igb: Make tx_intr_nsegs and tx_wreg_nsegs nodes aware of multiple TX queues
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80         if (sc->rss_debug >= lvl) \
81                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else   /* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
85 #endif  /* IGB_RSS_DEBUG */
86
87 #define IGB_NAME        "Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)  \
89         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL { 0, 0, NULL }
91
92 static struct igb_device {
93         uint16_t        vid;
94         uint16_t        did;
95         const char      *desc;
96 } igb_devices[] = {
97         IGB_DEVICE(82575EB_COPPER),
98         IGB_DEVICE(82575EB_FIBER_SERDES),
99         IGB_DEVICE(82575GB_QUAD_COPPER),
100         IGB_DEVICE(82576),
101         IGB_DEVICE(82576_NS),
102         IGB_DEVICE(82576_NS_SERDES),
103         IGB_DEVICE(82576_FIBER),
104         IGB_DEVICE(82576_SERDES),
105         IGB_DEVICE(82576_SERDES_QUAD),
106         IGB_DEVICE(82576_QUAD_COPPER),
107         IGB_DEVICE(82576_QUAD_COPPER_ET2),
108         IGB_DEVICE(82576_VF),
109         IGB_DEVICE(82580_COPPER),
110         IGB_DEVICE(82580_FIBER),
111         IGB_DEVICE(82580_SERDES),
112         IGB_DEVICE(82580_SGMII),
113         IGB_DEVICE(82580_COPPER_DUAL),
114         IGB_DEVICE(82580_QUAD_FIBER),
115         IGB_DEVICE(DH89XXCC_SERDES),
116         IGB_DEVICE(DH89XXCC_SGMII),
117         IGB_DEVICE(DH89XXCC_SFP),
118         IGB_DEVICE(DH89XXCC_BACKPLANE),
119         IGB_DEVICE(I350_COPPER),
120         IGB_DEVICE(I350_FIBER),
121         IGB_DEVICE(I350_SERDES),
122         IGB_DEVICE(I350_SGMII),
123         IGB_DEVICE(I350_VF),
124
125         /* required last entry */
126         IGB_DEVICE_NULL
127 };
128
129 static int      igb_probe(device_t);
130 static int      igb_attach(device_t);
131 static int      igb_detach(device_t);
132 static int      igb_shutdown(device_t);
133 static int      igb_suspend(device_t);
134 static int      igb_resume(device_t);
135
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void     igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void     igb_add_sysctl(struct igb_softc *);
142 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static int      igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
146 static int      igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
147 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
148 static int      igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
149 static int      igb_get_txring_inuse(const struct igb_softc *, boolean_t);
150 #ifdef IFPOLL_ENABLE
151 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
152 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
153 #endif
154
155 static void     igb_vf_init_stats(struct igb_softc *);
156 static void     igb_reset(struct igb_softc *);
157 static void     igb_update_stats_counters(struct igb_softc *);
158 static void     igb_update_vf_stats_counters(struct igb_softc *);
159 static void     igb_update_link_status(struct igb_softc *);
160 static void     igb_init_tx_unit(struct igb_softc *);
161 static void     igb_init_rx_unit(struct igb_softc *);
162
163 static void     igb_set_vlan(struct igb_softc *);
164 static void     igb_set_multi(struct igb_softc *);
165 static void     igb_set_promisc(struct igb_softc *);
166 static void     igb_disable_promisc(struct igb_softc *);
167
168 static int      igb_alloc_rings(struct igb_softc *);
169 static void     igb_free_rings(struct igb_softc *);
170 static int      igb_create_tx_ring(struct igb_tx_ring *);
171 static int      igb_create_rx_ring(struct igb_rx_ring *);
172 static void     igb_free_tx_ring(struct igb_tx_ring *);
173 static void     igb_free_rx_ring(struct igb_rx_ring *);
174 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
175 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
176 static void     igb_init_tx_ring(struct igb_tx_ring *);
177 static int      igb_init_rx_ring(struct igb_rx_ring *);
178 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
179 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
180 static void     igb_rx_refresh(struct igb_rx_ring *, int);
181
182 static void     igb_stop(struct igb_softc *);
183 static void     igb_init(void *);
184 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
185 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
186 static int      igb_media_change(struct ifnet *);
187 static void     igb_timer(void *);
188 static void     igb_watchdog(struct ifaltq_subque *);
189 static void     igb_start(struct ifnet *, struct ifaltq_subque *);
190 #ifdef IFPOLL_ENABLE
191 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
192 static void     igb_npoll_rx(struct ifnet *, void *, int);
193 static void     igb_npoll_tx(struct ifnet *, void *, int);
194 static void     igb_npoll_status(struct ifnet *);
195 #endif
196 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
197 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
198 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
199 #ifdef INVARIANTS
200 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
201                     boolean_t);
202 #endif
203
204 static void     igb_intr(void *);
205 static void     igb_intr_shared(void *);
206 static void     igb_rxeof(struct igb_rx_ring *, int);
207 static void     igb_txeof(struct igb_tx_ring *);
208 static void     igb_set_eitr(struct igb_softc *, int, int);
209 static void     igb_enable_intr(struct igb_softc *);
210 static void     igb_disable_intr(struct igb_softc *);
211 static void     igb_init_unshared_intr(struct igb_softc *);
212 static void     igb_init_intr(struct igb_softc *);
213 static int      igb_setup_intr(struct igb_softc *);
214 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
215 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
216 static void     igb_set_intr_mask(struct igb_softc *);
217 static int      igb_alloc_intr(struct igb_softc *);
218 static void     igb_free_intr(struct igb_softc *);
219 static void     igb_teardown_intr(struct igb_softc *);
220 static void     igb_msix_try_alloc(struct igb_softc *);
221 static void     igb_msix_free(struct igb_softc *, boolean_t);
222 static int      igb_msix_setup(struct igb_softc *);
223 static void     igb_msix_teardown(struct igb_softc *, int);
224 static void     igb_msix_rx(void *);
225 static void     igb_msix_tx(void *);
226 static void     igb_msix_status(void *);
227
228 /* Management and WOL Support */
229 static void     igb_get_mgmt(struct igb_softc *);
230 static void     igb_rel_mgmt(struct igb_softc *);
231 static void     igb_get_hw_control(struct igb_softc *);
232 static void     igb_rel_hw_control(struct igb_softc *);
233 static void     igb_enable_wol(device_t);
234
235 static device_method_t igb_methods[] = {
236         /* Device interface */
237         DEVMETHOD(device_probe,         igb_probe),
238         DEVMETHOD(device_attach,        igb_attach),
239         DEVMETHOD(device_detach,        igb_detach),
240         DEVMETHOD(device_shutdown,      igb_shutdown),
241         DEVMETHOD(device_suspend,       igb_suspend),
242         DEVMETHOD(device_resume,        igb_resume),
243         { 0, 0 }
244 };
245
246 static driver_t igb_driver = {
247         "igb",
248         igb_methods,
249         sizeof(struct igb_softc),
250 };
251
252 static devclass_t igb_devclass;
253
254 DECLARE_DUMMY_MODULE(if_igb);
255 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
256 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
257
258 static int      igb_rxd = IGB_DEFAULT_RXD;
259 static int      igb_txd = IGB_DEFAULT_TXD;
260 static int      igb_rxr = 0;
261 static int      igb_txr = 0;
262 static int      igb_msi_enable = 1;
263 static int      igb_msix_enable = 1;
264 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
265 static int      igb_fc_setting = e1000_fc_full;
266
267 /*
268  * DMA Coalescing, only for i350 - default to off,
269  * this feature is for power savings
270  */
271 static int      igb_dma_coalesce = 0;
272
273 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
274 TUNABLE_INT("hw.igb.txd", &igb_txd);
275 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
276 TUNABLE_INT("hw.igb.txr", &igb_txr);
277 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
278 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
279 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
280
281 /* i350 specific */
282 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
283 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
284
285 static __inline void
286 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
287 {
288         /* Ignore Checksum bit is set */
289         if (staterr & E1000_RXD_STAT_IXSM)
290                 return;
291
292         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
293             E1000_RXD_STAT_IPCS)
294                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
295
296         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
297                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
298                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
299                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
300                         mp->m_pkthdr.csum_data = htons(0xffff);
301                 }
302         }
303 }
304
305 static __inline struct pktinfo *
306 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
307     uint32_t hash, uint32_t hashtype, uint32_t staterr)
308 {
309         switch (hashtype) {
310         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
311                 pi->pi_netisr = NETISR_IP;
312                 pi->pi_flags = 0;
313                 pi->pi_l3proto = IPPROTO_TCP;
314                 break;
315
316         case E1000_RXDADV_RSSTYPE_IPV4:
317                 if (staterr & E1000_RXD_STAT_IXSM)
318                         return NULL;
319
320                 if ((staterr &
321                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
322                     E1000_RXD_STAT_TCPCS) {
323                         pi->pi_netisr = NETISR_IP;
324                         pi->pi_flags = 0;
325                         pi->pi_l3proto = IPPROTO_UDP;
326                         break;
327                 }
328                 /* FALL THROUGH */
329         default:
330                 return NULL;
331         }
332
333         m->m_flags |= M_HASH;
334         m->m_pkthdr.hash = toeplitz_hash(hash);
335         return pi;
336 }
337
338 static int
339 igb_probe(device_t dev)
340 {
341         const struct igb_device *d;
342         uint16_t vid, did;
343
344         vid = pci_get_vendor(dev);
345         did = pci_get_device(dev);
346
347         for (d = igb_devices; d->desc != NULL; ++d) {
348                 if (vid == d->vid && did == d->did) {
349                         device_set_desc(dev, d->desc);
350                         return 0;
351                 }
352         }
353         return ENXIO;
354 }
355
356 static int
357 igb_attach(device_t dev)
358 {
359         struct igb_softc *sc = device_get_softc(dev);
360         uint16_t eeprom_data;
361         int error = 0, i, j, ring_max;
362 #ifdef IFPOLL_ENABLE
363         int offset, offset_def;
364 #endif
365
366 #ifdef notyet
367         /* SYSCTL stuff */
368         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
369             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
370             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
371             igb_sysctl_nvm_info, "I", "NVM Information");
372         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
373             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
374             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
375             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
376 #endif
377
378         callout_init_mp(&sc->timer);
379         lwkt_serialize_init(&sc->main_serialize);
380
381         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
382             device_get_unit(dev));
383         sc->dev = sc->osdep.dev = dev;
384
385         /*
386          * Determine hardware and mac type
387          */
388         sc->hw.vendor_id = pci_get_vendor(dev);
389         sc->hw.device_id = pci_get_device(dev);
390         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
391         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
392         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
393
394         if (e1000_set_mac_type(&sc->hw))
395                 return ENXIO;
396
397         /* Are we a VF device? */
398         if (sc->hw.mac.type == e1000_vfadapt ||
399             sc->hw.mac.type == e1000_vfadapt_i350)
400                 sc->vf_ifp = 1;
401         else
402                 sc->vf_ifp = 0;
403
404         /*
405          * Configure total supported RX/TX ring count
406          */
407         switch (sc->hw.mac.type) {
408         case e1000_82575:
409                 ring_max = IGB_MAX_RING_82575;
410                 break;
411         case e1000_82580:
412                 ring_max = IGB_MAX_RING_82580;
413                 break;
414         case e1000_i350:
415                 ring_max = IGB_MAX_RING_I350;
416                 break;
417         case e1000_82576:
418                 ring_max = IGB_MAX_RING_82576;
419                 break;
420         default:
421                 ring_max = IGB_MIN_RING;
422                 break;
423         }
424
425         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
426         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
427 #ifdef IGB_RSS_DEBUG
428         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
429 #endif
430         sc->rx_ring_inuse = sc->rx_ring_cnt;
431
432         sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
433         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, /* XXX ring_max */1);
434 #ifdef IGB_TSS_DEBUG
435         sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
436 #endif
437         sc->tx_ring_inuse = sc->tx_ring_cnt;
438
439         if (sc->hw.mac.type == e1000_82575)
440                 sc->flags |= IGB_FLAG_TSO_IPLEN0;
441
442         /* Enable bus mastering */
443         pci_enable_busmaster(dev);
444
445         /*
446          * Allocate IO memory
447          */
448         sc->mem_rid = PCIR_BAR(0);
449         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
450             RF_ACTIVE);
451         if (sc->mem_res == NULL) {
452                 device_printf(dev, "Unable to allocate bus resource: memory\n");
453                 error = ENXIO;
454                 goto failed;
455         }
456         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
457         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
458
459         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
460
461         /* Save PCI command register for Shared Code */
462         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
463         sc->hw.back = &sc->osdep;
464
465         /* Do Shared Code initialization */
466         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
467                 device_printf(dev, "Setup of Shared code failed\n");
468                 error = ENXIO;
469                 goto failed;
470         }
471
472         e1000_get_bus_info(&sc->hw);
473
474         sc->hw.mac.autoneg = DO_AUTO_NEG;
475         sc->hw.phy.autoneg_wait_to_complete = FALSE;
476         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
477
478         /* Copper options */
479         if (sc->hw.phy.media_type == e1000_media_type_copper) {
480                 sc->hw.phy.mdix = AUTO_ALL_MODES;
481                 sc->hw.phy.disable_polarity_correction = FALSE;
482                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
483         }
484
485         /* Set the frame limits assuming  standard ethernet sized frames. */
486         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
487
488         /* Allocate RX/TX rings */
489         error = igb_alloc_rings(sc);
490         if (error)
491                 goto failed;
492
493 #ifdef IFPOLL_ENABLE
494         /*
495          * NPOLLING RX CPU offset
496          */
497         if (sc->rx_ring_cnt == ncpus2) {
498                 offset = 0;
499         } else {
500                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
501                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
502                 if (offset >= ncpus2 ||
503                     offset % sc->rx_ring_cnt != 0) {
504                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
505                             offset, offset_def);
506                         offset = offset_def;
507                 }
508         }
509         sc->rx_npoll_off = offset;
510
511         /*
512          * NPOLLING TX CPU offset
513          */
514         if (sc->tx_ring_cnt == ncpus2) {
515                 offset = 0;
516         } else {
517                 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
518                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
519                 if (offset >= ncpus2 ||
520                     offset % sc->tx_ring_cnt != 0) {
521                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
522                             offset, offset_def);
523                         offset = offset_def;
524                 }
525         }
526         sc->tx_npoll_off = offset;
527 #endif
528
529         /* Allocate interrupt */
530         error = igb_alloc_intr(sc);
531         if (error)
532                 goto failed;
533
534         /*
535          * Setup serializers
536          */
537         i = 0;
538         sc->serializes[i++] = &sc->main_serialize;
539
540         sc->tx_serialize = i;
541         for (j = 0; j < sc->tx_ring_cnt; ++j)
542                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
543
544         sc->rx_serialize = i;
545         for (j = 0; j < sc->rx_ring_cnt; ++j)
546                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
547
548         sc->serialize_cnt = i;
549         KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
550
551         /* Allocate the appropriate stats memory */
552         if (sc->vf_ifp) {
553                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
554                     M_WAITOK | M_ZERO);
555                 igb_vf_init_stats(sc);
556         } else {
557                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
558                     M_WAITOK | M_ZERO);
559         }
560
561         /* Allocate multicast array memory. */
562         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
563             M_DEVBUF, M_WAITOK);
564
565         /* Some adapter-specific advanced features */
566         if (sc->hw.mac.type >= e1000_i350) {
567 #ifdef notyet
568                 igb_set_sysctl_value(adapter, "dma_coalesce",
569                     "configure dma coalesce",
570                     &adapter->dma_coalesce, igb_dma_coalesce);
571                 igb_set_sysctl_value(adapter, "eee_disabled",
572                     "enable Energy Efficient Ethernet",
573                     &adapter->hw.dev_spec._82575.eee_disable,
574                     igb_eee_disabled);
575 #else
576                 sc->dma_coalesce = igb_dma_coalesce;
577                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
578 #endif
579                 e1000_set_eee_i350(&sc->hw);
580         }
581
582         /*
583          * Start from a known state, this is important in reading the nvm and
584          * mac from that.
