kernel - Beef up vm_contig allocation checks
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69
70 /*
71  *      Virtual memory mapping module.
72  */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 #include <sys/random.h>
103 #include <sys/sysctl.h>
104
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static void vmspace_terminate(struct vmspace *vm);
123 static void vmspace_lock(struct vmspace *vm);
124 static void vmspace_unlock(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128
129 struct sysref_class vmspace_sysref_class = {
130         .name =         "vmspace",
131         .mtype =        M_VMSPACE,
132         .proto =        SYSREF_PROTO_VMSPACE,
133         .offset =       offsetof(struct vmspace, vm_sysref),
134         .objsize =      sizeof(struct vmspace),
135         .nom_cache =    32,
136         .flags = SRC_MANAGEDINIT,
137         .dtor = vmspace_dtor,
138         .ops = {
139                 .terminate = (sysref_terminate_func_t)vmspace_terminate,
140                 .lock = (sysref_lock_func_t)vmspace_lock,
141                 .unlock = (sysref_lock_func_t)vmspace_unlock
142         }
143 };
144
145 /*
146  * per-cpu page table cross mappings are initialized in early boot
147  * and might require a considerable number of vm_map_entry structures.
148  */
149 #define VMEPERCPU       (MAXCPU+1)
150
151 static struct vm_zone mapentzone_store, mapzone_store;
152 static vm_zone_t mapentzone, mapzone;
153 static struct vm_object mapentobj, mapobj;
154
155 static struct vm_map_entry map_entry_init[MAX_MAPENT];
156 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
157 static struct vm_map map_init[MAX_KMAP];
158
159 static int randomize_mmap;
160 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
161     "Randomize mmap offsets");
162
163 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
164 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
165 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
166 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
167 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
169 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
170 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
171                 vm_map_entry_t);
172 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
173
174 /*
175  * Initialize the vm_map module.  Must be called before any other vm_map
176  * routines.
177  *
178  * Map and entry structures are allocated from the general purpose
179  * memory pool with some exceptions:
180  *
181  *      - The kernel map is allocated statically.
182  *      - Initial kernel map entries are allocated out of a static pool.
183  *
184  *      These restrictions are necessary since malloc() uses the
185  *      maps and requires map entries.
186  *
187  * Called from the low level boot code only.
188  */
189 void
190 vm_map_startup(void)
191 {
192         mapzone = &mapzone_store;
193         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
194                 map_init, MAX_KMAP);
195         mapentzone = &mapentzone_store;
196         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
197                 map_entry_init, MAX_MAPENT);
198 }
199
200 /*
201  * Called prior to any vmspace allocations.
202  *
203  * Called from the low level boot code only.
204  */
205 void
206 vm_init2(void) 
207 {
208         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
209                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
210         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
211         pmap_init2();
212         vm_object_init2();
213 }
214
215
216 /*
217  * Red black tree functions
218  *
219  * The caller must hold the related map lock.
220  */
221 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
222 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
223
224 /* a->start is address, and the only field has to be initialized */
225 static int
226 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
227 {
228         if (a->start < b->start)
229                 return(-1);
230         else if (a->start > b->start)
231                 return(1);
232         return(0);
233 }
234
235 /*
236  * Allocate a vmspace structure, including a vm_map and pmap.
237  * Initialize numerous fields.  While the initial allocation is zerod,
238  * subsequence reuse from the objcache leaves elements of the structure
239  * intact (particularly the pmap), so portions must be zerod.
240  *
241  * The structure is not considered activated until we call sysref_activate().
242  *
243  * No requirements.
244  */
245 struct vmspace *
246 vmspace_alloc(vm_offset_t min, vm_offset_t max)
247 {
248         struct vmspace *vm;
249
250         vm = sysref_alloc(&vmspace_sysref_class);
251         bzero(&vm->vm_startcopy,
252               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
253         vm_map_init(&vm->vm_map, min, max, NULL);
254         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
255         lwkt_gettoken(&vm->vm_map.token);
256         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
257         vm->vm_shm = NULL;
258         vm->vm_exitingcnt = 0;
259         cpu_vmspace_alloc(vm);
260         sysref_activate(&vm->vm_sysref);
261         lwkt_reltoken(&vm->vm_map.token);
262
263         return (vm);
264 }
265
266 /*
267  * dtor function - Some elements of the pmap are retained in the
268  * free-cached vmspaces to improve performance.  We have to clean them up
269  * here before returning the vmspace to the memory pool.
270  *
271  * No requirements.
272  */
273 static void
274 vmspace_dtor(void *obj, void *private)
275 {
276         struct vmspace *vm = obj;
277
278         pmap_puninit(vmspace_pmap(vm));
279 }
280
281 /*
282  * Called in two cases: 
283  *
284  * (1) When the last sysref is dropped, but exitingcnt might still be
285  *     non-zero.
286  *
287  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
288  *     exitingcnt becomes zero
289  *
290  * sysref will not scrap the object until we call sysref_put() once more
291  * after the last ref has been dropped.
292  *
293  * Interlocked by the sysref API.
294  */
295 static void
296 vmspace_terminate(struct vmspace *vm)
297 {
298         int count;
299
300         /*
301          * If exitingcnt is non-zero we can't get rid of the entire vmspace
302          * yet, but we can scrap user memory.
303          */
304         lwkt_gettoken(&vm->vm_map.token);
305         if (vm->vm_exitingcnt) {
306                 shmexit(vm);
307                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
308                                   VM_MAX_USER_ADDRESS);
309                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
310                               VM_MAX_USER_ADDRESS);
311                 lwkt_reltoken(&vm->vm_map.token);
312                 return;
313         }
314         cpu_vmspace_free(vm);
315
316         /*
317          * Make sure any SysV shm is freed, it might not have in
318          * exit1()
319          */
320         shmexit(vm);
321
322         KKASSERT(vm->vm_upcalls == NULL);
323
324         /*
325          * Lock the map, to wait out all other references to it.
326          * Delete all of the mappings and pages they hold, then call
327          * the pmap module to reclaim anything left.
328          */
329         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
330         vm_map_lock(&vm->vm_map);
331         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
332                 vm->vm_map.max_offset, &count);
333         vm_map_unlock(&vm->vm_map);
334         vm_map_entry_release(count);
335
336         lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
337         pmap_release(vmspace_pmap(vm));
338         lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
339         lwkt_reltoken(&vm->vm_map.token);
340         sysref_put(&vm->vm_sysref);
341 }
342
343 /*
344  * vmspaces are not currently locked.
345  */
346 static void
347 vmspace_lock(struct vmspace *vm __unused)
348 {
349 }
350
351 static void
352 vmspace_unlock(struct vmspace *vm __unused)
353 {
354 }
355
356 /*
357  * This is called during exit indicating that the vmspace is no
358  * longer in used by an exiting process, but the process has not yet
359  * been cleaned up.
360  *
361  * No requirements.
362  */
363 void
364 vmspace_exitbump(struct vmspace *vm)
365 {
366         lwkt_gettoken(&vm->vm_map.token);
367         ++vm->vm_exitingcnt;
368         lwkt_reltoken(&vm->vm_map.token);
369 }
370
371 /*
372  * This is called in the wait*() handling code.  The vmspace can be terminated
373  * after the last wait is finished using it.
374  *
375  * No requirements.
376  */
377 void
378 vmspace_exitfree(struct proc *p)
379 {
380         struct vmspace *vm;
381
382         vm = p->p_vmspace;
383         lwkt_gettoken(&vm->vm_map.token);
384         p->p_vmspace = NULL;
385
386         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref)) {
387                 lwkt_reltoken(&vm->vm_map.token);
388                 vmspace_terminate(vm);
389         } else {
390                 lwkt_reltoken(&vm->vm_map.token);
391         }
392 }
393
394 /*
395  * Swap useage is determined by taking the proportional swap used by
396  * VM objects backing the VM map.  To make up for fractional losses,
397  * if the VM object has any swap use at all the associated map entries
398  * count for at least 1 swap page.
399  *
400  * No requirements.
401  */
402 int
403 vmspace_swap_count(struct vmspace *vm)
404 {
405         vm_map_t map = &vm->vm_map;
406         vm_map_entry_t cur;
407         vm_object_t object;
408         int count = 0;
409         int n;
410
411         lwkt_gettoken(&vm->vm_map.token);
412         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
413                 switch(cur->maptype) {
414                 case VM_MAPTYPE_NORMAL:
415                 case VM_MAPTYPE_VPAGETABLE:
416                         if ((object = cur->object.vm_object) == NULL)
417                                 break;
418                         if (object->swblock_count) {
419                                 n = (cur->end - cur->start) / PAGE_SIZE;
420                                 count += object->swblock_count *
421                                     SWAP_META_PAGES * n / object->size + 1;
422                         }
423                         break;
424                 default:
425                         break;
426                 }
427         }
428         lwkt_reltoken(&vm->vm_map.token);
429         return(count);
430 }
431
432 /*
433  * Calculate the approximate number of anonymous pages in use by
434  * this vmspace.  To make up for fractional losses, we count each
435  * VM object as having at least 1 anonymous page.
436  *
437  * No requirements.
438  */
439 int
440 vmspace_anonymous_count(struct vmspace *vm)
441 {
442         vm_map_t map = &vm->vm_map;
443         vm_map_entry_t cur;
444         vm_object_t object;
445         int count = 0;
446
447         lwkt_gettoken(&vm->vm_map.token);
448         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
449                 switch(cur->maptype) {
450                 case VM_MAPTYPE_NORMAL:
451                 case VM_MAPTYPE_VPAGETABLE:
452                         if ((object = cur->object.vm_object) == NULL)
453                                 break;
454                         if (object->type != OBJT_DEFAULT &&
455                             object->type != OBJT_SWAP) {
456                                 break;
457                         }
458                         count += object->resident_page_count;
459                         break;
460                 default:
461                         break;
462                 }
463         }
464         lwkt_reltoken(&vm->vm_map.token);
465         return(count);
466 }
467
468 /*
469  * Creates and returns a new empty VM map with the given physical map
470  * structure, and having the given lower and upper address bounds.
471  *
472  * No requirements.
473  */
474 vm_map_t
475 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
476 {
477         if (result == NULL)
478                 result = zalloc(mapzone);
479         vm_map_init(result, min, max, pmap);
480         return (result);
481 }
482
483 /*
484  * Initialize an existing vm_map structure such as that in the vmspace
485  * structure.  The pmap is initialized elsewhere.
486  *
487  * No requirements.
488  */
489 void
490 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
491 {
492         map->header.next = map->header.prev = &map->header;
493         RB_INIT(&map->rb_root);
494         map->nentries = 0;
495         map->size = 0;
496         map->system_map = 0;
497         map->min_offset = min;
498         map->max_offset = max;
499         map->pmap = pmap;
500         map->first_free = &map->header;
501         map->hint = &map->header;
502         map->timestamp = 0;
503         map->flags = 0;
504         lwkt_token_init(&map->token, "vm_map");
505         lockinit(&map->lock, "thrd_sleep", (hz + 9) / 10, 0);
506         TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
507 }
508
509 /*
510  * Shadow the vm_map_entry's object.  This typically needs to be done when
511  * a write fault is taken on an entry which had previously been cloned by
512  * fork().  The shared object (which might be NULL) must become private so
513  * we add a shadow layer above it.
514  *
515  * Object allocation for anonymous mappings is defered as long as possible.
516  * When creating a shadow, however, the underlying object must be instantiated
517  * so it can be shared.
518  *
519  * If the map segment is governed by a virtual page table then it is
520  * possible to address offsets beyond the mapped area.  Just allocate
521  * a maximally sized object for this case.
522  *
523  * The vm_map must be exclusively locked.
524  * No other requirements.
525  */
526 static
527 void
528 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
529 {
530         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
531                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
532                                  0x7FFFFFFF, addref);   /* XXX */
533         } else {
534                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
535                                  atop(entry->end - entry->start), addref);
536         }
537         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
538 }
539
540 /*
541  * Allocate an object for a vm_map_entry.
542  *
543  * Object allocation for anonymous mappings is defered as long as possible.
544  * This function is called when we can defer no longer, generally when a map
545  * entry might be split or forked or takes a page fault.
546  *
547  * If the map segment is governed by a virtual page table then it is
548  * possible to address offsets beyond the mapped area.  Just allocate
549  * a maximally sized object for this case.
550  *
551  * The vm_map must be exclusively locked.
552  * No other requirements.
553  */
554 void 
555 vm_map_entry_allocate_object(vm_map_entry_t entry)
556 {
557         vm_object_t obj;
558
559         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
560                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
561         } else {
562                 obj = vm_object_allocate(OBJT_DEFAULT,
563                                          atop(entry->end - entry->start));
564         }
565         entry->object.vm_object = obj;
566         entry->offset = 0;
567 }
568
569 /*
570  * Set an initial negative count so the first attempt to reserve
571  * space preloads a bunch of vm_map_entry's for this cpu.  Also
572  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
573  * map a new page for vm_map_entry structures.  SMP systems are
574  * particularly sensitive.
575  *
576  * This routine is called in early boot so we cannot just call
577  * vm_map_entry_reserve().
578  *
579  * Called from the low level boot code only (for each cpu)
580  */
581 void
582 vm_map_entry_reserve_cpu_init(globaldata_t gd)
583 {
584         vm_map_entry_t entry;
585         int i;
586
587         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
588         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
589         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
590                 entry->next = gd->gd_vme_base;
591                 gd->gd_vme_base = entry;
592         }
593 }
594
595 /*
596  * Reserves vm_map_entry structures so code later on can manipulate
597  * map_entry structures within a locked map without blocking trying
598  * to allocate a new vm_map_entry.
599  *
600  * No requirements.
601  */
602 int
603 vm_map_entry_reserve(int count)
604 {
605         struct globaldata *gd = mycpu;
606         vm_map_entry_t entry;
607
608         /*
609          * Make sure we have enough structures in gd_vme_base to handle
610          * the reservation request.
611          *
612          * The critical section protects access to the per-cpu gd.
613          */
614         crit_enter();
615         while (gd->gd_vme_avail < count) {
616                 entry = zalloc(mapentzone);
617                 entry->next = gd->gd_vme_base;
618                 gd->gd_vme_base = entry;
619                 ++gd->gd_vme_avail;
620         }
621         gd->gd_vme_avail -= count;
622         crit_exit();
623
624         return(count);
625 }
626
627 /*
628  * Releases previously reserved vm_map_entry structures that were not
629  * used.  If we have too much junk in our per-cpu cache clean some of
630  * it out.
631  *
632  * No requirements.
633  */
634 void
635 vm_map_entry_release(int count)
636 {
637         struct globaldata *gd = mycpu;
638         vm_map_entry_t entry;
639
640         crit_enter();
641         gd->gd_vme_avail += count;
642         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
643                 entry = gd->gd_vme_base;
644                 KKASSERT(entry != NULL);
645                 gd->gd_vme_base = entry->next;
646                 --gd->gd_vme_avail;
647                 crit_exit();
648                 zfree(mapentzone, entry);
649                 crit_enter();
650         }
651         crit_exit();
652 }
653
654 /*
655  * Reserve map entry structures for use in kernel_map itself.  These
656  * entries have *ALREADY* been reserved on a per-cpu basis when the map
657  * was inited.  This function is used by zalloc() to avoid a recursion
658  * when zalloc() itself needs to allocate additional kernel memory.
