Merge branch 'vendor/LIBARCHIVE'
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 static void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct drm_i915_gem_request *req,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         struct intel_engine_cs *ring = req->ring;
99         u32 cmd;
100         int ret;
101
102         cmd = MI_FLUSH;
103         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104                 cmd |= MI_NO_WRITE_FLUSH;
105
106         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107                 cmd |= MI_READ_FLUSH;
108
109         ret = intel_ring_begin(req, 2);
110         if (ret)
111                 return ret;
112
113         intel_ring_emit(ring, cmd);
114         intel_ring_emit(ring, MI_NOOP);
115         intel_ring_advance(ring);
116
117         return 0;
118 }
119
120 static int
121 gen4_render_ring_flush(struct drm_i915_gem_request *req,
122                        u32      invalidate_domains,
123                        u32      flush_domains)
124 {
125         struct intel_engine_cs *ring = req->ring;
126         struct drm_device *dev = ring->dev;
127         u32 cmd;
128         int ret;
129
130         /*
131          * read/write caches:
132          *
133          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135          * also flushed at 2d versus 3d pipeline switches.
136          *
137          * read-only caches:
138          *
139          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140          * MI_READ_FLUSH is set, and is always flushed on 965.
141          *
142          * I915_GEM_DOMAIN_COMMAND may not exist?
143          *
144          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145          * invalidated when MI_EXE_FLUSH is set.
146          *
147          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148          * invalidated with every MI_FLUSH.
149          *
150          * TLBs:
151          *
152          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155          * are flushed at any MI_FLUSH.
156          */
157
158         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160                 cmd &= ~MI_NO_WRITE_FLUSH;
161         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162                 cmd |= MI_EXE_FLUSH;
163
164         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165             (IS_G4X(dev) || IS_GEN5(dev)))
166                 cmd |= MI_INVALIDATE_ISP;
167
168         ret = intel_ring_begin(req, 2);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, cmd);
173         intel_ring_emit(ring, MI_NOOP);
174         intel_ring_advance(ring);
175
176         return 0;
177 }
178
179 /**
180  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181  * implementing two workarounds on gen6.  From section 1.4.7.1
182  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183  *
184  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185  * produced by non-pipelined state commands), software needs to first
186  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187  * 0.
188  *
189  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191  *
192  * And the workaround for these two requires this workaround first:
193  *
194  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195  * BEFORE the pipe-control with a post-sync op and no write-cache
196  * flushes.
197  *
198  * And this last workaround is tricky because of the requirements on
199  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200  * volume 2 part 1:
201  *
202  *     "1 of the following must also be set:
203  *      - Render Target Cache Flush Enable ([12] of DW1)
204  *      - Depth Cache Flush Enable ([0] of DW1)
205  *      - Stall at Pixel Scoreboard ([1] of DW1)
206  *      - Depth Stall ([13] of DW1)
207  *      - Post-Sync Operation ([13] of DW1)
208  *      - Notify Enable ([8] of DW1)"
209  *
210  * The cache flushes require the workaround flush that triggered this
211  * one, so we can't use it.  Depth stall would trigger the same.
212  * Post-sync nonzero is what triggered this second workaround, so we
213  * can't use that one either.  Notify enable is IRQs, which aren't
214  * really our business.  That leaves only stall at scoreboard.
215  */
216 static int
217 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218 {
219         struct intel_engine_cs *ring = req->ring;
220         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221         int ret;
222
223         ret = intel_ring_begin(req, 6);
224         if (ret)
225                 return ret;
226
227         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
230         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231         intel_ring_emit(ring, 0); /* low dword */
232         intel_ring_emit(ring, 0); /* high dword */
233         intel_ring_emit(ring, MI_NOOP);
234         intel_ring_advance(ring);
235
236         ret = intel_ring_begin(req, 6);
237         if (ret)
238                 return ret;
239
240         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243         intel_ring_emit(ring, 0);
244         intel_ring_emit(ring, 0);
245         intel_ring_emit(ring, MI_NOOP);
246         intel_ring_advance(ring);
247
248         return 0;
249 }
250
251 static int
252 gen6_render_ring_flush(struct drm_i915_gem_request *req,
253                        u32 invalidate_domains, u32 flush_domains)
254 {
255         struct intel_engine_cs *ring = req->ring;
256         u32 flags = 0;
257         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258         int ret;
259
260         /* Force SNB workarounds for PIPE_CONTROL flushes */
261         ret = intel_emit_post_sync_nonzero_flush(req);
262         if (ret)
263                 return ret;
264
265         /* Just flush everything.  Experiments have shown that reducing the
266          * number of bits based on the write domains has little performance
267          * impact.
268          */
269         if (flush_domains) {
270                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272                 /*
273                  * Ensure that any following seqno writes only happen
274                  * when the render cache is indeed flushed.
275                  */
276                 flags |= PIPE_CONTROL_CS_STALL;
277         }
278         if (invalidate_domains) {
279                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
280                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285                 /*
286                  * TLB invalidate requires a post-sync write.
287                  */
288                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289         }
290
291         ret = intel_ring_begin(req, 4);
292         if (ret)
293                 return ret;
294
295         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296         intel_ring_emit(ring, flags);
297         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298         intel_ring_emit(ring, 0);
299         intel_ring_advance(ring);
300
301         return 0;
302 }
303
304 static int
305 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306 {
307         struct intel_engine_cs *ring = req->ring;
308         int ret;
309
310         ret = intel_ring_begin(req, 4);
311         if (ret)
312                 return ret;
313
314         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
317         intel_ring_emit(ring, 0);
318         intel_ring_emit(ring, 0);
319         intel_ring_advance(ring);
320
321         return 0;
322 }
323
324 static int
325 gen7_render_ring_flush(struct drm_i915_gem_request *req,
326                        u32 invalidate_domains, u32 flush_domains)
327 {
328         struct intel_engine_cs *ring = req->ring;
329         u32 flags = 0;
330         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331         int ret;
332
333         /*
334          * Ensure that any following seqno writes only happen when the render
335          * cache is indeed flushed.
336          *
337          * Workaround: 4th PIPE_CONTROL command (except the ones with only
338          * read-cache invalidate bits set) must have the CS_STALL bit set. We
339          * don't try to be clever and just set it unconditionally.
340          */
341         flags |= PIPE_CONTROL_CS_STALL;
342
343         /* Just flush everything.  Experiments have shown that reducing the
344          * number of bits based on the write domains has little performance
345          * impact.
346          */
347         if (flush_domains) {
348                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
351         }
352         if (invalidate_domains) {
353                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
354                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360                 /*
361                  * TLB invalidate requires a post-sync write.
362                  */
363                 flags |= PIPE_CONTROL_QW_WRITE;
364                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
366                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
368                 /* Workaround: we must issue a pipe_control with CS-stall bit
369                  * set before a pipe_control command that has the state cache
370                  * invalidate bit set. */
371                 gen7_render_ring_cs_stall_wa(req);
372         }
373
374         ret = intel_ring_begin(req, 4);
375         if (ret)
376                 return ret;
377
378         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379         intel_ring_emit(ring, flags);
380         intel_ring_emit(ring, scratch_addr);
381         intel_ring_emit(ring, 0);
382         intel_ring_advance(ring);
383
384         return 0;
385 }
386
387 static int
388 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389                        u32 flags, u32 scratch_addr)
390 {
391         struct intel_engine_cs *ring = req->ring;
392         int ret;
393
394         ret = intel_ring_begin(req, 6);
395         if (ret)
396                 return ret;
397
398         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399         intel_ring_emit(ring, flags);
400         intel_ring_emit(ring, scratch_addr);
401         intel_ring_emit(ring, 0);
402         intel_ring_emit(ring, 0);
403         intel_ring_emit(ring, 0);
404         intel_ring_advance(ring);
405
406         return 0;
407 }
408
409 static int
410 gen8_render_ring_flush(struct drm_i915_gem_request *req,
411                        u32 invalidate_domains, u32 flush_domains)
412 {
413         u32 flags = 0;
414         u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415         int ret;
416
417         flags |= PIPE_CONTROL_CS_STALL;
418
419         if (flush_domains) {
420                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
423         }
424         if (invalidate_domains) {
425                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
426                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
427                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
428                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
429                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
430                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
431                 flags |= PIPE_CONTROL_QW_WRITE;
432                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
433
434                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
435                 ret = gen8_emit_pipe_control(req,
436                                              PIPE_CONTROL_CS_STALL |
437                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
438                                              0);
439                 if (ret)
440                         return ret;
441         }
442
443         return gen8_emit_pipe_control(req, flags, scratch_addr);
444 }
445
446 static void ring_write_tail(struct intel_engine_cs *ring,
447                             u32 value)
448 {
449         struct drm_i915_private *dev_priv = ring->dev->dev_private;
450         I915_WRITE_TAIL(ring, value);
451 }
452
453 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
454 {
455         struct drm_i915_private *dev_priv = ring->dev->dev_private;
456         u64 acthd;
457
458         if (INTEL_INFO(ring->dev)->gen >= 8)
459                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
460                                          RING_ACTHD_UDW(ring->mmio_base));
461         else if (INTEL_INFO(ring->dev)->gen >= 4)
462                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
463         else
464                 acthd = I915_READ(ACTHD);
465
466         return acthd;
467 }
468
469 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
470 {
471         struct drm_i915_private *dev_priv = ring->dev->dev_private;
472         u32 addr;
473
474         addr = dev_priv->status_page_dmah->busaddr;
475         if (INTEL_INFO(ring->dev)->gen >= 4)
476                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
477         I915_WRITE(HWS_PGA, addr);
478 }
479
480 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
481 {
482         struct drm_device *dev = ring->dev;
483         struct drm_i915_private *dev_priv = ring->dev->dev_private;
484         u32 mmio = 0;
485
486         /* The ring status page addresses are no longer next to the rest of
487          * the ring registers as of gen7.
488          */
489         if (IS_GEN7(dev)) {
490                 switch (ring->id) {
491                 case RCS:
492                         mmio = RENDER_HWS_PGA_GEN7;
493                         break;
494                 case BCS:
495                         mmio = BLT_HWS_PGA_GEN7;
496                         break;
497                 /*
498                  * VCS2 actually doesn't exist on Gen7. Only shut up
499                  * gcc switch check warning
500                  */
501                 case VCS2:
502                 case VCS:
503                         mmio = BSD_HWS_PGA_GEN7;
504                         break;
505                 case VECS:
506                         mmio = VEBOX_HWS_PGA_GEN7;
507                         break;
508                 }
509         } else if (IS_GEN6(ring->dev)) {
510                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
511         } else {
512                 /* XXX: gen8 returns to sanity */
513                 mmio = RING_HWS_PGA(ring->mmio_base);
514         }
515
516         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
517         POSTING_READ(mmio);
518
519         /*
520          * Flush the TLB for this page
521          *
522          * FIXME: These two bits have disappeared on gen8, so a question
523          * arises: do we still need this and if so how should we go about
524          * invalidating the TLB?