585          */
586         e1000_reset_hw(&sc->hw);
587
588         /* Make sure we have a good EEPROM before we read from it */
589         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
590                 /*
591                  * Some PCI-E parts fail the first check due to
592                  * the link being in sleep state, call it again,
593                  * if it fails a second time its a real issue.
594                  */
595                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
596                         device_printf(dev,
597                             "The EEPROM Checksum Is Not Valid\n");
598                         error = EIO;
599                         goto failed;
600                 }
601         }
602
603         /* Copy the permanent MAC address out of the EEPROM */
604         if (e1000_read_mac_addr(&sc->hw) < 0) {
605                 device_printf(dev, "EEPROM read error while reading MAC"
606                     " address\n");
607                 error = EIO;
608                 goto failed;
609         }
610         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
611                 device_printf(dev, "Invalid MAC address\n");
612                 error = EIO;
613                 goto failed;
614         }
615
616         /* Setup OS specific network interface */
617         igb_setup_ifp(sc);
618
619         /* Add sysctl tree, must after igb_setup_ifp() */
620         igb_add_sysctl(sc);
621
622         /* Now get a good starting state */
623         igb_reset(sc);
624
625         /* Initialize statistics */
626         igb_update_stats_counters(sc);
627
628         sc->hw.mac.get_link_status = 1;
629         igb_update_link_status(sc);
630
631         /* Indicate SOL/IDER usage */
632         if (e1000_check_reset_block(&sc->hw)) {
633                 device_printf(dev,
634                     "PHY reset is blocked due to SOL/IDER session.\n");
635         }
636
637         /* Determine if we have to control management hardware */
638         if (e1000_enable_mng_pass_thru(&sc->hw))
639                 sc->flags |= IGB_FLAG_HAS_MGMT;
640
641         /*
642          * Setup Wake-on-Lan
643          */
644         /* APME bit in EEPROM is mapped to WUC.APME */
645         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
646         if (eeprom_data)
647                 sc->wol = E1000_WUFC_MAG;
648         /* XXX disable WOL */
649         sc->wol = 0; 
650
651 #ifdef notyet
652         /* Register for VLAN events */
653         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
654              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
655         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
656              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
657 #endif
658
659 #ifdef notyet
660         igb_add_hw_stats(adapter);
661 #endif
662
663         error = igb_setup_intr(sc);
664         if (error) {
665                 ether_ifdetach(&sc->arpcom.ac_if);
666                 goto failed;
667         }
668
669         for (i = 0; i < sc->tx_ring_cnt; ++i) {
670                 struct ifaltq_subque *ifsq =
671                     ifq_get_subq(&sc->arpcom.ac_if.if_snd, i);
672                 struct igb_tx_ring *txr = &sc->tx_rings[i];
673
674                 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
675                 ifsq_set_priv(ifsq, txr);
676                 txr->ifsq = ifsq;
677
678                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
679         }
680
681         return 0;
682
683 failed:
684         igb_detach(dev);
685         return error;
686 }
687
688 static int
689 igb_detach(device_t dev)
690 {
691         struct igb_softc *sc = device_get_softc(dev);
692
693         if (device_is_attached(dev)) {
694                 struct ifnet *ifp = &sc->arpcom.ac_if;
695
696                 ifnet_serialize_all(ifp);
697
698                 igb_stop(sc);
699
700                 e1000_phy_hw_reset(&sc->hw);
701
702                 /* Give control back to firmware */
703                 igb_rel_mgmt(sc);
704                 igb_rel_hw_control(sc);
705
706                 if (sc->wol) {
707                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
708                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
709                         igb_enable_wol(dev);
710                 }
711
712                 igb_teardown_intr(sc);
713
714                 ifnet_deserialize_all(ifp);
715
716                 ether_ifdetach(ifp);
717         } else if (sc->mem_res != NULL) {
718                 igb_rel_hw_control(sc);
719         }
720         bus_generic_detach(dev);
721
722         if (sc->sysctl_tree != NULL)
723                 sysctl_ctx_free(&sc->sysctl_ctx);
724
725         igb_free_intr(sc);
726
727         if (sc->msix_mem_res != NULL) {
728                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
729                     sc->msix_mem_res);
730         }
731         if (sc->mem_res != NULL) {
732                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
733                     sc->mem_res);
734         }
735
736         igb_free_rings(sc);
737
738         if (sc->mta != NULL)
739                 kfree(sc->mta, M_DEVBUF);
740         if (sc->stats != NULL)
741                 kfree(sc->stats, M_DEVBUF);
742
743         return 0;
744 }
745
746 static int
747 igb_shutdown(device_t dev)
748 {
749         return igb_suspend(dev);
750 }
751
752 static int
753 igb_suspend(device_t dev)
754 {
755         struct igb_softc *sc = device_get_softc(dev);
756         struct ifnet *ifp = &sc->arpcom.ac_if;
757
758         ifnet_serialize_all(ifp);
759
760         igb_stop(sc);
761
762         igb_rel_mgmt(sc);
763         igb_rel_hw_control(sc);
764
765         if (sc->wol) {
766                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
767                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
768                 igb_enable_wol(dev);
769         }
770
771         ifnet_deserialize_all(ifp);
772
773         return bus_generic_suspend(dev);
774 }
775
776 static int
777 igb_resume(device_t dev)
778 {
779         struct igb_softc *sc = device_get_softc(dev);
780         struct ifnet *ifp = &sc->arpcom.ac_if;
781         int i;
782
783         ifnet_serialize_all(ifp);
784
785         igb_init(sc);
786         igb_get_mgmt(sc);
787
788         for (i = 0; i < sc->tx_ring_inuse; ++i)
789                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
790
791         ifnet_deserialize_all(ifp);
792
793         return bus_generic_resume(dev);
794 }
795
796 static int
797 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
798 {
799         struct igb_softc *sc = ifp->if_softc;
800         struct ifreq *ifr = (struct ifreq *)data;
801         int max_frame_size, mask, reinit;
802         int error = 0;
803
804         ASSERT_IFNET_SERIALIZED_ALL(ifp);
805
806         switch (command) {
807         case SIOCSIFMTU:
808                 max_frame_size = 9234;
809                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
810                     ETHER_CRC_LEN) {
811                         error = EINVAL;
812                         break;
813                 }
814
815                 ifp->if_mtu = ifr->ifr_mtu;
816                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
817                     ETHER_CRC_LEN;
818
819                 if (ifp->if_flags & IFF_RUNNING)
820                         igb_init(sc);
821                 break;
822
823         case SIOCSIFFLAGS:
824                 if (ifp->if_flags & IFF_UP) {
825                         if (ifp->if_flags & IFF_RUNNING) {
826                                 if ((ifp->if_flags ^ sc->if_flags) &
827                                     (IFF_PROMISC | IFF_ALLMULTI)) {
828                                         igb_disable_promisc(sc);
829                                         igb_set_promisc(sc);
830                                 }
831                         } else {
832                                 igb_init(sc);
833                         }
834                 } else if (ifp->if_flags & IFF_RUNNING) {
835                         igb_stop(sc);
836                 }
837                 sc->if_flags = ifp->if_flags;
838                 break;
839
840         case SIOCADDMULTI:
841         case SIOCDELMULTI:
842                 if (ifp->if_flags & IFF_RUNNING) {
843                         igb_disable_intr(sc);
844                         igb_set_multi(sc);
845 #ifdef IFPOLL_ENABLE
846                         if (!(ifp->if_flags & IFF_NPOLLING))
847 #endif
848                                 igb_enable_intr(sc);
849                 }
850                 break;
851
852         case SIOCSIFMEDIA:
853                 /*
854                  * As the speed/duplex settings are being
855                  * changed, we need toreset the PHY.
856                  */
857                 sc->hw.phy.reset_disable = FALSE;
858
859                 /* Check SOL/IDER usage */
860                 if (e1000_check_reset_block(&sc->hw)) {
861                         if_printf(ifp, "Media change is "
862                             "blocked due to SOL/IDER session.\n");
863                         break;
864                 }
865                 /* FALL THROUGH */
866
867         case SIOCGIFMEDIA:
868                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
869                 break;
870
871         case SIOCSIFCAP:
872                 reinit = 0;
873                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
874                 if (mask & IFCAP_RXCSUM) {
875                         ifp->if_capenable ^= IFCAP_RXCSUM;
876                         reinit = 1;
877                 }
878                 if (mask & IFCAP_VLAN_HWTAGGING) {
879                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
880                         reinit = 1;
881                 }
882                 if (mask & IFCAP_TXCSUM) {
883                         ifp->if_capenable ^= IFCAP_TXCSUM;
884                         if (ifp->if_capenable & IFCAP_TXCSUM)
885                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
886                         else
887                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
888                 }
889                 if (mask & IFCAP_TSO) {
890                         ifp->if_capenable ^= IFCAP_TSO;
891                         if (ifp->if_capenable & IFCAP_TSO)
892                                 ifp->if_hwassist |= CSUM_TSO;
893                         else
894                                 ifp->if_hwassist &= ~CSUM_TSO;
895                 }
896                 if (mask & IFCAP_RSS)
897                         ifp->if_capenable ^= IFCAP_RSS;
898                 if (reinit && (ifp->if_flags & IFF_RUNNING))
899                         igb_init(sc);
900                 break;
901
902         default:
903                 error = ether_ioctl(ifp, command, data);
904                 break;
905         }
906         return error;
907 }
908
909 static void
910 igb_init(void *xsc)
911 {
912         struct igb_softc *sc = xsc;
913         struct ifnet *ifp = &sc->arpcom.ac_if;
914         boolean_t polling;
915         int i;
916
917         ASSERT_IFNET_SERIALIZED_ALL(ifp);
918
919         igb_stop(sc);
920
921         /* Get the latest mac address, User can use a LAA */
922         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
923
924         /* Put the address into the Receive Address Array */
925         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
926
927         igb_reset(sc);
928         igb_update_link_status(sc);
929
930         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
931
932         /* Configure for OS presence */
933         igb_get_mgmt(sc);
934
935         polling = FALSE;
936 #ifdef IFPOLL_ENABLE
937         if (ifp->if_flags & IFF_NPOLLING)
938                 polling = TRUE;
939 #endif
940
941         /* Configured used RX/TX rings */
942         igb_set_ring_inuse(sc, polling);
943
944         /* Initialize interrupt */
945         igb_init_intr(sc);
946
947         /* Prepare transmit descriptors and buffers */
948         for (i = 0; i < sc->tx_ring_inuse; ++i)
949                 igb_init_tx_ring(&sc->tx_rings[i]);
950         igb_init_tx_unit(sc);
951
952         /* Setup Multicast table */
953         igb_set_multi(sc);
954
955 #if 0
956         /*
957          * Figure out the desired mbuf pool
958          * for doing jumbo/packetsplit
959          */
960         if (adapter->max_frame_size <= 2048)
961                 adapter->rx_mbuf_sz = MCLBYTES;
962         else if (adapter->max_frame_size <= 4096)
963                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
964         else
965                 adapter->rx_mbuf_sz = MJUM9BYTES;
966 #endif
967
968         /* Prepare receive descriptors and buffers */
969         for (i = 0; i < sc->rx_ring_inuse; ++i) {
970                 int error;
971
972                 error = igb_init_rx_ring(&sc->rx_rings[i]);
973                 if (error) {
974                         if_printf(ifp, "Could not setup receive structures\n");
975                         igb_stop(sc);
976                         return;
977                 }
978         }
979         igb_init_rx_unit(sc);
980
981         /* Enable VLAN support */
982         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
983                 igb_set_vlan(sc);
984
985         /* Don't lose promiscuous settings */
986         igb_set_promisc(sc);
987
988         ifp->if_flags |= IFF_RUNNING;
989         for (i = 0; i < sc->tx_ring_inuse; ++i) {
990                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
991                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
992         }
993
994         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
995                 sc->timer_cpuid = 0; /* XXX fixed */
996         else
997                 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
998         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
999         e1000_clear_hw_cntrs_base_generic(&sc->hw);
1000
1001         /* This clears any pending interrupts */
1002         E1000_READ_REG(&sc->hw, E1000_ICR);
1003
1004         /*
1005          * Only enable interrupts if we are not polling, make sure
1006          * they are off otherwise.
1007          */
1008         if (polling) {
1009                 igb_disable_intr(sc);
1010         } else {
1011                 igb_enable_intr(sc);
1012                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1013         }
1014
1015         /* Set Energy Efficient Ethernet */
1016         e1000_set_eee_i350(&sc->hw);
1017
1018         /* Don't reset the phy next time init gets called */
1019         sc->hw.phy.reset_disable = TRUE;
1020 }
1021
1022 static void
1023 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1024 {
1025         struct igb_softc *sc = ifp->if_softc;
1026         u_char fiber_type = IFM_1000_SX;
1027
1028         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1029
1030         igb_update_link_status(sc);
1031
1032         ifmr->ifm_status = IFM_AVALID;
1033         ifmr->ifm_active = IFM_ETHER;
1034
1035         if (!sc->link_active)
1036                 return;
1037
1038         ifmr->ifm_status |= IFM_ACTIVE;
1039
1040         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1041             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1042                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1043         } else {
1044                 switch (sc->link_speed) {
1045                 case 10:
1046                         ifmr->ifm_active |= IFM_10_T;
1047                         break;
1048
1049                 case 100:
1050                         ifmr->ifm_active |= IFM_100_TX;
1051                         break;
1052
1053                 case 1000:
1054                         ifmr->ifm_active |= IFM_1000_T;
1055                         break;
1056                 }
1057                 if (sc->link_duplex == FULL_DUPLEX)
1058                         ifmr->ifm_active |= IFM_FDX;
1059                 else
1060                         ifmr->ifm_active |= IFM_HDX;
1061         }
1062 }
1063
1064 static int
1065 igb_media_change(struct ifnet *ifp)
1066 {
1067         struct igb_softc *sc = ifp->if_softc;
1068         struct ifmedia *ifm = &sc->media;
1069
1070         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1071
1072         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1073                 return EINVAL;
1074
1075         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1076         case IFM_AUTO:
1077                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1078                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1079                 break;
1080
1081         case IFM_1000_LX:
1082         case IFM_1000_SX:
1083         case IFM_1000_T:
1084                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1085                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1086                 break;
1087
1088         case IFM_100_TX:
1089                 sc->hw.mac.autoneg = FALSE;
1090                 sc->hw.phy.autoneg_advertised = 0;
1091                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1092                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1093                 else
1094                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1095                 break;
1096
1097         case IFM_10_T:
1098                 sc->hw.mac.autoneg = FALSE;
1099                 sc->hw.phy.autoneg_advertised = 0;
1100                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1101                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1102                 else
1103                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1104                 break;
1105
1106         default:
1107                 if_printf(ifp, "Unsupported media type\n");
1108                 break;
1109         }
1110
1111         igb_init(sc);
1112
1113         return 0;
1114 }
1115
1116 static void
1117 igb_set_promisc(struct igb_softc *sc)
1118 {
1119         struct ifnet *ifp = &sc->arpcom.ac_if;
1120         struct e1000_hw *hw = &sc->hw;
1121         uint32_t reg;
1122
1123         if (sc->vf_ifp) {
1124                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1125                 return;
1126         }
1127
1128         reg = E1000_READ_REG(hw, E1000_RCTL);
1129         if (ifp->if_flags & IFF_PROMISC) {
1130                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1131                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1132         } else if (ifp->if_flags & IFF_ALLMULTI) {
1133                 reg |= E1000_RCTL_MPE;
1134                 reg &= ~E1000_RCTL_UPE;
1135                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1136         }
1137 }
1138
1139 static void
1140 igb_disable_promisc(struct igb_softc *sc)
1141 {
1142         struct e1000_hw *hw = &sc->hw;
1143         uint32_t reg;
1144
1145         if (sc->vf_ifp) {
1146                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1147                 return;
1148         }
1149         reg = E1000_READ_REG(hw, E1000_RCTL);
1150         reg &= ~E1000_RCTL_UPE;
1151         reg &= ~E1000_RCTL_MPE;
1152         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1153 }
1154
1155 static void
1156 igb_set_multi(struct igb_softc *sc)
1157 {
1158         struct ifnet *ifp = &sc->arpcom.ac_if;
1159         struct ifmultiaddr *ifma;
1160         uint32_t reg_rctl = 0;
1161         uint8_t *mta;
1162         int mcnt = 0;
1163
1164         mta = sc->mta;
1165         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1166
1167         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1168                 if (ifma->ifma_addr->sa_family != AF_LINK)
1169                         continue;
1170
1171                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1172                         break;
1173
1174                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1175                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1176                 mcnt++;
1177         }
1178
1179         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1180                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1181                 reg_rctl |= E1000_RCTL_MPE;
1182                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1183         } else {
1184                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1185         }
1186 }
1187
1188 static void
1189 igb_timer(void *xsc)
1190 {
1191         struct igb_softc *sc = xsc;
1192
1193         lwkt_serialize_enter(&sc->main_serialize);
1194
1195         igb_update_link_status(sc);
1196         igb_update_stats_counters(sc);
1197
1198         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1199
1200         lwkt_serialize_exit(&sc->main_serialize);
1201 }
1202
1203 static void
1204 igb_update_link_status(struct igb_softc *sc)
1205 {
1206         struct ifnet *ifp = &sc->arpcom.ac_if;
1207         struct e1000_hw *hw = &sc->hw;
1208         uint32_t link_check, thstat, ctrl;
1209
1210         link_check = thstat = ctrl = 0;
1211
1212         /* Get the cached link value or read for real */
1213         switch (hw->phy.media_type) {
1214         case e1000_media_type_copper:
1215                 if (hw->mac.get_link_status) {
1216                         /* Do the work to read phy */
1217                         e1000_check_for_link(hw);
1218                         link_check = !hw->mac.get_link_status;
1219                 } else {
1220                         link_check = TRUE;
1221                 }
1222                 break;
1223
1224         case e1000_media_type_fiber:
1225                 e1000_check_for_link(hw);
1226                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1227                 break;
1228
1229         case e1000_media_type_internal_serdes:
1230                 e1000_check_for_link(hw);
1231                 link_check = hw->mac.serdes_has_link;
1232                 break;
1233
1234         /* VF device is type_unknown */
1235         case e1000_media_type_unknown:
1236                 e1000_check_for_link(hw);
1237                 link_check = !hw->mac.get_link_status;
1238                 /* Fall thru */
1239         default:
1240                 break;
1241         }
1242
1243         /* Check for thermal downshift or shutdown */
1244         if (hw->mac.type == e1000_i350) {
1245                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1246                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1247         }
1248
1249         /* Now we check if a transition has happened */
1250         if (link_check && sc->link_active == 0) {
1251                 e1000_get_speed_and_duplex(hw, 
1252                     &sc->link_speed, &sc->link_duplex);
1253                 if (bootverbose) {
1254                         if_printf(ifp, "Link is up %d Mbps %s\n",
1255                             sc->link_speed,
1256                             sc->link_duplex == FULL_DUPLEX ?