659  *
660  * This function works like the normal reserve but does not load the
661  * vm_map_entry cache (because that would result in an infinite
662  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
663  *
664  * Any caller of this function must be sure to renormalize after
665  * potentially eating entries to ensure that the reserve supply
666  * remains intact.
667  *
668  * No requirements.
669  */
670 int
671 vm_map_entry_kreserve(int count)
672 {
673         struct globaldata *gd = mycpu;
674
675         crit_enter();
676         gd->gd_vme_avail -= count;
677         crit_exit();
678         KASSERT(gd->gd_vme_base != NULL,
679                 ("no reserved entries left, gd_vme_avail = %d\n",
680                 gd->gd_vme_avail));
681         return(count);
682 }
683
684 /*
685  * Release previously reserved map entries for kernel_map.  We do not
686  * attempt to clean up like the normal release function as this would
687  * cause an unnecessary (but probably not fatal) deep procedure call.
688  *
689  * No requirements.
690  */
691 void
692 vm_map_entry_krelease(int count)
693 {
694         struct globaldata *gd = mycpu;
695
696         crit_enter();
697         gd->gd_vme_avail += count;
698         crit_exit();
699 }
700
701 /*
702  * Allocates a VM map entry for insertion.  No entry fields are filled in.
703  *
704  * The entries should have previously been reserved.  The reservation count
705  * is tracked in (*countp).
706  *
707  * No requirements.
708  */
709 static vm_map_entry_t
710 vm_map_entry_create(vm_map_t map, int *countp)
711 {
712         struct globaldata *gd = mycpu;
713         vm_map_entry_t entry;
714
715         KKASSERT(*countp > 0);
716         --*countp;
717         crit_enter();
718         entry = gd->gd_vme_base;
719         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
720         gd->gd_vme_base = entry->next;
721         crit_exit();
722
723         return(entry);
724 }
725
726 /*
727  * Dispose of a vm_map_entry that is no longer being referenced.
728  *
729  * No requirements.
730  */
731 static void
732 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
733 {
734         struct globaldata *gd = mycpu;
735
736         KKASSERT(map->hint != entry);
737         KKASSERT(map->first_free != entry);
738
739         ++*countp;
740         crit_enter();
741         entry->next = gd->gd_vme_base;
742         gd->gd_vme_base = entry;
743         crit_exit();
744 }
745
746
747 /*
748  * Insert/remove entries from maps.
749  *
750  * The related map must be exclusively locked.
751  * The caller must hold map->token
752  * No other requirements.
753  */
754 static __inline void
755 vm_map_entry_link(vm_map_t map,
756                   vm_map_entry_t after_where,
757                   vm_map_entry_t entry)
758 {
759         ASSERT_VM_MAP_LOCKED(map);
760
761         map->nentries++;
762         entry->prev = after_where;
763         entry->next = after_where->next;
764         entry->next->prev = entry;
765         after_where->next = entry;
766         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
767                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
768 }
769
770 static __inline void
771 vm_map_entry_unlink(vm_map_t map,
772                     vm_map_entry_t entry)
773 {
774         vm_map_entry_t prev;
775         vm_map_entry_t next;
776
777         ASSERT_VM_MAP_LOCKED(map);
778
779         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
780                 panic("vm_map_entry_unlink: attempt to mess with "
781                       "locked entry! %p", entry);
782         }
783         prev = entry->prev;
784         next = entry->next;
785         next->prev = prev;
786         prev->next = next;
787         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
788         map->nentries--;
789 }
790
791 /*
792  * Finds the map entry containing (or immediately preceding) the specified
793  * address in the given map.  The entry is returned in (*entry).
794  *
795  * The boolean result indicates whether the address is actually contained
796  * in the map.
797  *
798  * The related map must be locked.
799  * No other requirements.
800  */
801 boolean_t
802 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
803 {
804         vm_map_entry_t tmp;
805         vm_map_entry_t last;
806
807         ASSERT_VM_MAP_LOCKED(map);
808 #if 0
809         /*
810          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
811          * the hint code with the red-black lookup meets with system crashes
812          * and lockups.  We do not yet know why.
813          *
814          * It is possible that the problem is related to the setting
815          * of the hint during map_entry deletion, in the code specified
816          * at the GGG comment later on in this file.
817          */
818         /*
819          * Quickly check the cached hint, there's a good chance of a match.
820          */
821         if (map->hint != &map->header) {
822                 tmp = map->hint;
823                 if (address >= tmp->start && address < tmp->end) {
824                         *entry = tmp;
825                         return(TRUE);
826                 }
827         }
828 #endif
829
830         /*
831          * Locate the record from the top of the tree.  'last' tracks the
832          * closest prior record and is returned if no match is found, which
833          * in binary tree terms means tracking the most recent right-branch
834          * taken.  If there is no prior record, &map->header is returned.
835          */
836         last = &map->header;
837         tmp = RB_ROOT(&map->rb_root);
838
839         while (tmp) {
840                 if (address >= tmp->start) {
841                         if (address < tmp->end) {
842                                 *entry = tmp;
843                                 map->hint = tmp;
844                                 return(TRUE);
845                         }
846                         last = tmp;
847                         tmp = RB_RIGHT(tmp, rb_entry);
848                 } else {
849                         tmp = RB_LEFT(tmp, rb_entry);
850                 }
851         }
852         *entry = last;
853         return (FALSE);
854 }
855
856 /*
857  * Inserts the given whole VM object into the target map at the specified
858  * address range.  The object's size should match that of the address range.
859  *
860  * The map must be exclusively locked.
861  * The object must be held.
862  * The caller must have reserved sufficient vm_map_entry structures.
863  *
864  * If object is non-NULL, ref count must be bumped by caller prior to
865  * making call to account for the new entry.
866  */
867 int
868 vm_map_insert(vm_map_t map, int *countp,
869               vm_object_t object, vm_ooffset_t offset,
870               vm_offset_t start, vm_offset_t end,
871               vm_maptype_t maptype,
872               vm_prot_t prot, vm_prot_t max,
873               int cow)
874 {
875         vm_map_entry_t new_entry;
876         vm_map_entry_t prev_entry;
877         vm_map_entry_t temp_entry;
878         vm_eflags_t protoeflags;
879         int must_drop = 0;
880
881         ASSERT_VM_MAP_LOCKED(map);
882         if (object)
883                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
884
885         /*
886          * Check that the start and end points are not bogus.
887          */
888         if ((start < map->min_offset) || (end > map->max_offset) ||
889             (start >= end))
890                 return (KERN_INVALID_ADDRESS);
891
892         /*
893          * Find the entry prior to the proposed starting address; if it's part
894          * of an existing entry, this range is bogus.
895          */
896         if (vm_map_lookup_entry(map, start, &temp_entry))
897                 return (KERN_NO_SPACE);
898
899         prev_entry = temp_entry;
900
901         /*
902          * Assert that the next entry doesn't overlap the end point.
903          */
904
905         if ((prev_entry->next != &map->header) &&
906             (prev_entry->next->start < end))
907                 return (KERN_NO_SPACE);
908
909         protoeflags = 0;
910
911         if (cow & MAP_COPY_ON_WRITE)
912                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
913
914         if (cow & MAP_NOFAULT) {
915                 protoeflags |= MAP_ENTRY_NOFAULT;
916
917                 KASSERT(object == NULL,
918                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
919         }
920         if (cow & MAP_DISABLE_SYNCER)
921                 protoeflags |= MAP_ENTRY_NOSYNC;
922         if (cow & MAP_DISABLE_COREDUMP)
923                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
924         if (cow & MAP_IS_STACK)
925                 protoeflags |= MAP_ENTRY_STACK;
926         if (cow & MAP_IS_KSTACK)
927                 protoeflags |= MAP_ENTRY_KSTACK;
928
929         lwkt_gettoken(&map->token);
930
931         if (object) {
932                 /*
933                  * When object is non-NULL, it could be shared with another
934                  * process.  We have to set or clear OBJ_ONEMAPPING 
935                  * appropriately.
936                  */
937                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
938                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
939                 }
940         }
941         else if ((prev_entry != &map->header) &&
942                  (prev_entry->eflags == protoeflags) &&
943                  (prev_entry->end == start) &&
944                  (prev_entry->wired_count == 0) &&
945                  prev_entry->maptype == maptype &&
946                  ((prev_entry->object.vm_object == NULL) ||
947                   vm_object_coalesce(prev_entry->object.vm_object,
948                                      OFF_TO_IDX(prev_entry->offset),
949                                      (vm_size_t)(prev_entry->end - prev_entry->start),
950                                      (vm_size_t)(end - prev_entry->end)))) {
951                 /*
952                  * We were able to extend the object.  Determine if we
953                  * can extend the previous map entry to include the 
954                  * new range as well.
955                  */
956                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
957                     (prev_entry->protection == prot) &&
958                     (prev_entry->max_protection == max)) {
959                         map->size += (end - prev_entry->end);
960                         prev_entry->end = end;
961                         vm_map_simplify_entry(map, prev_entry, countp);
962                         lwkt_reltoken(&map->token);
963                         return (KERN_SUCCESS);
964                 }
965
966                 /*
967                  * If we can extend the object but cannot extend the
968                  * map entry, we have to create a new map entry.  We
969                  * must bump the ref count on the extended object to
970                  * account for it.  object may be NULL.
971                  */
972                 object = prev_entry->object.vm_object;
973                 offset = prev_entry->offset +
974                         (prev_entry->end - prev_entry->start);
975                 if (object) {
976                         vm_object_hold(object);
977                         vm_object_chain_wait(object);
978                         vm_object_reference_locked(object);
979                         must_drop = 1;
980                 }
981         }
982
983         /*
984          * NOTE: if conditionals fail, object can be NULL here.  This occurs
985          * in things like the buffer map where we manage kva but do not manage
986          * backing objects.
987          */
988
989         /*
990          * Create a new entry
991          */
992
993         new_entry = vm_map_entry_create(map, countp);
994         new_entry->start = start;
995         new_entry->end = end;
996
997         new_entry->maptype = maptype;
998         new_entry->eflags = protoeflags;
999         new_entry->object.vm_object = object;
1000         new_entry->offset = offset;
1001         new_entry->aux.master_pde = 0;
1002
1003         new_entry->inheritance = VM_INHERIT_DEFAULT;
1004         new_entry->protection = prot;
1005         new_entry->max_protection = max;
1006         new_entry->wired_count = 0;
1007
1008         /*
1009          * Insert the new entry into the list
1010          */
1011
1012         vm_map_entry_link(map, prev_entry, new_entry);
1013         map->size += new_entry->end - new_entry->start;
1014
1015         /*
1016          * Update the free space hint.  Entries cannot overlap.
1017          * An exact comparison is needed to avoid matching
1018          * against the map->header.
1019          */
1020         if ((map->first_free == prev_entry) &&
1021             (prev_entry->end == new_entry->start)) {
1022                 map->first_free = new_entry;
1023         }
1024
1025 #if 0
1026         /*
1027          * Temporarily removed to avoid MAP_STACK panic, due to
1028          * MAP_STACK being a huge hack.  Will be added back in
1029          * when MAP_STACK (and the user stack mapping) is fixed.
1030          */
1031         /*
1032          * It may be possible to simplify the entry
1033          */
1034         vm_map_simplify_entry(map, new_entry, countp);
1035 #endif
1036
1037         /*
1038          * Try to pre-populate the page table.  Mappings governed by virtual
1039          * page tables cannot be prepopulated without a lot of work, so
1040          * don't try.
1041          */
1042         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1043             maptype != VM_MAPTYPE_VPAGETABLE) {
1044                 pmap_object_init_pt(map->pmap, start, prot,
1045                                     object, OFF_TO_IDX(offset), end - start,
1046                                     cow & MAP_PREFAULT_PARTIAL);
1047         }
1048         if (must_drop)
1049                 vm_object_drop(object);
1050
1051         lwkt_reltoken(&map->token);
1052         return (KERN_SUCCESS);
1053 }
1054
1055 /*
1056  * Find sufficient space for `length' bytes in the given map, starting at
1057  * `start'.  Returns 0 on success, 1 on no space.
1058  *
1059  * This function will returned an arbitrarily aligned pointer.  If no
1060  * particular alignment is required you should pass align as 1.  Note that
1061  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1062  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1063  * argument.
1064  *
1065  * 'align' should be a power of 2 but is not required to be.
1066  *
1067  * The map must be exclusively locked.
1068  * No other requirements.
1069  */
1070 int
1071 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1072                  vm_size_t align, int flags, vm_offset_t *addr)
1073 {
1074         vm_map_entry_t entry, next;
1075         vm_offset_t end;
1076         vm_offset_t align_mask;
1077
1078         if (start < map->min_offset)
1079                 start = map->min_offset;
1080         if (start > map->max_offset)
1081                 return (1);
1082
1083         /*
1084          * If the alignment is not a power of 2 we will have to use
1085          * a mod/division, set align_mask to a special value.
1086          */
1087         if ((align | (align - 1)) + 1 != (align << 1))
1088                 align_mask = (vm_offset_t)-1;
1089         else
1090                 align_mask = align - 1;
1091
1092         /*
1093          * Look for the first possible address; if there's already something
1094          * at this address, we have to start after it.
1095          */
1096         if (start == map->min_offset) {
1097                 if ((entry = map->first_free) != &map->header)
1098                         start = entry->end;
1099         } else {
1100                 vm_map_entry_t tmp;
1101
1102                 if (vm_map_lookup_entry(map, start, &tmp))
1103                         start = tmp->end;
1104                 entry = tmp;
1105         }
1106
1107         /*
1108          * Look through the rest of the map, trying to fit a new region in the
1109          * gap between existing regions, or after the very last region.
1110          */
1111         for (;; start = (entry = next)->end) {
1112                 /*
1113                  * Adjust the proposed start by the requested alignment,
1114                  * be sure that we didn't wrap the address.
1115                  */
1116                 if (align_mask == (vm_offset_t)-1)
1117                         end = ((start + align - 1) / align) * align;
1118                 else
1119                         end = (start + align_mask) & ~align_mask;
1120                 if (end < start)
1121                         return (1);
1122                 start = end;
1123                 /*
1124                  * Find the end of the proposed new region.  Be sure we didn't
1125                  * go beyond the end of the map, or wrap around the address.
1126                  * Then check to see if this is the last entry or if the 
1127                  * proposed end fits in the gap between this and the next
1128                  * entry.
1129                  */
1130                 end = start + length;
1131                 if (end > map->max_offset || end < start)
1132                         return (1);
1133                 next = entry->next;
1134
1135                 /*
1136                  * If the next entry's start address is beyond the desired
1137                  * end address we may have found a good entry.
1138                  *
1139                  * If the next entry is a stack mapping we do not map into
1140                  * the stack's reserved space.
1141                  *
1142                  * XXX continue to allow mapping into the stack's reserved
1143                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1144                  * mapping, for backwards compatibility.  But the caller
1145                  * really should use MAP_STACK | MAP_TRYFIXED if they
1146                  * want to do that.
1147                  */
1148                 if (next == &map->header)
1149                         break;
1150                 if (next->start >= end) {
1151                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1152                                 break;
1153                         if (flags & MAP_STACK)
1154                                 break;
1155                         if (next->start - next->aux.avail_ssize >= end)
1156                                 break;
1157                 }
1158         }
1159         map->hint = entry;
1160
1161         /*
1162          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1163          * if it fails.  The kernel_map is locked and nothing can steal
1164          * our address space if pmap_growkernel() blocks.