525          */
526         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
527                 u32 reg = RING_INSTPM(ring->mmio_base);
528
529                 /* ring should be idle before issuing a sync flush*/
530                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
531
532                 I915_WRITE(reg,
533                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
534                                               INSTPM_SYNC_FLUSH));
535                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
536                              1000))
537                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
538                                   ring->name);
539         }
540 }
541
542 static bool stop_ring(struct intel_engine_cs *ring)
543 {
544         struct drm_i915_private *dev_priv = to_i915(ring->dev);
545
546         if (!IS_GEN2(ring->dev)) {
547                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
548                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
549                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
550                         /* Sometimes we observe that the idle flag is not
551                          * set even though the ring is empty. So double
552                          * check before giving up.
553                          */
554                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
555                                 return false;
556                 }
557         }
558
559         I915_WRITE_CTL(ring, 0);
560         I915_WRITE_HEAD(ring, 0);
561         ring->write_tail(ring, 0);
562
563         if (!IS_GEN2(ring->dev)) {
564                 (void)I915_READ_CTL(ring);
565                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
566         }
567
568         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
569 }
570
571 static int init_ring_common(struct intel_engine_cs *ring)
572 {
573         struct drm_device *dev = ring->dev;
574         struct drm_i915_private *dev_priv = dev->dev_private;
575         struct intel_ringbuffer *ringbuf = ring->buffer;
576         struct drm_i915_gem_object *obj = ringbuf->obj;
577         int ret = 0;
578
579         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
580
581         if (!stop_ring(ring)) {
582                 /* G45 ring initialization often fails to reset head to zero */
583                 DRM_DEBUG_KMS("%s head not reset to zero "
584                               "ctl %08x head %08x tail %08x start %08x\n",
585                               ring->name,
586                               I915_READ_CTL(ring),
587                               I915_READ_HEAD(ring),
588                               I915_READ_TAIL(ring),
589                               I915_READ_START(ring));
590
591                 if (!stop_ring(ring)) {
592                         DRM_ERROR("failed to set %s head to zero "
593                                   "ctl %08x head %08x tail %08x start %08x\n",
594                                   ring->name,
595                                   I915_READ_CTL(ring),
596                                   I915_READ_HEAD(ring),
597                                   I915_READ_TAIL(ring),
598                                   I915_READ_START(ring));
599                         ret = -EIO;
600                         goto out;
601                 }
602         }
603
604         if (I915_NEED_GFX_HWS(dev))
605                 intel_ring_setup_status_page(ring);
606         else
607                 ring_setup_phys_status_page(ring);
608
609         /* Enforce ordering by reading HEAD register back */
610         I915_READ_HEAD(ring);
611
612         /* Initialize the ring. This must happen _after_ we've cleared the ring
613          * registers with the above sequence (the readback of the HEAD registers
614          * also enforces ordering), otherwise the hw might lose the new ring
615          * register values. */
616         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
617
618         /* WaClearRingBufHeadRegAtInit:ctg,elk */
619         if (I915_READ_HEAD(ring))
620                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
621                           ring->name, I915_READ_HEAD(ring));
622         I915_WRITE_HEAD(ring, 0);
623         (void)I915_READ_HEAD(ring);
624
625         I915_WRITE_CTL(ring,
626                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
627                         | RING_VALID);
628
629         /* If the head is still not zero, the ring is dead */
630         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
631                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
632                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
633                 DRM_ERROR("%s initialization failed "
634                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
635                           ring->name,
636                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
637                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
638                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
639                 ret = -EIO;
640                 goto out;
641         }
642
643         ringbuf->last_retired_head = -1;
644         ringbuf->head = I915_READ_HEAD(ring);
645         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
646         intel_ring_update_space(ringbuf);
647
648         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
649
650 out:
651         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
652
653         return ret;
654 }
655
656 void
657 intel_fini_pipe_control(struct intel_engine_cs *ring)
658 {
659         struct drm_device *dev = ring->dev;
660
661         if (ring->scratch.obj == NULL)
662                 return;
663
664         if (INTEL_INFO(dev)->gen >= 5) {
665                 kunmap(sg_page(ring->scratch.obj->pages->sgl));
666                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
667         }
668
669         drm_gem_object_unreference(&ring->scratch.obj->base);
670         ring->scratch.obj = NULL;
671 }
672
673 int
674 intel_init_pipe_control(struct intel_engine_cs *ring)
675 {
676         int ret;
677
678         WARN_ON(ring->scratch.obj);
679
680         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
681         if (ring->scratch.obj == NULL) {
682                 DRM_ERROR("Failed to allocate seqno page\n");
683                 ret = -ENOMEM;
684                 goto err;
685         }
686
687         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
688         if (ret)
689                 goto err_unref;
690
691         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
692         if (ret)
693                 goto err_unref;
694
695         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
696         ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
697         if (ring->scratch.cpu_page == NULL) {
698                 ret = -ENOMEM;
699                 goto err_unpin;
700         }
701
702         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
703                          ring->name, ring->scratch.gtt_offset);
704         return 0;
705
706 err_unpin:
707         i915_gem_object_ggtt_unpin(ring->scratch.obj);
708 err_unref:
709         drm_gem_object_unreference(&ring->scratch.obj->base);
710 err:
711         return ret;
712 }
713
714 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
715 {
716         int ret, i;
717         struct intel_engine_cs *ring = req->ring;
718         struct drm_device *dev = ring->dev;
719         struct drm_i915_private *dev_priv = dev->dev_private;
720         struct i915_workarounds *w = &dev_priv->workarounds;
721
722         if (WARN_ON_ONCE(w->count == 0))
723                 return 0;
724
725         ring->gpu_caches_dirty = true;
726         ret = intel_ring_flush_all_caches(req);
727         if (ret)
728                 return ret;
729
730         ret = intel_ring_begin(req, (w->count * 2 + 2));
731         if (ret)
732                 return ret;
733
734         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
735         for (i = 0; i < w->count; i++) {
736                 intel_ring_emit(ring, w->reg[i].addr);
737                 intel_ring_emit(ring, w->reg[i].value);
738         }
739         intel_ring_emit(ring, MI_NOOP);
740
741         intel_ring_advance(ring);
742
743         ring->gpu_caches_dirty = true;
744         ret = intel_ring_flush_all_caches(req);
745         if (ret)
746                 return ret;
747
748         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
749
750         return 0;
751 }
752
753 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
754 {
755         int ret;
756
757         ret = intel_ring_workarounds_emit(req);
758         if (ret != 0)
759                 return ret;
760
761         ret = i915_gem_render_state_init(req);
762         if (ret)
763                 DRM_ERROR("init render state: %d\n", ret);
764
765         return ret;
766 }
767
768 static int wa_add(struct drm_i915_private *dev_priv,
769                   const u32 addr, const u32 mask, const u32 val)
770 {
771         const u32 idx = dev_priv->workarounds.count;
772
773         if (WARN_ON(idx >= I915_MAX_WA_REGS))
774                 return -ENOSPC;
775
776         dev_priv->workarounds.reg[idx].addr = addr;
777         dev_priv->workarounds.reg[idx].value = val;
778         dev_priv->workarounds.reg[idx].mask = mask;
779
780         dev_priv->workarounds.count++;
781
782         return 0;
783 }
784
785 #define WA_REG(addr, mask, val) do { \
786                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
787                 if (r) \
788                         return r; \
789         } while (0)
790
791 #define WA_SET_BIT_MASKED(addr, mask) \
792         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
793
794 #define WA_CLR_BIT_MASKED(addr, mask) \
795         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
796
797 #define WA_SET_FIELD_MASKED(addr, mask, value) \
798         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
799
800 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
801 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
802
803 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
804
805 static int bdw_init_workarounds(struct intel_engine_cs *ring)
806 {
807         struct drm_device *dev = ring->dev;
808         struct drm_i915_private *dev_priv = dev->dev_private;
809
810         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
811
812         /* WaDisableAsyncFlipPerfMode:bdw */
813         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
814
815         /* WaDisablePartialInstShootdown:bdw */
816         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
817         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
818                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
819                           STALL_DOP_GATING_DISABLE);
820
821         /* WaDisableDopClockGating:bdw */
822         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
823                           DOP_CLOCK_GATING_DISABLE);
824
825         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
826                           GEN8_SAMPLER_POWER_BYPASS_DIS);
827
828         /* Use Force Non-Coherent whenever executing a 3D context. This is a
829          * workaround for for a possible hang in the unlikely event a TLB
830          * invalidation occurs during a PSD flush.
831          */
832         WA_SET_BIT_MASKED(HDC_CHICKEN0,
833                           /* WaForceEnableNonCoherent:bdw */
834                           HDC_FORCE_NON_COHERENT |
835                           /* WaForceContextSaveRestoreNonCoherent:bdw */
836                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
837                           /* WaHdcDisableFetchWhenMasked:bdw */
838                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
839                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
840                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
841
842         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
843          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
844          *  polygons in the same 8x4 pixel/sample area to be processed without
845          *  stalling waiting for the earlier ones to write to Hierarchical Z
846          *  buffer."
847          *
848          * This optimization is off by default for Broadwell; turn it on.
849          */
850         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
851
852         /* Wa4x4STCOptimizationDisable:bdw */
853         WA_SET_BIT_MASKED(CACHE_MODE_1,
854                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
855
856         /*
857          * BSpec recommends 8x4 when MSAA is used,
858          * however in practice 16x4 seems fastest.
859          *
860          * Note that PS/WM thread counts depend on the WIZ hashing
861          * disable bit, which we don't touch here, but it's good
862          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
863          */
864         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
865                             GEN6_WIZ_HASHING_MASK,
866                             GEN6_WIZ_HASHING_16x4);
867
868         return 0;
869 }
870
871 static int chv_init_workarounds(struct intel_engine_cs *ring)
872 {
873         struct drm_device *dev = ring->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875
876         WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
877
878         /* WaDisableAsyncFlipPerfMode:chv */
879         WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
880
881         /* WaDisablePartialInstShootdown:chv */
882         /* WaDisableThreadStallDopClockGating:chv */
883         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
884                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
885                           STALL_DOP_GATING_DISABLE);
886
887         /* Use Force Non-Coherent whenever executing a 3D context. This is a
888          * workaround for a possible hang in the unlikely event a TLB
889          * invalidation occurs during a PSD flush.