1257                             "Full Duplex" : "Half Duplex");
1258                 }
1259                 sc->link_active = 1;
1260
1261                 ifp->if_baudrate = sc->link_speed * 1000000;
1262                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1263                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1264                         if_printf(ifp, "Link: thermal downshift\n");
1265                 /* This can sleep */
1266                 ifp->if_link_state = LINK_STATE_UP;
1267                 if_link_state_change(ifp);
1268         } else if (!link_check && sc->link_active == 1) {
1269                 ifp->if_baudrate = sc->link_speed = 0;
1270                 sc->link_duplex = 0;
1271                 if (bootverbose)
1272                         if_printf(ifp, "Link is Down\n");
1273                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1274                     (thstat & E1000_THSTAT_PWR_DOWN))
1275                         if_printf(ifp, "Link: thermal shutdown\n");
1276                 sc->link_active = 0;
1277                 /* This can sleep */
1278                 ifp->if_link_state = LINK_STATE_DOWN;
1279                 if_link_state_change(ifp);
1280         }
1281 }
1282
1283 static void
1284 igb_stop(struct igb_softc *sc)
1285 {
1286         struct ifnet *ifp = &sc->arpcom.ac_if;
1287         int i;
1288
1289         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1290
1291         igb_disable_intr(sc);
1292
1293         callout_stop(&sc->timer);
1294
1295         ifp->if_flags &= ~IFF_RUNNING;
1296         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1297                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1298                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1299         }
1300
1301         e1000_reset_hw(&sc->hw);
1302         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1303
1304         e1000_led_off(&sc->hw);
1305         e1000_cleanup_led(&sc->hw);
1306
1307         for (i = 0; i < sc->tx_ring_cnt; ++i)
1308                 igb_free_tx_ring(&sc->tx_rings[i]);
1309         for (i = 0; i < sc->rx_ring_cnt; ++i)
1310                 igb_free_rx_ring(&sc->rx_rings[i]);
1311 }
1312
1313 static void
1314 igb_reset(struct igb_softc *sc)
1315 {
1316         struct ifnet *ifp = &sc->arpcom.ac_if;
1317         struct e1000_hw *hw = &sc->hw;
1318         struct e1000_fc_info *fc = &hw->fc;
1319         uint32_t pba = 0;
1320         uint16_t hwm;
1321
1322         /* Let the firmware know the OS is in control */
1323         igb_get_hw_control(sc);
1324
1325         /*
1326          * Packet Buffer Allocation (PBA)
1327          * Writing PBA sets the receive portion of the buffer
1328          * the remainder is used for the transmit buffer.
1329          */
1330         switch (hw->mac.type) {
1331         case e1000_82575:
1332                 pba = E1000_PBA_32K;
1333                 break;
1334
1335         case e1000_82576:
1336         case e1000_vfadapt:
1337                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1338                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1339                 break;
1340
1341         case e1000_82580:
1342         case e1000_i350:
1343         case e1000_vfadapt_i350:
1344                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1345                 pba = e1000_rxpbs_adjust_82580(pba);
1346                 break;
1347                 /* XXX pba = E1000_PBA_35K; */
1348
1349         default:
1350                 break;
1351         }
1352
1353         /* Special needs in case of Jumbo frames */
1354         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1355                 uint32_t tx_space, min_tx, min_rx;
1356
1357                 pba = E1000_READ_REG(hw, E1000_PBA);
1358                 tx_space = pba >> 16;
1359                 pba &= 0xffff;
1360
1361                 min_tx = (sc->max_frame_size +
1362                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1363                 min_tx = roundup2(min_tx, 1024);
1364                 min_tx >>= 10;
1365                 min_rx = sc->max_frame_size;
1366                 min_rx = roundup2(min_rx, 1024);
1367                 min_rx >>= 10;
1368                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1369                         pba = pba - (min_tx - tx_space);
1370                         /*
1371                          * if short on rx space, rx wins
1372                          * and must trump tx adjustment
1373                          */
1374                         if (pba < min_rx)
1375                                 pba = min_rx;
1376                 }
1377                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1378         }
1379
1380         /*
1381          * These parameters control the automatic generation (Tx) and
1382          * response (Rx) to Ethernet PAUSE frames.
1383          * - High water mark should allow for at least two frames to be
1384          *   received after sending an XOFF.
1385          * - Low water mark works best when it is very near the high water mark.
1386          *   This allows the receiver to restart by sending XON when it has
1387          *   drained a bit.
1388          */
1389         hwm = min(((pba << 10) * 9 / 10),
1390             ((pba << 10) - 2 * sc->max_frame_size));
1391
1392         if (hw->mac.type < e1000_82576) {
1393                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1394                 fc->low_water = fc->high_water - 8;
1395         } else {
1396                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1397                 fc->low_water = fc->high_water - 16;
1398         }
1399         fc->pause_time = IGB_FC_PAUSE_TIME;
1400         fc->send_xon = TRUE;
1401
1402         /* Issue a global reset */
1403         e1000_reset_hw(hw);
1404         E1000_WRITE_REG(hw, E1000_WUC, 0);
1405
1406         if (e1000_init_hw(hw) < 0)
1407                 if_printf(ifp, "Hardware Initialization Failed\n");
1408
1409         /* Setup DMA Coalescing */
1410         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1411                 uint32_t reg;
1412
1413                 hwm = (pba - 4) << 10;
1414                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1415                     & E1000_DMACR_DMACTHR_MASK;
1416
1417                 /* transition to L0x or L1 if available..*/
1418                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1419
1420                 /* timer = +-1000 usec in 32usec intervals */
1421                 reg |= (1000 >> 5);
1422                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1423
1424                 /* No lower threshold */
1425                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1426
1427                 /* set hwm to PBA -  2 * max frame size */
1428                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1429
1430                 /* Set the interval before transition */
1431                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1432                 reg |= 0x800000FF; /* 255 usec */
1433                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1434
1435                 /* free space in tx packet buffer to wake from DMA coal */
1436                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1437                     (20480 - (2 * sc->max_frame_size)) >> 6);
1438
1439                 /* make low power state decision controlled by DMA coal */
1440                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1441                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1442                     reg | E1000_PCIEMISC_LX_DECISION);
1443                 if_printf(ifp, "DMA Coalescing enabled\n");
1444         }
1445
1446         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1447         e1000_get_phy_info(hw);
1448         e1000_check_for_link(hw);
1449 }
1450
1451 static void
1452 igb_setup_ifp(struct igb_softc *sc)
1453 {
1454         struct ifnet *ifp = &sc->arpcom.ac_if;
1455
1456         ifp->if_softc = sc;
1457         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1458         ifp->if_init = igb_init;
1459         ifp->if_ioctl = igb_ioctl;
1460         ifp->if_start = igb_start;
1461         ifp->if_serialize = igb_serialize;
1462         ifp->if_deserialize = igb_deserialize;
1463         ifp->if_tryserialize = igb_tryserialize;
1464 #ifdef INVARIANTS
1465         ifp->if_serialize_assert = igb_serialize_assert;
1466 #endif
1467 #ifdef IFPOLL_ENABLE
1468         ifp->if_npoll = igb_npoll;
1469 #endif
1470
1471         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1472         ifq_set_ready(&ifp->if_snd);
1473
1474         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1475
1476         ifp->if_capabilities =
1477             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1478         if (IGB_ENABLE_HWRSS(sc))
1479                 ifp->if_capabilities |= IFCAP_RSS;
1480         ifp->if_capenable = ifp->if_capabilities;
1481         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1482
1483         /*
1484          * Tell the upper layer(s) we support long frames
1485          */
1486         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1487
1488         /*
1489          * Specify the media types supported by this adapter and register
1490          * callbacks to update media and link information
1491          */
1492         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1493         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1494             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1495                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1496                     0, NULL);
1497                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1498         } else {
1499                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1500                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1501                     0, NULL);
1502                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1503                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1504                     0, NULL);
1505                 if (sc->hw.phy.type != e1000_phy_ife) {
1506                         ifmedia_add(&sc->media,
1507                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1508                         ifmedia_add(&sc->media,
1509                             IFM_ETHER | IFM_1000_T, 0, NULL);
1510                 }
1511         }
1512         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1513         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1514 }
1515
1516 static void
1517 igb_add_sysctl(struct igb_softc *sc)
1518 {
1519         char node[32];
1520         int i;
1521
1522         sysctl_ctx_init(&sc->sysctl_ctx);
1523         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1524             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1525             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1526         if (sc->sysctl_tree == NULL) {
1527                 device_printf(sc->dev, "can't add sysctl node\n");
1528                 return;
1529         }
1530
1531         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1532             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1533         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1534             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1535             "# of RX rings used");
1536         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1537             OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1538         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1539             OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1540             "# of TX rings used");
1541         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1542             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1543             "# of RX descs");
1544         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1545             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1546             "# of TX descs");
1547
1548         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1549                 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1550                     SYSCTL_CHILDREN(sc->sysctl_tree),
1551                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1552                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1553         } else {
1554                 for (i = 0; i < sc->msix_cnt; ++i) {
1555                         struct igb_msix_data *msix = &sc->msix_data[i];
1556
1557                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1558                         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1559                             SYSCTL_CHILDREN(sc->sysctl_tree),
1560                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1561                             msix, 0, igb_sysctl_msix_rate, "I",
1562                             msix->msix_rate_desc);
1563                 }
1564         }
1565
1566         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1567             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1568             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1569             "# of segments per TX interrupt");
1570
1571         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1572             OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1573             sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1574             "# of segments sent before write to hardware register");
1575
1576         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1577             OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1578             sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1579             "# of segments received before write to hardware register");
1580
1581 #ifdef IFPOLL_ENABLE
1582         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1583             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1584             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1585         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1586             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1587             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1588 #endif
1589
1590 #ifdef IGB_RSS_DEBUG
1591         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1592             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1593             "RSS debug level");
1594         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1595                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1596                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1597                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1598                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1599         }
1600 #endif
1601 }
1602
1603 static int
1604 igb_alloc_rings(struct igb_softc *sc)
1605 {
1606         int error, i;
1607
1608         /*
1609          * Create top level busdma tag
1610          */
1611         error = bus_dma_tag_create(NULL, 1, 0,
1612             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1613             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1614             &sc->parent_tag);
1615         if (error) {
1616                 device_printf(sc->dev, "could not create top level DMA tag\n");
1617                 return error;
1618         }
1619
1620         /*
1621          * Allocate TX descriptor rings and buffers
1622          */
1623         sc->tx_rings = kmalloc_cachealign(
1624             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1625             M_DEVBUF, M_WAITOK | M_ZERO);
1626         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1627                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1628
1629                 /* Set up some basics */
1630                 txr->sc = sc;
1631                 txr->me = i;
1632                 lwkt_serialize_init(&txr->tx_serialize);
1633
1634                 error = igb_create_tx_ring(txr);
1635                 if (error)
1636                         return error;
1637         }
1638
1639         /*
1640          * Allocate RX descriptor rings and buffers
1641          */ 
1642         sc->rx_rings = kmalloc_cachealign(
1643             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1644             M_DEVBUF, M_WAITOK | M_ZERO);
1645         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1646                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1647
1648                 /* Set up some basics */
1649                 rxr->sc = sc;
1650                 rxr->me = i;
1651                 lwkt_serialize_init(&rxr->rx_serialize);
1652
1653                 error = igb_create_rx_ring(rxr);
1654                 if (error)
1655                         return error;
1656         }
1657
1658         return 0;
1659 }
1660
1661 static void
1662 igb_free_rings(struct igb_softc *sc)
1663 {
1664         int i;
1665
1666         if (sc->tx_rings != NULL) {
1667                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1668                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1669
1670                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1671                 }
1672                 kfree(sc->tx_rings, M_DEVBUF);
1673         }
1674
1675         if (sc->rx_rings != NULL) {
1676                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1677                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1678
1679                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1680                 }
1681                 kfree(sc->rx_rings, M_DEVBUF);
1682         }
1683 }
1684
1685 static int
1686 igb_create_tx_ring(struct igb_tx_ring *txr)
1687 {
1688         int tsize, error, i, ntxd;
1689
1690         /*
1691          * Validate number of transmit descriptors. It must not exceed
1692          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1693          */
1694         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1695         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1696             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1697                 device_printf(txr->sc->dev,
1698                     "Using %d TX descriptors instead of %d!\n",
1699                     IGB_DEFAULT_TXD, ntxd);
1700                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1701         } else {
1702                 txr->num_tx_desc = ntxd;
1703         }
1704
1705         /*
1706          * Allocate TX descriptor ring
1707          */
1708         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1709             IGB_DBA_ALIGN);
1710         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1711             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1712             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1713         if (txr->txdma.dma_vaddr == NULL) {
1714                 device_printf(txr->sc->dev,
1715                     "Unable to allocate TX Descriptor memory\n");
1716                 return ENOMEM;
1717         }
1718         txr->tx_base = txr->txdma.dma_vaddr;
1719         bzero(txr->tx_base, tsize);
1720
1721         tsize = __VM_CACHELINE_ALIGN(
1722             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1723         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1724
1725         /*
1726          * Allocate TX head write-back buffer
1727          */
1728         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1729             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1730             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1731         if (txr->tx_hdr == NULL) {
1732                 device_printf(txr->sc->dev,
1733                     "Unable to allocate TX head write-back buffer\n");
1734                 return ENOMEM;
1735         }
1736
1737         /*
1738          * Create DMA tag for TX buffers
1739          */
1740         error = bus_dma_tag_create(txr->sc->parent_tag,
1741             1, 0,               /* alignment, bounds */
1742             BUS_SPACE_MAXADDR,  /* lowaddr */
1743             BUS_SPACE_MAXADDR,  /* highaddr */
1744             NULL, NULL,         /* filter, filterarg */
1745             IGB_TSO_SIZE,       /* maxsize */
1746             IGB_MAX_SCATTER,    /* nsegments */
1747             PAGE_SIZE,          /* maxsegsize */
1748             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1749             BUS_DMA_ONEBPAGE,   /* flags */
1750             &txr->tx_tag);
1751         if (error) {
1752                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1753                 kfree(txr->tx_buf, M_DEVBUF);
1754                 txr->tx_buf = NULL;
1755                 return error;
1756         }
1757
1758         /*
1759          * Create DMA maps for TX buffers
1760          */
1761         for (i = 0; i < txr->num_tx_desc; ++i) {
1762                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1763
1764                 error = bus_dmamap_create(txr->tx_tag,
1765                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1766                 if (error) {
1767                         device_printf(txr->sc->dev,
1768                             "Unable to create TX DMA map\n");
1769                         igb_destroy_tx_ring(txr, i);
1770                         return error;
1771                 }
1772         }
1773
1774         /*
1775          * Initialize various watermark
1776          */
1777         txr->spare_desc = IGB_TX_SPARE;
1778         txr->intr_nsegs = txr->num_tx_desc / 16;
1779         txr->wreg_nsegs = 8;
1780         txr->oact_hi_desc = txr->num_tx_desc / 2;
1781         txr->oact_lo_desc = txr->num_tx_desc / 8;
1782         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1783                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1784         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1785                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1786