1165          *
1166          * NOTE: This may be unconditionally called for kldload areas on
1167          *       x86_64 because these do not bump kernel_vm_end (which would
1168          *       fill 128G worth of page tables!).  Therefore we must not
1169          *       retry.
1170          */
1171         if (map == &kernel_map) {
1172                 vm_offset_t kstop;
1173
1174                 kstop = round_page(start + length);
1175                 if (kstop > kernel_vm_end)
1176                         pmap_growkernel(start, kstop);
1177         }
1178         *addr = start;
1179         return (0);
1180 }
1181
1182 /*
1183  * vm_map_find finds an unallocated region in the target address map with
1184  * the given length and allocates it.  The search is defined to be first-fit
1185  * from the specified address; the region found is returned in the same
1186  * parameter.
1187  *
1188  * If object is non-NULL, ref count must be bumped by caller
1189  * prior to making call to account for the new entry.
1190  *
1191  * No requirements.  This function will lock the map temporarily.
1192  */
1193 int
1194 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1195             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1196             boolean_t fitit,
1197             vm_maptype_t maptype,
1198             vm_prot_t prot, vm_prot_t max,
1199             int cow)
1200 {
1201         vm_offset_t start;
1202         int result;
1203         int count;
1204
1205         start = *addr;
1206
1207         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1208         vm_map_lock(map);
1209         if (object)
1210                 vm_object_hold(object);
1211         if (fitit) {
1212                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1213                         vm_map_unlock(map);
1214                         vm_map_entry_release(count);
1215                         return (KERN_NO_SPACE);
1216                 }
1217                 start = *addr;
1218         }
1219         result = vm_map_insert(map, &count, object, offset,
1220                                start, start + length,
1221                                maptype,
1222                                prot, max,
1223                                cow);
1224         if (object)
1225                 vm_object_drop(object);
1226         vm_map_unlock(map);
1227         vm_map_entry_release(count);
1228
1229         return (result);
1230 }
1231
1232 /*
1233  * Simplify the given map entry by merging with either neighbor.  This
1234  * routine also has the ability to merge with both neighbors.
1235  *
1236  * This routine guarentees that the passed entry remains valid (though
1237  * possibly extended).  When merging, this routine may delete one or
1238  * both neighbors.  No action is taken on entries which have their
1239  * in-transition flag set.
1240  *
1241  * The map must be exclusively locked.
1242  */
1243 void
1244 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1245 {
1246         vm_map_entry_t next, prev;
1247         vm_size_t prevsize, esize;
1248
1249         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1250                 ++mycpu->gd_cnt.v_intrans_coll;
1251                 return;
1252         }
1253
1254         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1255                 return;
1256
1257         prev = entry->prev;
1258         if (prev != &map->header) {
1259                 prevsize = prev->end - prev->start;
1260                 if ( (prev->end == entry->start) &&
1261                      (prev->maptype == entry->maptype) &&
1262                      (prev->object.vm_object == entry->object.vm_object) &&
1263                      (!prev->object.vm_object ||
1264                         (prev->offset + prevsize == entry->offset)) &&
1265                      (prev->eflags == entry->eflags) &&
1266                      (prev->protection == entry->protection) &&
1267                      (prev->max_protection == entry->max_protection) &&
1268                      (prev->inheritance == entry->inheritance) &&
1269                      (prev->wired_count == entry->wired_count)) {
1270                         if (map->first_free == prev)
1271                                 map->first_free = entry;
1272                         if (map->hint == prev)
1273                                 map->hint = entry;
1274                         vm_map_entry_unlink(map, prev);
1275                         entry->start = prev->start;
1276                         entry->offset = prev->offset;
1277                         if (prev->object.vm_object)
1278                                 vm_object_deallocate(prev->object.vm_object);
1279                         vm_map_entry_dispose(map, prev, countp);
1280                 }
1281         }
1282
1283         next = entry->next;
1284         if (next != &map->header) {
1285                 esize = entry->end - entry->start;
1286                 if ((entry->end == next->start) &&
1287                     (next->maptype == entry->maptype) &&
1288                     (next->object.vm_object == entry->object.vm_object) &&
1289                      (!entry->object.vm_object ||
1290                         (entry->offset + esize == next->offset)) &&
1291                     (next->eflags == entry->eflags) &&
1292                     (next->protection == entry->protection) &&
1293                     (next->max_protection == entry->max_protection) &&
1294                     (next->inheritance == entry->inheritance) &&
1295                     (next->wired_count == entry->wired_count)) {
1296                         if (map->first_free == next)
1297                                 map->first_free = entry;
1298                         if (map->hint == next)
1299                                 map->hint = entry;
1300                         vm_map_entry_unlink(map, next);
1301                         entry->end = next->end;
1302                         if (next->object.vm_object)
1303                                 vm_object_deallocate(next->object.vm_object);
1304                         vm_map_entry_dispose(map, next, countp);
1305                 }
1306         }
1307 }
1308
1309 /*
1310  * Asserts that the given entry begins at or after the specified address.
1311  * If necessary, it splits the entry into two.
1312  */
1313 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1314 {                                                                       \
1315         if (startaddr > entry->start)                                   \
1316                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1317 }
1318
1319 /*
1320  * This routine is called only when it is known that the entry must be split.
1321  *
1322  * The map must be exclusively locked.
1323  */
1324 static void
1325 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1326                    int *countp)
1327 {
1328         vm_map_entry_t new_entry;
1329
1330         /*
1331          * Split off the front portion -- note that we must insert the new
1332          * entry BEFORE this one, so that this entry has the specified
1333          * starting address.
1334          */
1335
1336         vm_map_simplify_entry(map, entry, countp);
1337
1338         /*
1339          * If there is no object backing this entry, we might as well create
1340          * one now.  If we defer it, an object can get created after the map
1341          * is clipped, and individual objects will be created for the split-up
1342          * map.  This is a bit of a hack, but is also about the best place to
1343          * put this improvement.
1344          */
1345         if (entry->object.vm_object == NULL && !map->system_map) {
1346                 vm_map_entry_allocate_object(entry);
1347         }
1348
1349         new_entry = vm_map_entry_create(map, countp);
1350         *new_entry = *entry;
1351
1352         new_entry->end = start;
1353         entry->offset += (start - entry->start);
1354         entry->start = start;
1355
1356         vm_map_entry_link(map, entry->prev, new_entry);
1357
1358         switch(entry->maptype) {
1359         case VM_MAPTYPE_NORMAL:
1360         case VM_MAPTYPE_VPAGETABLE:
1361                 if (new_entry->object.vm_object) {
1362                         vm_object_hold(new_entry->object.vm_object);
1363                         vm_object_chain_wait(new_entry->object.vm_object);
1364                         vm_object_reference_locked(new_entry->object.vm_object);
1365                         vm_object_drop(new_entry->object.vm_object);
1366                 }
1367                 break;
1368         default:
1369                 break;
1370         }
1371 }
1372
1373 /*
1374  * Asserts that the given entry ends at or before the specified address.
1375  * If necessary, it splits the entry into two.
1376  *
1377  * The map must be exclusively locked.
1378  */
1379 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1380 {                                                               \
1381         if (endaddr < entry->end)                               \
1382                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1383 }
1384
1385 /*
1386  * This routine is called only when it is known that the entry must be split.
1387  *
1388  * The map must be exclusively locked.
1389  */
1390 static void
1391 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1392                  int *countp)
1393 {
1394         vm_map_entry_t new_entry;
1395
1396         /*
1397          * If there is no object backing this entry, we might as well create
1398          * one now.  If we defer it, an object can get created after the map
1399          * is clipped, and individual objects will be created for the split-up
1400          * map.  This is a bit of a hack, but is also about the best place to
1401          * put this improvement.
1402          */
1403
1404         if (entry->object.vm_object == NULL && !map->system_map) {
1405                 vm_map_entry_allocate_object(entry);
1406         }
1407
1408         /*
1409          * Create a new entry and insert it AFTER the specified entry
1410          */
1411
1412         new_entry = vm_map_entry_create(map, countp);
1413         *new_entry = *entry;
1414
1415         new_entry->start = entry->end = end;
1416         new_entry->offset += (end - entry->start);
1417
1418         vm_map_entry_link(map, entry, new_entry);
1419
1420         switch(entry->maptype) {
1421         case VM_MAPTYPE_NORMAL:
1422         case VM_MAPTYPE_VPAGETABLE:
1423                 if (new_entry->object.vm_object) {
1424                         vm_object_hold(new_entry->object.vm_object);
1425                         vm_object_chain_wait(new_entry->object.vm_object);
1426                         vm_object_reference_locked(new_entry->object.vm_object);
1427                         vm_object_drop(new_entry->object.vm_object);
1428                 }
1429                 break;
1430         default:
1431                 break;
1432         }
1433 }
1434
1435 /*
1436  * Asserts that the starting and ending region addresses fall within the
1437  * valid range for the map.
1438  */
1439 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1440 {                                               \
1441         if (start < vm_map_min(map))            \
1442                 start = vm_map_min(map);        \
1443         if (end > vm_map_max(map))              \
1444                 end = vm_map_max(map);          \
1445         if (start > end)                        \
1446                 start = end;                    \
1447 }
1448
1449 /*
1450  * Used to block when an in-transition collison occurs.  The map
1451  * is unlocked for the sleep and relocked before the return.
1452  */
1453 void
1454 vm_map_transition_wait(vm_map_t map)
1455 {
1456         tsleep_interlock(map, 0);
1457         vm_map_unlock(map);
1458         tsleep(map, PINTERLOCKED, "vment", 0);
1459         vm_map_lock(map);
1460 }
1461
1462 /*
1463  * When we do blocking operations with the map lock held it is
1464  * possible that a clip might have occured on our in-transit entry,
1465  * requiring an adjustment to the entry in our loop.  These macros
1466  * help the pageable and clip_range code deal with the case.  The
1467  * conditional costs virtually nothing if no clipping has occured.
1468  */
1469
1470 #define CLIP_CHECK_BACK(entry, save_start)              \
1471     do {                                                \
1472             while (entry->start != save_start) {        \
1473                     entry = entry->prev;                \
1474                     KASSERT(entry != &map->header, ("bad entry clip")); \
1475             }                                           \
1476     } while(0)
1477
1478 #define CLIP_CHECK_FWD(entry, save_end)                 \
1479     do {                                                \
1480             while (entry->end != save_end) {            \
1481                     entry = entry->next;                \
1482                     KASSERT(entry != &map->header, ("bad entry clip")); \
1483             }                                           \
1484     } while(0)
1485
1486
1487 /*
1488  * Clip the specified range and return the base entry.  The
1489  * range may cover several entries starting at the returned base
1490  * and the first and last entry in the covering sequence will be
1491  * properly clipped to the requested start and end address.
1492  *
1493  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1494  * flag.
1495  *
1496  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1497  * covered by the requested range.
1498  *
1499  * The map must be exclusively locked on entry and will remain locked
1500  * on return. If no range exists or the range contains holes and you
1501  * specified that no holes were allowed, NULL will be returned.  This
1502  * routine may temporarily unlock the map in order avoid a deadlock when
1503  * sleeping.
1504  */
1505 static
1506 vm_map_entry_t
1507 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1508                   int *countp, int flags)
1509 {
1510         vm_map_entry_t start_entry;
1511         vm_map_entry_t entry;
1512
1513         /*
1514          * Locate the entry and effect initial clipping.  The in-transition
1515          * case does not occur very often so do not try to optimize it.
1516          */
1517 again:
1518         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1519                 return (NULL);
1520         entry = start_entry;
1521         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1522                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1523                 ++mycpu->gd_cnt.v_intrans_coll;
1524                 ++mycpu->gd_cnt.v_intrans_wait;
1525                 vm_map_transition_wait(map);
1526                 /*
1527                  * entry and/or start_entry may have been clipped while
1528                  * we slept, or may have gone away entirely.  We have
1529                  * to restart from the lookup.
1530                  */
1531                 goto again;
1532         }
1533
1534         /*
1535          * Since we hold an exclusive map lock we do not have to restart
1536          * after clipping, even though clipping may block in zalloc.
1537          */
1538         vm_map_clip_start(map, entry, start, countp);
1539         vm_map_clip_end(map, entry, end, countp);
1540         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1541
1542         /*
1543          * Scan entries covered by the range.  When working on the next
1544          * entry a restart need only re-loop on the current entry which
1545          * we have already locked, since 'next' may have changed.  Also,
1546          * even though entry is safe, it may have been clipped so we
1547          * have to iterate forwards through the clip after sleeping.
1548          */
1549         while (entry->next != &map->header && entry->next->start < end) {
1550                 vm_map_entry_t next = entry->next;
1551
1552                 if (flags & MAP_CLIP_NO_HOLES) {
1553                         if (next->start > entry->end) {
1554                                 vm_map_unclip_range(map, start_entry,
1555                                         start, entry->end, countp, flags);
1556                                 return(NULL);
1557                         }
1558                 }
1559
1560                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1561                         vm_offset_t save_end = entry->end;
1562                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1563                         ++mycpu->gd_cnt.v_intrans_coll;
1564                         ++mycpu->gd_cnt.v_intrans_wait;
1565                         vm_map_transition_wait(map);
1566
1567                         /*
1568                          * clips might have occured while we blocked.
1569                          */
1570                         CLIP_CHECK_FWD(entry, save_end);
1571                         CLIP_CHECK_BACK(start_entry, start);
1572                         continue;
1573                 }
1574                 /*
1575                  * No restart necessary even though clip_end may block, we
1576                  * are holding the map lock.
1577                  */
1578                 vm_map_clip_end(map, next, end, countp);
1579                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1580                 entry = next;
1581         }
1582         if (flags & MAP_CLIP_NO_HOLES) {
1583                 if (entry->end != end) {
1584                         vm_map_unclip_range(map, start_entry,
1585                                 start, entry->end, countp, flags);
1586                         return(NULL);
1587                 }
1588         }
1589         return(start_entry);
1590 }
1591
1592 /*
1593  * Undo the effect of vm_map_clip_range().  You should pass the same
1594  * flags and the same range that you passed to vm_map_clip_range().
1595  * This code will clear the in-transition flag on the entries and
1596  * wake up anyone waiting.  This code will also simplify the sequence
1597  * and attempt to merge it with entries before and after the sequence.
1598  *
1599  * The map must be locked on entry and will remain locked on return.
1600  *
1601  * Note that you should also pass the start_entry returned by
1602  * vm_map_clip_range().  However, if you block between the two calls
1603  * with the map unlocked please be aware that the start_entry may
1604  * have been clipped and you may need to scan it backwards to find
1605  * the entry corresponding with the original start address.  You are
1606  * responsible for this, vm_map_unclip_range() expects the correct
1607  * start_entry to be passed to it and will KASSERT otherwise.
1608  */
1609 static
1610 void
1611 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1612                     vm_offset_t start, vm_offset_t end,
1613                     int *countp, int flags)
1614 {
1615         vm_map_entry_t entry;
1616
1617         entry = start_entry;
1618
1619         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1620         while (entry != &map->header && entry->start < end) {
1621                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1622                         ("in-transition flag not set during unclip on: %p",
1623                         entry));
1624                 KASSERT(entry->end <= end,
1625                         ("unclip_range: tail wasn't clipped"));
1626                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1627                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1628                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1629                         wakeup(map);
1630                 }
1631                 entry = entry->next;
1632         }
1633
1634         /*
1635          * Simplification does not block so there is no restart case.