890          */
891         /* WaForceEnableNonCoherent:chv */
892         /* WaHdcDisableFetchWhenMasked:chv */
893         WA_SET_BIT_MASKED(HDC_CHICKEN0,
894                           HDC_FORCE_NON_COHERENT |
895                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
896
897         /* According to the CACHE_MODE_0 default value documentation, some
898          * CHV platforms disable this optimization by default.  Turn it on.
899          */
900         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
901
902         /* Wa4x4STCOptimizationDisable:chv */
903         WA_SET_BIT_MASKED(CACHE_MODE_1,
904                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
905
906         /* Improve HiZ throughput on CHV. */
907         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
908
909         /*
910          * BSpec recommends 8x4 when MSAA is used,
911          * however in practice 16x4 seems fastest.
912          *
913          * Note that PS/WM thread counts depend on the WIZ hashing
914          * disable bit, which we don't touch here, but it's good
915          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
916          */
917         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
918                             GEN6_WIZ_HASHING_MASK,
919                             GEN6_WIZ_HASHING_16x4);
920
921         return 0;
922 }
923
924 static int gen9_init_workarounds(struct intel_engine_cs *ring)
925 {
926         struct drm_device *dev = ring->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         uint32_t tmp;
929
930         /* WaDisablePartialInstShootdown:skl,bxt */
931         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
932                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
933
934         /* Syncing dependencies between camera and graphics:skl,bxt */
935         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
936                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
937
938         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
939             INTEL_REVID(dev) == SKL_REVID_B0)) ||
940             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
941                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
942                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
943                                   GEN9_DG_MIRROR_FIX_ENABLE);
944         }
945
946         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
947             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
948                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
949                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
950                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
951                 /*
952                  * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
953                  * but we do that in per ctx batchbuffer as there is an issue
954                  * with this register not getting restored on ctx restore
955                  */
956         }
957
958         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
959             IS_BROXTON(dev)) {
960                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
961                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
962                                   GEN9_ENABLE_YV12_BUGFIX);
963         }
964
965         /* Wa4x4STCOptimizationDisable:skl,bxt */
966         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
967
968         /* WaDisablePartialResolveInVc:skl,bxt */
969         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
970
971         /* WaCcsTlbPrefetchDisable:skl,bxt */
972         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
973                           GEN9_CCS_TLB_PREFETCH_ENABLE);
974
975         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
976         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
977             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
978                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
979                                   PIXEL_MASK_CAMMING_DISABLE);
980
981         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
982         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
983         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
984             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
985                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
986         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
987
988         return 0;
989 }
990
991 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992 {
993         struct drm_device *dev = ring->dev;
994         struct drm_i915_private *dev_priv = dev->dev_private;
995         u8 vals[3] = { 0, 0, 0 };
996         unsigned int i;
997
998         for (i = 0; i < 3; i++) {
999                 u8 ss;
1000
1001                 /*
1002                  * Only consider slices where one, and only one, subslice has 7
1003                  * EUs
1004                  */
1005                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006                         continue;
1007
1008                 /*
1009                  * subslice_7eu[i] != 0 (because of the check above) and
1010                  * ss_max == 4 (maximum number of subslices possible per slice)
1011                  *
1012                  * ->    0 <= ss <= 3;
1013                  */
1014                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015                 vals[i] = 3 - ss;
1016         }
1017
1018         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019                 return 0;
1020
1021         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1022         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023                             GEN9_IZ_HASHING_MASK(2) |
1024                             GEN9_IZ_HASHING_MASK(1) |
1025                             GEN9_IZ_HASHING_MASK(0),
1026                             GEN9_IZ_HASHING(2, vals[2]) |
1027                             GEN9_IZ_HASHING(1, vals[1]) |
1028                             GEN9_IZ_HASHING(0, vals[0]));
1029
1030         return 0;
1031 }
1032
1033
1034 static int skl_init_workarounds(struct intel_engine_cs *ring)
1035 {
1036         struct drm_device *dev = ring->dev;
1037         struct drm_i915_private *dev_priv = dev->dev_private;
1038
1039         gen9_init_workarounds(ring);
1040
1041         /* WaDisablePowerCompilerClockGating:skl */
1042         if (INTEL_REVID(dev) == SKL_REVID_B0)
1043                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1044                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1045
1046         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1047                 /*
1048                  *Use Force Non-Coherent whenever executing a 3D context. This
1049                  * is a workaround for a possible hang in the unlikely event
1050                  * a TLB invalidation occurs during a PSD flush.
1051                  */
1052                 /* WaForceEnableNonCoherent:skl */
1053                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1054                                   HDC_FORCE_NON_COHERENT);
1055         }
1056
1057         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1058             INTEL_REVID(dev) == SKL_REVID_D0)
1059                 /* WaBarrierPerformanceFixDisable:skl */
1060                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1061                                   HDC_FENCE_DEST_SLM_DISABLE |
1062                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1063
1064         /* WaDisableSbeCacheDispatchPortSharing:skl */
1065         if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1066                 WA_SET_BIT_MASKED(
1067                         GEN7_HALF_SLICE_CHICKEN1,
1068                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1069         }
1070
1071         return skl_tune_iz_hashing(ring);
1072 }
1073
1074 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1075 {
1076         struct drm_device *dev = ring->dev;
1077         struct drm_i915_private *dev_priv = dev->dev_private;
1078
1079         gen9_init_workarounds(ring);
1080
1081         /* WaDisableThreadStallDopClockGating:bxt */
1082         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1083                           STALL_DOP_GATING_DISABLE);
1084
1085         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1086         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1087                 WA_SET_BIT_MASKED(
1088                         GEN7_HALF_SLICE_CHICKEN1,
1089                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1090         }
1091
1092         return 0;
1093 }
1094
1095 int init_workarounds_ring(struct intel_engine_cs *ring)
1096 {
1097         struct drm_device *dev = ring->dev;
1098         struct drm_i915_private *dev_priv = dev->dev_private;
1099
1100         WARN_ON(ring->id != RCS);
1101
1102         dev_priv->workarounds.count = 0;
1103
1104         if (IS_BROADWELL(dev))
1105                 return bdw_init_workarounds(ring);
1106
1107         if (IS_CHERRYVIEW(dev))
1108                 return chv_init_workarounds(ring);
1109
1110         if (IS_SKYLAKE(dev))
1111                 return skl_init_workarounds(ring);
1112
1113         if (IS_BROXTON(dev))
1114                 return bxt_init_workarounds(ring);
1115
1116         return 0;
1117 }
1118
1119 static int init_render_ring(struct intel_engine_cs *ring)
1120 {
1121         struct drm_device *dev = ring->dev;
1122         struct drm_i915_private *dev_priv = dev->dev_private;
1123         int ret = init_ring_common(ring);
1124         if (ret)
1125                 return ret;
1126
1127         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1128         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1129                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1130
1131         /* We need to disable the AsyncFlip performance optimisations in order
1132          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1133          * programmed to '1' on all products.
1134          *
1135          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1136          */
1137         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1138                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1139
1140         /* Required for the hardware to program scanline values for waiting */
1141         /* WaEnableFlushTlbInvalidationMode:snb */
1142         if (INTEL_INFO(dev)->gen == 6)
1143                 I915_WRITE(GFX_MODE,
1144                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1145
1146         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1147         if (IS_GEN7(dev))
1148                 I915_WRITE(GFX_MODE_GEN7,
1149                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1150                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1151
1152         if (IS_GEN6(dev)) {
1153                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1154                  * "If this bit is set, STCunit will have LRA as replacement
1155                  *  policy. [...] This bit must be reset.  LRA replacement
1156                  *  policy is not supported."
1157                  */
1158                 I915_WRITE(CACHE_MODE_0,
1159                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1160         }
1161
1162         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1163                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1164
1165         if (HAS_L3_DPF(dev))
1166                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1167
1168         return init_workarounds_ring(ring);
1169 }
1170
1171 static void render_ring_cleanup(struct intel_engine_cs *ring)
1172 {
1173         struct drm_device *dev = ring->dev;
1174         struct drm_i915_private *dev_priv = dev->dev_private;
1175
1176         if (dev_priv->semaphore_obj) {
1177                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1178                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1179                 dev_priv->semaphore_obj = NULL;
1180         }
1181
1182         intel_fini_pipe_control(ring);
1183 }
1184
1185 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1186                            unsigned int num_dwords)
1187 {
1188 #define MBOX_UPDATE_DWORDS 8
1189         struct intel_engine_cs *signaller = signaller_req->ring;
1190         struct drm_device *dev = signaller->dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_engine_cs *waiter;
1193         int i, ret, num_rings;
1194
1195         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1196         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1197 #undef MBOX_UPDATE_DWORDS
1198
1199         ret = intel_ring_begin(signaller_req, num_dwords);
1200         if (ret)
1201                 return ret;
1202
1203         for_each_ring(waiter, dev_priv, i) {
1204                 u32 seqno;
1205                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1206                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1207                         continue;
1208
1209                 seqno = i915_gem_request_get_seqno(signaller_req);
1210                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1211                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1212                                            PIPE_CONTROL_QW_WRITE |
1213                                            PIPE_CONTROL_FLUSH_ENABLE);
1214                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1215                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1216                 intel_ring_emit(signaller, seqno);
1217                 intel_ring_emit(signaller, 0);
1218                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1219                                            MI_SEMAPHORE_TARGET(waiter->id));
1220                 intel_ring_emit(signaller, 0);
1221         }
1222
1223         return 0;
1224 }
1225
1226 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1227                            unsigned int num_dwords)
1228 {
1229 #define MBOX_UPDATE_DWORDS 6
1230         struct intel_engine_cs *signaller = signaller_req->ring;
1231         struct drm_device *dev = signaller->dev;
1232         struct drm_i915_private *dev_priv = dev->dev_private;
1233         struct intel_engine_cs *waiter;
1234         int i, ret, num_rings;
1235
1236         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1237         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1238 #undef MBOX_UPDATE_DWORDS
1239
1240         ret = intel_ring_begin(signaller_req, num_dwords);
1241         if (ret)
1242                 return ret;
1243
1244         for_each_ring(waiter, dev_priv, i) {
1245                 u32 seqno;
1246                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1247                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1248                         continue;
1249
1250                 seqno = i915_gem_request_get_seqno(signaller_req);
1251                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1252                                            MI_FLUSH_DW_OP_STOREDW);
1253                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1254                                            MI_FLUSH_DW_USE_GTT);
1255                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256                 intel_ring_emit(signaller, seqno);
1257                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1258                                            MI_SEMAPHORE_TARGET(waiter->id));
1259                 intel_ring_emit(signaller, 0);
1260         }
1261
1262         return 0;
1263 }
1264
1265 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1266                        unsigned int num_dwords)
1267 {
1268         struct intel_engine_cs *signaller = signaller_req->ring;
1269         struct drm_device *dev = signaller->dev;
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         struct intel_engine_cs *useless;
1272         int i, ret, num_rings;
1273
1274 #define MBOX_UPDATE_DWORDS 3
1275         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1276         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1277 #undef MBOX_UPDATE_DWORDS
1278
1279         ret = intel_ring_begin(signaller_req, num_dwords);
1280         if (ret)
1281                 return ret;
1282
1283         for_each_ring(useless, dev_priv, i) {
1284                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1285                 if (mbox_reg != GEN6_NOSYNC) {
1286                         u32 seqno = i915_gem_request_get_seqno(signaller_req);
1287                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1288                         intel_ring_emit(signaller, mbox_reg);
1289                         intel_ring_emit(signaller, seqno);
1290                 }
1291         }
1292
1293         /* If num_dwords was rounded, make sure the tail pointer is correct */
1294         if (num_rings % 2 == 0)
1295                 intel_ring_emit(signaller, MI_NOOP);
1296
1297         return 0;
1298 }
1299
1300 /**
1301  * gen6_add_request - Update the semaphore mailbox registers
1302  *
1303  * @request - request to write to the ring
1304  *
1305  * Update the mailbox registers in the *other* rings with the current seqno.