1787         return 0;
1788 }
1789
1790 static void
1791 igb_free_tx_ring(struct igb_tx_ring *txr)
1792 {
1793         int i;
1794
1795         for (i = 0; i < txr->num_tx_desc; ++i) {
1796                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1797
1798                 if (txbuf->m_head != NULL) {
1799                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1800                         m_freem(txbuf->m_head);
1801                         txbuf->m_head = NULL;
1802                 }
1803         }
1804 }
1805
1806 static void
1807 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1808 {
1809         int i;
1810
1811         if (txr->txdma.dma_vaddr != NULL) {
1812                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1813                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1814                     txr->txdma.dma_map);
1815                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1816                 txr->txdma.dma_vaddr = NULL;
1817         }
1818
1819         if (txr->tx_hdr != NULL) {
1820                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1821                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1822                     txr->tx_hdr_dmap);
1823                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1824                 txr->tx_hdr = NULL;
1825         }
1826
1827         if (txr->tx_buf == NULL)
1828                 return;
1829
1830         for (i = 0; i < ndesc; ++i) {
1831                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1832
1833                 KKASSERT(txbuf->m_head == NULL);
1834                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1835         }
1836         bus_dma_tag_destroy(txr->tx_tag);
1837
1838         kfree(txr->tx_buf, M_DEVBUF);
1839         txr->tx_buf = NULL;
1840 }
1841
1842 static void
1843 igb_init_tx_ring(struct igb_tx_ring *txr)
1844 {
1845         /* Clear the old descriptor contents */
1846         bzero(txr->tx_base,
1847             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1848
1849         /* Clear TX head write-back buffer */
1850         *(txr->tx_hdr) = 0;
1851
1852         /* Reset indices */
1853         txr->next_avail_desc = 0;
1854         txr->next_to_clean = 0;
1855         txr->tx_nsegs = 0;
1856
1857         /* Set number of descriptors available */
1858         txr->tx_avail = txr->num_tx_desc;
1859 }
1860
1861 static void
1862 igb_init_tx_unit(struct igb_softc *sc)
1863 {
1864         struct e1000_hw *hw = &sc->hw;
1865         uint32_t tctl;
1866         int i;
1867
1868         /* Setup the Tx Descriptor Rings */
1869         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1870                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1871                 uint64_t bus_addr = txr->txdma.dma_paddr;
1872                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1873                 uint32_t txdctl = 0;
1874                 uint32_t dca_txctrl;
1875
1876                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1877                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1878                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1879                     (uint32_t)(bus_addr >> 32));
1880                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1881                     (uint32_t)bus_addr);
1882
1883                 /* Setup the HW Tx Head and Tail descriptor pointers */
1884                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1885                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1886
1887                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1888                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1889                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1890
1891                 /*
1892                  * Don't set WB_on_EITR:
1893                  * - 82575 does not have it
1894                  * - It almost has no effect on 82576, see:
1895                  *   82576 specification update errata #26
1896                  * - It causes unnecessary bus traffic
1897                  */
1898                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1899                     (uint32_t)(hdr_paddr >> 32));
1900                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1901                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1902
1903                 /*
1904                  * WTHRESH is ignored by the hardware, since header
1905                  * write back mode is used.
1906                  */
1907                 txdctl |= IGB_TX_PTHRESH;
1908                 txdctl |= IGB_TX_HTHRESH << 8;
1909                 txdctl |= IGB_TX_WTHRESH << 16;
1910                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1911                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1912         }
1913
1914         if (sc->vf_ifp)
1915                 return;
1916
1917         e1000_config_collision_dist(hw);
1918
1919         /* Program the Transmit Control Register */
1920         tctl = E1000_READ_REG(hw, E1000_TCTL);
1921         tctl &= ~E1000_TCTL_CT;
1922         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1923             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1924
1925         /* This write will effectively turn on the transmit unit. */
1926         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1927 }
1928
1929 static boolean_t
1930 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1931 {
1932         struct e1000_adv_tx_context_desc *TXD;
1933         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1934         int ehdrlen, ctxd, ip_hlen = 0;
1935         boolean_t offload = TRUE;
1936
1937         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1938                 offload = FALSE;
1939
1940         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1941
1942         ctxd = txr->next_avail_desc;
1943         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1944
1945         /*
1946          * In advanced descriptors the vlan tag must 
1947          * be placed into the context descriptor, thus
1948          * we need to be here just for that setup.
1949          */
1950         if (mp->m_flags & M_VLANTAG) {
1951                 uint16_t vlantag;
1952
1953                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1954                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1955         } else if (!offload) {
1956                 return FALSE;
1957         }
1958
1959         ehdrlen = mp->m_pkthdr.csum_lhlen;
1960         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1961
1962         /* Set the ether header length */
1963         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1964         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1965                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1966                 ip_hlen = mp->m_pkthdr.csum_iphlen;
1967                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1968         }
1969         vlan_macip_lens |= ip_hlen;
1970
1971         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1972         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1973                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1974         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1975                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1976
1977         /* 82575 needs the queue index added */
1978         if (txr->sc->hw.mac.type == e1000_82575)
1979                 mss_l4len_idx = txr->me << 4;
1980
1981         /* Now copy bits into descriptor */
1982         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1983         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1984         TXD->seqnum_seed = htole32(0);
1985         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1986
1987         /* We've consumed the first desc, adjust counters */
1988         if (++ctxd == txr->num_tx_desc)
1989                 ctxd = 0;
1990         txr->next_avail_desc = ctxd;
1991         --txr->tx_avail;
1992
1993         return offload;
1994 }
1995
1996 static void
1997 igb_txeof(struct igb_tx_ring *txr)
1998 {
1999         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2000         int first, hdr, avail;
2001
2002         if (txr->tx_avail == txr->num_tx_desc)
2003                 return;
2004
2005         first = txr->next_to_clean;
2006         hdr = *(txr->tx_hdr);
2007
2008         if (first == hdr)
2009                 return;
2010
2011         avail = txr->tx_avail;
2012         while (first != hdr) {
2013                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2014
2015                 ++avail;
2016                 if (txbuf->m_head) {
2017                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
2018                         m_freem(txbuf->m_head);
2019                         txbuf->m_head = NULL;
2020                         ++ifp->if_opackets;
2021                 }
2022                 if (++first == txr->num_tx_desc)
2023                         first = 0;
2024         }
2025         txr->next_to_clean = first;
2026         txr->tx_avail = avail;
2027
2028         /*
2029          * If we have a minimum free, clear OACTIVE
2030          * to tell the stack that it is OK to send packets.
2031          */
2032         if (IGB_IS_NOT_OACTIVE(txr)) {
2033                 ifsq_clr_oactive(txr->ifsq);
2034
2035                 /*
2036                  * We have enough TX descriptors, turn off
2037                  * the watchdog.  We allow small amount of
2038                  * packets (roughly intr_nsegs) pending on
2039                  * the transmit ring.
2040                  */
2041                 txr->tx_watchdog.wd_timer = 0;
2042         }
2043 }
2044
2045 static int
2046 igb_create_rx_ring(struct igb_rx_ring *rxr)
2047 {
2048         int rsize, i, error, nrxd;
2049
2050         /*
2051          * Validate number of receive descriptors. It must not exceed
2052          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2053          */
2054         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2055         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2056             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2057                 device_printf(rxr->sc->dev,
2058                     "Using %d RX descriptors instead of %d!\n",
2059                     IGB_DEFAULT_RXD, nrxd);
2060                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2061         } else {
2062                 rxr->num_rx_desc = nrxd;
2063         }
2064
2065         /*
2066          * Allocate RX descriptor ring
2067          */
2068         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2069             IGB_DBA_ALIGN);
2070         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2071             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2072             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2073             &rxr->rxdma.dma_paddr);
2074         if (rxr->rxdma.dma_vaddr == NULL) {
2075                 device_printf(rxr->sc->dev,
2076                     "Unable to allocate RxDescriptor memory\n");
2077                 return ENOMEM;
2078         }
2079         rxr->rx_base = rxr->rxdma.dma_vaddr;
2080         bzero(rxr->rx_base, rsize);
2081
2082         rsize = __VM_CACHELINE_ALIGN(
2083             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2084         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2085
2086         /*
2087          * Create DMA tag for RX buffers
2088          */
2089         error = bus_dma_tag_create(rxr->sc->parent_tag,
2090             1, 0,               /* alignment, bounds */
2091             BUS_SPACE_MAXADDR,  /* lowaddr */
2092             BUS_SPACE_MAXADDR,  /* highaddr */
2093             NULL, NULL,         /* filter, filterarg */
2094             MCLBYTES,           /* maxsize */
2095             1,                  /* nsegments */
2096             MCLBYTES,           /* maxsegsize */
2097             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2098             &rxr->rx_tag);
2099         if (error) {
2100                 device_printf(rxr->sc->dev,
2101                     "Unable to create RX payload DMA tag\n");
2102                 kfree(rxr->rx_buf, M_DEVBUF);
2103                 rxr->rx_buf = NULL;
2104                 return error;
2105         }
2106
2107         /*
2108          * Create spare DMA map for RX buffers
2109          */
2110         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2111             &rxr->rx_sparemap);
2112         if (error) {
2113                 device_printf(rxr->sc->dev,
2114                     "Unable to create spare RX DMA maps\n");
2115                 bus_dma_tag_destroy(rxr->rx_tag);
2116                 kfree(rxr->rx_buf, M_DEVBUF);
2117                 rxr->rx_buf = NULL;
2118                 return error;
2119         }
2120
2121         /*
2122          * Create DMA maps for RX buffers
2123          */
2124         for (i = 0; i < rxr->num_rx_desc; i++) {
2125                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2126
2127                 error = bus_dmamap_create(rxr->rx_tag,
2128                     BUS_DMA_WAITOK, &rxbuf->map);
2129                 if (error) {
2130                         device_printf(rxr->sc->dev,
2131                             "Unable to create RX DMA maps\n");
2132                         igb_destroy_rx_ring(rxr, i);
2133                         return error;
2134                 }
2135         }
2136
2137         /*
2138          * Initialize various watermark
2139          */
2140         rxr->wreg_nsegs = 32;
2141
2142         return 0;
2143 }
2144
2145 static void
2146 igb_free_rx_ring(struct igb_rx_ring *rxr)
2147 {
2148         int i;
2149
2150         for (i = 0; i < rxr->num_rx_desc; ++i) {
2151                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2152
2153                 if (rxbuf->m_head != NULL) {
2154                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2155                         m_freem(rxbuf->m_head);
2156                         rxbuf->m_head = NULL;
2157                 }
2158         }
2159
2160         if (rxr->fmp != NULL)
2161                 m_freem(rxr->fmp);
2162         rxr->fmp = NULL;
2163         rxr->lmp = NULL;
2164 }
2165
2166 static void
2167 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2168 {
2169         int i;
2170
2171         if (rxr->rxdma.dma_vaddr != NULL) {
2172                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2173                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2174                     rxr->rxdma.dma_map);
2175                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2176                 rxr->rxdma.dma_vaddr = NULL;
2177         }
2178
2179         if (rxr->rx_buf == NULL)
2180                 return;
2181
2182         for (i = 0; i < ndesc; ++i) {
2183                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2184
2185                 KKASSERT(rxbuf->m_head == NULL);
2186                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2187         }
2188         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2189         bus_dma_tag_destroy(rxr->rx_tag);
2190
2191         kfree(rxr->rx_buf, M_DEVBUF);
2192         rxr->rx_buf = NULL;
2193 }
2194
2195 static void
2196 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2197 {
2198         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2199         rxd->wb.upper.status_error = 0;
2200 }
2201
2202 static int
2203 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2204 {
2205         struct mbuf *m;
2206         bus_dma_segment_t seg;
2207         bus_dmamap_t map;
2208         struct igb_rx_buf *rxbuf;
2209         int error, nseg;
2210
2211         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2212         if (m == NULL) {
2213                 if (wait) {
2214                         if_printf(&rxr->sc->arpcom.ac_if,
2215                             "Unable to allocate RX mbuf\n");
2216                 }
2217                 return ENOBUFS;
2218         }
2219         m->m_len = m->m_pkthdr.len = MCLBYTES;
2220
2221         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2222                 m_adj(m, ETHER_ALIGN);
2223
2224         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2225             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2226         if (error) {
2227                 m_freem(m);
2228                 if (wait) {
2229                         if_printf(&rxr->sc->arpcom.ac_if,
2230                             "Unable to load RX mbuf\n");
2231                 }
2232                 return error;
2233         }
2234
2235         rxbuf = &rxr->rx_buf[i];
2236         if (rxbuf->m_head != NULL)
2237                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2238
2239         map = rxbuf->map;
2240         rxbuf->map = rxr->rx_sparemap;
2241         rxr->rx_sparemap = map;
2242
2243         rxbuf->m_head = m;
2244         rxbuf->paddr = seg.ds_addr;
2245
2246         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2247         return 0;
2248 }
2249
2250 static int
2251 igb_init_rx_ring(struct igb_rx_ring *rxr)
2252 {
2253         int i;
2254
2255         /* Clear the ring contents */
2256         bzero(rxr->rx_base,
2257             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2258
2259         /* Now replenish the ring mbufs */
2260         for (i = 0; i < rxr->num_rx_desc; ++i) {
2261                 int error;
2262
2263                 error = igb_newbuf(rxr, i, TRUE);
2264                 if (error)
2265                         return error;
2266         }
2267
2268         /* Setup our descriptor indices */
2269         rxr->next_to_check = 0;
2270
2271         rxr->fmp = NULL;
2272         rxr->lmp = NULL;
2273         rxr->discard = FALSE;
2274
2275         return 0;
2276 }
2277
2278 static void
2279 igb_init_rx_unit(struct igb_softc *sc)
2280 {
2281         struct ifnet *ifp = &sc->arpcom.ac_if;
2282         struct e1000_hw *hw = &sc->hw;
2283         uint32_t rctl, rxcsum, srrctl = 0;
2284         int i;
2285
2286         /*
2287          * Make sure receives are disabled while setting
2288          * up the descriptor ring
2289          */
2290         rctl = E1000_READ_REG(hw, E1000_RCTL);
2291         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2292
2293 #if 0
2294         /*
2295         ** Set up for header split
2296         */
2297         if (igb_header_split) {
2298                 /* Use a standard mbuf for the header */
2299                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2300                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2301         } else
2302 #endif
2303                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2304
2305         /*
2306         ** Set up for jumbo frames
2307         */
2308         if (ifp->if_mtu > ETHERMTU) {
2309                 rctl |= E1000_RCTL_LPE;
2310 #if 0
2311                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2312                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2313                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2314                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2315                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2316                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2317                 }
2318                 /* Set maximum packet len */
2319                 psize = adapter->max_frame_size;
2320                 /* are we on a vlan? */
2321                 if (adapter->ifp->if_vlantrunk != NULL)
2322                         psize += VLAN_TAG_SIZE;
2323                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2324 #else
2325                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2326                 rctl |= E1000_RCTL_SZ_2048;
2327 #endif
2328         } else {
2329                 rctl &= ~E1000_RCTL_LPE;
2330                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2331                 rctl |= E1000_RCTL_SZ_2048;
2332         }
2333
2334         /* Setup the Base and Length of the Rx Descriptor Rings */
2335         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2336                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2337                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2338                 uint32_t rxdctl;
2339
2340                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2341                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2342                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2343                     (uint32_t)(bus_addr >> 32));
2344                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2345                     (uint32_t)bus_addr);
2346                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2347                 /* Enable this Queue */
2348                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2349                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2350                 rxdctl &= 0xFFF00000;
2351                 rxdctl |= IGB_RX_PTHRESH;
2352                 rxdctl |= IGB_RX_HTHRESH << 8;
2353                 /*
2354                  * Don't set WTHRESH to a value above 1 on 82576, see:
2355                  * 82576 specification update errata #26
2356                  */
2357                 rxdctl |= IGB_RX_WTHRESH << 16;
2358                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2359         }
2360
2361         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2362         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2363
2364         /*
2365          * Receive Checksum Offload for TCP and UDP
2366          *
2367          * Checksum offloading is also enabled if multiple receive
2368          * queue is to be supported, since we need it to figure out
2369          * fragments.