1636          */
1637         entry = start_entry;
1638         while (entry != &map->header && entry->start < end) {
1639                 vm_map_simplify_entry(map, entry, countp);
1640                 entry = entry->next;
1641         }
1642 }
1643
1644 /*
1645  * Mark the given range as handled by a subordinate map.
1646  *
1647  * This range must have been created with vm_map_find(), and no other
1648  * operations may have been performed on this range prior to calling
1649  * vm_map_submap().
1650  *
1651  * Submappings cannot be removed.
1652  *
1653  * No requirements.
1654  */
1655 int
1656 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1657 {
1658         vm_map_entry_t entry;
1659         int result = KERN_INVALID_ARGUMENT;
1660         int count;
1661
1662         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1663         vm_map_lock(map);
1664
1665         VM_MAP_RANGE_CHECK(map, start, end);
1666
1667         if (vm_map_lookup_entry(map, start, &entry)) {
1668                 vm_map_clip_start(map, entry, start, &count);
1669         } else {
1670                 entry = entry->next;
1671         }
1672
1673         vm_map_clip_end(map, entry, end, &count);
1674
1675         if ((entry->start == start) && (entry->end == end) &&
1676             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1677             (entry->object.vm_object == NULL)) {
1678                 entry->object.sub_map = submap;
1679                 entry->maptype = VM_MAPTYPE_SUBMAP;
1680                 result = KERN_SUCCESS;
1681         }
1682         vm_map_unlock(map);
1683         vm_map_entry_release(count);
1684
1685         return (result);
1686 }
1687
1688 /*
1689  * Sets the protection of the specified address region in the target map. 
1690  * If "set_max" is specified, the maximum protection is to be set;
1691  * otherwise, only the current protection is affected.
1692  *
1693  * The protection is not applicable to submaps, but is applicable to normal
1694  * maps and maps governed by virtual page tables.  For example, when operating
1695  * on a virtual page table our protection basically controls how COW occurs
1696  * on the backing object, whereas the virtual page table abstraction itself
1697  * is an abstraction for userland.
1698  *
1699  * No requirements.
1700  */
1701 int
1702 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1703                vm_prot_t new_prot, boolean_t set_max)
1704 {
1705         vm_map_entry_t current;
1706         vm_map_entry_t entry;
1707         int count;
1708
1709         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1710         vm_map_lock(map);
1711
1712         VM_MAP_RANGE_CHECK(map, start, end);
1713
1714         if (vm_map_lookup_entry(map, start, &entry)) {
1715                 vm_map_clip_start(map, entry, start, &count);
1716         } else {
1717                 entry = entry->next;
1718         }
1719
1720         /*
1721          * Make a first pass to check for protection violations.
1722          */
1723         current = entry;
1724         while ((current != &map->header) && (current->start < end)) {
1725                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1726                         vm_map_unlock(map);
1727                         vm_map_entry_release(count);
1728                         return (KERN_INVALID_ARGUMENT);
1729                 }
1730                 if ((new_prot & current->max_protection) != new_prot) {
1731                         vm_map_unlock(map);
1732                         vm_map_entry_release(count);
1733                         return (KERN_PROTECTION_FAILURE);
1734                 }
1735                 current = current->next;
1736         }
1737
1738         /*
1739          * Go back and fix up protections. [Note that clipping is not
1740          * necessary the second time.]
1741          */
1742         current = entry;
1743
1744         while ((current != &map->header) && (current->start < end)) {
1745                 vm_prot_t old_prot;
1746
1747                 vm_map_clip_end(map, current, end, &count);
1748
1749                 old_prot = current->protection;
1750                 if (set_max) {
1751                         current->protection =
1752                             (current->max_protection = new_prot) &
1753                             old_prot;
1754                 } else {
1755                         current->protection = new_prot;
1756                 }
1757
1758                 /*
1759                  * Update physical map if necessary. Worry about copy-on-write
1760                  * here -- CHECK THIS XXX
1761                  */
1762
1763                 if (current->protection != old_prot) {
1764 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1765                                                         VM_PROT_ALL)
1766
1767                         pmap_protect(map->pmap, current->start,
1768                             current->end,
1769                             current->protection & MASK(current));
1770 #undef  MASK
1771                 }
1772
1773                 vm_map_simplify_entry(map, current, &count);
1774
1775                 current = current->next;
1776         }
1777
1778         vm_map_unlock(map);
1779         vm_map_entry_release(count);
1780         return (KERN_SUCCESS);
1781 }
1782
1783 /*
1784  * This routine traverses a processes map handling the madvise
1785  * system call.  Advisories are classified as either those effecting
1786  * the vm_map_entry structure, or those effecting the underlying
1787  * objects.
1788  *
1789  * The <value> argument is used for extended madvise calls.
1790  *
1791  * No requirements.
1792  */
1793 int
1794 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1795                int behav, off_t value)
1796 {
1797         vm_map_entry_t current, entry;
1798         int modify_map = 0;
1799         int error = 0;
1800         int count;
1801
1802         /*
1803          * Some madvise calls directly modify the vm_map_entry, in which case
1804          * we need to use an exclusive lock on the map and we need to perform 
1805          * various clipping operations.  Otherwise we only need a read-lock
1806          * on the map.
1807          */
1808
1809         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1810
1811         switch(behav) {
1812         case MADV_NORMAL:
1813         case MADV_SEQUENTIAL:
1814         case MADV_RANDOM:
1815         case MADV_NOSYNC:
1816         case MADV_AUTOSYNC:
1817         case MADV_NOCORE:
1818         case MADV_CORE:
1819         case MADV_SETMAP:
1820         case MADV_INVAL:
1821                 modify_map = 1;
1822                 vm_map_lock(map);
1823                 break;
1824         case MADV_WILLNEED:
1825         case MADV_DONTNEED:
1826         case MADV_FREE:
1827                 vm_map_lock_read(map);
1828                 break;
1829         default:
1830                 vm_map_entry_release(count);
1831                 return (EINVAL);
1832         }
1833
1834         /*
1835          * Locate starting entry and clip if necessary.
1836          */
1837
1838         VM_MAP_RANGE_CHECK(map, start, end);
1839
1840         if (vm_map_lookup_entry(map, start, &entry)) {
1841                 if (modify_map)
1842                         vm_map_clip_start(map, entry, start, &count);
1843         } else {
1844                 entry = entry->next;
1845         }
1846
1847         if (modify_map) {
1848                 /*
1849                  * madvise behaviors that are implemented in the vm_map_entry.
1850                  *
1851                  * We clip the vm_map_entry so that behavioral changes are
1852                  * limited to the specified address range.
1853                  */
1854                 for (current = entry;
1855                      (current != &map->header) && (current->start < end);
1856                      current = current->next
1857                 ) {
1858                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1859                                 continue;
1860
1861                         vm_map_clip_end(map, current, end, &count);
1862
1863                         switch (behav) {
1864                         case MADV_NORMAL:
1865                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1866                                 break;
1867                         case MADV_SEQUENTIAL:
1868                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1869                                 break;
1870                         case MADV_RANDOM:
1871                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1872                                 break;
1873                         case MADV_NOSYNC:
1874                                 current->eflags |= MAP_ENTRY_NOSYNC;
1875                                 break;
1876                         case MADV_AUTOSYNC:
1877                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1878                                 break;
1879                         case MADV_NOCORE:
1880                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1881                                 break;
1882                         case MADV_CORE:
1883                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1884                                 break;
1885                         case MADV_INVAL:
1886                                 /*
1887                                  * Invalidate the related pmap entries, used
1888                                  * to flush portions of the real kernel's
1889                                  * pmap when the caller has removed or
1890                                  * modified existing mappings in a virtual
1891                                  * page table.
1892                                  */
1893                                 pmap_remove(map->pmap,
1894                                             current->start, current->end);
1895                                 break;
1896                         case MADV_SETMAP:
1897                                 /*
1898                                  * Set the page directory page for a map
1899                                  * governed by a virtual page table.  Mark
1900                                  * the entry as being governed by a virtual
1901                                  * page table if it is not.
1902                                  *
1903                                  * XXX the page directory page is stored
1904                                  * in the avail_ssize field if the map_entry.
1905                                  *
1906                                  * XXX the map simplification code does not
1907                                  * compare this field so weird things may
1908                                  * happen if you do not apply this function
1909                                  * to the entire mapping governed by the
1910                                  * virtual page table.
1911                                  */
1912                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1913                                         error = EINVAL;
1914                                         break;
1915                                 }
1916                                 current->aux.master_pde = value;
1917                                 pmap_remove(map->pmap,
1918                                             current->start, current->end);
1919                                 break;
1920                         default:
1921                                 error = EINVAL;
1922                                 break;
1923                         }
1924                         vm_map_simplify_entry(map, current, &count);
1925                 }
1926                 vm_map_unlock(map);
1927         } else {
1928                 vm_pindex_t pindex;
1929                 int count;
1930
1931                 /*
1932                  * madvise behaviors that are implemented in the underlying
1933                  * vm_object.
1934                  *
1935                  * Since we don't clip the vm_map_entry, we have to clip
1936                  * the vm_object pindex and count.
1937                  *
1938                  * NOTE!  We currently do not support these functions on
1939                  * virtual page tables.
1940                  */
1941                 for (current = entry;
1942                      (current != &map->header) && (current->start < end);
1943                      current = current->next
1944                 ) {
1945                         vm_offset_t useStart;
1946
1947                         if (current->maptype != VM_MAPTYPE_NORMAL)
1948                                 continue;
1949
1950                         pindex = OFF_TO_IDX(current->offset);
1951                         count = atop(current->end - current->start);
1952                         useStart = current->start;
1953
1954                         if (current->start < start) {
1955                                 pindex += atop(start - current->start);
1956                                 count -= atop(start - current->start);
1957                                 useStart = start;
1958                         }
1959                         if (current->end > end)
1960                                 count -= atop(current->end - end);
1961
1962                         if (count <= 0)
1963                                 continue;
1964
1965                         vm_object_madvise(current->object.vm_object,
1966                                           pindex, count, behav);
1967
1968                         /*
1969                          * Try to populate the page table.  Mappings governed
1970                          * by virtual page tables cannot be pre-populated
1971                          * without a lot of work so don't try.
1972                          */
1973                         if (behav == MADV_WILLNEED &&
1974                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
1975                                 pmap_object_init_pt(
1976                                     map->pmap, 
1977                                     useStart,
1978                                     current->protection,
1979                                     current->object.vm_object,
1980                                     pindex, 
1981                                     (count << PAGE_SHIFT),
1982                                     MAP_PREFAULT_MADVISE
1983                                 );
1984                         }
1985                 }
1986                 vm_map_unlock_read(map);
1987         }
1988         vm_map_entry_release(count);
1989         return(error);
1990 }       
1991
1992
1993 /*
1994  * Sets the inheritance of the specified address range in the target map.
1995  * Inheritance affects how the map will be shared with child maps at the
1996  * time of vm_map_fork.
1997  */
1998 int
1999 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2000                vm_inherit_t new_inheritance)
2001 {
2002         vm_map_entry_t entry;
2003         vm_map_entry_t temp_entry;
2004         int count;
2005
2006         switch (new_inheritance) {
2007         case VM_INHERIT_NONE:
2008         case VM_INHERIT_COPY:
2009         case VM_INHERIT_SHARE:
2010                 break;
2011         default:
2012                 return (KERN_INVALID_ARGUMENT);
2013         }
2014
2015         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2016         vm_map_lock(map);
2017
2018         VM_MAP_RANGE_CHECK(map, start, end);
2019
2020         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2021                 entry = temp_entry;
2022                 vm_map_clip_start(map, entry, start, &count);
2023         } else
2024                 entry = temp_entry->next;
2025
2026         while ((entry != &map->header) && (entry->start < end)) {
2027                 vm_map_clip_end(map, entry, end, &count);
2028
2029                 entry->inheritance = new_inheritance;
2030
2031                 vm_map_simplify_entry(map, entry, &count);
2032
2033                 entry = entry->next;
2034         }
2035         vm_map_unlock(map);
2036         vm_map_entry_release(count);
2037         return (KERN_SUCCESS);
2038 }
2039
2040 /*
2041  * Implement the semantics of mlock
2042  */
2043 int
2044 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2045               boolean_t new_pageable)
2046 {
2047         vm_map_entry_t entry;
2048         vm_map_entry_t start_entry;
2049         vm_offset_t end;
2050         int rv = KERN_SUCCESS;
2051         int count;
2052
2053         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2054         vm_map_lock(map);
2055         VM_MAP_RANGE_CHECK(map, start, real_end);
2056         end = real_end;
2057
2058         start_entry = vm_map_clip_range(map, start, end, &count,
2059                                         MAP_CLIP_NO_HOLES);
2060         if (start_entry == NULL) {
2061                 vm_map_unlock(map);
2062                 vm_map_entry_release(count);
2063                 return (KERN_INVALID_ADDRESS);
2064         }
2065
2066         if (new_pageable == 0) {
2067                 entry = start_entry;
2068                 while ((entry != &map->header) && (entry->start < end)) {
2069                         vm_offset_t save_start;
2070                         vm_offset_t save_end;
2071
2072                         /*
2073                          * Already user wired or hard wired (trivial cases)
2074                          */
2075                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2076                                 entry = entry->next;
2077                                 continue;
2078                         }
2079                         if (entry->wired_count != 0) {
2080                                 entry->wired_count++;
2081                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2082                                 entry = entry->next;
2083                                 continue;
2084                         }
2085
2086                         /*
2087                          * A new wiring requires instantiation of appropriate
2088                          * management structures and the faulting in of the
2089                          * page.
2090                          */
2091                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2092                                 int copyflag = entry->eflags &
2093                                                MAP_ENTRY_NEEDS_COPY;
2094                                 if (copyflag && ((entry->protection &
2095                                                   VM_PROT_WRITE) != 0)) {
2096                                         vm_map_entry_shadow(entry, 0);
2097                                 } else if (entry->object.vm_object == NULL &&
2098                                            !map->system_map) {
2099                                         vm_map_entry_allocate_object(entry);
2100                                 }
2101                         }
2102                         entry->wired_count++;
2103                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2104
2105                         /*
2106                          * Now fault in the area.  Note that vm_fault_wire()
2107                          * may release the map lock temporarily, it will be
2108                          * relocked on return.  The in-transition
2109                          * flag protects the entries. 
2110                          */
2111                         save_start = entry->start;
2112                         save_end = entry->end;
2113                         rv = vm_fault_wire(map, entry, TRUE);
2114                         if (rv) {
2115                                 CLIP_CHECK_BACK(entry, save_start);
2116                                 for (;;) {
2117                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2118                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2119                                         entry->wired_count = 0;
2120                                         if (entry->end == save_end)
2121                                                 break;
2122                                         entry = entry->next;
2123                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2124                                 }
2125                                 end = save_start;       /* unwire the rest */
2126                                 break;
2127                         }
2128                         /*
2129                          * note that even though the entry might have been
2130                          * clipped, the USER_WIRED flag we set prevents
2131                          * duplication so we do not have to do a 
2132                          * clip check.