1306  * This acts like a signal in the canonical semaphore.
1307  */
1308 static int
1309 gen6_add_request(struct drm_i915_gem_request *req)
1310 {
1311         struct intel_engine_cs *ring = req->ring;
1312         int ret;
1313
1314         if (ring->semaphore.signal)
1315                 ret = ring->semaphore.signal(req, 4);
1316         else
1317                 ret = intel_ring_begin(req, 4);
1318
1319         if (ret)
1320                 return ret;
1321
1322         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1323         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1324         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1325         intel_ring_emit(ring, MI_USER_INTERRUPT);
1326         __intel_ring_advance(ring);
1327
1328         return 0;
1329 }
1330
1331 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1332                                               u32 seqno)
1333 {
1334         struct drm_i915_private *dev_priv = dev->dev_private;
1335         return dev_priv->last_seqno < seqno;
1336 }
1337
1338 /**
1339  * intel_ring_sync - sync the waiter to the signaller on seqno
1340  *
1341  * @waiter - ring that is waiting
1342  * @signaller - ring which has, or will signal
1343  * @seqno - seqno which the waiter will block on
1344  */
1345
1346 static int
1347 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1348                struct intel_engine_cs *signaller,
1349                u32 seqno)
1350 {
1351         struct intel_engine_cs *waiter = waiter_req->ring;
1352         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1353         int ret;
1354
1355         ret = intel_ring_begin(waiter_req, 4);
1356         if (ret)
1357                 return ret;
1358
1359         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1360                                 MI_SEMAPHORE_GLOBAL_GTT |
1361                                 MI_SEMAPHORE_POLL |
1362                                 MI_SEMAPHORE_SAD_GTE_SDD);
1363         intel_ring_emit(waiter, seqno);
1364         intel_ring_emit(waiter,
1365                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1366         intel_ring_emit(waiter,
1367                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1368         intel_ring_advance(waiter);
1369         return 0;
1370 }
1371
1372 static int
1373 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1374                struct intel_engine_cs *signaller,
1375                u32 seqno)
1376 {
1377         struct intel_engine_cs *waiter = waiter_req->ring;
1378         u32 dw1 = MI_SEMAPHORE_MBOX |
1379                   MI_SEMAPHORE_COMPARE |
1380                   MI_SEMAPHORE_REGISTER;
1381         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1382         int ret;
1383
1384         /* Throughout all of the GEM code, seqno passed implies our current
1385          * seqno is >= the last seqno executed. However for hardware the
1386          * comparison is strictly greater than.
1387          */
1388         seqno -= 1;
1389
1390         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1391
1392         ret = intel_ring_begin(waiter_req, 4);
1393         if (ret)
1394                 return ret;
1395
1396         /* If seqno wrap happened, omit the wait with no-ops */
1397         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1398                 intel_ring_emit(waiter, dw1 | wait_mbox);
1399                 intel_ring_emit(waiter, seqno);
1400                 intel_ring_emit(waiter, 0);
1401                 intel_ring_emit(waiter, MI_NOOP);
1402         } else {
1403                 intel_ring_emit(waiter, MI_NOOP);
1404                 intel_ring_emit(waiter, MI_NOOP);
1405                 intel_ring_emit(waiter, MI_NOOP);
1406                 intel_ring_emit(waiter, MI_NOOP);
1407         }
1408         intel_ring_advance(waiter);
1409
1410         return 0;
1411 }
1412
1413 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1414 do {                                                                    \
1415         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1416                  PIPE_CONTROL_DEPTH_STALL);                             \
1417         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1418         intel_ring_emit(ring__, 0);                                                     \
1419         intel_ring_emit(ring__, 0);                                                     \
1420 } while (0)
1421
1422 static int
1423 pc_render_add_request(struct drm_i915_gem_request *req)
1424 {
1425         struct intel_engine_cs *ring = req->ring;
1426         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1427         int ret;
1428
1429         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1430          * incoherent with writes to memory, i.e. completely fubar,
1431          * so we need to use PIPE_NOTIFY instead.
1432          *
1433          * However, we also need to workaround the qword write
1434          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1435          * memory before requesting an interrupt.
1436          */
1437         ret = intel_ring_begin(req, 32);
1438         if (ret)
1439                 return ret;
1440
1441         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1442                         PIPE_CONTROL_WRITE_FLUSH |
1443                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1444         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1445         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1446         intel_ring_emit(ring, 0);
1447         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1448         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1449         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450         scratch_addr += 2 * CACHELINE_BYTES;
1451         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1452         scratch_addr += 2 * CACHELINE_BYTES;
1453         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1454         scratch_addr += 2 * CACHELINE_BYTES;
1455         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1456         scratch_addr += 2 * CACHELINE_BYTES;
1457         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1458
1459         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1460                         PIPE_CONTROL_WRITE_FLUSH |
1461                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1462                         PIPE_CONTROL_NOTIFY);
1463         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1464         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1465         intel_ring_emit(ring, 0);
1466         __intel_ring_advance(ring);
1467
1468         return 0;
1469 }
1470
1471 static u32
1472 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1473 {
1474         /* Workaround to force correct ordering between irq and seqno writes on
1475          * ivb (and maybe also on snb) by reading from a CS register (like
1476          * ACTHD) before reading the status page. */
1477         if (!lazy_coherency) {
1478                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1479                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1480         }
1481
1482         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1483 }
1484
1485 static u32
1486 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1487 {
1488         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1489 }
1490
1491 static void
1492 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1493 {
1494         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1495 }
1496
1497 static u32
1498 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1499 {
1500         return ring->scratch.cpu_page[0];
1501 }
1502
1503 static void
1504 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1505 {
1506         ring->scratch.cpu_page[0] = seqno;
1507 }
1508
1509 static bool
1510 gen5_ring_get_irq(struct intel_engine_cs *ring)
1511 {
1512         struct drm_device *dev = ring->dev;
1513         struct drm_i915_private *dev_priv = dev->dev_private;
1514
1515         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1516                 return false;
1517
1518         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1519         if (ring->irq_refcount++ == 0)
1520                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1521         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1522
1523         return true;
1524 }
1525
1526 static void
1527 gen5_ring_put_irq(struct intel_engine_cs *ring)
1528 {
1529         struct drm_device *dev = ring->dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531
1532         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1533         if (--ring->irq_refcount == 0)
1534                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1535         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1536 }
1537
1538 static bool
1539 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1540 {
1541         struct drm_device *dev = ring->dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543
1544         if (!intel_irqs_enabled(dev_priv))
1545                 return false;
1546
1547         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1548         if (ring->irq_refcount++ == 0) {
1549                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1550                 I915_WRITE(IMR, dev_priv->irq_mask);
1551                 POSTING_READ(IMR);
1552         }
1553         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1554
1555         return true;
1556 }
1557
1558 static void
1559 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1560 {
1561         struct drm_device *dev = ring->dev;
1562         struct drm_i915_private *dev_priv = dev->dev_private;
1563
1564         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1565         if (--ring->irq_refcount == 0) {
1566                 dev_priv->irq_mask |= ring->irq_enable_mask;
1567                 I915_WRITE(IMR, dev_priv->irq_mask);
1568                 POSTING_READ(IMR);
1569         }
1570         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1571 }
1572
1573 static bool
1574 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1575 {
1576         struct drm_device *dev = ring->dev;
1577         struct drm_i915_private *dev_priv = dev->dev_private;
1578
1579         if (!intel_irqs_enabled(dev_priv))
1580                 return false;
1581
1582         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1583         if (ring->irq_refcount++ == 0) {
1584                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1585                 I915_WRITE16(IMR, dev_priv->irq_mask);
1586                 POSTING_READ16(IMR);
1587         }
1588         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1589
1590         return true;
1591 }
1592
1593 static void
1594 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1595 {
1596         struct drm_device *dev = ring->dev;
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598
1599         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1600         if (--ring->irq_refcount == 0) {
1601                 dev_priv->irq_mask |= ring->irq_enable_mask;
1602                 I915_WRITE16(IMR, dev_priv->irq_mask);
1603                 POSTING_READ16(IMR);
1604         }
1605         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1606 }
1607
1608 static int
1609 bsd_ring_flush(struct drm_i915_gem_request *req,
