kernel - Beef up vm_contig allocation checks
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
67  */
68
69 /*
70  *      Virtual memory object module.
71  */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>           /* for curproc, pageproc */
76 #include <sys/thread.h>
77 #include <sys/vnode.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/mount.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/refcount.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_zone.h>
97
98 #define EASY_SCAN_FACTOR        8
99
100 static void     vm_object_qcollapse(vm_object_t object,
101                                     vm_object_t backing_object);
102 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
103                                              int pagerflags);
104 static void     vm_object_lock_init(vm_object_t);
105
106
107 /*
108  *      Virtual memory objects maintain the actual data
109  *      associated with allocated virtual memory.  A given
110  *      page of memory exists within exactly one object.
111  *
112  *      An object is only deallocated when all "references"
113  *      are given up.  Only one "reference" to a given
114  *      region of an object should be writeable.
115  *
116  *      Associated with each object is a list of all resident
117  *      memory pages belonging to that object; this list is
118  *      maintained by the "vm_page" module, and locked by the object's
119  *      lock.
120  *
121  *      Each object also records a "pager" routine which is
122  *      used to retrieve (and store) pages to the proper backing
123  *      storage.  In addition, objects may be backed by other
124  *      objects from which they were virtual-copied.
125  *
126  *      The only items within the object structure which are
127  *      modified after time of creation are:
128  *              reference count         locked by object's lock
129  *              pager routine           locked by object's lock
130  *
131  */
132
133 struct object_q vm_object_list;         /* locked by vmobj_token */
134 struct vm_object kernel_object;
135
136 static long vm_object_count;            /* locked by vmobj_token */
137 extern int vm_pageout_page_count;
138
139 static long object_collapses;
140 static long object_bypasses;
141 static int next_index;
142 static vm_zone_t obj_zone;
143 static struct vm_zone obj_zone_store;
144 #define VM_OBJECTS_INIT 256
145 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
146
147 /*
148  * Misc low level routines
149  */
150 static void
151 vm_object_lock_init(vm_object_t obj)
152 {
153 #if defined(DEBUG_LOCKS)
154         int i;
155
156         obj->debug_hold_bitmap = 0;
157         obj->debug_hold_ovfl = 0;
158         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
159                 obj->debug_hold_thrs[i] = NULL;
160                 obj->debug_hold_file[i] = NULL;
161                 obj->debug_hold_line[i] = 0;
162         }
163 #endif
164 }
165
166 void
167 vm_object_lock_swap(void)
168 {
169         lwkt_token_swap();
170 }
171
172 void
173 vm_object_lock(vm_object_t obj)
174 {
175         lwkt_getpooltoken(obj);
176 }
177
178 void
179 vm_object_unlock(vm_object_t obj)
180 {
181         lwkt_relpooltoken(obj);
182 }
183
184 static __inline void
185 vm_object_assert_held(vm_object_t obj)
186 {
187         ASSERT_LWKT_TOKEN_HELD(lwkt_token_pool_lookup(obj));
188 }
189
190 void
191 #ifndef DEBUG_LOCKS
192 vm_object_hold(vm_object_t obj)
193 #else
194 debugvm_object_hold(vm_object_t obj, char *file, int line)
195 #endif
196 {
197         KKASSERT(obj != NULL);
198
199         /*
200          * Object must be held (object allocation is stable due to callers
201          * context, typically already holding the token on a parent object)
202          * prior to potentially blocking on the lock, otherwise the object
203          * can get ripped away from us.
204          */
205         refcount_acquire(&obj->hold_count);
206         vm_object_lock(obj);
207
208 #if defined(DEBUG_LOCKS)
209         int i;
210
211         i = ffs(~obj->debug_hold_bitmap) - 1;
212         if (i == -1) {
213                 kprintf("vm_object hold count > VMOBJ_DEBUG_ARRAY_SIZE");
214                 obj->debug_hold_ovfl = 1;
215         }
216
217         obj->debug_hold_bitmap |= (1 << i);
218         obj->debug_hold_thrs[i] = curthread;
219         obj->debug_hold_file[i] = file;
220         obj->debug_hold_line[i] = line;
221 #endif
222 }
223
224 /*
225  * Drop the token and hold_count on the object.
226  */
227 void
228 vm_object_drop(vm_object_t obj)
229 {
230         if (obj == NULL)
231                 return;
232
233 #if defined(DEBUG_LOCKS)
234         int found = 0;
235         int i;
236
237         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
238                 if ((obj->debug_hold_bitmap & (1 << i)) &&
239                     (obj->debug_hold_thrs[i] == curthread)) {
240                         obj->debug_hold_bitmap &= ~(1 << i);
241                         obj->debug_hold_thrs[i] = NULL;
242                         obj->debug_hold_file[i] = NULL;
243                         obj->debug_hold_line[i] = 0;
244                         found = 1;
245                         break;
246                 }
247         }
248
249         if (found == 0 && obj->debug_hold_ovfl == 0)
250                 panic("vm_object: attempt to drop hold on non-self-held obj");
251 #endif
252
253         /*
254          * The lock is a pool token, no new holders should be possible once
255          * we drop hold_count 1->0 as there is no longer any way to reference
256          * the object.
257          */
258         if (refcount_release(&obj->hold_count)) {
259                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
260                         zfree(obj_zone, obj);
261         }
262         vm_object_unlock(obj);  /* uses pool token, ok to call on freed obj */
263 }
264
265 /*
266  * Initialize a freshly allocated object
267  *
268  * Used only by vm_object_allocate() and zinitna().
269  *
270  * No requirements.