2133                          */
2134                         entry = entry->next;
2135                 }
2136
2137                 /*
2138                  * If we failed fall through to the unwiring section to
2139                  * unwire what we had wired so far.  'end' has already
2140                  * been adjusted.
2141                  */
2142                 if (rv)
2143                         new_pageable = 1;
2144
2145                 /*
2146                  * start_entry might have been clipped if we unlocked the
2147                  * map and blocked.  No matter how clipped it has gotten
2148                  * there should be a fragment that is on our start boundary.
2149                  */
2150                 CLIP_CHECK_BACK(start_entry, start);
2151         }
2152
2153         /*
2154          * Deal with the unwiring case.
2155          */
2156         if (new_pageable) {
2157                 /*
2158                  * This is the unwiring case.  We must first ensure that the
2159                  * range to be unwired is really wired down.  We know there
2160                  * are no holes.
2161                  */
2162                 entry = start_entry;
2163                 while ((entry != &map->header) && (entry->start < end)) {
2164                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2165                                 rv = KERN_INVALID_ARGUMENT;
2166                                 goto done;
2167                         }
2168                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2169                         entry = entry->next;
2170                 }
2171
2172                 /*
2173                  * Now decrement the wiring count for each region. If a region
2174                  * becomes completely unwired, unwire its physical pages and
2175                  * mappings.
2176                  */
2177                 /*
2178                  * The map entries are processed in a loop, checking to
2179                  * make sure the entry is wired and asserting it has a wired
2180                  * count. However, another loop was inserted more-or-less in
2181                  * the middle of the unwiring path. This loop picks up the
2182                  * "entry" loop variable from the first loop without first
2183                  * setting it to start_entry. Naturally, the secound loop
2184                  * is never entered and the pages backing the entries are
2185                  * never unwired. This can lead to a leak of wired pages.
2186                  */
2187                 entry = start_entry;
2188                 while ((entry != &map->header) && (entry->start < end)) {
2189                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2190                                 ("expected USER_WIRED on entry %p", entry));
2191                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2192                         entry->wired_count--;
2193                         if (entry->wired_count == 0)
2194                                 vm_fault_unwire(map, entry);
2195                         entry = entry->next;
2196                 }
2197         }
2198 done:
2199         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2200                 MAP_CLIP_NO_HOLES);
2201         map->timestamp++;
2202         vm_map_unlock(map);
2203         vm_map_entry_release(count);
2204         return (rv);
2205 }
2206
2207 /*
2208  * Sets the pageability of the specified address range in the target map.
2209  * Regions specified as not pageable require locked-down physical
2210  * memory and physical page maps.
2211  *
2212  * The map must not be locked, but a reference must remain to the map
2213  * throughout the call.
2214  *
2215  * This function may be called via the zalloc path and must properly
2216  * reserve map entries for kernel_map.
2217  *
2218  * No requirements.
2219  */
2220 int
2221 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2222 {
2223         vm_map_entry_t entry;
2224         vm_map_entry_t start_entry;
2225         vm_offset_t end;
2226         int rv = KERN_SUCCESS;
2227         int count;
2228
2229         if (kmflags & KM_KRESERVE)
2230                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2231         else
2232                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2233         vm_map_lock(map);
2234         VM_MAP_RANGE_CHECK(map, start, real_end);
2235         end = real_end;
2236
2237         start_entry = vm_map_clip_range(map, start, end, &count,
2238                                         MAP_CLIP_NO_HOLES);
2239         if (start_entry == NULL) {
2240                 vm_map_unlock(map);
2241                 rv = KERN_INVALID_ADDRESS;
2242                 goto failure;
2243         }
2244         if ((kmflags & KM_PAGEABLE) == 0) {
2245                 /*
2246                  * Wiring.  
2247                  *
2248                  * 1.  Holding the write lock, we create any shadow or zero-fill
2249                  * objects that need to be created. Then we clip each map
2250                  * entry to the region to be wired and increment its wiring
2251                  * count.  We create objects before clipping the map entries
2252                  * to avoid object proliferation.
2253                  *
2254                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2255                  * fault in the pages for any newly wired area (wired_count is
2256                  * 1).
2257                  *
2258                  * Downgrading to a read lock for vm_fault_wire avoids a 
2259                  * possible deadlock with another process that may have faulted
2260                  * on one of the pages to be wired (it would mark the page busy,
2261                  * blocking us, then in turn block on the map lock that we
2262                  * hold).  Because of problems in the recursive lock package,
2263                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2264                  * any actions that require the write lock must be done
2265                  * beforehand.  Because we keep the read lock on the map, the
2266                  * copy-on-write status of the entries we modify here cannot
2267                  * change.
2268                  */
2269                 entry = start_entry;
2270                 while ((entry != &map->header) && (entry->start < end)) {
2271                         /*
2272                          * Trivial case if the entry is already wired
2273                          */
2274                         if (entry->wired_count) {
2275                                 entry->wired_count++;
2276                                 entry = entry->next;
2277                                 continue;
2278                         }
2279
2280                         /*
2281                          * The entry is being newly wired, we have to setup
2282                          * appropriate management structures.  A shadow 
2283                          * object is required for a copy-on-write region,
2284                          * or a normal object for a zero-fill region.  We
2285                          * do not have to do this for entries that point to sub
2286                          * maps because we won't hold the lock on the sub map.
2287                          */
2288                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2289                                 int copyflag = entry->eflags &
2290                                                MAP_ENTRY_NEEDS_COPY;
2291                                 if (copyflag && ((entry->protection &
2292                                                   VM_PROT_WRITE) != 0)) {
2293                                         vm_map_entry_shadow(entry, 0);
2294                                 } else if (entry->object.vm_object == NULL &&
2295                                            !map->system_map) {
2296                                         vm_map_entry_allocate_object(entry);
2297                                 }
2298                         }
2299
2300                         entry->wired_count++;
2301                         entry = entry->next;
2302                 }
2303
2304                 /*
2305                  * Pass 2.
2306                  */
2307
2308                 /*
2309                  * HACK HACK HACK HACK
2310                  *
2311                  * vm_fault_wire() temporarily unlocks the map to avoid
2312                  * deadlocks.  The in-transition flag from vm_map_clip_range
2313                  * call should protect us from changes while the map is
2314                  * unlocked.  T
2315                  *
2316                  * NOTE: Previously this comment stated that clipping might
2317                  *       still occur while the entry is unlocked, but from
2318                  *       what I can tell it actually cannot.
2319                  *
2320                  *       It is unclear whether the CLIP_CHECK_*() calls
2321                  *       are still needed but we keep them in anyway.
2322                  *
2323                  * HACK HACK HACK HACK
2324                  */
2325
2326                 entry = start_entry;
2327                 while (entry != &map->header && entry->start < end) {
2328                         /*
2329                          * If vm_fault_wire fails for any page we need to undo
2330                          * what has been done.  We decrement the wiring count
2331                          * for those pages which have not yet been wired (now)
2332                          * and unwire those that have (later).
2333                          */
2334                         vm_offset_t save_start = entry->start;
2335                         vm_offset_t save_end = entry->end;
2336
2337                         if (entry->wired_count == 1)
2338                                 rv = vm_fault_wire(map, entry, FALSE);
2339                         if (rv) {
2340                                 CLIP_CHECK_BACK(entry, save_start);
2341                                 for (;;) {
2342                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2343                                         entry->wired_count = 0;
2344                                         if (entry->end == save_end)
2345                                                 break;
2346                                         entry = entry->next;
2347                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2348                                 }
2349                                 end = save_start;
2350                                 break;
2351                         }
2352                         CLIP_CHECK_FWD(entry, save_end);
2353                         entry = entry->next;
2354                 }
2355
2356                 /*
2357                  * If a failure occured undo everything by falling through
2358                  * to the unwiring code.  'end' has already been adjusted
2359                  * appropriately.
2360                  */
2361                 if (rv)
2362                         kmflags |= KM_PAGEABLE;
2363
2364                 /*
2365                  * start_entry is still IN_TRANSITION but may have been 
2366                  * clipped since vm_fault_wire() unlocks and relocks the
2367                  * map.  No matter how clipped it has gotten there should
2368                  * be a fragment that is on our start boundary.
2369                  */
2370                 CLIP_CHECK_BACK(start_entry, start);
2371         }
2372
2373         if (kmflags & KM_PAGEABLE) {
2374                 /*
2375                  * This is the unwiring case.  We must first ensure that the
2376                  * range to be unwired is really wired down.  We know there
2377                  * are no holes.
2378                  */
2379                 entry = start_entry;
2380                 while ((entry != &map->header) && (entry->start < end)) {
2381                         if (entry->wired_count == 0) {
2382                                 rv = KERN_INVALID_ARGUMENT;
2383                                 goto done;
2384                         }
2385                         entry = entry->next;
2386                 }
2387
2388                 /*
2389                  * Now decrement the wiring count for each region. If a region
2390                  * becomes completely unwired, unwire its physical pages and
2391                  * mappings.
2392                  */
2393                 entry = start_entry;
2394                 while ((entry != &map->header) && (entry->start < end)) {
2395                         entry->wired_count--;
2396                         if (entry->wired_count == 0)
2397                                 vm_fault_unwire(map, entry);
2398                         entry = entry->next;
2399                 }
2400         }
2401 done:
2402         vm_map_unclip_range(map, start_entry, start, real_end,
2403                             &count, MAP_CLIP_NO_HOLES);
2404         map->timestamp++;
2405         vm_map_unlock(map);
2406 failure:
2407         if (kmflags & KM_KRESERVE)
2408                 vm_map_entry_krelease(count);
2409         else
2410                 vm_map_entry_release(count);
2411         return (rv);
2412 }
2413
2414 /*
2415  * Mark a newly allocated address range as wired but do not fault in
2416  * the pages.  The caller is expected to load the pages into the object.
2417  *
2418  * The map must be locked on entry and will remain locked on return.
2419  * No other requirements.
2420  */
2421 void
2422 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2423                        int *countp)
2424 {
2425         vm_map_entry_t scan;
2426         vm_map_entry_t entry;
2427
2428         entry = vm_map_clip_range(map, addr, addr + size,
2429                                   countp, MAP_CLIP_NO_HOLES);
2430         for (scan = entry;
2431              scan != &map->header && scan->start < addr + size;
2432              scan = scan->next) {
2433             KKASSERT(entry->wired_count == 0);
2434             entry->wired_count = 1;                                              
2435         }
2436         vm_map_unclip_range(map, entry, addr, addr + size,
2437                             countp, MAP_CLIP_NO_HOLES);
2438 }
2439
2440 /*
2441  * Push any dirty cached pages in the address range to their pager.
2442  * If syncio is TRUE, dirty pages are written synchronously.
2443  * If invalidate is TRUE, any cached pages are freed as well.
2444  *
2445  * This routine is called by sys_msync()
2446  *
2447  * Returns an error if any part of the specified range is not mapped.
2448  *
2449  * No requirements.
2450  */
2451 int
2452 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2453              boolean_t syncio, boolean_t invalidate)
2454 {
2455         vm_map_entry_t current;
2456         vm_map_entry_t entry;
2457         vm_size_t size;
2458         vm_object_t object;
2459         vm_object_t tobj;
2460         vm_ooffset_t offset;
2461
2462         vm_map_lock_read(map);
2463         VM_MAP_RANGE_CHECK(map, start, end);
2464         if (!vm_map_lookup_entry(map, start, &entry)) {
2465                 vm_map_unlock_read(map);
2466                 return (KERN_INVALID_ADDRESS);
2467         }
2468         lwkt_gettoken(&map->token);
2469
2470         /*
2471          * Make a first pass to check for holes.
2472          */
2473         for (current = entry; current->start < end; current = current->next) {
2474                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2475                         lwkt_reltoken(&map->token);
2476                         vm_map_unlock_read(map);
2477                         return (KERN_INVALID_ARGUMENT);
2478                 }
2479                 if (end > current->end &&
2480                     (current->next == &map->header ||
2481                         current->end != current->next->start)) {
2482                         lwkt_reltoken(&map->token);
2483                         vm_map_unlock_read(map);
2484                         return (KERN_INVALID_ADDRESS);
2485                 }
2486         }
2487
2488         if (invalidate)
2489                 pmap_remove(vm_map_pmap(map), start, end);
2490
2491         /*
2492          * Make a second pass, cleaning/uncaching pages from the indicated
2493          * objects as we go.
2494          */
2495         for (current = entry; current->start < end; current = current->next) {
2496                 offset = current->offset + (start - current->start);
2497                 size = (end <= current->end ? end : current->end) - start;
2498                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2499                         vm_map_t smap;
2500                         vm_map_entry_t tentry;
2501                         vm_size_t tsize;
2502
2503                         smap = current->object.sub_map;
2504                         vm_map_lock_read(smap);
2505                         vm_map_lookup_entry(smap, offset, &tentry);
2506                         tsize = tentry->end - offset;
2507                         if (tsize < size)
2508                                 size = tsize;
2509                         object = tentry->object.vm_object;
2510                         offset = tentry->offset + (offset - tentry->start);
2511                         vm_map_unlock_read(smap);
2512                 } else {
2513                         object = current->object.vm_object;
2514                 }
2515
2516                 if (object)
2517                         vm_object_hold(object);
2518
2519                 /*
2520                  * Note that there is absolutely no sense in writing out
2521                  * anonymous objects, so we track down the vnode object
2522                  * to write out.
2523                  * We invalidate (remove) all pages from the address space
2524                  * anyway, for semantic correctness.
2525                  *
2526                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2527                  * may start out with a NULL object.
2528                  */
2529                 while (object && (tobj = object->backing_object) != NULL) {
2530                         vm_object_hold(tobj);
2531                         if (tobj == object->backing_object) {
2532                                 vm_object_lock_swap();
2533                                 offset += object->backing_object_offset;
2534                                 vm_object_drop(object);
2535                                 object = tobj;
2536                                 if (object->size < OFF_TO_IDX(offset + size))
2537                                         size = IDX_TO_OFF(object->size) -
2538                                                offset;
2539                                 break;
2540                         }
2541                         vm_object_drop(tobj);
2542                 }
2543                 if (object && (object->type == OBJT_VNODE) && 
2544                     (current->protection & VM_PROT_WRITE) &&
2545                     (object->flags & OBJ_NOMSYNC) == 0) {
2546                         /*
2547                          * Flush pages if writing is allowed, invalidate them
2548                          * if invalidation requested.  Pages undergoing I/O
2549                          * will be ignored by vm_object_page_remove().
2550                          *
2551                          * We cannot lock the vnode and then wait for paging
2552                          * to complete without deadlocking against vm_fault.
2553                          * Instead we simply call vm_object_page_remove() and
2554                          * allow it to block internally on a page-by-page 
2555                          * basis when it encounters pages undergoing async 
2556                          * I/O.