1610                u32     invalidate_domains,
1611                u32     flush_domains)
1612 {
1613         struct intel_engine_cs *ring = req->ring;
1614         int ret;
1615
1616         ret = intel_ring_begin(req, 2);
1617         if (ret)
1618                 return ret;
1619
1620         intel_ring_emit(ring, MI_FLUSH);
1621         intel_ring_emit(ring, MI_NOOP);
1622         intel_ring_advance(ring);
1623         return 0;
1624 }
1625
1626 static int
1627 i9xx_add_request(struct drm_i915_gem_request *req)
1628 {
1629         struct intel_engine_cs *ring = req->ring;
1630         int ret;
1631
1632         ret = intel_ring_begin(req, 4);
1633         if (ret)
1634                 return ret;
1635
1636         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1637         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1638         intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1639         intel_ring_emit(ring, MI_USER_INTERRUPT);
1640         __intel_ring_advance(ring);
1641
1642         return 0;
1643 }
1644
1645 static bool
1646 gen6_ring_get_irq(struct intel_engine_cs *ring)
1647 {
1648         struct drm_device *dev = ring->dev;
1649         struct drm_i915_private *dev_priv = dev->dev_private;
1650
1651         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1652                 return false;
1653
1654         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1655         if (ring->irq_refcount++ == 0) {
1656                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1657                         I915_WRITE_IMR(ring,
1658                                        ~(ring->irq_enable_mask |
1659                                          GT_PARITY_ERROR(dev)));
1660                 else
1661                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1662                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1663         }
1664         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1665
1666         return true;
1667 }
1668
1669 static void
1670 gen6_ring_put_irq(struct intel_engine_cs *ring)
1671 {
1672         struct drm_device *dev = ring->dev;
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1676         if (--ring->irq_refcount == 0) {
1677                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1678                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1679                 else
1680                         I915_WRITE_IMR(ring, ~0);
1681                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1682         }
1683         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1684 }
1685
1686 static bool
1687 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1688 {
1689         struct drm_device *dev = ring->dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691
1692         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1693                 return false;
1694
1695         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1696         if (ring->irq_refcount++ == 0) {
1697                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1698                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1699         }
1700         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1701
1702         return true;
1703 }
1704
1705 static void
1706 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1707 {
1708         struct drm_device *dev = ring->dev;
1709         struct drm_i915_private *dev_priv = dev->dev_private;
1710
1711         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1712         if (--ring->irq_refcount == 0) {
1713                 I915_WRITE_IMR(ring, ~0);
1714                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1715         }
1716         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1717 }
1718
1719 static bool
1720 gen8_ring_get_irq(struct intel_engine_cs *ring)
1721 {
1722         struct drm_device *dev = ring->dev;
1723         struct drm_i915_private *dev_priv = dev->dev_private;
1724
1725         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1726                 return false;
1727
1728         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1729         if (ring->irq_refcount++ == 0) {
1730                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1731                         I915_WRITE_IMR(ring,
1732                                        ~(ring->irq_enable_mask |
1733                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1734                 } else {
1735                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1736                 }
1737                 POSTING_READ(RING_IMR(ring->mmio_base));
1738         }
1739         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1740
1741         return true;
1742 }
1743
1744 static void
1745 gen8_ring_put_irq(struct intel_engine_cs *ring)
1746 {
1747         struct drm_device *dev = ring->dev;
1748         struct drm_i915_private *dev_priv = dev->dev_private;
1749
1750         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1751         if (--ring->irq_refcount == 0) {
1752                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1753                         I915_WRITE_IMR(ring,
1754                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1755                 } else {
1756                         I915_WRITE_IMR(ring, ~0);
1757                 }
1758                 POSTING_READ(RING_IMR(ring->mmio_base));
1759         }
1760         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1761 }
1762
1763 static int
1764 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1765                          u64 offset, u32 length,
1766                          unsigned dispatch_flags)
1767 {
1768         struct intel_engine_cs *ring = req->ring;
1769         int ret;
1770
1771         ret = intel_ring_begin(req, 2);
1772         if (ret)
1773                 return ret;
1774
1775         intel_ring_emit(ring,
1776                         MI_BATCH_BUFFER_START |
1777                         MI_BATCH_GTT |
1778                         (dispatch_flags & I915_DISPATCH_SECURE ?
1779                          0 : MI_BATCH_NON_SECURE_I965));
1780         intel_ring_emit(ring, offset);
1781         intel_ring_advance(ring);
1782
1783         return 0;
1784 }
1785
1786 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1787 #define I830_BATCH_LIMIT (256*1024)
1788 #define I830_TLB_ENTRIES (2)
1789 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1790 static int
1791 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1792                          u64 offset, u32 len,
1793                          unsigned dispatch_flags)
1794 {
1795         struct intel_engine_cs *ring = req->ring;
1796         u32 cs_offset = ring->scratch.gtt_offset;
1797         int ret;
1798
1799         ret = intel_ring_begin(req, 6);
1800         if (ret)
1801                 return ret;
1802
1803         /* Evict the invalid PTE TLBs */
1804         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1805         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1806         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1807         intel_ring_emit(ring, cs_offset);
1808         intel_ring_emit(ring, 0xdeadbeef);
1809         intel_ring_emit(ring, MI_NOOP);
1810         intel_ring_advance(ring);
1811
1812         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1813                 if (len > I830_BATCH_LIMIT)
1814                         return -ENOSPC;
1815
1816                 ret = intel_ring_begin(req, 6 + 2);
1817                 if (ret)
1818                         return ret;
1819
1820                 /* Blit the batch (which has now all relocs applied) to the
1821                  * stable batch scratch bo area (so that the CS never
1822                  * stumbles over its tlb invalidation bug) ...
1823                  */
1824                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1825                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1826                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1827                 intel_ring_emit(ring, cs_offset);
1828                 intel_ring_emit(ring, 4096);
1829                 intel_ring_emit(ring, offset);
1830
1831                 intel_ring_emit(ring, MI_FLUSH);
1832                 intel_ring_emit(ring, MI_NOOP);
1833                 intel_ring_advance(ring);
1834
1835                 /* ... and execute it. */
1836                 offset = cs_offset;
1837         }
1838
1839         ret = intel_ring_begin(req, 4);
1840         if (ret)
1841                 return ret;
1842
1843         intel_ring_emit(ring, MI_BATCH_BUFFER);
1844         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1845                                         0 : MI_BATCH_NON_SECURE));
1846         intel_ring_emit(ring, offset + len - 8);
1847         intel_ring_emit(ring, MI_NOOP);
1848         intel_ring_advance(ring);
1849
1850         return 0;
1851 }
1852
1853 static int
1854 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1855                          u64 offset, u32 len,
1856                          unsigned dispatch_flags)
1857 {
1858         struct intel_engine_cs *ring = req->ring;
1859         int ret;
1860
1861         ret = intel_ring_begin(req, 2);
1862         if (ret)
1863                 return ret;
1864
1865         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1866         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1867                                         0 : MI_BATCH_NON_SECURE));
1868         intel_ring_advance(ring);
1869
1870         return 0;
1871 }
1872
1873 static void cleanup_status_page(struct intel_engine_cs *ring)
1874 {
1875         struct drm_i915_gem_object *obj;
1876
1877         obj = ring->status_page.obj;
1878         if (obj == NULL)
1879                 return;
1880
1881         kunmap(sg_page(obj->pages->sgl));
1882         i915_gem_object_ggtt_unpin(obj);
1883         drm_gem_object_unreference(&obj->base);
1884         ring->status_page.obj = NULL;
1885 }
1886
1887 static int init_status_page(struct intel_engine_cs *ring)
1888 {
1889         struct drm_i915_gem_object *obj;
1890
1891         if ((obj = ring->status_page.obj) == NULL) {
1892                 unsigned flags;
1893                 int ret;
1894
1895                 obj = i915_gem_alloc_object(ring->dev, 4096);
1896                 if (obj == NULL) {
1897                         DRM_ERROR("Failed to allocate status page\n");
1898                         return -ENOMEM;
1899                 }
1900
1901                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1902                 if (ret)
1903                         goto err_unref;
1904
1905                 flags = 0;
1906                 if (!HAS_LLC(ring->dev))
1907                         /* On g33, we cannot place HWS above 256MiB, so
1908                          * restrict its pinning to the low mappable arena.
1909                          * Though this restriction is not documented for
1910                          * gen4, gen5, or byt, they also behave similarly
1911                          * and hang if the HWS is placed at the top of the
1912                          * GTT. To generalise, it appears that all !llc
1913                          * platforms have issues with us placing the HWS
1914                          * above the mappable region (even though we never
1915                          * actualy map it).