271  */
272 void
273 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
274 {
275         int incr;
276
277         RB_INIT(&object->rb_memq);
278         LIST_INIT(&object->shadow_head);
279
280         object->type = type;
281         object->size = size;
282         object->ref_count = 1;
283         object->hold_count = 0;
284         object->flags = 0;
285         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
286                 vm_object_set_flag(object, OBJ_ONEMAPPING);
287         object->paging_in_progress = 0;
288         object->resident_page_count = 0;
289         object->agg_pv_list_count = 0;
290         object->shadow_count = 0;
291 #ifdef SMP
292         /* cpu localization twist */
293         object->pg_color = (int)(intptr_t)curthread;
294 #else
295         object->pg_color = next_index;
296 #endif
297         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
298                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
299         else
300                 incr = size;
301         next_index = (next_index + incr) & PQ_L2_MASK;
302         object->handle = NULL;
303         object->backing_object = NULL;
304         object->backing_object_offset = (vm_ooffset_t)0;
305
306         object->generation++;
307         object->swblock_count = 0;
308         RB_INIT(&object->swblock_root);
309         vm_object_lock_init(object);
310
311         lwkt_gettoken(&vmobj_token);
312         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
313         vm_object_count++;
314         lwkt_reltoken(&vmobj_token);
315 }
316
317 /*
318  * Initialize the VM objects module.
319  *
320  * Called from the low level boot code only.
321  */
322 void
323 vm_object_init(void)
324 {
325         TAILQ_INIT(&vm_object_list);
326         
327         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
328                             &kernel_object);
329
330         obj_zone = &obj_zone_store;
331         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
332                 vm_objects_init, VM_OBJECTS_INIT);
333 }
334
335 void
336 vm_object_init2(void)
337 {
338         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
339 }
340
341 /*
342  * Allocate and return a new object of the specified type and size.
343  *
344  * No requirements.
345  */
346 vm_object_t
347 vm_object_allocate(objtype_t type, vm_pindex_t size)
348 {
349         vm_object_t result;
350
351         result = (vm_object_t) zalloc(obj_zone);
352
353         _vm_object_allocate(type, size, result);
354
355         return (result);
356 }
357
358 /*
359  * Add an additional reference to a vm_object.  The object must already be
360  * held.  The original non-lock version is no longer supported.  The object
361  * must NOT be chain locked by anyone at the time the reference is added.
362  *
363  * Referencing a chain-locked object can blow up the fairly sensitive
364  * ref_count and shadow_count tests in the deallocator.  Most callers
365  * will call vm_object_chain_wait() prior to calling
366  * vm_object_reference_locked() to avoid the case.
367  *
368  * The object must be held.
369  */
370 void
371 vm_object_reference_locked(vm_object_t object)
372 {
373         KKASSERT(object != NULL);
374         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
375         KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
376         object->ref_count++;
377         if (object->type == OBJT_VNODE) {
378                 vref(object->handle);
379                 /* XXX what if the vnode is being destroyed? */
380         }
381 }
382
383 /*
384  * Object OBJ_CHAINLOCK lock handling.
385  *
386  * The caller can chain-lock backing objects recursively and then
387  * use vm_object_chain_release_all() to undo the whole chain.
388  *
389  * Chain locks are used to prevent collapses and are only applicable
390  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
391  * on other object types are ignored.  This is also important because
392  * it allows e.g. the vnode underlying a memory mapping to take concurrent
393  * faults.
394  *
395  * The object must usually be held on entry, though intermediate
396  * objects need not be held on release.
397  */
398 void
399 vm_object_chain_wait(vm_object_t object)
400 {
401         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
402         while (object->flags & OBJ_CHAINLOCK) {
403                 vm_object_set_flag(object, OBJ_CHAINWANT);
404                 tsleep(object, 0, "objchain", 0);
405         }
406 }
407
408 void
409 vm_object_chain_acquire(vm_object_t object)
410 {
411         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
412                 vm_object_chain_wait(object);
413                 vm_object_set_flag(object, OBJ_CHAINLOCK);
414         }
415 }
416
417 void
418 vm_object_chain_release(vm_object_t object)
419 {
420         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
421         if (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP) {
422                 KKASSERT(object->flags & OBJ_CHAINLOCK);
423                 if (object->flags & OBJ_CHAINWANT) {
424                         vm_object_clear_flag(object,
425                                              OBJ_CHAINLOCK | OBJ_CHAINWANT);
426                         wakeup(object);
427                 } else {
428                         vm_object_clear_flag(object, OBJ_CHAINLOCK);
429                 }
430         }
431 }
432
433 /*
434  * This releases the entire chain of objects from first_object to and
435  * including stopobj, flowing through object->backing_object.
436  *
437  * We release stopobj first as an optimization as this object is most
438  * likely to be shared across multiple processes.
439  */
440 void
441 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
442 {
443         vm_object_t backing_object;
444         vm_object_t object;
445
446         vm_object_chain_release(stopobj);
447         object = first_object;
448
449         while (object != stopobj) {
450                 KKASSERT(object);
451                 if (object != first_object)
452                         vm_object_hold(object);
453                 backing_object = object->backing_object;
454                 vm_object_chain_release(object);
455                 if (object != first_object)
456                         vm_object_drop(object);
457                 object = backing_object;
458         }
459 }
460
461 /*
462  * Dereference an object and its underlying vnode.
463  *
464  * The object must be held and will be held on return.