2370          */
2371         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2372                 /*
2373                  * NOTE:
2374                  * PCSD must be enabled to enable multiple
2375                  * receive queues.
2376                  */
2377                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2378                     E1000_RXCSUM_PCSD;
2379         } else {
2380                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2381                     E1000_RXCSUM_PCSD);
2382         }
2383         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2384
2385         if (IGB_ENABLE_HWRSS(sc)) {
2386                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2387                 uint32_t reta_shift;
2388                 int j, r;
2389
2390                 /*
2391                  * NOTE:
2392                  * When we reach here, RSS has already been disabled
2393                  * in igb_stop(), so we could safely configure RSS key
2394                  * and redirect table.
2395                  */
2396
2397                 /*
2398                  * Configure RSS key
2399                  */
2400                 toeplitz_get_key(key, sizeof(key));
2401                 for (i = 0; i < IGB_NRSSRK; ++i) {
2402                         uint32_t rssrk;
2403
2404                         rssrk = IGB_RSSRK_VAL(key, i);
2405                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2406
2407                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2408                 }
2409
2410                 /*
2411                  * Configure RSS redirect table in following fashion:
2412                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2413                  */
2414                 reta_shift = IGB_RETA_SHIFT;
2415                 if (hw->mac.type == e1000_82575)
2416                         reta_shift = IGB_RETA_SHIFT_82575;
2417
2418                 r = 0;
2419                 for (j = 0; j < IGB_NRETA; ++j) {
2420                         uint32_t reta = 0;
2421
2422                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2423                                 uint32_t q;
2424
2425                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2426                                 reta |= q << (8 * i);
2427                                 ++r;
2428                         }
2429                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2430                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2431                 }
2432
2433                 /*
2434                  * Enable multiple receive queues.
2435                  * Enable IPv4 RSS standard hash functions.
2436                  * Disable RSS interrupt on 82575
2437                  */
2438                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2439                                 E1000_MRQC_ENABLE_RSS_4Q |
2440                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2441                                 E1000_MRQC_RSS_FIELD_IPV4);
2442         }
2443
2444         /* Setup the Receive Control Register */
2445         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2446         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2447             E1000_RCTL_RDMTS_HALF |
2448             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2449         /* Strip CRC bytes. */
2450         rctl |= E1000_RCTL_SECRC;
2451         /* Make sure VLAN Filters are off */
2452         rctl &= ~E1000_RCTL_VFE;
2453         /* Don't store bad packets */
2454         rctl &= ~E1000_RCTL_SBP;
2455
2456         /* Enable Receives */
2457         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2458
2459         /*
2460          * Setup the HW Rx Head and Tail Descriptor Pointers
2461          *   - needs to be after enable
2462          */
2463         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2464                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2465
2466                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2467                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2468         }
2469 }
2470
2471 static void
2472 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2473 {
2474         if (--i < 0)
2475                 i = rxr->num_rx_desc - 1;
2476         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2477 }
2478
2479 static void
2480 igb_rxeof(struct igb_rx_ring *rxr, int count)
2481 {
2482         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2483         union e1000_adv_rx_desc *cur;
2484         uint32_t staterr;
2485         int i, ncoll = 0;
2486
2487         i = rxr->next_to_check;
2488         cur = &rxr->rx_base[i];
2489         staterr = le32toh(cur->wb.upper.status_error);
2490
2491         if ((staterr & E1000_RXD_STAT_DD) == 0)
2492                 return;
2493
2494         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2495                 struct pktinfo *pi = NULL, pi0;
2496                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2497                 struct mbuf *m = NULL;
2498                 boolean_t eop;
2499
2500                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2501                 if (eop)
2502                         --count;
2503
2504                 ++ncoll;
2505                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2506                     !rxr->discard) {
2507                         struct mbuf *mp = rxbuf->m_head;
2508                         uint32_t hash, hashtype;
2509                         uint16_t vlan;
2510                         int len;
2511
2512                         len = le16toh(cur->wb.upper.length);
2513                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2514                             (staterr & E1000_RXDEXT_STATERR_LB))
2515                                 vlan = be16toh(cur->wb.upper.vlan);
2516                         else
2517                                 vlan = le16toh(cur->wb.upper.vlan);
2518
2519                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2520                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2521                             E1000_RXDADV_RSSTYPE_MASK;
2522
2523                         IGB_RSS_DPRINTF(rxr->sc, 10,
2524                             "ring%d, hash 0x%08x, hashtype %u\n",
2525                             rxr->me, hash, hashtype);
2526
2527                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2528                             BUS_DMASYNC_POSTREAD);
2529
2530                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2531                                 ifp->if_iqdrops++;
2532                                 goto discard;
2533                         }
2534
2535                         mp->m_len = len;
2536                         if (rxr->fmp == NULL) {
2537                                 mp->m_pkthdr.len = len;
2538                                 rxr->fmp = mp;
2539                                 rxr->lmp = mp;
2540                         } else {
2541                                 rxr->lmp->m_next = mp;
2542                                 rxr->lmp = rxr->lmp->m_next;
2543                                 rxr->fmp->m_pkthdr.len += len;
2544                         }
2545
2546                         if (eop) {
2547                                 m = rxr->fmp;
2548                                 rxr->fmp = NULL;
2549                                 rxr->lmp = NULL;
2550
2551                                 m->m_pkthdr.rcvif = ifp;
2552                                 ifp->if_ipackets++;
2553
2554                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2555                                         igb_rxcsum(staterr, m);
2556
2557                                 if (staterr & E1000_RXD_STAT_VP) {
2558                                         m->m_pkthdr.ether_vlantag = vlan;
2559                                         m->m_flags |= M_VLANTAG;
2560                                 }
2561
2562                                 if (ifp->if_capenable & IFCAP_RSS) {
2563                                         pi = igb_rssinfo(m, &pi0,
2564                                             hash, hashtype, staterr);
2565                                 }
2566 #ifdef IGB_RSS_DEBUG
2567                                 rxr->rx_packets++;
2568 #endif
2569                         }
2570                 } else {
2571                         ifp->if_ierrors++;
2572 discard:
2573                         igb_setup_rxdesc(cur, rxbuf);
2574                         if (!eop)
2575                                 rxr->discard = TRUE;
2576                         else
2577                                 rxr->discard = FALSE;
2578                         if (rxr->fmp != NULL) {
2579                                 m_freem(rxr->fmp);
2580                                 rxr->fmp = NULL;
2581                                 rxr->lmp = NULL;
2582                         }
2583                         m = NULL;
2584                 }
2585
2586                 if (m != NULL)
2587                         ether_input_pkt(ifp, m, pi);
2588
2589                 /* Advance our pointers to the next descriptor. */
2590                 if (++i == rxr->num_rx_desc)
2591                         i = 0;
2592
2593                 if (ncoll >= rxr->wreg_nsegs) {
2594                         igb_rx_refresh(rxr, i);
2595                         ncoll = 0;
2596                 }
2597
2598                 cur = &rxr->rx_base[i];
2599                 staterr = le32toh(cur->wb.upper.status_error);
2600         }
2601         rxr->next_to_check = i;
2602
2603         if (ncoll > 0)
2604                 igb_rx_refresh(rxr, i);
2605 }
2606
2607
2608 static void
2609 igb_set_vlan(struct igb_softc *sc)
2610 {
2611         struct e1000_hw *hw = &sc->hw;
2612         uint32_t reg;
2613 #if 0
2614         struct ifnet *ifp = sc->arpcom.ac_if;
2615 #endif
2616
2617         if (sc->vf_ifp) {
2618                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2619                 return;
2620         }
2621
2622         reg = E1000_READ_REG(hw, E1000_CTRL);
2623         reg |= E1000_CTRL_VME;
2624         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2625
2626 #if 0
2627         /* Enable the Filter Table */
2628         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2629                 reg = E1000_READ_REG(hw, E1000_RCTL);
2630                 reg &= ~E1000_RCTL_CFIEN;
2631                 reg |= E1000_RCTL_VFE;
2632                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2633         }
2634 #endif
2635
2636         /* Update the frame size */
2637         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2638             sc->max_frame_size + VLAN_TAG_SIZE);
2639
2640 #if 0
2641         /* Don't bother with table if no vlans */
2642         if ((adapter->num_vlans == 0) ||
2643             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2644                 return;
2645         /*
2646         ** A soft reset zero's out the VFTA, so
2647         ** we need to repopulate it now.
2648         */
2649         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2650                 if (adapter->shadow_vfta[i] != 0) {
2651                         if (adapter->vf_ifp)
2652                                 e1000_vfta_set_vf(hw,
2653                                     adapter->shadow_vfta[i], TRUE);
2654                         else
2655                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2656                                  i, adapter->shadow_vfta[i]);
2657                 }
2658 #endif
2659 }
2660
2661 static void
2662 igb_enable_intr(struct igb_softc *sc)
2663 {
2664         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2665                 lwkt_serialize_handler_enable(&sc->main_serialize);
2666         } else {
2667                 int i;
2668
2669                 for (i = 0; i < sc->msix_cnt; ++i) {
2670                         lwkt_serialize_handler_enable(
2671                             sc->msix_data[i].msix_serialize);
2672                 }
2673         }
2674
2675         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2676                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2677                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2678                 else
2679                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2680                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2681                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2682                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2683         } else {
2684                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2685         }
2686         E1000_WRITE_FLUSH(&sc->hw);
2687 }
2688
2689 static void
2690 igb_disable_intr(struct igb_softc *sc)
2691 {
2692         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2693                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2694                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2695         }
2696         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2697         E1000_WRITE_FLUSH(&sc->hw);
2698
2699         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2700                 lwkt_serialize_handler_disable(&sc->main_serialize);
2701         } else {
2702                 int i;
2703
2704                 for (i = 0; i < sc->msix_cnt; ++i) {
2705                         lwkt_serialize_handler_disable(
2706                             sc->msix_data[i].msix_serialize);
2707                 }
2708         }
2709 }
2710
2711 /*
2712  * Bit of a misnomer, what this really means is
2713  * to enable OS management of the system... aka
2714  * to disable special hardware management features 
2715  */
2716 static void
2717 igb_get_mgmt(struct igb_softc *sc)
2718 {
2719         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2720                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2721                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2722
2723                 /* disable hardware interception of ARP */
2724                 manc &= ~E1000_MANC_ARP_EN;
2725
2726                 /* enable receiving management packets to the host */
2727                 manc |= E1000_MANC_EN_MNG2HOST;
2728                 manc2h |= 1 << 5; /* Mng Port 623 */
2729                 manc2h |= 1 << 6; /* Mng Port 664 */
2730                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2731                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2732         }
2733 }
2734
2735 /*
2736  * Give control back to hardware management controller
2737  * if there is one.
2738  */
2739 static void
2740 igb_rel_mgmt(struct igb_softc *sc)
2741 {
2742         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2743                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2744
2745                 /* Re-enable hardware interception of ARP */
2746                 manc |= E1000_MANC_ARP_EN;
2747                 manc &= ~E1000_MANC_EN_MNG2HOST;
2748
2749                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2750         }
2751 }
2752
2753 /*
2754  * Sets CTRL_EXT:DRV_LOAD bit.
2755  *
2756  * For ASF and Pass Through versions of f/w this means that
2757  * the driver is loaded. 
2758  */
2759 static void
2760 igb_get_hw_control(struct igb_softc *sc)
2761 {
2762         uint32_t ctrl_ext;
2763
2764         if (sc->vf_ifp)
2765                 return;
2766
2767         /* Let firmware know the driver has taken over */
2768         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2769         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2770             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2771 }
2772
2773 /*
2774  * Resets CTRL_EXT:DRV_LOAD bit.
2775  *
2776  * For ASF and Pass Through versions of f/w this means that the
2777  * driver is no longer loaded.
2778  */
2779 static void
2780 igb_rel_hw_control(struct igb_softc *sc)
2781 {
2782         uint32_t ctrl_ext;
2783
2784         if (sc->vf_ifp)
2785                 return;
2786
2787         /* Let firmware taken over control of h/w */
2788         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2789         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2790             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2791 }
2792
2793 static int
2794 igb_is_valid_ether_addr(const uint8_t *addr)
2795 {
2796         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2797
2798         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2799                 return FALSE;
2800         return TRUE;
2801 }
2802
2803 /*
2804  * Enable PCI Wake On Lan capability
2805  */
2806 static void
2807 igb_enable_wol(device_t dev)
2808 {
2809         uint16_t cap, status;
2810         uint8_t id;
2811
2812         /* First find the capabilities pointer*/
2813         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2814
2815         /* Read the PM Capabilities */
2816         id = pci_read_config(dev, cap, 1);
2817         if (id != PCIY_PMG)     /* Something wrong */
2818                 return;
2819
2820         /*
2821          * OK, we have the power capabilities,
2822          * so now get the status register
2823          */
2824         cap += PCIR_POWER_STATUS;
2825         status = pci_read_config(dev, cap, 2);
2826         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2827         pci_write_config(dev, cap, status, 2);
2828 }
2829
2830 static void
2831 igb_update_stats_counters(struct igb_softc *sc)
2832 {
2833         struct e1000_hw *hw = &sc->hw;
2834         struct e1000_hw_stats *stats;
2835         struct ifnet *ifp = &sc->arpcom.ac_if;
2836
2837         /* 
2838          * The virtual function adapter has only a
2839          * small controlled set of stats, do only 
2840          * those and return.
2841          */
2842         if (sc->vf_ifp) {
2843                 igb_update_vf_stats_counters(sc);
2844                 return;
2845         }
2846         stats = sc->stats;
2847
2848         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2849             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2850                 stats->symerrs +=
2851                     E1000_READ_REG(hw,E1000_SYMERRS);
2852                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2853         }
2854
2855         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2856         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2857         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2858         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2859
2860         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2861         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2862         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2863         stats->dc += E1000_READ_REG(hw, E1000_DC);
2864         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2865         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2866         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2867
2868         /*
2869          * For watchdog management we need to know if we have been
2870          * paused during the last interval, so capture that here.