1916                          */
1917                         flags |= PIN_MAPPABLE;
1918                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1919                 if (ret) {
1920 err_unref:
1921                         drm_gem_object_unreference(&obj->base);
1922                         return ret;
1923                 }
1924
1925                 ring->status_page.obj = obj;
1926         }
1927
1928         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1929         ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1930         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1931
1932         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1933                         ring->name, ring->status_page.gfx_addr);
1934
1935         return 0;
1936 }
1937
1938 static int init_phys_status_page(struct intel_engine_cs *ring)
1939 {
1940         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1941
1942         if (!dev_priv->status_page_dmah) {
1943                 dev_priv->status_page_dmah =
1944                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1945                 if (!dev_priv->status_page_dmah)
1946                         return -ENOMEM;
1947         }
1948
1949         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1950         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1951
1952         return 0;
1953 }
1954
1955 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1956 {
1957         iounmap(ringbuf->virtual_start);
1958         ringbuf->virtual_start = NULL;
1959         i915_gem_object_ggtt_unpin(ringbuf->obj);
1960 }
1961
1962 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1963                                      struct intel_ringbuffer *ringbuf)
1964 {
1965         struct drm_i915_private *dev_priv = to_i915(dev);
1966         struct drm_i915_gem_object *obj = ringbuf->obj;
1967         int ret;
1968
1969         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1970         if (ret)
1971                 return ret;
1972
1973         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1974         if (ret) {
1975                 i915_gem_object_ggtt_unpin(obj);
1976                 return ret;
1977         }
1978
1979         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1980                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1981         if (ringbuf->virtual_start == NULL) {
1982                 i915_gem_object_ggtt_unpin(obj);
1983                 return -EINVAL;
1984         }
1985
1986         return 0;
1987 }
1988
1989 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1990 {
1991         drm_gem_object_unreference(&ringbuf->obj->base);
1992         ringbuf->obj = NULL;
1993 }
1994
1995 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1996                                struct intel_ringbuffer *ringbuf)
1997 {
1998         struct drm_i915_gem_object *obj;
1999
2000         obj = NULL;
2001         if (!HAS_LLC(dev))
2002                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2003         if (obj == NULL)
2004                 obj = i915_gem_alloc_object(dev, ringbuf->size);
2005         if (obj == NULL)
2006                 return -ENOMEM;
2007
2008         /* mark ring buffers as read-only from GPU side by default */
2009         obj->gt_ro = 1;
2010
2011         ringbuf->obj = obj;
2012
2013         return 0;
2014 }
2015
2016 static int intel_init_ring_buffer(struct drm_device *dev,
2017                                   struct intel_engine_cs *ring)
2018 {
2019         struct intel_ringbuffer *ringbuf;
2020         int ret;
2021
2022         WARN_ON(ring->buffer);
2023
2024         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2025         if (!ringbuf)
2026                 return -ENOMEM;
2027         ring->buffer = ringbuf;
2028
2029         ring->dev = dev;
2030         INIT_LIST_HEAD(&ring->active_list);
2031         INIT_LIST_HEAD(&ring->request_list);
2032         INIT_LIST_HEAD(&ring->execlist_queue);
2033         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2034         ringbuf->size = 32 * PAGE_SIZE;
2035         ringbuf->ring = ring;
2036         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2037
2038         init_waitqueue_head(&ring->irq_queue);
2039
2040         if (I915_NEED_GFX_HWS(dev)) {
2041                 ret = init_status_page(ring);
2042                 if (ret)
2043                         goto error;
2044         } else {
2045                 BUG_ON(ring->id != RCS);
2046                 ret = init_phys_status_page(ring);
2047                 if (ret)
2048                         goto error;
2049         }
2050
2051         WARN_ON(ringbuf->obj);
2052
2053         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2054         if (ret) {
2055                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2056                                 ring->name, ret);
2057                 goto error;
2058         }
2059
2060         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2061         if (ret) {
2062                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2063                                 ring->name, ret);
2064                 intel_destroy_ringbuffer_obj(ringbuf);
2065                 goto error;
2066         }
2067
2068         /* Workaround an erratum on the i830 which causes a hang if
2069          * the TAIL pointer points to within the last 2 cachelines
2070          * of the buffer.
2071          */
2072         ringbuf->effective_size = ringbuf->size;
2073         if (IS_I830(dev) || IS_845G(dev))
2074                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2075
2076         ret = i915_cmd_parser_init_ring(ring);
2077         if (ret)
2078                 goto error;
2079
2080         return 0;
2081
2082 error:
2083         kfree(ringbuf);
2084         ring->buffer = NULL;
2085         return ret;
2086 }
2087
2088 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2089 {
2090         struct drm_i915_private *dev_priv;
2091         struct intel_ringbuffer *ringbuf;
2092
2093         if (!intel_ring_initialized(ring))
2094                 return;
2095
2096         dev_priv = to_i915(ring->dev);
2097         ringbuf = ring->buffer;
2098
2099         intel_stop_ring_buffer(ring);
2100         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2101
2102         intel_unpin_ringbuffer_obj(ringbuf);
2103         intel_destroy_ringbuffer_obj(ringbuf);
2104
2105         if (ring->cleanup)
2106                 ring->cleanup(ring);
2107
2108         cleanup_status_page(ring);
2109
2110         i915_cmd_parser_fini_ring(ring);
2111         i915_gem_batch_pool_fini(&ring->batch_pool);
2112
2113         kfree(ringbuf);
2114         ring->buffer = NULL;
2115 }
2116
2117 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2118 {
2119         struct intel_ringbuffer *ringbuf = ring->buffer;
2120         struct drm_i915_gem_request *request;
2121         unsigned space;
2122         int ret;
2123
2124         if (intel_ring_space(ringbuf) >= n)
2125                 return 0;
2126
2127         /* The whole point of reserving space is to not wait! */
2128         WARN_ON(ringbuf->reserved_in_use);
2129
2130         list_for_each_entry(request, &ring->request_list, list) {
2131                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2132                                            ringbuf->size);
2133                 if (space >= n)
2134                         break;
2135         }
2136
2137         if (WARN_ON(&request->list == &ring->request_list))
2138                 return -ENOSPC;
2139
2140         ret = i915_wait_request(request);
2141         if (ret)
2142                 return ret;
2143
2144         ringbuf->space = space;
2145         return 0;
2146 }
2147
2148 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2149 {
2150         uint32_t __iomem *virt;
2151         int rem = ringbuf->size - ringbuf->tail;
2152
2153         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2154         rem /= 4;
2155         while (rem--)
2156                 iowrite32(MI_NOOP, virt++);
2157
2158         ringbuf->tail = 0;
2159         intel_ring_update_space(ringbuf);
2160 }
2161
2162 int intel_ring_idle(struct intel_engine_cs *ring)
2163 {
2164         struct drm_i915_gem_request *req;
2165
2166         /* Wait upon the last request to be completed */
2167         if (list_empty(&ring->request_list))
2168                 return 0;
2169
2170         req = list_entry(ring->request_list.prev,
2171                         struct drm_i915_gem_request,
2172                         list);
2173
2174         /* Make sure we do not trigger any retires */
2175         return __i915_wait_request(req,
2176                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2177                                    to_i915(ring->dev)->mm.interruptible,
2178                                    NULL, NULL);
2179 }
2180
2181 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2182 {
2183         request->ringbuf = request->ring->buffer;
2184         return 0;
2185 }
2186
2187 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2188 {
2189         /*
2190          * The first call merely notes the reserve request and is common for
2191          * all back ends. The subsequent localised _begin() call actually
2192          * ensures that the reservation is available. Without the begin, if
2193          * the request creator immediately submitted the request without
2194          * adding any commands to it then there might not actually be
2195          * sufficient room for the submission commands.
2196          */
2197         intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2198
2199         return intel_ring_begin(request, 0);
2200 }
2201
2202 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2203 {
2204         WARN_ON(ringbuf->reserved_size);
2205         WARN_ON(ringbuf->reserved_in_use);
2206
2207         ringbuf->reserved_size = size;
2208 }
2209
2210 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2211 {
2212         WARN_ON(ringbuf->reserved_in_use);
2213
2214         ringbuf->reserved_size   = 0;
2215         ringbuf->reserved_in_use = false;
2216 }
2217
2218 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2219 {
2220         WARN_ON(ringbuf->reserved_in_use);
2221
2222         ringbuf->reserved_in_use = true;
2223         ringbuf->reserved_tail   = ringbuf->tail;
2224 }
2225
2226 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2227 {
2228         WARN_ON(!ringbuf->reserved_in_use);
2229         if (ringbuf->tail > ringbuf->reserved_tail) {
2230                 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2231                      "request reserved size too small: %d vs %d!\n",
2232                      ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2233         } else {
2234                 /*
2235                  * The ring was wrapped while the reserved space was in use.
2236                  * That means that some unknown amount of the ring tail was
2237                  * no-op filled and skipped. Thus simply adding the ring size
2238                  * to the tail and doing the above space check will not work.
2239                  * Rather than attempt to track how much tail was skipped,
2240                  * it is much simpler to say that also skipping the sanity
2241                  * check every once in a while is not a big issue.
2242                  */
2243         }
2244
2245         ringbuf->reserved_size   = 0;
2246         ringbuf->reserved_in_use = false;
2247 }
2248
2249 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2250 {
2251         struct intel_ringbuffer *ringbuf = ring->buffer;
2252         int remain_usable = ringbuf->effective_size - ringbuf->tail;
2253         int remain_actual = ringbuf->size - ringbuf->tail;
2254         int ret, total_bytes, wait_bytes = 0;
2255         bool need_wrap = false;
2256
2257         if (ringbuf->reserved_in_use)
2258                 total_bytes = bytes;
2259         else
2260                 total_bytes = bytes + ringbuf->reserved_size;
2261
2262         if (unlikely(bytes > remain_usable)) {
2263                 /*
2264                  * Not enough space for the basic request. So need to flush
2265                  * out the remainder and then wait for base + reserved.
2266                  */
2267                 wait_bytes = remain_actual + total_bytes;
2268                 need_wrap = true;
2269         } else {
2270                 if (unlikely(total_bytes > remain_usable)) {
2271                         /*
2272                          * The base request will fit but the reserved space
2273                          * falls off the end. So only need to to wait for the
2274                          * reserved size after flushing out the remainder.
2275                          */
2276                         wait_bytes = remain_actual + ringbuf->reserved_size;
2277                         need_wrap = true;
2278                 } else if (total_bytes > ringbuf->space) {
2279                         /* No wrapping required, just waiting. */
2280                         wait_bytes = total_bytes;
2281                 }
2282         }
2283
2284         if (wait_bytes) {
2285                 ret = ring_wait_for_space(ring, wait_bytes);
2286                 if (unlikely(ret))
2287                         return ret;
2288
2289                 if (need_wrap)
2290                         __wrap_ring_buffer(ringbuf);
2291         }
2292
2293         return 0;
2294 }
2295
2296 int intel_ring_begin(struct drm_i915_gem_request *req,
2297                      int num_dwords)
2298 {
2299         struct intel_engine_cs *ring;
2300         struct drm_i915_private *dev_priv;
2301         int ret;
2302
2303         WARN_ON(req == NULL);
2304         ring = req->ring;
2305         dev_priv = ring->dev->dev_private;
2306
2307         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2308                                    dev_priv->mm.interruptible);
2309         if (ret)
2310                 return ret;
2311
2312         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2313         if (ret)
2314                 return ret;
2315
2316         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2317         return 0;
2318 }
2319
2320 /* Align the ring tail to a cacheline boundary */
2321 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2322 {
2323         struct intel_engine_cs *ring = req->ring;
2324         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2325         int ret;
2326
2327         if (num_dwords == 0)
2328                 return 0;
2329
2330         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2331         ret = intel_ring_begin(req, num_dwords);
2332         if (ret)
2333                 return ret;
2334
2335         while (num_dwords--)
2336                 intel_ring_emit(ring, MI_NOOP);
2337
2338         intel_ring_advance(ring);
2339
2340         return 0;
2341 }
2342
2343 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2344 {
2345         struct drm_device *dev = ring->dev;
2346         struct drm_i915_private *dev_priv = dev->dev_private;
2347
2348         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2349                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2350                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2351                 if (HAS_VEBOX(dev))
2352                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2353         }
2354
2355         ring->set_seqno(ring, seqno);
2356         ring->hangcheck.seqno = seqno;
2357 }
2358
2359 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2360                                      u32 value)
2361 {
2362         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2363
2364        /* Every tail move must follow the sequence below */
2365
2366         /* Disable notification that the ring is IDLE. The GT
2367          * will then assume that it is busy and bring it out of rc6.