465  */
466 static void
467 vm_object_vndeallocate(vm_object_t object)
468 {
469         struct vnode *vp = (struct vnode *) object->handle;
470
471         KASSERT(object->type == OBJT_VNODE,
472             ("vm_object_vndeallocate: not a vnode object"));
473         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
474         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
475 #ifdef INVARIANTS
476         if (object->ref_count == 0) {
477                 vprint("vm_object_vndeallocate", vp);
478                 panic("vm_object_vndeallocate: bad object reference count");
479         }
480 #endif
481         object->ref_count--;
482         if (object->ref_count == 0)
483                 vclrflags(vp, VTEXT);
484         vrele(vp);
485 }
486
487 /*
488  * Release a reference to the specified object, gained either through a
489  * vm_object_allocate or a vm_object_reference call.  When all references
490  * are gone, storage associated with this object may be relinquished.
491  *
492  * The caller does not have to hold the object locked but must have control
493  * over the reference in question in order to guarantee that the object
494  * does not get ripped out from under us.
495  */
496 void
497 vm_object_deallocate(vm_object_t object)
498 {
499         if (object) {
500                 vm_object_hold(object);
501                 vm_object_deallocate_locked(object);
502                 vm_object_drop(object);
503         }
504 }
505
506 void
507 vm_object_deallocate_locked(vm_object_t object)
508 {
509         struct vm_object_dealloc_list *dlist = NULL;
510         struct vm_object_dealloc_list *dtmp;
511         vm_object_t temp;
512         int must_drop = 0;
513
514         /*
515          * We may chain deallocate object, but additional objects may
516          * collect on the dlist which also have to be deallocated.  We
517          * must avoid a recursion, vm_object chains can get deep.
518          */
519 again:
520         while (object != NULL) {
521 #if 0
522                 /*
523                  * Don't rip a ref_count out from under an object undergoing
524                  * collapse, it will confuse the collapse code.
525                  */
526                 vm_object_chain_wait(object);
527 #endif
528                 if (object->type == OBJT_VNODE) {
529                         vm_object_vndeallocate(object);
530                         break;
531                 }
532
533                 if (object->ref_count == 0) {
534                         panic("vm_object_deallocate: object deallocated "
535                               "too many times: %d", object->type);
536                 }
537                 if (object->ref_count > 2) {
538                         object->ref_count--;
539                         break;
540                 }
541
542                 /*
543                  * Here on ref_count of one or two, which are special cases for
544                  * objects.
545                  *
546                  * Nominal ref_count > 1 case if the second ref is not from
547                  * a shadow.
548                  */
549                 if (object->ref_count == 2 && object->shadow_count == 0) {
550                         vm_object_set_flag(object, OBJ_ONEMAPPING);
551                         object->ref_count--;
552                         break;
553                 }
554
555                 /*
556                  * If the second ref is from a shadow we chain along it
557                  * upwards if object's handle is exhausted.
558                  *
559                  * We have to decrement object->ref_count before potentially
560                  * collapsing the first shadow object or the collapse code
561                  * will not be able to handle the degenerate case to remove
562                  * object.  However, if we do it too early the object can
563                  * get ripped out from under us.
564                  */
565                 if (object->ref_count == 2 && object->shadow_count == 1 &&
566                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
567                                                object->type == OBJT_SWAP)) {
568                         temp = LIST_FIRST(&object->shadow_head);
569                         KKASSERT(temp != NULL);
570                         vm_object_hold(temp);
571
572                         /*
573                          * Wait for any paging to complete so the collapse
574                          * doesn't (or isn't likely to) qcollapse.  pip
575                          * waiting must occur before we acquire the
576                          * chainlock.
577                          */
578                         while (
579                                 temp->paging_in_progress ||
580                                 object->paging_in_progress
581                         ) {
582                                 vm_object_pip_wait(temp, "objde1");
583                                 vm_object_pip_wait(object, "objde2");
584                         }
585
586                         /*
587                          * If the parent is locked we have to give up, as
588                          * otherwise we would be acquiring locks in the
589                          * wrong order and potentially deadlock.
590                          */
591                         if (temp->flags & OBJ_CHAINLOCK) {
592                                 vm_object_drop(temp);
593                                 goto skip;
594                         }
595                         vm_object_chain_acquire(temp);
596
597                         /*
598                          * Recheck/retry after the hold and the paging
599                          * wait, both of which can block us.
600                          */
601                         if (object->ref_count != 2 ||
602                             object->shadow_count != 1 ||
603                             object->handle ||
604                             LIST_FIRST(&object->shadow_head) != temp ||
605                             (object->type != OBJT_DEFAULT &&
606                              object->type != OBJT_SWAP)) {
607                                 vm_object_chain_release(temp);
608                                 vm_object_drop(temp);
609                                 continue;
610                         }
611
612                         /*
613                          * We can safely drop object's ref_count now.
614                          */
615                         KKASSERT(object->ref_count == 2);
616                         object->ref_count--;
617
618                         /*
619                          * If our single parent is not collapseable just
620                          * decrement ref_count (2->1) and stop.
621                          */
622                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
623                                              temp->type != OBJT_SWAP)) {
624                                 vm_object_chain_release(temp);
625                                 vm_object_drop(temp);
626                                 break;
627                         }
628
629                         /*
630                          * At this point we have already dropped object's
631                          * ref_count so it is possible for a race to
632                          * deallocate obj out from under us.  Any collapse
633                          * will re-check the situation.  We must not block
634                          * until we are able to collapse.
635                          *
636                          * Bump temp's ref_count to avoid an unwanted
637                          * degenerate recursion (can't call
638                          * vm_object_reference_locked() because it asserts
639                          * that CHAINLOCK is not set).