2557                          */
2558                         int flags;
2559
2560                         /* no chain wait needed for vnode objects */
2561                         vm_object_reference_locked(object);
2562                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2563                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2564                         flags |= invalidate ? OBJPC_INVAL : 0;
2565
2566                         /*
2567                          * When operating on a virtual page table just
2568                          * flush the whole object.  XXX we probably ought
2569                          * to 
2570                          */
2571                         switch(current->maptype) {
2572                         case VM_MAPTYPE_NORMAL:
2573                                 vm_object_page_clean(object,
2574                                     OFF_TO_IDX(offset),
2575                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2576                                     flags);
2577                                 break;
2578                         case VM_MAPTYPE_VPAGETABLE:
2579                                 vm_object_page_clean(object, 0, 0, flags);
2580                                 break;
2581                         }
2582                         vn_unlock(((struct vnode *)object->handle));
2583                         vm_object_deallocate_locked(object);
2584                 }
2585                 if (object && invalidate &&
2586                    ((object->type == OBJT_VNODE) ||
2587                     (object->type == OBJT_DEVICE))) {
2588                         int clean_only = 
2589                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2590                         /* no chain wait needed for vnode/device objects */
2591                         vm_object_reference_locked(object);
2592                         switch(current->maptype) {
2593                         case VM_MAPTYPE_NORMAL:
2594                                 vm_object_page_remove(object,
2595                                     OFF_TO_IDX(offset),
2596                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2597                                     clean_only);
2598                                 break;
2599                         case VM_MAPTYPE_VPAGETABLE:
2600                                 vm_object_page_remove(object, 0, 0, clean_only);
2601                                 break;
2602                         }
2603                         vm_object_deallocate_locked(object);
2604                 }
2605                 start += size;
2606                 if (object)
2607                         vm_object_drop(object);
2608         }
2609
2610         lwkt_reltoken(&map->token);
2611         vm_map_unlock_read(map);
2612
2613         return (KERN_SUCCESS);
2614 }
2615
2616 /*
2617  * Make the region specified by this entry pageable.
2618  *
2619  * The vm_map must be exclusively locked.
2620  */
2621 static void 
2622 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2623 {
2624         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2625         entry->wired_count = 0;
2626         vm_fault_unwire(map, entry);
2627 }
2628
2629 /*
2630  * Deallocate the given entry from the target map.
2631  *
2632  * The vm_map must be exclusively locked.
2633  */
2634 static void
2635 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2636 {
2637         vm_map_entry_unlink(map, entry);
2638         map->size -= entry->end - entry->start;
2639
2640         switch(entry->maptype) {
2641         case VM_MAPTYPE_NORMAL:
2642         case VM_MAPTYPE_VPAGETABLE:
2643                 vm_object_deallocate(entry->object.vm_object);
2644                 break;
2645         default:
2646                 break;
2647         }
2648
2649         vm_map_entry_dispose(map, entry, countp);
2650 }
2651
2652 /*
2653  * Deallocates the given address range from the target map.
2654  *
2655  * The vm_map must be exclusively locked.
2656  */
2657 int
2658 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2659 {
2660         vm_object_t object;
2661         vm_map_entry_t entry;
2662         vm_map_entry_t first_entry;
2663
2664         ASSERT_VM_MAP_LOCKED(map);
2665         lwkt_gettoken(&map->token);
2666 again:
2667         /*
2668          * Find the start of the region, and clip it.  Set entry to point
2669          * at the first record containing the requested address or, if no
2670          * such record exists, the next record with a greater address.  The
2671          * loop will run from this point until a record beyond the termination
2672          * address is encountered.
2673          *
2674          * map->hint must be adjusted to not point to anything we delete,
2675          * so set it to the entry prior to the one being deleted.
2676          *
2677          * GGG see other GGG comment.
2678          */
2679         if (vm_map_lookup_entry(map, start, &first_entry)) {
2680                 entry = first_entry;
2681                 vm_map_clip_start(map, entry, start, countp);
2682                 map->hint = entry->prev;        /* possible problem XXX */
2683         } else {
2684                 map->hint = first_entry;        /* possible problem XXX */
2685                 entry = first_entry->next;
2686         }
2687
2688         /*
2689          * If a hole opens up prior to the current first_free then
2690          * adjust first_free.  As with map->hint, map->first_free
2691          * cannot be left set to anything we might delete.
2692          */
2693         if (entry == &map->header) {
2694                 map->first_free = &map->header;
2695         } else if (map->first_free->start >= start) {
2696                 map->first_free = entry->prev;
2697         }
2698
2699         /*
2700          * Step through all entries in this region
2701          */
2702         while ((entry != &map->header) && (entry->start < end)) {
2703                 vm_map_entry_t next;
2704                 vm_offset_t s, e;
2705                 vm_pindex_t offidxstart, offidxend, count;
2706
2707                 /*
2708                  * If we hit an in-transition entry we have to sleep and
2709                  * retry.  It's easier (and not really slower) to just retry
2710                  * since this case occurs so rarely and the hint is already
2711                  * pointing at the right place.  We have to reset the
2712                  * start offset so as not to accidently delete an entry
2713                  * another process just created in vacated space.
2714                  */
2715                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2716                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2717                         start = entry->start;
2718                         ++mycpu->gd_cnt.v_intrans_coll;
2719                         ++mycpu->gd_cnt.v_intrans_wait;
2720                         vm_map_transition_wait(map);
2721                         goto again;
2722                 }
2723                 vm_map_clip_end(map, entry, end, countp);
2724
2725                 s = entry->start;
2726                 e = entry->end;
2727                 next = entry->next;
2728
2729                 offidxstart = OFF_TO_IDX(entry->offset);
2730                 count = OFF_TO_IDX(e - s);
2731                 object = entry->object.vm_object;
2732
2733                 /*
2734                  * Unwire before removing addresses from the pmap; otherwise,
2735                  * unwiring will put the entries back in the pmap.
2736                  */
2737                 if (entry->wired_count != 0)
2738                         vm_map_entry_unwire(map, entry);
2739
2740                 offidxend = offidxstart + count;
2741
2742                 if (object == &kernel_object) {
2743                         vm_object_hold(object);
2744                         vm_object_page_remove(object, offidxstart,
2745                                               offidxend, FALSE);
2746                         vm_object_drop(object);
2747                 } else if (object && object->type != OBJT_DEFAULT &&
2748                            object->type != OBJT_SWAP) {
2749                         /*
2750                          * vnode object routines cannot be chain-locked
2751                          */
2752                         vm_object_hold(object);
2753                         pmap_remove(map->pmap, s, e);
2754                         vm_object_drop(object);
2755                 } else if (object) {
2756                         vm_object_hold(object);
2757                         vm_object_chain_acquire(object);
2758                         pmap_remove(map->pmap, s, e);
2759
2760                         if (object != NULL &&
2761                             object->ref_count != 1 &&
2762                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2763                              OBJ_ONEMAPPING &&
2764                             (object->type == OBJT_DEFAULT ||
2765                              object->type == OBJT_SWAP)) {
2766                                 vm_object_collapse(object, NULL);
2767                                 vm_object_page_remove(object, offidxstart,
2768                                                       offidxend, FALSE);
2769                                 if (object->type == OBJT_SWAP) {
2770                                         swap_pager_freespace(object,
2771                                                              offidxstart,
2772                                                              count);
2773                                 }
2774                                 if (offidxend >= object->size &&
2775                                     offidxstart < object->size) {
2776                                         object->size = offidxstart;
2777                                 }
2778                         }
2779                         vm_object_chain_release(object);
2780                         vm_object_drop(object);
2781                 }
2782
2783                 /*
2784                  * Delete the entry (which may delete the object) only after
2785                  * removing all pmap entries pointing to its pages.
2786                  * (Otherwise, its page frames may be reallocated, and any
2787                  * modify bits will be set in the wrong object!)
2788                  */
2789                 vm_map_entry_delete(map, entry, countp);
2790                 entry = next;
2791         }
2792         lwkt_reltoken(&map->token);
2793         return (KERN_SUCCESS);
2794 }
2795
2796 /*
2797  * Remove the given address range from the target map.
2798  * This is the exported form of vm_map_delete.
2799  *
2800  * No requirements.
2801  */
2802 int
2803 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2804 {
2805         int result;
2806         int count;
2807
2808         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2809         vm_map_lock(map);
2810         VM_MAP_RANGE_CHECK(map, start, end);
2811         result = vm_map_delete(map, start, end, &count);
2812         vm_map_unlock(map);
2813         vm_map_entry_release(count);
2814
2815         return (result);
2816 }
2817
2818 /*
2819  * Assert that the target map allows the specified privilege on the
2820  * entire address region given.  The entire region must be allocated.
2821  *
2822  * The caller must specify whether the vm_map is already locked or not.
2823  */
2824 boolean_t
2825 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2826                         vm_prot_t protection, boolean_t have_lock)
2827 {
2828         vm_map_entry_t entry;
2829         vm_map_entry_t tmp_entry;
2830         boolean_t result;
2831
2832         if (have_lock == FALSE)
2833                 vm_map_lock_read(map);
2834
2835         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2836                 if (have_lock == FALSE)
2837                         vm_map_unlock_read(map);
2838                 return (FALSE);
2839         }
2840         entry = tmp_entry;
2841
2842         result = TRUE;
2843         while (start < end) {
2844                 if (entry == &map->header) {
2845                         result = FALSE;
2846                         break;
2847                 }
2848                 /*
2849                  * No holes allowed!
2850                  */
2851
2852                 if (start < entry->start) {
2853                         result = FALSE;
2854                         break;
2855                 }
2856                 /*
2857                  * Check protection associated with entry.
2858                  */
2859
2860                 if ((entry->protection & protection) != protection) {
2861                         result = FALSE;
2862                         break;
2863                 }
2864                 /* go to next entry */
2865
2866                 start = entry->end;
2867                 entry = entry->next;
2868         }
2869         if (have_lock == FALSE)
2870                 vm_map_unlock_read(map);
2871         return (result);
2872 }
2873
2874 /*
2875  * If appropriate this function shadows the original object with a new object
2876  * and moves the VM pages from the original object to the new object.
2877  * The original object will also be collapsed, if possible.
2878  *
2879  * We can only do this for normal memory objects with a single mapping, and
2880  * it only makes sense to do it if there are 2 or more refs on the original
2881  * object.  i.e. typically a memory object that has been extended into
2882  * multiple vm_map_entry's with non-overlapping ranges.
2883  *
2884  * This makes it easier to remove unused pages and keeps object inheritance
2885  * from being a negative impact on memory usage.
2886  *
2887  * On return the (possibly new) entry->object.vm_object will have an
2888  * additional ref on it for the caller to dispose of (usually by cloning
2889  * the vm_map_entry).  The additional ref had to be done in this routine
2890  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
2891  * cleared.
2892  *
2893  * The vm_map must be locked and its token held.
2894  */
2895 static void
2896 vm_map_split(vm_map_entry_t entry)
2897 {
2898 #if 0
2899         /* UNOPTIMIZED */
2900         vm_object_t oobject;
2901
2902         oobject = entry->object.vm_object;
2903         vm_object_hold(oobject);
2904         vm_object_chain_wait(oobject);
2905         vm_object_reference_locked(oobject);
2906         vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2907         vm_object_drop(oobject);
2908 #else
2909         /* OPTIMIZED */
2910         vm_object_t oobject, nobject, bobject;
2911         vm_offset_t s, e;
2912         vm_page_t m;
2913         vm_pindex_t offidxstart, offidxend, idx;
2914         vm_size_t size;
2915         vm_ooffset_t offset;
2916
2917         /*
2918          * Setup.  Chain lock the original object throughout the entire
2919          * routine to prevent new page faults from occuring.
2920          *
2921          * XXX can madvise WILLNEED interfere with us too?
2922          */
2923         oobject = entry->object.vm_object;
2924         vm_object_hold(oobject);
2925         vm_object_chain_acquire(oobject);
2926
2927         /*
2928          * Original object cannot be split?
2929          */
2930         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
2931                                         oobject->type != OBJT_SWAP)) {
2932                 vm_object_chain_release(oobject);
2933                 vm_object_reference_locked(oobject);
2934                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2935                 vm_object_drop(oobject);
2936                 return;
2937         }
2938
2939         /*
2940          * Collapse original object with its backing store as an
2941          * optimization to reduce chain lengths when possible.
2942          *
2943          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
2944          * for oobject, so there's no point collapsing it.
2945          *
2946          * Then re-check whether the object can be split.
2947          */
2948         vm_object_collapse(oobject, NULL);
2949
2950         if (oobject->ref_count <= 1 ||
2951             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
2952             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
2953                 vm_object_chain_release(oobject);
2954                 vm_object_reference_locked(oobject);
2955                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2956                 vm_object_drop(oobject);
2957                 return;
2958         }
2959
2960         /*
2961          * Acquire the chain lock on the backing object.
2962          *
2963          * Give bobject an additional ref count for when it will be shadowed
2964          * by nobject.
2965          */
2966         if ((bobject = oobject->backing_object) != NULL) {
2967                 vm_object_hold(bobject);
2968                 vm_object_chain_wait(bobject);
2969                 vm_object_reference_locked(bobject);
2970                 vm_object_chain_acquire(bobject);
2971                 KKASSERT(bobject->backing_object == bobject);
2972                 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
2973         }
2974
2975         /*
2976          * Calculate the object page range and allocate the new object.
2977          */
2978         offset = entry->offset;
2979         s = entry->start;
2980         e = entry->end;
2981
2982         offidxstart = OFF_TO_IDX(offset);
2983         offidxend = offidxstart + OFF_TO_IDX(e - s);
2984         size = offidxend - offidxstart;
2985
2986         switch(oobject->type) {
2987         case OBJT_DEFAULT:
2988                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
2989                                               VM_PROT_ALL, 0);
2990                 break;
2991         case OBJT_SWAP:
2992                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2993                                            VM_PROT_ALL, 0);
2994                 break;
2995         default:
2996                 /* not reached */
2997                 nobject = NULL;
2998                 KKASSERT(0);
2999         }
3000
3001         if (nobject == NULL) {
3002                 if (bobject) {
3003                         vm_object_chain_release(bobject);
3004                         vm_object_deallocate(bobject);
3005                         vm_object_drop(bobject);
3006                 }
3007                 vm_object_chain_release(oobject);
3008                 vm_object_reference_locked(oobject);
3009                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3010                 vm_object_drop(oobject);
3011                 return;
3012         }
3013
3014         /*
3015          * The new object will replace entry->object.vm_object so it needs
3016          * a second reference (the caller expects an additional ref).
3017          */
3018         vm_object_hold(nobject);
3019         vm_object_reference_locked(nobject);
3020         vm_object_chain_acquire(nobject);
3021
3022         /*
3023          * nobject shadows bobject (oobject already shadows bobject).
3024          */
3025         if (bobject) {
3026                 nobject->backing_object_offset =
3027                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3028                 nobject->backing_object = bobject;
3029                 bobject->shadow_count++;
3030                 bobject->generation++;
3031                 LIST_INSERT_HEAD(&bobject->shadow_head, nobject, shadow_list);
3032                 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /* XXX? */
3033                 vm_object_chain_release(bobject);
3034                 vm_object_drop(bobject);
3035         }
3036
3037         /*
3038          * Move the VM pages from oobject to nobject
3039          */
3040         for (idx = 0; idx < size; idx++) {
3041                 vm_page_t m;
3042
3043                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3044                                              TRUE, "vmpg");
3045                 if (m == NULL)
3046                         continue;
3047
3048                 /*
3049                  * We must wait for pending I/O to complete before we can
3050                  * rename the page.
3051                  *
3052                  * We do not have to VM_PROT_NONE the page as mappings should
3053                  * not be changed by this operation.
3054                  *
3055                  * NOTE: The act of renaming a page updates chaingen for both
3056                  *       objects.