2368          */
2369         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2370                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2371
2372         /* Clear the context id. Here be magic! */
2373         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2374
2375         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2376         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2377                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2378                      50))
2379                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2380
2381         /* Now that the ring is fully powered up, update the tail */
2382         I915_WRITE_TAIL(ring, value);
2383         POSTING_READ(RING_TAIL(ring->mmio_base));
2384
2385         /* Let the ring send IDLE messages to the GT again,
2386          * and so let it sleep to conserve power when idle.
2387          */
2388         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2389                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2390 }
2391
2392 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2393                                u32 invalidate, u32 flush)
2394 {
2395         struct intel_engine_cs *ring = req->ring;
2396         uint32_t cmd;
2397         int ret;
2398
2399         ret = intel_ring_begin(req, 4);
2400         if (ret)
2401                 return ret;
2402
2403         cmd = MI_FLUSH_DW;
2404         if (INTEL_INFO(ring->dev)->gen >= 8)
2405                 cmd += 1;
2406
2407         /* We always require a command barrier so that subsequent
2408          * commands, such as breadcrumb interrupts, are strictly ordered
2409          * wrt the contents of the write cache being flushed to memory
2410          * (and thus being coherent from the CPU).
2411          */
2412         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2413
2414         /*
2415          * Bspec vol 1c.5 - video engine command streamer:
2416          * "If ENABLED, all TLBs will be invalidated once the flush
2417          * operation is complete. This bit is only valid when the
2418          * Post-Sync Operation field is a value of 1h or 3h."
2419          */
2420         if (invalidate & I915_GEM_GPU_DOMAINS)
2421                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2422
2423         intel_ring_emit(ring, cmd);
2424         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2425         if (INTEL_INFO(ring->dev)->gen >= 8) {
2426                 intel_ring_emit(ring, 0); /* upper addr */
2427                 intel_ring_emit(ring, 0); /* value */
2428         } else  {
2429                 intel_ring_emit(ring, 0);
2430                 intel_ring_emit(ring, MI_NOOP);
2431         }
2432         intel_ring_advance(ring);
2433         return 0;
2434 }
2435
2436 static int
2437 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2438                               u64 offset, u32 len,
2439                               unsigned dispatch_flags)
2440 {
2441         struct intel_engine_cs *ring = req->ring;
2442         bool ppgtt = USES_PPGTT(ring->dev) &&
2443                         !(dispatch_flags & I915_DISPATCH_SECURE);
2444         int ret;
2445
2446         ret = intel_ring_begin(req, 4);
2447         if (ret)
2448                 return ret;
2449
2450         /* FIXME(BDW): Address space and security selectors. */
2451         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2452                         (dispatch_flags & I915_DISPATCH_RS ?
2453                          MI_BATCH_RESOURCE_STREAMER : 0));
2454         intel_ring_emit(ring, lower_32_bits(offset));
2455         intel_ring_emit(ring, upper_32_bits(offset));
2456         intel_ring_emit(ring, MI_NOOP);
2457         intel_ring_advance(ring);
2458
2459         return 0;
2460 }
2461
2462 static int
2463 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2464                              u64 offset, u32 len,
2465                              unsigned dispatch_flags)
2466 {
2467         struct intel_engine_cs *ring = req->ring;
2468         int ret;
2469
2470         ret = intel_ring_begin(req, 2);
2471         if (ret)
2472                 return ret;
2473
2474         intel_ring_emit(ring,
2475                         MI_BATCH_BUFFER_START |
2476                         (dispatch_flags & I915_DISPATCH_SECURE ?
2477                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2478                         (dispatch_flags & I915_DISPATCH_RS ?
2479                          MI_BATCH_RESOURCE_STREAMER : 0));
2480         /* bit0-7 is the length on GEN6+ */
2481         intel_ring_emit(ring, offset);
2482         intel_ring_advance(ring);
2483
2484         return 0;
2485 }
2486
2487 static int
2488 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2489                               u64 offset, u32 len,
2490                               unsigned dispatch_flags)
2491 {
2492         struct intel_engine_cs *ring = req->ring;
2493         int ret;
2494
2495         ret = intel_ring_begin(req, 2);
2496         if (ret)
2497                 return ret;
2498
2499         intel_ring_emit(ring,
2500                         MI_BATCH_BUFFER_START |
2501                         (dispatch_flags & I915_DISPATCH_SECURE ?
2502                          0 : MI_BATCH_NON_SECURE_I965));
2503         /* bit0-7 is the length on GEN6+ */
2504         intel_ring_emit(ring, offset);
2505         intel_ring_advance(ring);
2506
2507         return 0;
2508 }
2509
2510 /* Blitter support (SandyBridge+) */
2511
2512 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2513                            u32 invalidate, u32 flush)
2514 {
2515         struct intel_engine_cs *ring = req->ring;
2516         struct drm_device *dev = ring->dev;
2517         uint32_t cmd;
2518         int ret;
2519
2520         ret = intel_ring_begin(req, 4);
2521         if (ret)
2522                 return ret;
2523
2524         cmd = MI_FLUSH_DW;
2525         if (INTEL_INFO(dev)->gen >= 8)
2526                 cmd += 1;
2527
2528         /* We always require a command barrier so that subsequent
2529          * commands, such as breadcrumb interrupts, are strictly ordered
2530          * wrt the contents of the write cache being flushed to memory
2531          * (and thus being coherent from the CPU).
2532          */
2533         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2534
2535         /*
2536          * Bspec vol 1c.3 - blitter engine command streamer:
2537          * "If ENABLED, all TLBs will be invalidated once the flush
2538          * operation is complete. This bit is only valid when the
2539          * Post-Sync Operation field is a value of 1h or 3h."
2540          */
2541         if (invalidate & I915_GEM_DOMAIN_RENDER)
2542                 cmd |= MI_INVALIDATE_TLB;
2543         intel_ring_emit(ring, cmd);
2544         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2545         if (INTEL_INFO(dev)->gen >= 8) {
2546                 intel_ring_emit(ring, 0); /* upper addr */
2547                 intel_ring_emit(ring, 0); /* value */
2548         } else  {
2549                 intel_ring_emit(ring, 0);
2550                 intel_ring_emit(ring, MI_NOOP);
2551         }
2552         intel_ring_advance(ring);
2553
2554         return 0;
2555 }
2556
2557 int intel_init_render_ring_buffer(struct drm_device *dev)
2558 {
2559         struct drm_i915_private *dev_priv = dev->dev_private;
2560         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2561         struct drm_i915_gem_object *obj;
2562         int ret;
2563
2564         ring->name = "render ring";
2565         ring->id = RCS;
2566         ring->mmio_base = RENDER_RING_BASE;
2567
2568         if (INTEL_INFO(dev)->gen >= 8) {
2569                 if (i915_semaphore_is_enabled(dev)) {
2570                         obj = i915_gem_alloc_object(dev, 4096);
2571                         if (obj == NULL) {
2572                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2573                                 i915.semaphores = 0;
2574                         } else {
2575                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2576                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2577                                 if (ret != 0) {
2578                                         drm_gem_object_unreference(&obj->base);
2579                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2580                                         i915.semaphores = 0;
2581                                 } else
2582                                         dev_priv->semaphore_obj = obj;
2583                         }
2584                 }
2585
2586                 ring->init_context = intel_rcs_ctx_init;
2587                 ring->add_request = gen6_add_request;
2588                 ring->flush = gen8_render_ring_flush;
2589                 ring->irq_get = gen8_ring_get_irq;
2590                 ring->irq_put = gen8_ring_put_irq;
2591                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2592                 ring->get_seqno = gen6_ring_get_seqno;
2593                 ring->set_seqno = ring_set_seqno;
2594                 if (i915_semaphore_is_enabled(dev)) {
2595                         WARN_ON(!dev_priv->semaphore_obj);
2596                         ring->semaphore.sync_to = gen8_ring_sync;
2597                         ring->semaphore.signal = gen8_rcs_signal;
2598                         GEN8_RING_SEMAPHORE_INIT;
2599                 }
2600         } else if (INTEL_INFO(dev)->gen >= 6) {
2601                 ring->add_request = gen6_add_request;
2602                 ring->flush = gen7_render_ring_flush;
2603                 if (INTEL_INFO(dev)->gen == 6)
2604                         ring->flush = gen6_render_ring_flush;
2605                 ring->irq_get = gen6_ring_get_irq;
2606                 ring->irq_put = gen6_ring_put_irq;
2607                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2608                 ring->get_seqno = gen6_ring_get_seqno;
2609                 ring->set_seqno = ring_set_seqno;
2610                 if (i915_semaphore_is_enabled(dev)) {
2611                         ring->semaphore.sync_to = gen6_ring_sync;
2612                         ring->semaphore.signal = gen6_signal;
2613                         /*
2614                          * The current semaphore is only applied on pre-gen8
2615                          * platform.  And there is no VCS2 ring on the pre-gen8
2616                          * platform. So the semaphore between RCS and VCS2 is
2617                          * initialized as INVALID.  Gen8 will initialize the
2618                          * sema between VCS2 and RCS later.