640                          */
641                         temp->ref_count++;
642                         KKASSERT(temp->ref_count > 1);
643
644                         /*
645                          * Collapse temp, then deallocate the extra ref
646                          * formally.
647                          */
648                         vm_object_collapse(temp, &dlist);
649                         vm_object_chain_release(temp);
650                         if (must_drop) {
651                                 vm_object_lock_swap();
652                                 vm_object_drop(object);
653                         }
654                         object = temp;
655                         must_drop = 1;
656                         continue;
657                 }
658
659                 /*
660                  * Drop the ref and handle termination on the 1->0 transition.
661                  * We may have blocked above so we have to recheck.
662                  */
663 skip:
664                 KKASSERT(object->ref_count != 0);
665                 if (object->ref_count >= 2) {
666                         object->ref_count--;
667                         break;
668                 }
669                 KKASSERT(object->ref_count == 1);
670
671                 /*
672                  * 1->0 transition.  Chain through the backing_object.
673                  * Maintain the ref until we've located the backing object,
674                  * then re-check.
675                  */
676                 while ((temp = object->backing_object) != NULL) {
677                         vm_object_hold(temp);
678                         if (temp == object->backing_object)
679                                 break;
680                         vm_object_drop(temp);
681                 }
682
683                 /*
684                  * 1->0 transition verified, retry if ref_count is no longer
685                  * 1.  Otherwise disconnect the backing_object (temp) and
686                  * clean up.
687                  */
688                 if (object->ref_count != 1) {
689                         vm_object_drop(temp);
690                         continue;
691                 }
692
693                 /*
694                  * It shouldn't be possible for the object to be chain locked
695                  * if we're removing the last ref on it.
696                  */
697                 KKASSERT((object->flags & OBJ_CHAINLOCK) == 0);
698
699                 if (temp) {
700                         LIST_REMOVE(object, shadow_list);
701                         temp->shadow_count--;
702                         temp->generation++;
703                         object->backing_object = NULL;
704                 }
705
706                 --object->ref_count;
707                 if ((object->flags & OBJ_DEAD) == 0)
708                         vm_object_terminate(object);
709                 if (must_drop && temp)
710                         vm_object_lock_swap();
711                 if (must_drop)
712                         vm_object_drop(object);
713                 object = temp;
714                 must_drop = 1;
715         }
716         if (must_drop && object)
717                 vm_object_drop(object);
718
719         /*
720          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
721          * on the dlist have a hold count but are not locked.
722          */
723         if ((dtmp = dlist) != NULL) {
724                 dlist = dtmp->next;
725                 object = dtmp->object;
726                 kfree(dtmp, M_TEMP);
727
728                 vm_object_lock(object); /* already held, add lock */
729                 must_drop = 1;          /* and we're responsible for it */
730                 goto again;
731         }
732 }
733
734 /*
735  * Destroy the specified object, freeing up related resources.
736  *
737  * The object must have zero references.
738  *
739  * The object must held.  The caller is responsible for dropping the object
740  * after terminate returns.  Terminate does NOT drop the object.
741  */
742 static int vm_object_terminate_callback(vm_page_t p, void *data);
743
744 void
745 vm_object_terminate(vm_object_t object)
746 {
747         /*
748          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
749          * able to safely block.
750          */
751         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
752         KKASSERT((object->flags & OBJ_DEAD) == 0);
753         vm_object_set_flag(object, OBJ_DEAD);
754
755         /*
756          * Wait for the pageout daemon to be done with the object
757          */
758         vm_object_pip_wait(object, "objtrm1");
759
760         KASSERT(!object->paging_in_progress,
761                 ("vm_object_terminate: pageout in progress"));
762
763         /*
764          * Clean and free the pages, as appropriate. All references to the
765          * object are gone, so we don't need to lock it.
766          */
767         if (object->type == OBJT_VNODE) {
768                 struct vnode *vp;
769
770                 /*
771                  * Clean pages and flush buffers.
772                  */
773                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
774
775                 vp = (struct vnode *) object->handle;
776                 vinvalbuf(vp, V_SAVE, 0, 0);
777         }
778
779         /*
780          * Wait for any I/O to complete, after which there had better not
781          * be any references left on the object.
782          */
783         vm_object_pip_wait(object, "objtrm2");
784
785         if (object->ref_count != 0) {
786                 panic("vm_object_terminate: object with references, "
787                       "ref_count=%d", object->ref_count);
788         }
789
790         /*
791          * Now free any remaining pages. For internal objects, this also
792          * removes them from paging queues. Don't free wired pages, just
793          * remove them from the object. 
794          */
795         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
796                                 vm_object_terminate_callback, NULL);
797
798         /*
799          * Let the pager know object is dead.
800          */
801         vm_pager_deallocate(object);
802
803         /*
804          * Wait for the object hold count to hit 1, clean out pages as
805          * we go.  vmobj_token interlocks any race conditions that might
806          * pick the object up from the vm_object_list after we have cleared
807          * rb_memq.
808          */
809         for (;;) {
810                 if (RB_ROOT(&object->rb_memq) == NULL)
811                         break;
812                 kprintf("vm_object_terminate: Warning, object %p "
813                         "still has %d pages\n",
814                         object, object->resident_page_count);
815                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
816                                         vm_object_terminate_callback, NULL);
817         }
818
819         /*
820          * There had better not be any pages left
821          */
822         KKASSERT(object->resident_page_count == 0);
823
824         /*
825          * Remove the object from the global object list.
