip->flags |= HAMMER_INODE_TRUNCATED;
3269                 ip->trunc_off = 0;
3270                 vp = NULL;
3271                 if (getvp) {
3272                         if (hammer_get_vnode(ip, &vp) != 0)
3273                                 return;
3274                 }
3275
3276                 /*
3277                  * Final cleanup
3278                  */
3279                 if (ip->vp)
3280                         nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0, 0);
3281                 if (ip->flags & HAMMER_INODE_MODMASK)
3282                         hammer_inode_dirty(ip);
3283                 if (getvp)
3284                         vput(vp);
3285         }
3286 }
3287
3288 /*
3289  * After potentially resolving a dependancy the inode is tested
3290  * to determine whether it needs to be reflushed.
3291  */
3292 void
3293 hammer_test_inode(hammer_inode_t ip)
3294 {
3295         if (ip->flags & HAMMER_INODE_REFLUSH) {
3296                 ip->flags &= ~HAMMER_INODE_REFLUSH;
3297                 hammer_ref(&ip->lock);
3298                 if (ip->flags & HAMMER_INODE_RESIGNAL) {
3299                         ip->flags &= ~HAMMER_INODE_RESIGNAL;
3300                         hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3301                 } else {
3302                         hammer_flush_inode(ip, 0);
3303                 }
3304                 hammer_rel_inode(ip, 0);
3305         }
3306 }
3307
3308 /*
3309  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
3310  * reassociated with a vp or just before it gets freed.
3311  *
3312  * Pipeline wakeups to threads blocked due to an excessive number of
3313  * detached inodes.  This typically occurs when atime updates accumulate
3314  * while scanning a directory tree.
3315  */
3316 static void
3317 hammer_inode_wakereclaims(hammer_inode_t ip)
3318 {
3319         struct hammer_reclaim *reclaim;
3320         hammer_mount_t hmp = ip->hmp;
3321
3322         if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3323                 return;
3324
3325         --hammer_count_reclaims;
3326         --hmp->count_reclaims;
3327         ip->flags &= ~HAMMER_INODE_RECLAIM;
3328
3329         if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3330                 KKASSERT(reclaim->count > 0);
3331                 if (--reclaim->count == 0) {
3332                         TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3333                         wakeup(reclaim);
3334                 }
3335         }
3336 }
3337
3338 /*
3339  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
3340  * inodes build up before we start blocking.  This routine is called
3341  * if a new inode is created or an inode is loaded from media.
3342  *
3343  * When we block we don't care *which* inode has finished reclaiming,
3344  * as long as one does.
3345  *
3346  * The reclaim pipeline is primarily governed by the auto-flush which is
3347  * 1/4 hammer_limit_reclaims.  We don't want to block if the count is
3348  * less than 1/2 hammer_limit_reclaims.  From 1/2 to full count is
3349  * dynamically governed.
3350  */
3351 void
3352 hammer_inode_waitreclaims(hammer_transaction_t trans)
3353 {
3354         hammer_mount_t hmp = trans->hmp;
3355         struct hammer_reclaim reclaim;
3356         int lower_limit;
3357
3358         /*
3359          * Track inode load, delay if the number of reclaiming inodes is
3360          * between 2/4 and 4/4 hammer_limit_reclaims, depending.
3361          */
3362         if (curthread->td_proc) {
3363                 struct hammer_inostats *stats;
3364
3365                 stats = hammer_inode_inostats(hmp, curthread->td_proc->p_pid);
3366                 ++stats->count;
3367
3368                 if (stats->count > hammer_limit_reclaims / 2)
3369                         stats->count = hammer_limit_reclaims / 2;
3370                 lower_limit = hammer_limit_reclaims - stats->count;
3371                 if (hammer_debug_general & 0x10000) {
3372                         hdkprintf("pid %5d limit %d\n",
3373                                 (int)curthread->td_proc->p_pid, lower_limit);
3374                 }
3375         } else {
3376                 lower_limit = hammer_limit_reclaims * 3 / 4;
3377         }
3378         if (hmp->count_reclaims >= lower_limit) {
3379                 reclaim.count = 1;
3380                 TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3381                 tsleep(&reclaim, 0, "hmrrcm", hz);
3382                 if (reclaim.count > 0)
3383                         TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3384         }
3385 }
3386
3387 /*
3388  * Keep track of reclaim statistics on a per-pid basis using a loose
3389  * 4-way set associative hash table.  Collisions inherit the count of
3390  * the previous entry.
3391  *
3392  * NOTE: We want to be careful here to limit the chain size.  If the chain
3393  *       size is too large a pid will spread its stats out over too many
3394  *       entries under certain types of heavy filesystem activity and
3395  *       wind up not delaying long enough.
3396  */
3397 static
3398 struct hammer_inostats *
3399 hammer_inode_inostats(hammer_mount_t hmp, pid_t pid)
3400 {
3401         struct hammer_inostats *stats;
3402         int delta;
3403         int chain;
3404         static volatile int iterator;   /* we don't care about MP races */
3405
3406         /*
3407          * Chain up to 4 times to find our entry.
3408          */
3409         for (chain = 0; chain < 4; ++chain) {
3410                 stats = &hmp->inostats[(pid + chain) & HAMMER_INOSTATS_HMASK];
3411                 if (stats->pid == pid)
3412                         break;
3413         }
3414
3415         /*
3416          * Replace one of the four chaining entries with our new entry.
3417          */
3418         if (chain == 4) {
3419                 stats = &hmp->inostats[(pid + (iterator++ & 3)) &
3420                                        HAMMER_INOSTATS_HMASK];
3421                 stats->pid = pid;
3422         }
3423
3424         /*
3425          * Decay the entry
3426          */
3427         if (stats->count && stats->ltick != ticks) {
3428                 delta = ticks - stats->ltick;
3429                 stats->ltick = ticks;
3430                 if (delta <= 0 || delta > hz * 60)
3431                         stats->count = 0;
3432                 else
3433                         stats->count = stats->count * hz / (hz + delta);
3434         }
3435         if (hammer_debug_general & 0x10000)
3436                 hdkprintf("pid %5d stats %d\n", (int)pid, stats->count);
3437         return (stats);
3438 }
3439
3440 #if 0
3441
3442 /*
3443  * XXX not used, doesn't work very well due to the large batching nature
3444  * of flushes.
3445  *
3446  * A larger then normal backlog of inodes is sitting in the flusher,
3447  * enforce a general slowdown to let it catch up.  This routine is only
3448  * called on completion of a non-flusher-related transaction which
3449  * performed B-Tree node I/O.
3450  *
3451  * It is possible for the flusher to stall in a continuous load.
3452  * blogbench -i1000 -o seems to do a good job generating this sort of load.
3453  * If the flusher is unable to catch up the inode count can bloat until
3454  * we run out of kvm.
3455  *
3456  * This is a bit of a hack.
3457  */
3458 void
3459 hammer_inode_waithard(hammer_mount_t hmp)
3460 {
3461         /*
3462          * Hysteresis.
3463          */
3464         if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3465                 if (hmp->count_reclaims < hammer_limit_reclaims / 2 &&
3466                     hmp->count_iqueued < hmp->count_inodes / 20) {
3467                         hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3468                         return;
3469                 }
3470         } else {
3471                 if (hmp->count_reclaims < hammer_limit_reclaims ||
3472                     hmp->count_iqueued < hmp->count_inodes / 10) {
3473                         return;
3474                 }
3475                 hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3476         }
3477
3478         /*
3479          * Block for one flush cycle.
3480          */
3481         hammer_flusher_wait_next(hmp);
3482 }
3483
3484 #endif