2619                          */
2620                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2621                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2622                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2623                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2624                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2625                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2626                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2627                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2628                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2629                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2630                 }
2631         } else if (IS_GEN5(dev)) {
2632                 ring->add_request = pc_render_add_request;
2633                 ring->flush = gen4_render_ring_flush;
2634                 ring->get_seqno = pc_render_get_seqno;
2635                 ring->set_seqno = pc_render_set_seqno;
2636                 ring->irq_get = gen5_ring_get_irq;
2637                 ring->irq_put = gen5_ring_put_irq;
2638                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2639                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2640         } else {
2641                 ring->add_request = i9xx_add_request;
2642                 if (INTEL_INFO(dev)->gen < 4)
2643                         ring->flush = gen2_render_ring_flush;
2644                 else
2645                         ring->flush = gen4_render_ring_flush;
2646                 ring->get_seqno = ring_get_seqno;
2647                 ring->set_seqno = ring_set_seqno;
2648                 if (IS_GEN2(dev)) {
2649                         ring->irq_get = i8xx_ring_get_irq;
2650                         ring->irq_put = i8xx_ring_put_irq;
2651                 } else {
2652                         ring->irq_get = i9xx_ring_get_irq;
2653                         ring->irq_put = i9xx_ring_put_irq;
2654                 }
2655                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2656         }
2657         ring->write_tail = ring_write_tail;
2658
2659         if (IS_HASWELL(dev))
2660                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2661         else if (IS_GEN8(dev))
2662                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2663         else if (INTEL_INFO(dev)->gen >= 6)
2664                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2665         else if (INTEL_INFO(dev)->gen >= 4)
2666                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2667         else if (IS_I830(dev) || IS_845G(dev))
2668                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2669         else
2670                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2671         ring->init_hw = init_render_ring;
2672         ring->cleanup = render_ring_cleanup;
2673
2674         /* Workaround batchbuffer to combat CS tlb bug. */
2675         if (HAS_BROKEN_CS_TLB(dev)) {
2676                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2677                 if (obj == NULL) {
2678                         DRM_ERROR("Failed to allocate batch bo\n");
2679                         return -ENOMEM;
2680                 }
2681
2682                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2683                 if (ret != 0) {
2684                         drm_gem_object_unreference(&obj->base);
2685                         DRM_ERROR("Failed to ping batch bo\n");
2686                         return ret;
2687                 }
2688
2689                 ring->scratch.obj = obj;
2690                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2691         }
2692
2693         ret = intel_init_ring_buffer(dev, ring);
2694         if (ret)
2695                 return ret;
2696
2697         if (INTEL_INFO(dev)->gen >= 5) {
2698                 ret = intel_init_pipe_control(ring);
2699                 if (ret)
2700                         return ret;
2701         }
2702
2703         return 0;
2704 }
2705
2706 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2707 {
2708         struct drm_i915_private *dev_priv = dev->dev_private;
2709         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2710
2711         ring->name = "bsd ring";
2712         ring->id = VCS;
2713
2714         ring->write_tail = ring_write_tail;
2715         if (INTEL_INFO(dev)->gen >= 6) {
2716                 ring->mmio_base = GEN6_BSD_RING_BASE;
2717                 /* gen6 bsd needs a special wa for tail updates */
2718                 if (IS_GEN6(dev))
2719                         ring->write_tail = gen6_bsd_ring_write_tail;
2720                 ring->flush = gen6_bsd_ring_flush;
2721                 ring->add_request = gen6_add_request;
2722                 ring->get_seqno = gen6_ring_get_seqno;
2723                 ring->set_seqno = ring_set_seqno;
2724                 if (INTEL_INFO(dev)->gen >= 8) {
2725                         ring->irq_enable_mask =
2726                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2727                         ring->irq_get = gen8_ring_get_irq;
2728                         ring->irq_put = gen8_ring_put_irq;
2729                         ring->dispatch_execbuffer =
2730                                 gen8_ring_dispatch_execbuffer;
2731                         if (i915_semaphore_is_enabled(dev)) {
2732                                 ring->semaphore.sync_to = gen8_ring_sync;
2733                                 ring->semaphore.signal = gen8_xcs_signal;
2734                                 GEN8_RING_SEMAPHORE_INIT;
2735                         }
2736                 } else {
2737                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2738                         ring->irq_get = gen6_ring_get_irq;
2739                         ring->irq_put = gen6_ring_put_irq;
2740                         ring->dispatch_execbuffer =
2741                                 gen6_ring_dispatch_execbuffer;
2742                         if (i915_semaphore_is_enabled(dev)) {
2743                                 ring->semaphore.sync_to = gen6_ring_sync;
2744                                 ring->semaphore.signal = gen6_signal;
2745                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2746                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2747                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2748                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2749                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2750                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2751                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2752                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2753                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2754                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2755                         }
2756                 }
2757         } else {
2758                 ring->mmio_base = BSD_RING_BASE;
2759                 ring->flush = bsd_ring_flush;
2760                 ring->add_request = i9xx_add_request;
2761                 ring->get_seqno = ring_get_seqno;
2762                 ring->set_seqno = ring_set_seqno;
2763                 if (IS_GEN5(dev)) {
2764                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2765                         ring->irq_get = gen5_ring_get_irq;
2766                         ring->irq_put = gen5_ring_put_irq;
2767                 } else {
2768                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2769                         ring->irq_get = i9xx_ring_get_irq;
2770                         ring->irq_put = i9xx_ring_put_irq;
2771                 }
2772                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2773         }
2774         ring->init_hw = init_ring_common;
2775
2776         return intel_init_ring_buffer(dev, ring);
2777 }
2778
2779 /**
2780  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2781  */
2782 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2783 {
2784         struct drm_i915_private *dev_priv = dev->dev_private;
2785         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2786
2787         ring->name = "bsd2 ring";
2788         ring->id = VCS2;
2789
2790         ring->write_tail = ring_write_tail;
2791         ring->mmio_base = GEN8_BSD2_RING_BASE;
2792         ring->flush = gen6_bsd_ring_flush;
2793         ring->add_request = gen6_add_request;
2794         ring->get_seqno = gen6_ring_get_seqno;
2795         ring->set_seqno = ring_set_seqno;
2796         ring->irq_enable_mask =
2797                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2798         ring->irq_get = gen8_ring_get_irq;
2799         ring->irq_put = gen8_ring_put_irq;
2800         ring->dispatch_execbuffer =
2801                         gen8_ring_dispatch_execbuffer;
2802         if (i915_semaphore_is_enabled(dev)) {
2803                 ring->semaphore.sync_to = gen8_ring_sync;
2804                 ring->semaphore.signal = gen8_xcs_signal;
2805                 GEN8_RING_SEMAPHORE_INIT;
2806         }
2807         ring->init_hw = init_ring_common;
2808
2809         return intel_init_ring_buffer(dev, ring);
2810 }
2811
2812 int intel_init_blt_ring_buffer(struct drm_device *dev)
2813 {
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2816
2817         ring->name = "blitter ring";
2818         ring->id = BCS;
2819
2820         ring->mmio_base = BLT_RING_BASE;
2821         ring->write_tail = ring_write_tail;
2822         ring->flush = gen6_ring_flush;
2823         ring->add_request = gen6_add_request;
2824         ring->get_seqno = gen6_ring_get_seqno;
2825         ring->set_seqno = ring_set_seqno;
2826         if (INTEL_INFO(dev)->gen >= 8) {
2827                 ring->irq_enable_mask =
2828                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2829                 ring->irq_get = gen8_ring_get_irq;
2830                 ring->irq_put = gen8_ring_put_irq;
2831                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2832                 if (i915_semaphore_is_enabled(dev)) {
2833                         ring->semaphore.sync_to = gen8_ring_sync;
2834                         ring->semaphore.signal = gen8_xcs_signal;
2835                         GEN8_RING_SEMAPHORE_INIT;
2836                 }
2837         } else {
2838                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2839                 ring->irq_get = gen6_ring_get_irq;
2840                 ring->irq_put = gen6_ring_put_irq;
2841                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2842                 if (i915_semaphore_is_enabled(dev)) {
2843                         ring->semaphore.signal = gen6_signal;
2844                         ring->semaphore.sync_to = gen6_ring_sync;
2845                         /*
2846                          * The current semaphore is only applied on pre-gen8
2847                          * platform.  And there is no VCS2 ring on the pre-gen8
2848                          * platform. So the semaphore between BCS and VCS2 is
2849                          * initialized as INVALID.  Gen8 will initialize the
2850                          * sema between BCS and VCS2 later.
2851                          */
2852                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2853                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2854                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2855                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2856                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2857                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2858                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2859                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2860                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2861                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2862                 }
2863         }
2864         ring->init_hw = init_ring_common;
2865
2866         return intel_init_ring_buffer(dev, ring);
2867 }
2868
2869 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2870 {
2871         struct drm_i915_private *dev_priv = dev->dev_private;
2872         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2873
2874         ring->name = "video enhancement ring";
2875         ring->id = VECS;
2876
2877         ring->mmio_base = VEBOX_RING_BASE;
2878         ring->write_tail = ring_write_tail;
2879         ring->flush = gen6_ring_flush;
2880         ring->add_request = gen6_add_request;
2881         ring->get_seqno = gen6_ring_get_seqno;
2882         ring->set_seqno = ring_set_seqno;
2883
2884         if (INTEL_INFO(dev)->gen >= 8) {
2885                 ring->irq_enable_mask =
2886                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2887                 ring->irq_get = gen8_ring_get_irq;
2888                 ring->irq_put = gen8_ring_put_irq;
2889                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2890                 if (i915_semaphore_is_enabled(dev)) {
2891                         ring->semaphore.sync_to = gen8_ring_sync;
2892                         ring->semaphore.signal = gen8_xcs_signal;
2893                         GEN8_RING_SEMAPHORE_INIT;
2894                 }
2895         } else {
2896                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2897                 ring->irq_get = hsw_vebox_get_irq;
2898                 ring->irq_put = hsw_vebox_put_irq;
2899                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2900                 if (i915_semaphore_is_enabled(dev)) {
2901                         ring->semaphore.sync_to = gen6_ring_sync;
2902                         ring->semaphore.signal = gen6_signal;
2903                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2904                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2905                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2906                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2907                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2908                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2909                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2910                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2911                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2912                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2913                 }
2914         }
2915         ring->init_hw = init_ring_common;
2916
2917         return intel_init_ring_buffer(dev, ring);
2918 }
2919
2920 int
2921 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2922 {
2923         struct intel_engine_cs *ring = req->ring;
2924         int ret;
2925
2926         if (!ring->gpu_caches_dirty)
2927                 return 0;
2928
2929         ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
2930         if (ret)
2931                 return ret;
2932
2933         trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
2934
2935         ring->gpu_caches_dirty = false;
2936         return 0;
2937 }
2938
2939 int
2940 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
2941 {
2942         struct intel_engine_cs *ring = req->ring;
2943         uint32_t flush_domains;
2944         int ret;
2945
2946         flush_domains = 0;
2947         if (ring->gpu_caches_dirty)
2948                 flush_domains = I915_GEM_GPU_DOMAINS;
2949
2950         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2951         if (ret)
2952                 return ret;
2953
2954         trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
2955
2956         ring->gpu_caches_dirty = false;
2957         return 0;
2958 }
2959
2960 void
2961 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2962 {
2963         int ret;
2964
2965         if (!intel_ring_initialized(ring))
2966                 return;
2967
2968         ret = intel_ring_idle(ring);
2969         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2970                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2971                           ring->name, ret);
2972
2973         stop_ring(ring);
2974 }