826          */
827         lwkt_gettoken(&vmobj_token);
828         TAILQ_REMOVE(&vm_object_list, object, object_list);
829         vm_object_count--;
830         lwkt_reltoken(&vmobj_token);
831         vm_object_dead_wakeup(object);
832
833         if (object->ref_count != 0) {
834                 panic("vm_object_terminate2: object with references, "
835                       "ref_count=%d", object->ref_count);
836         }
837
838         /*
839          * NOTE: The object hold_count is at least 1, so we cannot zfree()
840          *       the object here.  See vm_object_drop().
841          */
842 }
843
844 /*
845  * The caller must hold the object.
846  */
847 static int
848 vm_object_terminate_callback(vm_page_t p, void *data __unused)
849 {
850         vm_object_t object;
851
852         object = p->object;
853         vm_page_busy_wait(p, FALSE, "vmpgtrm");
854         if (object != p->object) {
855                 kprintf("vm_object_terminate: Warning: Encountered "
856                         "busied page %p on queue %d\n", p, p->queue);
857                 vm_page_wakeup(p);
858         } else if (p->wire_count == 0) {
859                 vm_page_free(p);
860                 mycpu->gd_cnt.v_pfree++;
861         } else {
862                 if (p->queue != PQ_NONE)
863                         kprintf("vm_object_terminate: Warning: Encountered "
864                                 "wired page %p on queue %d\n", p, p->queue);
865                 vm_page_remove(p);
866                 vm_page_wakeup(p);
867         }
868         lwkt_yield();
869         return(0);
870 }
871
872 /*
873  * The object is dead but still has an object<->pager association.  Sleep
874  * and return.  The caller typically retests the association in a loop.
875  *
876  * The caller must hold the object.
877  */
878 void
879 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
880 {
881         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
882         if (object->handle) {
883                 vm_object_set_flag(object, OBJ_DEADWNT);
884                 tsleep(object, 0, wmesg, 0);
885                 /* object may be invalid after this point */
886         }
887 }
888
889 /*
890  * Wakeup anyone waiting for the object<->pager disassociation on
891  * a dead object.
892  *
893  * The caller must hold the object.
894  */
895 void
896 vm_object_dead_wakeup(vm_object_t object)
897 {
898         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
899         if (object->flags & OBJ_DEADWNT) {
900                 vm_object_clear_flag(object, OBJ_DEADWNT);
901                 wakeup(object);
902         }
903 }
904
905 /*
906  * Clean all dirty pages in the specified range of object.  Leaves page
907  * on whatever queue it is currently on.   If NOSYNC is set then do not
908  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
909  * leaving the object dirty.
910  *
911  * When stuffing pages asynchronously, allow clustering.  XXX we need a
912  * synchronous clustering mode implementation.
913  *
914  * Odd semantics: if start == end, we clean everything.
915  *
916  * The object must be locked? XXX
917  */
918 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
919 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
920
921 void
922 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
923                      int flags)
924 {
925         struct rb_vm_page_scan_info info;
926         struct vnode *vp;
927         int wholescan;
928         int pagerflags;
929         int generation;
930
931         vm_object_hold(object);
932         if (object->type != OBJT_VNODE ||
933             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
934                 vm_object_drop(object);
935                 return;
936         }
937
938         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
939                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
940         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
941
942         vp = object->handle;
943
944         /*
945          * Interlock other major object operations.  This allows us to 
946          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
947          */
948         vm_object_set_flag(object, OBJ_CLEANING);
949
950         /*
951          * Handle 'entire object' case
952          */
953         info.start_pindex = start;
954         if (end == 0) {
955                 info.end_pindex = object->size - 1;
956         } else {
957                 info.end_pindex = end - 1;
958         }
959         wholescan = (start == 0 && info.end_pindex == object->size - 1);
960         info.limit = flags;
961         info.pagerflags = pagerflags;
962         info.object = object;
963
964         /*
965          * If cleaning the entire object do a pass to mark the pages read-only.
966          * If everything worked out ok, clear OBJ_WRITEABLE and
967          * OBJ_MIGHTBEDIRTY.
968          */
969         if (wholescan) {
970                 info.error = 0;
971                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
972                                         vm_object_page_clean_pass1, &info);
973                 if (info.error == 0) {
974                         vm_object_clear_flag(object,
975                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
976                         if (object->type == OBJT_VNODE &&
977                             (vp = (struct vnode *)object->handle) != NULL) {
978                                 if (vp->v_flag & VOBJDIRTY) 
979                                         vclrflags(vp, VOBJDIRTY);
980                         }
981                 }
982         }
983
984         /*
985          * Do a pass to clean all the dirty pages we find.
986          */
987         do {
988                 info.error = 0;
989                 generation = object->generation;
990                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
991                                         vm_object_page_clean_pass2, &info);
992         } while (info.error || generation != object->generation);
993
994         vm_object_clear_flag(object, OBJ_CLEANING);
995         vm_object_drop(object);
996 }
997
998 /*
999  * The caller must hold the object.
1000  */
1001 static 
1002 int
1003 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1004 {
1005         struct rb_vm_page_scan_info *info = data;
1006
1007         vm_page_flag_set(p, PG_CLEANCHK);
1008         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1009                 info->error = 1;
1010         } else if (vm_page_busy_try(p, FALSE) == 0) {
1011                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
1012                 vm_page_wakeup(p);
1013         } else {
1014                 info->error = 1;
1015         }
1016         lwkt_yield();
1017         return(0);
1018 }
1019
1020 /*
1021  * The caller must hold the object
1022  */
1023 static 
1024 int
1025 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1026 {
1027         struct rb_vm_page_scan_info *info = data;
1028         int generation;
1029
1030         /*
1031          * Do not mess with pages that were inserted after we started
1032          * the cleaning pass.