3057                  */
3058                 vm_page_rename(m, nobject, idx);
3059                 /* page automatically made dirty by rename and cache handled */
3060                 /* page remains busy */
3061         }
3062
3063         if (oobject->type == OBJT_SWAP) {
3064                 vm_object_pip_add(oobject, 1);
3065                 /*
3066                  * copy oobject pages into nobject and destroy unneeded
3067                  * pages in shadow object.
3068                  */
3069                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3070                 vm_object_pip_wakeup(oobject);
3071         }
3072
3073         /*
3074          * Wakeup the pages we played with.  No spl protection is needed
3075          * for a simple wakeup.
3076          */
3077         for (idx = 0; idx < size; idx++) {
3078                 m = vm_page_lookup(nobject, idx);
3079                 if (m) {
3080                         KKASSERT(m->flags & PG_BUSY);
3081                         vm_page_wakeup(m);
3082                 }
3083         }
3084         entry->object.vm_object = nobject;
3085         entry->offset = 0LL;
3086
3087         /*
3088          * Cleanup
3089          *
3090          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3091          *       related pages were moved and are no longer applicable to the
3092          *       original object.
3093          *
3094          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3095          *       replaced by nobject).
3096          */
3097         vm_object_chain_release(nobject);
3098         vm_object_drop(nobject);
3099         if (bobject) {
3100                 vm_object_chain_release(bobject);
3101                 vm_object_drop(bobject);
3102         }
3103         vm_object_chain_release(oobject);
3104         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3105         vm_object_deallocate_locked(oobject);
3106         vm_object_drop(oobject);
3107 #endif
3108 }
3109
3110 /*
3111  * Copies the contents of the source entry to the destination
3112  * entry.  The entries *must* be aligned properly.
3113  *
3114  * The vm_maps must be exclusively locked.
3115  * The vm_map's token must be held.
3116  *
3117  * Because the maps are locked no faults can be in progress during the
3118  * operation.
3119  */
3120 static void
3121 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3122                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3123 {
3124         vm_object_t src_object;
3125
3126         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3127                 return;
3128         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3129                 return;
3130
3131         if (src_entry->wired_count == 0) {
3132                 /*
3133                  * If the source entry is marked needs_copy, it is already
3134                  * write-protected.
3135                  */
3136                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3137                         pmap_protect(src_map->pmap,
3138                             src_entry->start,
3139                             src_entry->end,
3140                             src_entry->protection & ~VM_PROT_WRITE);
3141                 }
3142
3143                 /*
3144                  * Make a copy of the object.
3145                  *
3146                  * The object must be locked prior to checking the object type
3147                  * and for the call to vm_object_collapse() and vm_map_split().
3148                  * We cannot use *_hold() here because the split code will
3149                  * probably try to destroy the object.  The lock is a pool
3150                  * token and doesn't care.
3151                  */
3152                 if (src_entry->object.vm_object != NULL) {
3153                         vm_map_split(src_entry);
3154                         src_object = src_entry->object.vm_object;
3155                         dst_entry->object.vm_object = src_object;
3156                         src_entry->eflags |= (MAP_ENTRY_COW |
3157                                               MAP_ENTRY_NEEDS_COPY);
3158                         dst_entry->eflags |= (MAP_ENTRY_COW |
3159                                               MAP_ENTRY_NEEDS_COPY);
3160                         dst_entry->offset = src_entry->offset;
3161                 } else {
3162                         dst_entry->object.vm_object = NULL;
3163                         dst_entry->offset = 0;
3164                 }
3165
3166                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3167                     dst_entry->end - dst_entry->start, src_entry->start);
3168         } else {
3169                 /*
3170                  * Of course, wired down pages can't be set copy-on-write.
3171                  * Cause wired pages to be copied into the new map by
3172                  * simulating faults (the new pages are pageable)
3173                  */
3174                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3175         }
3176 }
3177
3178 /*
3179  * vmspace_fork:
3180  * Create a new process vmspace structure and vm_map
3181  * based on those of an existing process.  The new map
3182  * is based on the old map, according to the inheritance
3183  * values on the regions in that map.
3184  *
3185  * The source map must not be locked.
3186  * No requirements.
3187  */
3188 struct vmspace *
3189 vmspace_fork(struct vmspace *vm1)
3190 {
3191         struct vmspace *vm2;
3192         vm_map_t old_map = &vm1->vm_map;
3193         vm_map_t new_map;
3194         vm_map_entry_t old_entry;
3195         vm_map_entry_t new_entry;
3196         vm_object_t object;
3197         int count;
3198
3199         lwkt_gettoken(&vm1->vm_map.token);
3200         vm_map_lock(old_map);
3201
3202         /*
3203          * XXX Note: upcalls are not copied.
3204          */
3205         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3206         lwkt_gettoken(&vm2->vm_map.token);
3207         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3208             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3209         new_map = &vm2->vm_map; /* XXX */
3210         new_map->timestamp = 1;
3211
3212         vm_map_lock(new_map);
3213
3214         count = 0;
3215         old_entry = old_map->header.next;
3216         while (old_entry != &old_map->header) {
3217                 ++count;
3218                 old_entry = old_entry->next;
3219         }
3220
3221         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3222
3223         old_entry = old_map->header.next;
3224         while (old_entry != &old_map->header) {
3225                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3226                         panic("vm_map_fork: encountered a submap");
3227
3228                 switch (old_entry->inheritance) {
3229                 case VM_INHERIT_NONE:
3230                         break;
3231                 case VM_INHERIT_SHARE:
3232                         /*
3233                          * Clone the entry, creating the shared object if
3234                          * necessary.
3235                          */
3236                         if (old_entry->object.vm_object == NULL)
3237                                 vm_map_entry_allocate_object(old_entry);
3238
3239                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3240                                 /*
3241                                  * Shadow a map_entry which needs a copy,
3242                                  * replacing its object with a new object
3243                                  * that points to the old one.  Ask the
3244                                  * shadow code to automatically add an
3245                                  * additional ref.  We can't do it afterwords
3246                                  * because we might race a collapse.  The call
3247                                  * to vm_map_entry_shadow() will also clear
3248                                  * OBJ_ONEMAPPING.
3249                                  */
3250                                 vm_map_entry_shadow(old_entry, 1);
3251                         } else {
3252                                 /*
3253                                  * We will make a shared copy of the object,
3254                                  * and must clear OBJ_ONEMAPPING.
3255                                  *
3256                                  * XXX assert that object.vm_object != NULL
3257                                  *     since we allocate it above.
3258                                  */
3259                                 if (old_entry->object.vm_object) {
3260                                         object = old_entry->object.vm_object;
3261                                         vm_object_hold(object);
3262                                         vm_object_chain_wait(object);
3263                                         vm_object_reference_locked(object);
3264                                         vm_object_clear_flag(object,
3265                                                              OBJ_ONEMAPPING);
3266                                         vm_object_drop(object);
3267                                 }
3268                         }
3269
3270                         /*
3271                          * Clone the entry.  We've already bumped the ref on
3272                          * any vm_object.
3273                          */
3274                         new_entry = vm_map_entry_create(new_map, &count);
3275                         *new_entry = *old_entry;
3276                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3277                         new_entry->wired_count = 0;
3278
3279                         /*
3280                          * Insert the entry into the new map -- we know we're
3281                          * inserting at the end of the new map.
3282                          */
3283
3284                         vm_map_entry_link(new_map, new_map->header.prev,
3285                                           new_entry);
3286
3287                         /*
3288                          * Update the physical map
3289                          */
3290                         pmap_copy(new_map->pmap, old_map->pmap,
3291                             new_entry->start,
3292                             (old_entry->end - old_entry->start),
3293                             old_entry->start);
3294                         break;
3295                 case VM_INHERIT_COPY:
3296                         /*
3297                          * Clone the entry and link into the map.
3298                          */
3299                         new_entry = vm_map_entry_create(new_map, &count);
3300                         *new_entry = *old_entry;
3301                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3302                         new_entry->wired_count = 0;
3303                         new_entry->object.vm_object = NULL;
3304                         vm_map_entry_link(new_map, new_map->header.prev,
3305                                           new_entry);
3306                         vm_map_copy_entry(old_map, new_map, old_entry,
3307                                           new_entry);
3308                         break;
3309                 }
3310                 old_entry = old_entry->next;
3311         }
3312
3313         new_map->size = old_map->size;
3314         vm_map_unlock(old_map);
3315         vm_map_unlock(new_map);
3316         vm_map_entry_release(count);
3317
3318         lwkt_reltoken(&vm2->vm_map.token);
3319         lwkt_reltoken(&vm1->vm_map.token);
3320
3321         return (vm2);
3322 }
3323
3324 /*
3325  * Create an auto-grow stack entry
3326  *
3327  * No requirements.
3328  */
3329 int
3330 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3331               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3332 {
3333         vm_map_entry_t  prev_entry;
3334         vm_map_entry_t  new_stack_entry;
3335         vm_size_t       init_ssize;
3336         int             rv;
3337         int             count;
3338         vm_offset_t     tmpaddr;
3339
3340         cow |= MAP_IS_STACK;
3341
3342         if (max_ssize < sgrowsiz)
3343                 init_ssize = max_ssize;
3344         else
3345                 init_ssize = sgrowsiz;
3346
3347         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3348         vm_map_lock(map);
3349
3350         /*
3351          * Find space for the mapping
3352          */
3353         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3354                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3355                                      flags, &tmpaddr)) {
3356                         vm_map_unlock(map);
3357                         vm_map_entry_release(count);
3358                         return (KERN_NO_SPACE);
3359                 }
3360                 addrbos = tmpaddr;
3361         }
3362
3363         /* If addr is already mapped, no go */
3364         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3365                 vm_map_unlock(map);
3366                 vm_map_entry_release(count);
3367                 return (KERN_NO_SPACE);
3368         }
3369
3370 #if 0
3371         /* XXX already handled by kern_mmap() */
3372         /* If we would blow our VMEM resource limit, no go */
3373         if (map->size + init_ssize >
3374             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3375                 vm_map_unlock(map);
3376                 vm_map_entry_release(count);
3377                 return (KERN_NO_SPACE);
3378         }
3379 #endif
3380
3381         /*
3382          * If we can't accomodate max_ssize in the current mapping,
3383          * no go.  However, we need to be aware that subsequent user
3384          * mappings might map into the space we have reserved for
3385          * stack, and currently this space is not protected.  
3386          * 
3387          * Hopefully we will at least detect this condition 
3388          * when we try to grow the stack.
3389          */
3390         if ((prev_entry->next != &map->header) &&
3391             (prev_entry->next->start < addrbos + max_ssize)) {
3392                 vm_map_unlock(map);
3393                 vm_map_entry_release(count);
3394                 return (KERN_NO_SPACE);
3395         }
3396
3397         /*
3398          * We initially map a stack of only init_ssize.  We will
3399          * grow as needed later.  Since this is to be a grow 
3400          * down stack, we map at the top of the range.
3401          *
3402          * Note: we would normally expect prot and max to be
3403          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3404          * eliminate these as input parameters, and just
3405          * pass these values here in the insert call.
3406          */
3407         rv = vm_map_insert(map, &count,
3408                            NULL, 0, addrbos + max_ssize - init_ssize,
3409                            addrbos + max_ssize,
3410                            VM_MAPTYPE_NORMAL,
3411                            prot, max,
3412                            cow);
3413
3414         /* Now set the avail_ssize amount */
3415         if (rv == KERN_SUCCESS) {
3416                 if (prev_entry != &map->header)
3417                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3418                 new_stack_entry = prev_entry->next;
3419                 if (new_stack_entry->end   != addrbos + max_ssize ||
3420                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3421                         panic ("Bad entry start/end for new stack entry");
3422                 else 
3423                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3424         }
3425
3426         vm_map_unlock(map);
3427         vm_map_entry_release(count);
3428         return (rv);
3429 }
3430
3431 /*
3432  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3433  * desired address is already mapped, or if we successfully grow
3434  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3435  * stack range (this is strange, but preserves compatibility with
3436  * the grow function in vm_machdep.c).
3437  *
3438  * No requirements.
3439  */
3440 int
3441 vm_map_growstack (struct proc *p, vm_offset_t addr)
3442 {
3443         vm_map_entry_t prev_entry;
3444         vm_map_entry_t stack_entry;
3445         vm_map_entry_t new_stack_entry;
3446         struct vmspace *vm = p->p_vmspace;
3447         vm_map_t map = &vm->vm_map;
3448         vm_offset_t    end;
3449         int grow_amount;
3450         int rv = KERN_SUCCESS;
3451         int is_procstack;
3452         int use_read_lock = 1;
3453         int count;
3454
3455         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3456 Retry:
3457         if (use_read_lock)
3458                 vm_map_lock_read(map);
3459         else
3460                 vm_map_lock(map);
3461
3462         /* If addr is already in the entry range, no need to grow.*/
3463         if (vm_map_lookup_entry(map, addr, &prev_entry))
3464                 goto done;
3465
3466         if ((stack_entry = prev_entry->next) == &map->header)
3467                 goto done;
3468         if (prev_entry == &map->header) 
3469                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3470         else
3471                 end = prev_entry->end;
3472
3473         /*
3474          * This next test mimics the old grow function in vm_machdep.c.
3475          * It really doesn't quite make sense, but we do it anyway
3476          * for compatibility.
3477          *
3478          * If not growable stack, return success.  This signals the
3479          * caller to proceed as he would normally with normal vm.
3480          */
3481         if (stack_entry->aux.avail_ssize < 1 ||
3482             addr >= stack_entry->start ||
3483             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3484                 goto done;
3485         } 
3486         
3487         /* Find the minimum grow amount */
3488         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3489         if (grow_amount > stack_entry->aux.avail_ssize) {
3490                 rv = KERN_NO_SPACE;
3491                 goto done;
3492         }
3493
3494         /*
3495          * If there is no longer enough space between the entries
3496          * nogo, and adjust the available space.  Note: this 
3497          * should only happen if the user has mapped into the
3498          * stack area after the stack was created, and is
3499          * probably an error.
3500          *
3501          * This also effectively destroys any guard page the user
3502          * might have intended by limiting the stack size.
3503          */
3504         if (grow_amount > stack_entry->start - end) {
3505                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3506                         use_read_lock = 0;
3507                         goto Retry;
3508                 }
3509                 use_read_lock = 0;
3510                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3511                 rv = KERN_NO_SPACE;
3512                 goto done;
3513         }
3514
3515         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3516
3517         /* If this is the main process stack, see if we're over the 
3518          * stack limit.
3519          */
3520         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3521                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3522                 rv = KERN_NO_SPACE;
3523                 goto done;
3524         }
3525
3526         /* Round up the grow amount modulo SGROWSIZ */
3527         grow_amount = roundup (grow_amount, sgrowsiz);
3528         if (grow_amount > stack_entry->aux.avail_ssize) {
3529                 grow_amount = stack_entry->aux.avail_ssize;
3530         }
3531         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3532                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3533                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3534                               ctob(vm->vm_ssize);
3535         }
3536
3537         /* If we would blow our VMEM resource limit, no go */
3538         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3539                 rv = KERN_NO_SPACE;
3540                 goto done;
3541         }
3542
3543         if (use_read_lock && vm_map_lock_upgrade(map)) {
3544                 use_read_lock = 0;
3545                 goto Retry;
3546         }
3547         use_read_lock = 0;
3548
3549         /* Get the preliminary new entry start value */
3550         addr = stack_entry->start - grow_amount;
3551
3552         /* If this puts us into the previous entry, cut back our growth
3553          * to the available space.  Also, see the note above.