2871          */ 
2872         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2873         stats->xoffrxc += sc->pause_frames;
2874         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2875         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2876         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2877         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2878         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2879         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2880         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2881         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2882         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2883         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2884         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2885         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2886
2887         /* For the 64-bit byte counters the low dword must be read first. */
2888         /* Both registers clear on the read of the high dword */
2889
2890         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2891             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2892         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2893             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2894
2895         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2896         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2897         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2898         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2899         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2900
2901         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2902         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2903
2904         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2905         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2906         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2907         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2908         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2909         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2910         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2911         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2912         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2913         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2914
2915         /* Interrupt Counts */
2916
2917         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2918         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2919         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2920         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2921         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2922         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2923         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2924         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2925         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2926
2927         /* Host to Card Statistics */
2928
2929         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2930         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2931         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2932         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2933         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2934         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2935         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2936         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2937             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2938         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2939             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2940         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2941         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2942         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2943
2944         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2945         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2946         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2947         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2948         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2949         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2950
2951         ifp->if_collisions = stats->colc;
2952
2953         /* Rx Errors */
2954         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2955             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2956
2957         /* Tx Errors */
2958         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2959
2960         /* Driver specific counters */
2961         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2962         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2963         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2964         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2965         sc->packet_buf_alloc_tx =
2966             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2967         sc->packet_buf_alloc_rx =
2968             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2969 }
2970
2971 static void
2972 igb_vf_init_stats(struct igb_softc *sc)
2973 {
2974         struct e1000_hw *hw = &sc->hw;
2975         struct e1000_vf_stats *stats;
2976
2977         stats = sc->stats;
2978         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2979         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2980         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2981         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2982         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2983 }
2984  
2985 static void
2986 igb_update_vf_stats_counters(struct igb_softc *sc)
2987 {
2988         struct e1000_hw *hw = &sc->hw;
2989         struct e1000_vf_stats *stats;
2990
2991         if (sc->link_speed == 0)
2992                 return;
2993
2994         stats = sc->stats;
2995         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2996         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2997         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2998         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2999         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3000 }
3001
3002 #ifdef IFPOLL_ENABLE
3003
3004 static void
3005 igb_npoll_status(struct ifnet *ifp)
3006 {
3007         struct igb_softc *sc = ifp->if_softc;
3008         uint32_t reg_icr;
3009
3010         ASSERT_SERIALIZED(&sc->main_serialize);
3011
3012         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3013         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3014                 sc->hw.mac.get_link_status = 1;
3015                 igb_update_link_status(sc);
3016         }
3017 }
3018
3019 static void
3020 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3021 {
3022         struct igb_tx_ring *txr = arg;
3023
3024         ASSERT_SERIALIZED(&txr->tx_serialize);
3025
3026         igb_txeof(txr);
3027         if (!ifsq_is_empty(txr->ifsq))
3028                 ifsq_devstart(txr->ifsq);
3029 }
3030
3031 static void
3032 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3033 {
3034         struct igb_rx_ring *rxr = arg;
3035
3036         ASSERT_SERIALIZED(&rxr->rx_serialize);
3037
3038         igb_rxeof(rxr, cycle);
3039 }
3040
3041 static void
3042 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3043 {
3044         struct igb_softc *sc = ifp->if_softc;
3045         int i, txr_cnt, rxr_cnt;
3046
3047         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3048
3049         if (info) {
3050                 int off;
3051
3052                 info->ifpi_status.status_func = igb_npoll_status;
3053                 info->ifpi_status.serializer = &sc->main_serialize;
3054
3055                 txr_cnt = igb_get_txring_inuse(sc, TRUE);
3056                 off = sc->tx_npoll_off;
3057                 for (i = 0; i < txr_cnt; ++i) {
3058                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3059                         int idx = i + off;
3060
3061                         KKASSERT(idx < ncpus2);
3062                         info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3063                         info->ifpi_tx[idx].arg = txr;
3064                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3065                         ifsq_set_cpuid(txr->ifsq, idx);
3066                 }
3067
3068                 rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3069                 off = sc->rx_npoll_off;
3070                 for (i = 0; i < rxr_cnt; ++i) {
3071                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3072                         int idx = i + off;
3073
3074                         KKASSERT(idx < ncpus2);
3075                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3076                         info->ifpi_rx[idx].arg = rxr;
3077                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3078                 }
3079
3080                 if (ifp->if_flags & IFF_RUNNING) {
3081                         if (rxr_cnt == sc->rx_ring_inuse &&
3082                             txr_cnt == sc->tx_ring_inuse)
3083                                 igb_disable_intr(sc);
3084                         else
3085                                 igb_init(sc);
3086                 }
3087         } else {
3088                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3089                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3090
3091                         ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3092                 }
3093
3094                 if (ifp->if_flags & IFF_RUNNING) {
3095                         txr_cnt = igb_get_txring_inuse(sc, FALSE);
3096                         rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3097
3098                         if (rxr_cnt == sc->rx_ring_inuse &&
3099                             txr_cnt == sc->tx_ring_inuse)
3100                                 igb_enable_intr(sc);
3101                         else
3102                                 igb_init(sc);
3103                 }
3104         }
3105 }
3106
3107 #endif /* IFPOLL_ENABLE */
3108
3109 static void
3110 igb_intr(void *xsc)
3111 {
3112         struct igb_softc *sc = xsc;
3113         struct ifnet *ifp = &sc->arpcom.ac_if;
3114         uint32_t eicr;
3115
3116         ASSERT_SERIALIZED(&sc->main_serialize);
3117
3118         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3119
3120         if (eicr == 0)
3121                 return;
3122
3123         if (ifp->if_flags & IFF_RUNNING) {
3124                 struct igb_tx_ring *txr = &sc->tx_rings[0];
3125                 int i;
3126
3127                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3128                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3129
3130                         if (eicr & rxr->rx_intr_mask) {
3131                                 lwkt_serialize_enter(&rxr->rx_serialize);
3132                                 igb_rxeof(rxr, -1);
3133                                 lwkt_serialize_exit(&rxr->rx_serialize);
3134                         }
3135                 }
3136
3137                 if (eicr & txr->tx_intr_mask) {
3138                         lwkt_serialize_enter(&txr->tx_serialize);
3139                         igb_txeof(txr);
3140                         if (!ifsq_is_empty(txr->ifsq))
3141                                 ifsq_devstart(txr->ifsq);
3142                         lwkt_serialize_exit(&txr->tx_serialize);
3143                 }
3144         }
3145
3146         if (eicr & E1000_EICR_OTHER) {
3147                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3148
3149                 /* Link status change */
3150                 if (icr & E1000_ICR_LSC) {
3151                         sc->hw.mac.get_link_status = 1;
3152                         igb_update_link_status(sc);
3153                 }
3154         }
3155
3156         /*
3157          * Reading EICR has the side effect to clear interrupt mask,
3158          * so all interrupts need to be enabled here.
3159          */
3160         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3161 }
3162
3163 static void
3164 igb_intr_shared(void *xsc)
3165 {
3166         struct igb_softc *sc = xsc;
3167         struct ifnet *ifp = &sc->arpcom.ac_if;
3168         uint32_t reg_icr;
3169
3170         ASSERT_SERIALIZED(&sc->main_serialize);
3171
3172         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3173
3174         /* Hot eject?  */
3175         if (reg_icr == 0xffffffff)
3176                 return;
3177
3178         /* Definitely not our interrupt.  */
3179         if (reg_icr == 0x0)
3180                 return;
3181
3182         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3183                 return;
3184
3185         if (ifp->if_flags & IFF_RUNNING) {
3186                 if (reg_icr &
3187                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3188                         int i;
3189
3190                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3191                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3192
3193                                 lwkt_serialize_enter(&rxr->rx_serialize);
3194                                 igb_rxeof(rxr, -1);
3195                                 lwkt_serialize_exit(&rxr->rx_serialize);
3196                         }
3197                 }
3198
3199                 if (reg_icr & E1000_ICR_TXDW) {
3200                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3201
3202                         lwkt_serialize_enter(&txr->tx_serialize);
3203                         igb_txeof(txr);
3204                         if (!ifsq_is_empty(txr->ifsq))
3205                                 ifsq_devstart(txr->ifsq);
3206                         lwkt_serialize_exit(&txr->tx_serialize);
3207                 }
3208         }
3209
3210         /* Link status change */
3211         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3212                 sc->hw.mac.get_link_status = 1;
3213                 igb_update_link_status(sc);
3214         }
3215
3216         if (reg_icr & E1000_ICR_RXO)
3217                 sc->rx_overruns++;
3218 }
3219
3220 static int
3221 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3222     int *segs_used, int *idx)
3223 {
3224         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3225         bus_dmamap_t map;
3226         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3227         union e1000_adv_tx_desc *txd = NULL;
3228         struct mbuf *m_head = *m_headp;
3229         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3230         int maxsegs, nsegs, i, j, error;
3231         uint32_t hdrlen = 0;
3232
3233         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3234                 error = igb_tso_pullup(txr, m_headp);
3235                 if (error)
3236                         return error;
3237                 m_head = *m_headp;
3238         }
3239
3240         /* Set basic descriptor constants */
3241         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3242         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3243         if (m_head->m_flags & M_VLANTAG)
3244                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3245
3246         /*
3247          * Map the packet for DMA.
3248          */
3249         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3250         tx_buf_mapped = tx_buf;
3251         map = tx_buf->map;
3252
3253         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3254         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3255         if (maxsegs > IGB_MAX_SCATTER)
3256                 maxsegs = IGB_MAX_SCATTER;
3257
3258         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3259             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3260         if (error) {
3261                 if (error == ENOBUFS)
3262                         txr->sc->mbuf_defrag_failed++;
3263                 else
3264                         txr->sc->no_tx_dma_setup++;
3265
3266                 m_freem(*m_headp);
3267                 *m_headp = NULL;
3268                 return error;
3269         }
3270         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3271
3272         m_head = *m_headp;
3273
3274         /*
3275          * Set up the TX context descriptor, if any hardware offloading is
3276          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3277          * TX descriptor.
3278          *
3279          * Unlike these chips' predecessors (em/emx), TX context descriptor
3280          * will _not_ interfere TX data fetching pipelining.
3281          */
3282         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3283                 igb_tso_ctx(txr, m_head, &hdrlen);
3284                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3285                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3286                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3287                 txr->tx_nsegs++;
3288                 (*segs_used)++;
3289         } else if (igb_txcsum_ctx(txr, m_head)) {
3290                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3291                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3292                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3293                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3294                 txr->tx_nsegs++;
3295                 (*segs_used)++;
3296         }
3297
3298         *segs_used += nsegs;
3299         txr->tx_nsegs += nsegs;
3300         if (txr->tx_nsegs >= txr->intr_nsegs) {
3301                 /*
3302                  * Report Status (RS) is turned on every intr_nsegs
3303                  * descriptors (roughly).
3304                  */
3305                 txr->tx_nsegs = 0;
3306                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3307         }
3308
3309         /* Calculate payload length */
3310         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3311             << E1000_ADVTXD_PAYLEN_SHIFT);
3312
3313         /* 82575 needs the queue index added */
3314         if (txr->sc->hw.mac.type == e1000_82575)
3315                 olinfo_status |= txr->me << 4;
3316
3317         /* Set up our transmit descriptors */
3318         i = txr->next_avail_desc;
3319         for (j = 0; j < nsegs; j++) {
3320                 bus_size_t seg_len;
3321                 bus_addr_t seg_addr;
3322
3323                 tx_buf = &txr->tx_buf[i];
3324                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3325                 seg_addr = segs[j].ds_addr;
3326                 seg_len = segs[j].ds_len;
3327
3328                 txd->read.buffer_addr = htole64(seg_addr);
3329                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3330                 txd->read.olinfo_status = htole32(olinfo_status);
3331                 if (++i == txr->num_tx_desc)
3332                         i = 0;
3333                 tx_buf->m_head = NULL;
3334         }
3335
3336         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3337         txr->next_avail_desc = i;
3338         txr->tx_avail -= nsegs;
3339
3340         tx_buf->m_head = m_head;
3341         tx_buf_mapped->map = tx_buf->map;
3342         tx_buf->map = map;
3343
3344         /*
3345          * Last Descriptor of Packet needs End Of Packet (EOP)
3346          */
3347         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3348
3349         /*
3350          * Defer TDT updating, until enough descrptors are setup
3351          */
3352         *idx = i;
3353         ++txr->tx_packets;
3354
3355         return 0;
3356 }
3357
3358 static void
3359 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3360 {
3361         struct igb_softc *sc = ifp->if_softc;
3362         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3363         struct mbuf *m_head;
3364         int idx = -1, nsegs = 0;
3365
3366         KKASSERT(txr->ifsq == ifsq);
3367         ASSERT_SERIALIZED(&txr->tx_serialize);
3368
3369         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3370                 return;
3371
3372         if (!sc->link_active) {
3373                 ifsq_purge(ifsq);
3374                 return;
3375         }
3376
3377         if (!IGB_IS_NOT_OACTIVE(txr))
3378                 igb_txeof(txr);
3379
3380         while (!ifsq_is_empty(ifsq)) {
3381                 if (IGB_IS_OACTIVE(txr)) {
3382                         ifsq_set_oactive(ifsq);
3383                         /* Set watchdog on */
3384                         txr->tx_watchdog.wd_timer = 5;
3385                         break;
3386                 }
3387
3388                 m_head = ifsq_dequeue(ifsq, NULL);
3389                 if (m_head == NULL)
3390                         break;
3391
3392                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3393                         ifp->if_oerrors++;
3394                         continue;
3395                 }
3396
3397                 if (nsegs >= txr->wreg_nsegs) {
3398                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3399                         idx = -1;
3400                         nsegs = 0;
3401                 }
3402
3403                 /* Send a copy of the frame to the BPF listener */
3404                 ETHER_BPF_MTAP(ifp, m_head);
3405         }
3406         if (idx >= 0)
3407                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3408 }
3409
3410 static void
3411 igb_watchdog(struct ifaltq_subque *ifsq)
3412 {
3413         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3414         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3415         struct igb_softc *sc = ifp->if_softc;
3416         int i;
3417
3418         KKASSERT(txr->ifsq == ifsq);
3419         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3420
3421         /* 
3422          * If flow control has paused us since last checking
3423          * it invalidates the watchdog timing, so dont run it.