1033          */
1034         if ((p->flags & PG_CLEANCHK) == 0)
1035                 goto done;
1036
1037         generation = info->object->generation;
1038         vm_page_busy_wait(p, TRUE, "vpcwai");
1039         if (p->object != info->object ||
1040             info->object->generation != generation) {
1041                 info->error = 1;
1042                 vm_page_wakeup(p);
1043                 goto done;
1044         }
1045
1046         /*
1047          * Before wasting time traversing the pmaps, check for trivial
1048          * cases where the page cannot be dirty.
1049          */
1050         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1051                 KKASSERT((p->dirty & p->valid) == 0);
1052                 vm_page_wakeup(p);
1053                 goto done;
1054         }
1055
1056         /*
1057          * Check whether the page is dirty or not.  The page has been set
1058          * to be read-only so the check will not race a user dirtying the
1059          * page.
1060          */
1061         vm_page_test_dirty(p);
1062         if ((p->dirty & p->valid) == 0) {
1063                 vm_page_flag_clear(p, PG_CLEANCHK);
1064                 vm_page_wakeup(p);
1065                 goto done;
1066         }
1067
1068         /*
1069          * If we have been asked to skip nosync pages and this is a
1070          * nosync page, skip it.  Note that the object flags were
1071          * not cleared in this case (because pass1 will have returned an
1072          * error), so we do not have to set them.
1073          */
1074         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1075                 vm_page_flag_clear(p, PG_CLEANCHK);
1076                 vm_page_wakeup(p);
1077                 goto done;
1078         }
1079
1080         /*
1081          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1082          * the pages that get successfully flushed.  Set info->error if
1083          * we raced an object modification.
1084          */
1085         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1086 done:
1087         lwkt_yield();
1088         return(0);
1089 }
1090
1091 /*
1092  * Collect the specified page and nearby pages and flush them out.
1093  * The number of pages flushed is returned.  The passed page is busied
1094  * by the caller and we are responsible for its disposition.
1095  *
1096  * The caller must hold the object.
1097  */
1098 static int
1099 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1100 {
1101         int runlen;
1102         int error;
1103         int maxf;
1104         int chkb;
1105         int maxb;
1106         int i;
1107         vm_pindex_t pi;
1108         vm_page_t maf[vm_pageout_page_count];
1109         vm_page_t mab[vm_pageout_page_count];
1110         vm_page_t ma[vm_pageout_page_count];
1111
1112         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1113
1114         pi = p->pindex;
1115
1116         maxf = 0;
1117         for(i = 1; i < vm_pageout_page_count; i++) {
1118                 vm_page_t tp;
1119
1120                 tp = vm_page_lookup_busy_try(object, pi + i, TRUE, &error);
1121                 if (error)
1122                         break;
1123                 if (tp == NULL)
1124                         break;
1125                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1126                     (tp->flags & PG_CLEANCHK) == 0) {
1127                         vm_page_wakeup(tp);
1128                         break;
1129                 }
1130                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1131                         vm_page_flag_clear(tp, PG_CLEANCHK);
1132                         vm_page_wakeup(tp);
1133                         break;
1134                 }
1135                 vm_page_test_dirty(tp);
1136                 if ((tp->dirty & tp->valid) == 0) {
1137                         vm_page_flag_clear(tp, PG_CLEANCHK);
1138                         vm_page_wakeup(tp);
1139                         break;
1140                 }
1141                 maf[i - 1] = tp;
1142                 maxf++;
1143         }
1144
1145         maxb = 0;
1146         chkb = vm_pageout_page_count -  maxf;
1147         /*
1148          * NOTE: chkb can be 0
1149          */
1150         for(i = 1; chkb && i < chkb; i++) {
1151                 vm_page_t tp;
1152
1153                 tp = vm_page_lookup_busy_try(object, pi - i, TRUE, &error);
1154                 if (error)
1155                         break;
1156                 if (tp == NULL)
1157                         break;
1158                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1159                     (tp->flags & PG_CLEANCHK) == 0) {
1160                         vm_page_wakeup(tp);
1161                         break;
1162                 }
1163                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1164                         vm_page_flag_clear(tp, PG_CLEANCHK);
1165                         vm_page_wakeup(tp);
1166                         break;
1167                 }
1168                 vm_page_test_dirty(tp);
1169                 if ((tp->dirty & tp->valid) == 0) {
1170                         vm_page_flag_clear(tp, PG_CLEANCHK);
1171                         vm_page_wakeup(tp);
1172                         break;
1173                 }
1174                 mab[i - 1] = tp;
1175                 maxb++;
1176         }
1177
1178         /*
1179          * All pages in the maf[] and mab[] array are busied.
1180          */
1181         for (i = 0; i < maxb; i++) {
1182                 int index = (maxb - i) - 1;
1183                 ma[index] = mab[i];
1184                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1185         }
1186         vm_page_flag_clear(p, PG_CLEANCHK);
1187         ma[maxb] = p;
1188         for(i = 0; i < maxf; i++) {
1189                 int index = (maxb + i) + 1;
1190                 ma[index] = maf[i];
1191                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
1192         }
1193         runlen = maxb + maxf + 1;
1194
1195         for (i = 0; i < runlen; i++)
1196                 vm_page_hold(ma[i]);
1197
1198         vm_pageout_flush(ma, runlen, pagerflags);
1199
1200         for (i = 0; i < runlen; i++) {
1201                 if (ma[i]->valid & ma[i]->dirty) {
1202                         vm_page_protect(ma[i], VM_PROT_READ);
1203                         vm_page_flag_set(ma[i], PG_CLEANCHK);
1204
1205                         /*
1206                          * maxf will end up being the actual number of pages
1207                          * we wrote out contiguously, non-inclusive of the
1208                          * first page.  We do not count look-behind pages.