3554          */
3555         if (addr < end) {
3556                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3557                 addr = end;
3558         }
3559
3560         rv = vm_map_insert(map, &count,
3561                            NULL, 0, addr, stack_entry->start,
3562                            VM_MAPTYPE_NORMAL,
3563                            VM_PROT_ALL, VM_PROT_ALL,
3564                            0);
3565
3566         /* Adjust the available stack space by the amount we grew. */
3567         if (rv == KERN_SUCCESS) {
3568                 if (prev_entry != &map->header)
3569                         vm_map_clip_end(map, prev_entry, addr, &count);
3570                 new_stack_entry = prev_entry->next;
3571                 if (new_stack_entry->end   != stack_entry->start  ||
3572                     new_stack_entry->start != addr)
3573                         panic ("Bad stack grow start/end in new stack entry");
3574                 else {
3575                         new_stack_entry->aux.avail_ssize =
3576                                 stack_entry->aux.avail_ssize -
3577                                 (new_stack_entry->end - new_stack_entry->start);
3578                         if (is_procstack)
3579                                 vm->vm_ssize += btoc(new_stack_entry->end -
3580                                                      new_stack_entry->start);
3581                 }
3582
3583                 if (map->flags & MAP_WIREFUTURE)
3584                         vm_map_unwire(map, new_stack_entry->start,
3585                                       new_stack_entry->end, FALSE);
3586         }
3587
3588 done:
3589         if (use_read_lock)
3590                 vm_map_unlock_read(map);
3591         else
3592                 vm_map_unlock(map);
3593         vm_map_entry_release(count);
3594         return (rv);
3595 }
3596
3597 /*
3598  * Unshare the specified VM space for exec.  If other processes are
3599  * mapped to it, then create a new one.  The new vmspace is null.
3600  *
3601  * No requirements.
3602  */
3603 void
3604 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3605 {
3606         struct vmspace *oldvmspace = p->p_vmspace;
3607         struct vmspace *newvmspace;
3608         vm_map_t map = &p->p_vmspace->vm_map;
3609
3610         /*
3611          * If we are execing a resident vmspace we fork it, otherwise
3612          * we create a new vmspace.  Note that exitingcnt and upcalls
3613          * are not copied to the new vmspace.
3614          */
3615         lwkt_gettoken(&oldvmspace->vm_map.token);
3616         if (vmcopy)  {
3617                 newvmspace = vmspace_fork(vmcopy);
3618                 lwkt_gettoken(&newvmspace->vm_map.token);
3619         } else {
3620                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3621                 lwkt_gettoken(&newvmspace->vm_map.token);
3622                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3623                       (caddr_t)&oldvmspace->vm_endcopy -
3624                        (caddr_t)&oldvmspace->vm_startcopy);
3625         }
3626
3627         /*
3628          * Finish initializing the vmspace before assigning it
3629          * to the process.  The vmspace will become the current vmspace
3630          * if p == curproc.
3631          */
3632         pmap_pinit2(vmspace_pmap(newvmspace));
3633         pmap_replacevm(p, newvmspace, 0);
3634         lwkt_reltoken(&newvmspace->vm_map.token);
3635         lwkt_reltoken(&oldvmspace->vm_map.token);
3636         sysref_put(&oldvmspace->vm_sysref);
3637 }
3638
3639 /*
3640  * Unshare the specified VM space for forcing COW.  This
3641  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3642  *
3643  * The exitingcnt test is not strictly necessary but has been
3644  * included for code sanity (to make the code a bit more deterministic).
3645  */
3646 void
3647 vmspace_unshare(struct proc *p) 
3648 {
3649         struct vmspace *oldvmspace = p->p_vmspace;
3650         struct vmspace *newvmspace;
3651
3652         lwkt_gettoken(&oldvmspace->vm_map.token);
3653         if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0) {
3654                 lwkt_reltoken(&oldvmspace->vm_map.token);
3655                 return;
3656         }
3657         newvmspace = vmspace_fork(oldvmspace);
3658         lwkt_gettoken(&newvmspace->vm_map.token);
3659         pmap_pinit2(vmspace_pmap(newvmspace));
3660         pmap_replacevm(p, newvmspace, 0);
3661         lwkt_reltoken(&newvmspace->vm_map.token);
3662         lwkt_reltoken(&oldvmspace->vm_map.token);
3663         sysref_put(&oldvmspace->vm_sysref);
3664 }
3665
3666 /*
3667  * vm_map_hint: return the beginning of the best area suitable for
3668  * creating a new mapping with "prot" protection.
3669  *
3670  * No requirements.
3671  */
3672 vm_offset_t
3673 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3674 {
3675         struct vmspace *vms = p->p_vmspace;
3676
3677         if (!randomize_mmap) {
3678                 /*
3679                  * Set a reasonable start point for the hint if it was
3680                  * not specified or if it falls within the heap space.
3681                  * Hinted mmap()s do not allocate out of the heap space.
3682                  */
3683                 if (addr == 0 ||
3684                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3685                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3686                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3687                 }
3688
3689                 return addr;
3690         }
3691
3692         if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3693                 return addr;
3694
3695 #ifdef notyet
3696 #ifdef __i386__
3697         /*
3698          * If executable skip first two pages, otherwise start
3699          * after data + heap region.
3700          */
3701         if ((prot & VM_PROT_EXECUTE) &&
3702             ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3703                 addr = (PAGE_SIZE * 2) +
3704                     (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3705                 return (round_page(addr));
3706         }
3707 #endif /* __i386__ */
3708 #endif /* notyet */
3709
3710         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3711         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3712
3713         return (round_page(addr));
3714 }
3715
3716 /*
3717  * Finds the VM object, offset, and protection for a given virtual address
3718  * in the specified map, assuming a page fault of the type specified.
3719  *
3720  * Leaves the map in question locked for read; return values are guaranteed
3721  * until a vm_map_lookup_done call is performed.  Note that the map argument
3722  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3723  *
3724  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3725  * that fast.
3726  *
3727  * If a lookup is requested with "write protection" specified, the map may
3728  * be changed to perform virtual copying operations, although the data
3729  * referenced will remain the same.
3730  *
3731  * No requirements.
3732  */
3733 int
3734 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3735               vm_offset_t vaddr,
3736               vm_prot_t fault_typea,
3737               vm_map_entry_t *out_entry,        /* OUT */
3738               vm_object_t *object,              /* OUT */
3739               vm_pindex_t *pindex,              /* OUT */
3740               vm_prot_t *out_prot,              /* OUT */
3741               boolean_t *wired)                 /* OUT */
3742 {
3743         vm_map_entry_t entry;
3744         vm_map_t map = *var_map;
3745         vm_prot_t prot;
3746         vm_prot_t fault_type = fault_typea;
3747         int use_read_lock = 1;
3748         int rv = KERN_SUCCESS;
3749
3750 RetryLookup:
3751         if (use_read_lock)
3752                 vm_map_lock_read(map);
3753         else
3754                 vm_map_lock(map);
3755
3756         /*
3757          * If the map has an interesting hint, try it before calling full
3758          * blown lookup routine.
3759          */
3760         entry = map->hint;
3761         *out_entry = entry;
3762         *object = NULL;
3763
3764         if ((entry == &map->header) ||
3765             (vaddr < entry->start) || (vaddr >= entry->end)) {
3766                 vm_map_entry_t tmp_entry;
3767
3768                 /*
3769                  * Entry was either not a valid hint, or the vaddr was not
3770                  * contained in the entry, so do a full lookup.
3771                  */
3772                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3773                         rv = KERN_INVALID_ADDRESS;
3774                         goto done;
3775                 }
3776
3777                 entry = tmp_entry;
3778                 *out_entry = entry;
3779         }
3780         
3781         /*
3782          * Handle submaps.
3783          */
3784         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3785                 vm_map_t old_map = map;
3786
3787                 *var_map = map = entry->object.sub_map;
3788                 if (use_read_lock)
3789                         vm_map_unlock_read(old_map);
3790                 else
3791                         vm_map_unlock(old_map);
3792                 use_read_lock = 1;
3793                 goto RetryLookup;
3794         }
3795
3796         /*
3797          * Check whether this task is allowed to have this page.
3798          * Note the special case for MAP_ENTRY_COW
3799          * pages with an override.  This is to implement a forced
3800          * COW for debuggers.
3801          */
3802
3803         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3804                 prot = entry->max_protection;
3805         else
3806                 prot = entry->protection;
3807
3808         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3809         if ((fault_type & prot) != fault_type) {
3810                 rv = KERN_PROTECTION_FAILURE;
3811                 goto done;
3812         }
3813
3814         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3815             (entry->eflags & MAP_ENTRY_COW) &&
3816             (fault_type & VM_PROT_WRITE) &&
3817             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3818                 rv = KERN_PROTECTION_FAILURE;
3819                 goto done;
3820         }
3821
3822         /*
3823          * If this page is not pageable, we have to get it for all possible
3824          * accesses.
3825          */
3826         *wired = (entry->wired_count != 0);
3827         if (*wired)
3828                 prot = fault_type = entry->protection;
3829
3830         /*
3831          * Virtual page tables may need to update the accessed (A) bit
3832          * in a page table entry.  Upgrade the fault to a write fault for
3833          * that case if the map will support it.  If the map does not support
3834          * it the page table entry simply will not be updated.
3835          */
3836         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3837                 if (prot & VM_PROT_WRITE)
3838                         fault_type |= VM_PROT_WRITE;
3839         }
3840
3841         /*
3842          * If the entry was copy-on-write, we either ...
3843          */
3844         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3845                 /*
3846                  * If we want to write the page, we may as well handle that
3847                  * now since we've got the map locked.
3848                  *
3849                  * If we don't need to write the page, we just demote the
3850                  * permissions allowed.
3851                  */
3852
3853                 if (fault_type & VM_PROT_WRITE) {
3854                         /*
3855                          * Make a new object, and place it in the object
3856                          * chain.  Note that no new references have appeared
3857                          * -- one just moved from the map to the new
3858                          * object.
3859                          */
3860
3861                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3862                                 use_read_lock = 0;
3863                                 goto RetryLookup;
3864                         }
3865                         use_read_lock = 0;
3866
3867                         vm_map_entry_shadow(entry, 0);
3868                 } else {
3869                         /*
3870                          * We're attempting to read a copy-on-write page --
3871                          * don't allow writes.
3872                          */
3873
3874                         prot &= ~VM_PROT_WRITE;
3875                 }
3876         }
3877
3878         /*
3879          * Create an object if necessary.
3880          */
3881         if (entry->object.vm_object == NULL &&
3882             !map->system_map) {
3883                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3884                         use_read_lock = 0;
3885                         goto RetryLookup;
3886                 }
3887                 use_read_lock = 0;
3888                 vm_map_entry_allocate_object(entry);
3889         }
3890
3891         /*
3892          * Return the object/offset from this entry.  If the entry was
3893          * copy-on-write or empty, it has been fixed up.
3894          */
3895
3896         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3897         *object = entry->object.vm_object;
3898
3899         /*
3900          * Return whether this is the only map sharing this data.  On
3901          * success we return with a read lock held on the map.  On failure
3902          * we return with the map unlocked.
3903          */
3904         *out_prot = prot;
3905 done:
3906         if (rv == KERN_SUCCESS) {
3907                 if (use_read_lock == 0)
3908                         vm_map_lock_downgrade(map);
3909         } else if (use_read_lock) {
3910                 vm_map_unlock_read(map);
3911         } else {
3912                 vm_map_unlock(map);
3913         }
3914         return (rv);
3915 }
3916
3917 /*
3918  * Releases locks acquired by a vm_map_lookup()
3919  * (according to the handle returned by that lookup).
3920  *
3921  * No other requirements.
3922  */
3923 void
3924 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3925 {
3926         /*
3927          * Unlock the main-level map
3928          */
3929         vm_map_unlock_read(map);
3930         if (count)
3931                 vm_map_entry_release(count);
3932 }
3933
3934 #include "opt_ddb.h"
3935 #ifdef DDB
3936 #include <sys/kernel.h>
3937
3938 #include <ddb/ddb.h>
3939
3940 /*
3941  * Debugging only
3942  */
3943 DB_SHOW_COMMAND(map, vm_map_print)
3944 {
3945         static int nlines;
3946         /* XXX convert args. */
3947         vm_map_t map = (vm_map_t)addr;
3948         boolean_t full = have_addr;
3949
3950         vm_map_entry_t entry;
3951
3952         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3953             (void *)map,
3954             (void *)map->pmap, map->nentries, map->timestamp);
3955         nlines++;
3956
3957         if (!full && db_indent)
3958                 return;
3959
3960         db_indent += 2;
3961         for (entry = map->header.next; entry != &map->header;
3962             entry = entry->next) {
3963                 db_iprintf("map entry %p: start=%p, end=%p\n",
3964                     (void *)entry, (void *)entry->start, (void *)entry->end);
3965                 nlines++;
3966                 {
3967                         static char *inheritance_name[4] =
3968                         {"share", "copy", "none", "donate_copy"};
3969
3970                         db_iprintf(" prot=%x/%x/%s",
3971                             entry->protection,
3972                             entry->max_protection,
3973                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3974                         if (entry->wired_count != 0)
3975                                 db_printf(", wired");
3976                 }
3977                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3978                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3979                         db_printf(", share=%p, offset=0x%lx\n",
3980                             (void *)entry->object.sub_map,
3981                             (long)entry->offset);
3982                         nlines++;
3983                         if ((entry->prev == &map->header) ||
3984                             (entry->prev->object.sub_map !=
3985                                 entry->object.sub_map)) {
3986                                 db_indent += 2;
3987                                 vm_map_print((db_expr_t)(intptr_t)
3988                                              entry->object.sub_map,
3989                                              full, 0, NULL);
3990                                 db_indent -= 2;
3991                         }
3992                 } else {
3993                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3994                         db_printf(", object=%p, offset=0x%lx",
3995                             (void *)entry->object.vm_object,
3996                             (long)entry->offset);
3997                         if (entry->eflags & MAP_ENTRY_COW)
3998                                 db_printf(", copy (%s)",
3999                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4000                         db_printf("\n");
4001                         nlines++;
4002
4003                         if ((entry->prev == &map->header) ||
4004                             (entry->prev->object.vm_object !=
4005                                 entry->object.vm_object)) {
4006                                 db_indent += 2;
4007                                 vm_object_print((db_expr_t)(intptr_t)
4008                                                 entry->object.vm_object,
4009                                                 full, 0, NULL);
4010                                 nlines += 4;
4011                                 db_indent -= 2;
4012                         }
4013                 }
4014         }
4015         db_indent -= 2;
4016         if (db_indent == 0)
4017                 nlines = 0;
4018 }
4019
4020 /*
4021  * Debugging only
4022  */
4023 DB_SHOW_COMMAND(procvm, procvm)
4024 {
4025         struct proc *p;
4026
4027         if (have_addr) {
4028                 p = (struct proc *) addr;
4029         } else {
4030                 p = curproc;
4031         }
4032
4033         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4034             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4035             (void *)vmspace_pmap(p->p_vmspace));
4036
4037         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4038 }
4039
4040 #endif /* DDB */