3424          */
3425         if (sc->pause_frames) {
3426                 sc->pause_frames = 0;
3427                 txr->tx_watchdog.wd_timer = 5;
3428                 return;
3429         }
3430
3431         if_printf(ifp, "Watchdog timeout -- resetting\n");
3432         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3433             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3434             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3435         if_printf(ifp, "TX(%d) desc avail = %d, "
3436             "Next TX to Clean = %d\n",
3437             txr->me, txr->tx_avail, txr->next_to_clean);
3438
3439         ifp->if_oerrors++;
3440         sc->watchdog_events++;
3441
3442         igb_init(sc);
3443         for (i = 0; i < sc->tx_ring_inuse; ++i)
3444                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3445 }
3446
3447 static void
3448 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3449 {
3450         uint32_t eitr = 0;
3451
3452         if (rate > 0) {
3453                 if (sc->hw.mac.type == e1000_82575) {
3454                         eitr = 1000000000 / 256 / rate;
3455                         /*
3456                          * NOTE:
3457                          * Document is wrong on the 2 bits left shift
3458                          */
3459                 } else {
3460                         eitr = 1000000 / rate;
3461                         eitr <<= IGB_EITR_INTVL_SHIFT;
3462                 }
3463
3464                 if (eitr == 0) {
3465                         /* Don't disable it */
3466                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3467                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3468                         /* Don't allow it to be too large */
3469                         eitr = IGB_EITR_INTVL_MASK;
3470                 }
3471         }
3472         if (sc->hw.mac.type == e1000_82575)
3473                 eitr |= eitr << 16;
3474         else
3475                 eitr |= E1000_EITR_CNT_IGNR;
3476         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3477 }
3478
3479 static int
3480 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3481 {
3482         struct igb_softc *sc = (void *)arg1;
3483         struct ifnet *ifp = &sc->arpcom.ac_if;
3484         int error, intr_rate;
3485
3486         intr_rate = sc->intr_rate;
3487         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3488         if (error || req->newptr == NULL)
3489                 return error;
3490         if (intr_rate < 0)
3491                 return EINVAL;
3492
3493         ifnet_serialize_all(ifp);
3494
3495         sc->intr_rate = intr_rate;
3496         if (ifp->if_flags & IFF_RUNNING)
3497                 igb_set_eitr(sc, 0, sc->intr_rate);
3498
3499         if (bootverbose)
3500                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3501
3502         ifnet_deserialize_all(ifp);
3503
3504         return 0;
3505 }
3506
3507 static int
3508 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3509 {
3510         struct igb_msix_data *msix = (void *)arg1;
3511         struct igb_softc *sc = msix->msix_sc;
3512         struct ifnet *ifp = &sc->arpcom.ac_if;
3513         int error, msix_rate;
3514
3515         msix_rate = msix->msix_rate;
3516         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3517         if (error || req->newptr == NULL)
3518                 return error;
3519         if (msix_rate < 0)
3520                 return EINVAL;
3521
3522         lwkt_serialize_enter(msix->msix_serialize);
3523
3524         msix->msix_rate = msix_rate;
3525         if (ifp->if_flags & IFF_RUNNING)
3526                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3527
3528         if (bootverbose) {
3529                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3530                     msix->msix_rate);
3531         }
3532
3533         lwkt_serialize_exit(msix->msix_serialize);
3534
3535         return 0;
3536 }
3537
3538 static int
3539 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3540 {
3541         struct igb_softc *sc = (void *)arg1;
3542         struct ifnet *ifp = &sc->arpcom.ac_if;
3543         struct igb_tx_ring *txr = &sc->tx_rings[0];
3544         int error, nsegs;
3545
3546         nsegs = txr->intr_nsegs;
3547         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3548         if (error || req->newptr == NULL)
3549                 return error;
3550         if (nsegs <= 0)
3551                 return EINVAL;
3552
3553         ifnet_serialize_all(ifp);
3554
3555         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3556             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3557                 error = EINVAL;
3558         } else {
3559                 int i;
3560
3561                 error = 0;
3562                 for (i = 0; i < sc->tx_ring_cnt; ++i)
3563                         sc->tx_rings[i].intr_nsegs = nsegs;
3564         }
3565
3566         ifnet_deserialize_all(ifp);
3567
3568         return error;
3569 }
3570
3571 static int
3572 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3573 {
3574         struct igb_softc *sc = (void *)arg1;
3575         struct ifnet *ifp = &sc->arpcom.ac_if;
3576         int error, nsegs, i;
3577
3578         nsegs = sc->rx_rings[0].wreg_nsegs;
3579         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3580         if (error || req->newptr == NULL)
3581                 return error;
3582
3583         ifnet_serialize_all(ifp);
3584         for (i = 0; i < sc->rx_ring_cnt; ++i)
3585                 sc->rx_rings[i].wreg_nsegs =nsegs;
3586         ifnet_deserialize_all(ifp);
3587
3588         return 0;
3589 }
3590
3591 static int
3592 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3593 {
3594         struct igb_softc *sc = (void *)arg1;
3595         struct ifnet *ifp = &sc->arpcom.ac_if;
3596         int error, nsegs, i;
3597
3598         nsegs = sc->tx_rings[0].wreg_nsegs;
3599         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3600         if (error || req->newptr == NULL)
3601                 return error;
3602
3603         ifnet_serialize_all(ifp);
3604         for (i = 0; i < sc->tx_ring_cnt; ++i)
3605                 sc->tx_rings[i].wreg_nsegs =nsegs;
3606         ifnet_deserialize_all(ifp);
3607
3608         return 0;
3609 }
3610
3611 #ifdef IFPOLL_ENABLE
3612
3613 static int
3614 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3615 {
3616         struct igb_softc *sc = (void *)arg1;
3617         struct ifnet *ifp = &sc->arpcom.ac_if;
3618         int error, off;
3619
3620         off = sc->rx_npoll_off;
3621         error = sysctl_handle_int(oidp, &off, 0, req);
3622         if (error || req->newptr == NULL)
3623                 return error;
3624         if (off < 0)
3625                 return EINVAL;
3626
3627         ifnet_serialize_all(ifp);
3628         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3629                 error = EINVAL;
3630         } else {
3631                 error = 0;
3632                 sc->rx_npoll_off = off;
3633         }
3634         ifnet_deserialize_all(ifp);
3635
3636         return error;
3637 }
3638
3639 static int
3640 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3641 {
3642         struct igb_softc *sc = (void *)arg1;
3643         struct ifnet *ifp = &sc->arpcom.ac_if;
3644         int error, off;
3645
3646         off = sc->tx_npoll_off;
3647         error = sysctl_handle_int(oidp, &off, 0, req);
3648         if (error || req->newptr == NULL)
3649                 return error;
3650         if (off < 0)
3651                 return EINVAL;
3652
3653         ifnet_serialize_all(ifp);
3654         if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3655                 error = EINVAL;
3656         } else {
3657                 error = 0;
3658                 sc->tx_npoll_off = off;
3659         }
3660         ifnet_deserialize_all(ifp);
3661
3662         return error;
3663 }
3664
3665 #endif  /* IFPOLL_ENABLE */
3666
3667 static void
3668 igb_init_intr(struct igb_softc *sc)
3669 {
3670         igb_set_intr_mask(sc);
3671
3672         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3673                 igb_init_unshared_intr(sc);
3674
3675         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3676                 igb_set_eitr(sc, 0, sc->intr_rate);
3677         } else {
3678                 int i;
3679
3680                 for (i = 0; i < sc->msix_cnt; ++i)
3681                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3682         }
3683 }
3684
3685 static void
3686 igb_init_unshared_intr(struct igb_softc *sc)
3687 {
3688         struct e1000_hw *hw = &sc->hw;
3689         const struct igb_rx_ring *rxr;
3690         const struct igb_tx_ring *txr;
3691         uint32_t ivar, index;
3692         int i;
3693
3694         /*
3695          * Enable extended mode
3696          */
3697         if (sc->hw.mac.type != e1000_82575) {
3698                 uint32_t gpie;
3699                 int ivar_max;
3700
3701                 gpie = E1000_GPIE_NSICR;
3702                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3703                         gpie |= E1000_GPIE_MSIX_MODE |
3704                             E1000_GPIE_EIAME |
3705                             E1000_GPIE_PBA;
3706                 }
3707                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3708
3709                 /*
3710                  * Clear IVARs
3711                  */
3712                 switch (sc->hw.mac.type) {
3713                 case e1000_82580:
3714                         ivar_max = IGB_MAX_IVAR_82580;
3715                         break;
3716
3717                 case e1000_i350:
3718                         ivar_max = IGB_MAX_IVAR_I350;
3719                         break;
3720
3721                 case e1000_vfadapt:
3722                 case e1000_vfadapt_i350:
3723                         ivar_max = IGB_MAX_IVAR_VF;
3724                         break;
3725
3726                 case e1000_82576:
3727                         ivar_max = IGB_MAX_IVAR_82576;
3728                         break;
3729
3730                 default:
3731                         panic("unknown mac type %d\n", sc->hw.mac.type);
3732                 }
3733                 for (i = 0; i < ivar_max; ++i)
3734                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3735                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3736         } else {
3737                 uint32_t tmp;
3738
3739                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3740                     ("82575 w/ MSI-X"));
3741                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3742                 tmp |= E1000_CTRL_EXT_IRCA;
3743                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3744         }
3745
3746         /*
3747          * Map TX/RX interrupts to EICR
3748          */
3749         switch (sc->hw.mac.type) {
3750         case e1000_82580:
3751         case e1000_i350:
3752         case e1000_vfadapt:
3753         case e1000_vfadapt_i350:
3754                 /* RX entries */
3755                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3756                         rxr = &sc->rx_rings[i];
3757
3758                         index = i >> 1;
3759                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3760
3761                         if (i & 1) {
3762                                 ivar &= 0xff00ffff;
3763                                 ivar |=
3764                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3765                         } else {
3766                                 ivar &= 0xffffff00;
3767                                 ivar |=
3768                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3769                         }
3770                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3771                 }
3772                 /* TX entries */
3773                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3774                         txr = &sc->tx_rings[i];
3775
3776                         index = i >> 1;
3777                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3778
3779                         if (i & 1) {
3780                                 ivar &= 0x00ffffff;
3781                                 ivar |=
3782                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3783                         } else {
3784                                 ivar &= 0xffff00ff;
3785                                 ivar |=
3786                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3787                         }
3788                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3789                 }
3790                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3791                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3792                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3793                 }
3794                 break;
3795
3796         case e1000_82576:
3797                 /* RX entries */
3798                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3799                         rxr = &sc->rx_rings[i];
3800
3801                         index = i & 0x7; /* Each IVAR has two entries */
3802                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3803
3804                         if (i < 8) {
3805                                 ivar &= 0xffffff00;
3806                                 ivar |=
3807                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3808                         } else {
3809                                 ivar &= 0xff00ffff;
3810                                 ivar |=
3811                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3812                         }
3813                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3814                 }
3815                 /* TX entries */
3816                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3817                         txr = &sc->tx_rings[i];
3818
3819                         index = i & 0x7; /* Each IVAR has two entries */
3820                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3821
3822                         if (i < 8) {
3823                                 ivar &= 0xffff00ff;
3824                                 ivar |=
3825                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3826                         } else {
3827                                 ivar &= 0x00ffffff;
3828                                 ivar |=
3829                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3830                         }
3831                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3832                 }
3833                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3834                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3835                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3836                 }
3837                 break;
3838
3839         case e1000_82575:
3840                 /*
3841                  * Enable necessary interrupt bits.
3842                  *
3843                  * The name of the register is confusing; in addition to
3844                  * configuring the first vector of MSI-X, it also configures
3845                  * which bits of EICR could be set by the hardware even when
3846                  * MSI or line interrupt is used; it thus controls interrupt
3847                  * generation.  It MUST be configured explicitly; the default
3848                  * value mentioned in the datasheet is wrong: RX queue0 and
3849                  * TX queue0 are NOT enabled by default.
3850                  */
3851                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3852                 break;
3853
3854         default:
3855                 panic("unknown mac type %d\n", sc->hw.mac.type);
3856         }
3857 }
3858
3859 static int
3860 igb_setup_intr(struct igb_softc *sc)
3861 {
3862         int error;
3863
3864         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3865                 return igb_msix_setup(sc);
3866
3867         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3868             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3869             sc, &sc->intr_tag, &sc->main_serialize);
3870         if (error) {
3871                 device_printf(sc->dev, "Failed to register interrupt handler");
3872                 return error;
3873         }
3874         sc->tx_rings[0].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
3875
3876         return 0;
3877 }
3878
3879 static void
3880 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3881 {
3882         if (txr->sc->hw.mac.type == e1000_82575) {
3883                 txr->tx_intr_bit = 0;   /* unused */
3884                 switch (txr->me) {
3885                 case 0:
3886                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3887                         break;
3888                 case 1:
3889                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3890                         break;
3891                 case 2:
3892                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3893                         break;
3894                 case 3:
3895                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3896                         break;
3897                 default:
3898                         panic("unsupported # of TX ring, %d\n", txr->me);
3899                 }
3900         } else {
3901                 int intr_bit = *intr_bit0;
3902
3903                 txr->tx_intr_bit = intr_bit % intr_bitmax;
3904                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3905
3906                 *intr_bit0 = intr_bit + 1;
3907         }
3908 }
3909
3910 static void
3911 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3912 {
3913         if (rxr->sc->hw.mac.type == e1000_82575) {
3914                 rxr->rx_intr_bit = 0;   /* unused */
3915                 switch (rxr->me) {
3916                 case 0:
3917                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3918                         break;
3919                 case 1:
3920                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3921                         break;
3922                 case 2:
3923                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3924                         break;
3925                 case 3:
3926                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3927                         break;
3928                 default:
3929                         panic("unsupported # of RX ring, %d\n", rxr->me);
3930                 }
3931         } else {
3932                 int intr_bit = *intr_bit0;
3933
3934                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
3935                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3936
3937                 *intr_bit0 = intr_bit + 1;
3938         }
3939 }
3940
3941 static void
3942 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3943 {
3944         struct igb_softc *sc = ifp->if_softc;
3945
3946         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3947             sc->tx_serialize, sc->rx_serialize, slz);
3948 }
3949
3950 static void
3951 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3952 {
3953         struct igb_softc *sc = ifp->if_softc;
3954
3955         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3956             sc->tx_serialize, sc->rx_serialize, slz);
3957 }
3958
3959 static int
3960 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3961 {
3962         struct igb_softc *sc = ifp->if_softc;
3963
3964         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3965             sc->tx_serialize, sc->rx_serialize, slz);
3966 }
3967
3968 #ifdef INVARIANTS
3969
3970 static void
3971 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3972     boolean_t serialized)
3973 {
3974         struct igb_softc *sc = ifp->if_softc;
3975
3976         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3977             sc->tx_serialize, sc->rx_serialize, slz, serialized);
3978 }
3979
3980 #endif  /* INVARIANTS */
3981
3982 static void
3983 igb_set_intr_mask(struct igb_softc *sc)
3984 {
3985         int i;
3986
3987         sc->intr_mask = sc->sts_intr_mask;
3988         for (i = 0; i < sc->rx_ring_inuse; ++i)
3989                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
3990         for (i = 0; i < sc->tx_ring_inuse; ++i)
3991                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
3992         if (bootverbose) {
3993                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
3994                     sc->intr_mask);
3995         }
3996 }
3997
3998 static int
3999 igb_alloc_intr(struct igb_softc *sc)
4000 {
4001         int i, intr_bit, intr_bitmax;
4002         u_int intr_flags;
4003
4004         igb_msix_try_alloc(sc);
4005         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4006                 goto done;
4007
4008         /*
4009          * Allocate MSI/legacy interrupt resource