1209                          */
1210                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
1211                                 maxf = i - maxb - 1;
1212                 }
1213                 vm_page_unhold(ma[i]);
1214         }
1215         return(maxf + 1);
1216 }
1217
1218 /*
1219  * Same as vm_object_pmap_copy, except range checking really
1220  * works, and is meant for small sections of an object.
1221  *
1222  * This code protects resident pages by making them read-only
1223  * and is typically called on a fork or split when a page
1224  * is converted to copy-on-write.  
1225  *
1226  * NOTE: If the page is already at VM_PROT_NONE, calling
1227  * vm_page_protect will have no effect.
1228  */
1229 void
1230 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1231 {
1232         vm_pindex_t idx;
1233         vm_page_t p;
1234
1235         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1236                 return;
1237
1238         vm_object_hold(object);
1239         for (idx = start; idx < end; idx++) {
1240                 p = vm_page_lookup(object, idx);
1241                 if (p == NULL)
1242                         continue;
1243                 vm_page_protect(p, VM_PROT_READ);
1244         }
1245         vm_object_drop(object);
1246 }
1247
1248 /*
1249  * Removes all physical pages in the specified object range from all
1250  * physical maps.
1251  *
1252  * The object must *not* be locked.
1253  */
1254
1255 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1256
1257 void
1258 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1259 {
1260         struct rb_vm_page_scan_info info;
1261
1262         if (object == NULL)
1263                 return;
1264         info.start_pindex = start;
1265         info.end_pindex = end - 1;
1266
1267         vm_object_hold(object);
1268         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1269                                 vm_object_pmap_remove_callback, &info);
1270         if (start == 0 && end == object->size)
1271                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1272         vm_object_drop(object);
1273 }
1274
1275 /*
1276  * The caller must hold the object
1277  */
1278 static int
1279 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1280 {
1281         vm_page_protect(p, VM_PROT_NONE);
1282         return(0);
1283 }
1284
1285 /*
1286  * Implements the madvise function at the object/page level.
1287  *
1288  * MADV_WILLNEED        (any object)
1289  *
1290  *      Activate the specified pages if they are resident.
1291  *
1292  * MADV_DONTNEED        (any object)
1293  *
1294  *      Deactivate the specified pages if they are resident.
1295  *
1296  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1297  *
1298  *      Deactivate and clean the specified pages if they are
1299  *      resident.  This permits the process to reuse the pages
1300  *      without faulting or the kernel to reclaim the pages
1301  *      without I/O.
1302  *
1303  * No requirements.
1304  */
1305 void
1306 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1307 {
1308         vm_pindex_t end, tpindex;
1309         vm_object_t tobject;
1310         vm_object_t xobj;
1311         vm_page_t m;
1312         int error;
1313
1314         if (object == NULL)
1315                 return;
1316
1317         end = pindex + count;
1318
1319         vm_object_hold(object);
1320         tobject = object;
1321
1322         /*
1323          * Locate and adjust resident pages
1324          */
1325         for (; pindex < end; pindex += 1) {
1326 relookup:
1327                 if (tobject != object)
1328                         vm_object_drop(tobject);
1329                 tobject = object;
1330                 tpindex = pindex;
1331 shadowlookup:
1332                 /*
1333                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1334                  * and those pages must be OBJ_ONEMAPPING.
1335                  */
1336                 if (advise == MADV_FREE) {
1337                         if ((tobject->type != OBJT_DEFAULT &&
1338                              tobject->type != OBJT_SWAP) ||
1339                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1340                                 continue;
1341                         }
1342                 }
1343
1344                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1345
1346                 if (error) {
1347                         vm_page_sleep_busy(m, TRUE, "madvpo");
1348                         goto relookup;
1349                 }
1350                 if (m == NULL) {
1351                         /*
1352                          * There may be swap even if there is no backing page
1353                          */
1354                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1355                                 swap_pager_freespace(tobject, tpindex, 1);
1356
1357                         /*
1358                          * next object
1359                          */
1360                         while ((xobj = tobject->backing_object) != NULL) {
1361                                 KKASSERT(xobj != object);
1362                                 vm_object_hold(xobj);
1363                                 if (xobj == tobject->backing_object)
1364                                         break;
1365                                 vm_object_drop(xobj);
1366                         }
1367                         if (xobj == NULL)
1368                                 continue;
1369                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1370                         if (tobject != object) {
1371                                 vm_object_lock_swap();
1372                                 vm_object_drop(tobject);
1373                         }
1374                         tobject = xobj;
1375                         goto shadowlookup;
1376                 }
1377
1378                 /*
1379                  * If the page is not in a normal active state, we skip it.
1380                  * If the page is not managed there are no page queues to
1381                  * mess with.  Things can break if we mess with pages in
1382                  * any of the below states.
1383                  */
1384                 if (
1385                     /*m->hold_count ||*/
1386                     m->wire_count ||
1387                     (m->flags & PG_UNMANAGED) ||
1388                     m->valid != VM_PAGE_BITS_ALL
1389                 ) {
1390                         vm_page_wakeup(m);
1391                         continue;
1392                 }
1393
1394                 /*
1395                  * Theoretically once a page is known not to be busy, an
1396                  * interrupt cannot come along and rip it out from under us.