4010          */
4011         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4012             &sc->intr_rid, &intr_flags);
4013
4014         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4015                 int unshared;
4016
4017                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4018                 if (!unshared) {
4019                         sc->flags |= IGB_FLAG_SHARED_INTR;
4020                         if (bootverbose)
4021                                 device_printf(sc->dev, "IRQ shared\n");
4022                 } else {
4023                         intr_flags &= ~RF_SHAREABLE;
4024                         if (bootverbose)
4025                                 device_printf(sc->dev, "IRQ unshared\n");
4026                 }
4027         }
4028
4029         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4030             &sc->intr_rid, intr_flags);
4031         if (sc->intr_res == NULL) {
4032                 device_printf(sc->dev, "Unable to allocate bus resource: "
4033                     "interrupt\n");
4034                 return ENXIO;
4035         }
4036
4037         /*
4038          * Setup MSI/legacy interrupt mask
4039          */
4040         switch (sc->hw.mac.type) {
4041         case e1000_82575:
4042                 intr_bitmax = IGB_MAX_TXRXINT_82575;
4043                 break;
4044         case e1000_82580:
4045                 intr_bitmax = IGB_MAX_TXRXINT_82580;
4046                 break;
4047         case e1000_i350:
4048                 intr_bitmax = IGB_MAX_TXRXINT_I350;
4049                 break;
4050         case e1000_82576:
4051                 intr_bitmax = IGB_MAX_TXRXINT_82576;
4052                 break;
4053         default:
4054                 intr_bitmax = IGB_MIN_TXRXINT;
4055                 break;
4056         }
4057         intr_bit = 0;
4058         for (i = 0; i < sc->tx_ring_cnt; ++i)
4059                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4060         for (i = 0; i < sc->rx_ring_cnt; ++i)
4061                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4062         sc->sts_intr_bit = 0;
4063         sc->sts_intr_mask = E1000_EICR_OTHER;
4064
4065         /* Initialize interrupt rate */
4066         sc->intr_rate = IGB_INTR_RATE;
4067 done:
4068         igb_set_ring_inuse(sc, FALSE);
4069         igb_set_intr_mask(sc);
4070         return 0;
4071 }
4072
4073 static void
4074 igb_free_intr(struct igb_softc *sc)
4075 {
4076         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4077                 if (sc->intr_res != NULL) {
4078                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4079                             sc->intr_res);
4080                 }
4081                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
4082                         pci_release_msi(sc->dev);
4083         } else {
4084                 igb_msix_free(sc, TRUE);
4085         }
4086 }
4087
4088 static void
4089 igb_teardown_intr(struct igb_softc *sc)
4090 {
4091         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4092                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4093         else
4094                 igb_msix_teardown(sc, sc->msix_cnt);
4095 }
4096
4097 static void
4098 igb_msix_try_alloc(struct igb_softc *sc)
4099 {
4100         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4101         int i, x, error;
4102         struct igb_msix_data *msix;
4103         boolean_t aggregate, setup = FALSE;
4104
4105         /*
4106          * Don't enable MSI-X on 82575, see:
4107          * 82575 specification update errata #25
4108          */
4109         if (sc->hw.mac.type == e1000_82575)
4110                 return;
4111
4112         /* Don't enable MSI-X on VF */
4113         if (sc->vf_ifp)
4114                 return;
4115
4116         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4117             igb_msix_enable);
4118         if (!msix_enable)
4119                 return;
4120
4121         msix_cnt = pci_msix_count(sc->dev);
4122 #ifdef IGB_MSIX_DEBUG
4123         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4124 #endif
4125         if (msix_cnt <= 1) {
4126                 /* One MSI-X model does not make sense */
4127                 return;
4128         }
4129
4130         i = 0;
4131         while ((1 << (i + 1)) <= msix_cnt)
4132                 ++i;
4133         msix_cnt2 = 1 << i;
4134
4135         if (bootverbose) {
4136                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4137                     msix_cnt2, msix_cnt);
4138         }
4139
4140         KKASSERT(msix_cnt2 <= msix_cnt);
4141         if (msix_cnt == msix_cnt2) {
4142                 /* We need at least one MSI-X for link status */
4143                 msix_cnt2 >>= 1;
4144                 if (msix_cnt2 <= 1) {
4145                         /* One MSI-X for RX/TX does not make sense */
4146                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4147                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4148                         return;
4149                 }
4150                 KKASSERT(msix_cnt > msix_cnt2);
4151
4152                 if (bootverbose) {
4153                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4154                             msix_cnt2, msix_cnt);
4155                 }
4156         }
4157
4158         sc->rx_ring_msix = sc->rx_ring_cnt;
4159         if (sc->rx_ring_msix > msix_cnt2)
4160                 sc->rx_ring_msix = msix_cnt2;
4161
4162         sc->tx_ring_msix = sc->tx_ring_cnt;
4163         if (sc->tx_ring_msix > msix_cnt2)
4164                 sc->tx_ring_msix = msix_cnt2;
4165
4166         if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4167                 /*
4168                  * Independent TX/RX MSI-X
4169                  */
4170                 aggregate = FALSE;
4171                 if (bootverbose)
4172                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4173                 alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4174         } else {
4175                 /*
4176                  * Aggregate TX/RX MSI-X
4177                  */
4178                 aggregate = TRUE;
4179                 if (bootverbose)
4180                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4181                 alloc_cnt = msix_cnt2;
4182                 if (alloc_cnt > ncpus2)
4183                         alloc_cnt = ncpus2;
4184                 if (sc->rx_ring_msix > alloc_cnt)
4185                         sc->rx_ring_msix = alloc_cnt;
4186         }
4187         ++alloc_cnt;    /* For link status */
4188
4189         if (bootverbose) {
4190                 device_printf(sc->dev, "MSI-X alloc %d, RX ring %d\n",
4191                     alloc_cnt, sc->rx_ring_msix);
4192         }
4193
4194         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4195         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4196             &sc->msix_mem_rid, RF_ACTIVE);
4197         if (sc->msix_mem_res == NULL) {
4198                 device_printf(sc->dev, "Unable to map MSI-X table\n");
4199                 return;
4200         }
4201
4202         sc->msix_cnt = alloc_cnt;
4203         sc->msix_data = kmalloc_cachealign(
4204             sizeof(struct igb_msix_data) * sc->msix_cnt,
4205             M_DEVBUF, M_WAITOK | M_ZERO);
4206         for (x = 0; x < sc->msix_cnt; ++x) {
4207                 msix = &sc->msix_data[x];
4208
4209                 lwkt_serialize_init(&msix->msix_serialize0);
4210                 msix->msix_sc = sc;
4211                 msix->msix_rid = -1;
4212                 msix->msix_vector = x;
4213                 msix->msix_mask = 1 << msix->msix_vector;
4214                 msix->msix_rate = IGB_INTR_RATE;
4215         }
4216
4217         x = 0;
4218         if (!aggregate) {
4219                 int offset, offset_def;
4220
4221                 if (sc->rx_ring_msix == ncpus2) {
4222                         offset = 0;
4223                 } else {
4224                         offset_def = (sc->rx_ring_msix *
4225                             device_get_unit(sc->dev)) % ncpus2;
4226
4227                         offset = device_getenv_int(sc->dev,
4228                             "msix.rxoff", offset_def);
4229                         if (offset >= ncpus2 ||
4230                             offset % sc->rx_ring_msix != 0) {
4231                                 device_printf(sc->dev,
4232                                     "invalid msix.rxoff %d, use %d\n",
4233                                     offset, offset_def);
4234                                 offset = offset_def;
4235                         }
4236                 }
4237
4238                 /* RX rings */
4239                 for (i = 0; i < sc->rx_ring_msix; ++i) {
4240                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
4241
4242                         KKASSERT(x < sc->msix_cnt);
4243                         msix = &sc->msix_data[x++];
4244                         rxr->rx_intr_bit = msix->msix_vector;
4245                         rxr->rx_intr_mask = msix->msix_mask;
4246
4247                         msix->msix_serialize = &rxr->rx_serialize;
4248                         msix->msix_func = igb_msix_rx;
4249                         msix->msix_arg = rxr;
4250                         msix->msix_cpuid = i + offset;
4251                         KKASSERT(msix->msix_cpuid < ncpus2);
4252                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4253                             "%s rx%d", device_get_nameunit(sc->dev), i);
4254                         msix->msix_rate = IGB_MSIX_RX_RATE;
4255                         ksnprintf(msix->msix_rate_desc,
4256                             sizeof(msix->msix_rate_desc),
4257                             "RX%d interrupt rate", i);
4258                 }
4259
4260                 offset_def = device_get_unit(sc->dev) % ncpus2;
4261                 offset = device_getenv_int(sc->dev, "msix.txoff", offset_def);
4262                 if (offset >= ncpus2) {
4263                         device_printf(sc->dev, "invalid msix.txoff %d, "
4264                             "use %d\n", offset, offset_def);
4265                         offset = offset_def;
4266                 }
4267
4268                 /* TX rings */
4269                 for (i = 0; i < sc->tx_ring_msix; ++i) {
4270                         struct igb_tx_ring *txr = &sc->tx_rings[i];
4271
4272                         KKASSERT(x < sc->msix_cnt);
4273                         msix = &sc->msix_data[x++];
4274                         txr->tx_intr_bit = msix->msix_vector;
4275                         txr->tx_intr_mask = msix->msix_mask;
4276
4277                         msix->msix_serialize = &txr->tx_serialize;
4278                         msix->msix_func = igb_msix_tx;
4279                         msix->msix_arg = txr;
4280                         msix->msix_cpuid = i + offset;
4281                         txr->tx_intr_cpuid = msix->msix_cpuid;
4282                         KKASSERT(msix->msix_cpuid < ncpus2);
4283                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4284                             "%s tx%d", device_get_nameunit(sc->dev), i);
4285                         msix->msix_rate = IGB_MSIX_TX_RATE;
4286                         ksnprintf(msix->msix_rate_desc,
4287                             sizeof(msix->msix_rate_desc),
4288                             "TX%d interrupt rate", i);
4289                 }
4290         } else {
4291                 /* TODO */
4292                 error = EOPNOTSUPP;
4293                 goto back;
4294         }
4295
4296         /*
4297          * Link status
4298          */
4299         KKASSERT(x < sc->msix_cnt);
4300         msix = &sc->msix_data[x++];
4301         sc->sts_intr_bit = msix->msix_vector;
4302         sc->sts_intr_mask = msix->msix_mask;
4303
4304         msix->msix_serialize = &sc->main_serialize;
4305         msix->msix_func = igb_msix_status;
4306         msix->msix_arg = sc;
4307         msix->msix_cpuid = 0; /* TODO tunable */
4308         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4309             device_get_nameunit(sc->dev));
4310         ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4311             "status interrupt rate");
4312
4313         KKASSERT(x == sc->msix_cnt);
4314
4315         error = pci_setup_msix(sc->dev);
4316         if (error) {
4317                 device_printf(sc->dev, "Setup MSI-X failed\n");
4318                 goto back;
4319         }
4320         setup = TRUE;
4321
4322         for (i = 0; i < sc->msix_cnt; ++i) {
4323                 msix = &sc->msix_data[i];
4324
4325                 error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4326                     &msix->msix_rid, msix->msix_cpuid);
4327                 if (error) {
4328                         device_printf(sc->dev,
4329                             "Unable to allocate MSI-X %d on cpu%d\n",
4330                             msix->msix_vector, msix->msix_cpuid);
4331                         goto back;
4332                 }
4333
4334                 msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4335                     &msix->msix_rid, RF_ACTIVE);
4336                 if (msix->msix_res == NULL) {
4337                         device_printf(sc->dev,
4338                             "Unable to allocate MSI-X %d resource\n",
4339                             msix->msix_vector);
4340                         error = ENOMEM;
4341                         goto back;
4342                 }
4343         }
4344
4345         pci_enable_msix(sc->dev);
4346         sc->intr_type = PCI_INTR_TYPE_MSIX;
4347 back:
4348         if (error)
4349                 igb_msix_free(sc, setup);
4350 }
4351
4352 static void
4353 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4354 {
4355         int i;
4356
4357         KKASSERT(sc->msix_cnt > 1);
4358
4359         for (i = 0; i < sc->msix_cnt; ++i) {
4360                 struct igb_msix_data *msix = &sc->msix_data[i];
4361
4362                 if (msix->msix_res != NULL) {
4363                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4364                             msix->msix_rid, msix->msix_res);
4365                 }
4366                 if (msix->msix_rid >= 0)
4367                         pci_release_msix_vector(sc->dev, msix->msix_rid);
4368         }
4369         if (setup)
4370                 pci_teardown_msix(sc->dev);
4371
4372         sc->msix_cnt = 0;
4373         kfree(sc->msix_data, M_DEVBUF);
4374         sc->msix_data = NULL;
4375 }
4376
4377 static int
4378 igb_msix_setup(struct igb_softc *sc)
4379 {
4380         int i;
4381
4382         for (i = 0; i < sc->msix_cnt; ++i) {
4383                 struct igb_msix_data *msix = &sc->msix_data[i];
4384                 int error;
4385
4386                 error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4387                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4388                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4389                 if (error) {
4390                         device_printf(sc->dev, "could not set up %s "
4391                             "interrupt handler.\n", msix->msix_desc);
4392                         igb_msix_teardown(sc, i);
4393                         return error;
4394                 }
4395         }
4396         return 0;
4397 }
4398
4399 static void
4400 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4401 {
4402         int i;
4403
4404         for (i = 0; i < msix_cnt; ++i) {
4405                 struct igb_msix_data *msix = &sc->msix_data[i];
4406
4407                 bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4408         }
4409 }
4410
4411 static void
4412 igb_msix_rx(void *arg)
4413 {
4414         struct igb_rx_ring *rxr = arg;
4415
4416         ASSERT_SERIALIZED(&rxr->rx_serialize);
4417         igb_rxeof(rxr, -1);
4418
4419         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4420 }
4421
4422 static void
4423 igb_msix_tx(void *arg)
4424 {
4425         struct igb_tx_ring *txr = arg;
4426
4427         ASSERT_SERIALIZED(&txr->tx_serialize);
4428
4429         igb_txeof(txr);
4430         if (!ifsq_is_empty(txr->ifsq))
4431                 ifsq_devstart(txr->ifsq);
4432
4433         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4434 }
4435
4436 static void
4437 igb_msix_status(void *arg)
4438 {
4439         struct igb_softc *sc = arg;
4440         uint32_t icr;
4441
4442         ASSERT_SERIALIZED(&sc->main_serialize);
4443
4444         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4445         if (icr & E1000_ICR_LSC) {
4446                 sc->hw.mac.get_link_status = 1;
4447                 igb_update_link_status(sc);
4448         }
4449
4450         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4451 }
4452
4453 static void
4454 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4455 {
4456         sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4457         sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4458         if (bootverbose) {
4459                 if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4460                     sc->rx_ring_inuse, sc->rx_ring_cnt,
4461                     sc->tx_ring_inuse, sc->tx_ring_cnt);
4462         }
4463 }
4464
4465 static int
4466 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4467 {
4468         if (!IGB_ENABLE_HWRSS(sc))
4469                 return 1;
4470
4471         if (polling)
4472                 return sc->rx_ring_cnt;
4473         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4474                 return IGB_MIN_RING_RSS;
4475         else
4476                 return sc->rx_ring_msix;
4477 }
4478
4479 static int
4480 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4481 {
4482         if (!IGB_ENABLE_HWTSS(sc))
4483                 return 1;
4484
4485         if (polling)
4486                 return sc->tx_ring_cnt;
4487         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4488                 return IGB_MIN_RING;
4489         else
4490                 return sc->tx_ring_msix;
4491 }
4492
4493 static int
4494 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4495 {
4496         int hoff, iphlen, thoff;
4497         struct mbuf *m;
4498
4499         m = *mp;
4500         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4501
4502         iphlen = m->m_pkthdr.csum_iphlen;
4503         thoff = m->m_pkthdr.csum_thlen;
4504         hoff = m->m_pkthdr.csum_lhlen;
4505
4506         KASSERT(iphlen > 0, ("invalid ip hlen"));
4507         KASSERT(thoff > 0, ("invalid tcp hlen"));
4508         KASSERT(hoff > 0, ("invalid ether hlen"));
4509
4510         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4511                 m = m_pullup(m, hoff + iphlen + thoff);
4512                 if (m == NULL) {
4513                         *mp = NULL;
4514                         return ENOBUFS;
4515                 }
4516                 *mp = m;
4517         }
4518         if (txr->sc->flags & IGB_FLAG_TSO_IPLEN0) {
4519                 struct ip *ip;
4520
4521                 ip = mtodoff(m, struct ip *, hoff);
4522                 ip->ip_len = 0;
4523         }
4524
4525         return 0;
4526 }
4527
4528 static void
4529 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4530 {
4531         struct e1000_adv_tx_context_desc *TXD;
4532         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4533         int hoff, ctxd, iphlen, thoff;
4534
4535         iphlen = m->m_pkthdr.csum_iphlen;
4536         thoff = m->m_pkthdr.csum_thlen;
4537         hoff = m->m_pkthdr.csum_lhlen;
4538
4539         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4540
4541         ctxd = txr->next_avail_desc;
4542         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4543
4544         if (m->m_flags & M_VLANTAG) {
4545                 uint16_t vlantag;
4546
4547                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4548                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4549         }
4550
4551         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4552         vlan_macip_lens |= iphlen;
4553
4554         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4555         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4556         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4557
4558         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4559         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4560         /* 82575 needs the queue index added */
4561         if (txr->sc->hw.mac.type == e1000_82575)
4562                 mss_l4len_idx |= txr->me << 4;
4563
4564         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4565         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4566         TXD->seqnum_seed = htole32(0);
4567         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4568
4569         /* We've consumed the first desc, adjust counters */
4570         if (++ctxd == txr->num_tx_desc)
4571                 ctxd = 0;
4572         txr->next_avail_desc = ctxd;
4573         --txr->tx_avail;
4574
4575         *hlen = hoff + iphlen + thoff;
4576 }