1397                  */
1398
1399                 if (advise == MADV_WILLNEED) {
1400                         vm_page_activate(m);
1401                 } else if (advise == MADV_DONTNEED) {
1402                         vm_page_dontneed(m);
1403                 } else if (advise == MADV_FREE) {
1404                         /*
1405                          * Mark the page clean.  This will allow the page
1406                          * to be freed up by the system.  However, such pages
1407                          * are often reused quickly by malloc()/free()
1408                          * so we do not do anything that would cause
1409                          * a page fault if we can help it.
1410                          *
1411                          * Specifically, we do not try to actually free
1412                          * the page now nor do we try to put it in the
1413                          * cache (which would cause a page fault on reuse).
1414                          *
1415                          * But we do make the page is freeable as we
1416                          * can without actually taking the step of unmapping
1417                          * it.
1418                          */
1419                         pmap_clear_modify(m);
1420                         m->dirty = 0;
1421                         m->act_count = 0;
1422                         vm_page_dontneed(m);
1423                         if (tobject->type == OBJT_SWAP)
1424                                 swap_pager_freespace(tobject, tpindex, 1);
1425                 }
1426                 vm_page_wakeup(m);
1427         }       
1428         if (tobject != object)
1429                 vm_object_drop(tobject);
1430         vm_object_drop(object);
1431 }
1432
1433 /*
1434  * Create a new object which is backed by the specified existing object
1435  * range.  Replace the pointer and offset that was pointing at the existing
1436  * object with the pointer/offset for the new object.
1437  *
1438  * No other requirements.
1439  */
1440 void
1441 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1442                  int addref)
1443 {
1444         vm_object_t source;
1445         vm_object_t result;
1446
1447         source = *objectp;
1448
1449         /*
1450          * Don't create the new object if the old object isn't shared.
1451          * We have to chain wait before adding the reference to avoid
1452          * racing a collapse or deallocation.
1453          *
1454          * Add the additional ref to source here to avoid racing a later
1455          * collapse or deallocation. Clear the ONEMAPPING flag whether
1456          * addref is TRUE or not in this case because the original object
1457          * will be shadowed.
1458          */
1459         if (source) {
1460                 vm_object_hold(source);
1461                 vm_object_chain_wait(source);
1462                 if (source->ref_count == 1 &&
1463                     source->handle == NULL &&
1464                     (source->type == OBJT_DEFAULT ||
1465                      source->type == OBJT_SWAP)) {
1466                         vm_object_drop(source);
1467                         if (addref) {
1468                                 vm_object_reference_locked(source);
1469                                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1470                         }
1471                         return;
1472                 }
1473                 vm_object_reference_locked(source);
1474                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1475         }
1476
1477         /*
1478          * Allocate a new object with the given length.  The new object
1479          * is returned referenced but we may have to add another one.
1480          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1481          * (typically because the caller is about to clone a vm_map_entry).
1482          *
1483          * The source object currently has an extra reference to prevent
1484          * collapses into it while we mess with its shadow list, which
1485          * we will remove later in this routine.
1486          */
1487         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1488                 panic("vm_object_shadow: no object for shadowing");
1489         vm_object_hold(result);
1490         if (addref) {
1491                 vm_object_reference_locked(result);
1492                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1493         }
1494
1495         /*
1496          * The new object shadows the source object.  Chain wait before
1497          * adjusting shadow_count or the shadow list to avoid races.
1498          *
1499          * Try to optimize the result object's page color when shadowing
1500          * in order to maintain page coloring consistency in the combined 
1501          * shadowed object.
1502          */
1503         KKASSERT(result->backing_object == NULL);
1504         result->backing_object = source;
1505         if (source) {
1506                 vm_object_chain_wait(source);
1507                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1508                 source->shadow_count++;
1509                 source->generation++;
1510 #ifdef SMP
1511                 /* cpu localization twist */
1512                 result->pg_color = (int)(intptr_t)curthread;
1513 #else
1514                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1515                                    PQ_L2_MASK;
1516 #endif
1517         }
1518
1519         /*
1520          * Adjust the return storage.  Drop the ref on source before
1521          * returning.
1522          */
1523         result->backing_object_offset = *offset;
1524         vm_object_drop(result);
1525         *offset = 0;
1526         if (source) {
1527                 vm_object_deallocate_locked(source);
1528                 vm_object_drop(source);
1529         }
1530
1531         /*
1532          * Return the new things
1533          */
1534         *objectp = result;
1535 }
1536
1537 #define OBSC_TEST_ALL_SHADOWED  0x0001
1538 #define OBSC_COLLAPSE_NOWAIT    0x0002
1539 #define OBSC_COLLAPSE_WAIT      0x0004
1540
1541 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1542
1543 /*
1544  * The caller must hold the object.
1545  */
1546 static __inline int
1547 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1548 {
1549         struct rb_vm_page_scan_info info;
1550
1551         vm_object_assert_held(object);
1552         vm_object_assert_held(backing_object);
1553
1554         KKASSERT(backing_object == object->backing_object);
1555         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1556
1557         /*
1558          * Initial conditions
1559          */
1560         if (op & OBSC_TEST_ALL_SHADOWED) {
1561                 /*
1562                  * We do not want to have to test for the existence of
1563                  * swap pages in the backing object.  XXX but with the
1564                  * new swapper this would be pretty easy to do.
1565                  *
1566                  * XXX what about anonymous MAP_SHARED memory that hasn't
1567                  * been ZFOD faulted yet?  If we do not test for this, the
1568                  * shadow test may succeed! XXX
1569                  */
1570                 if (backing_object->type != OBJT_DEFAULT)
1571                         return(0);
1572         }
1573         if (op & OBSC_COLLAPSE_WAIT) {
1574                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1575                 vm_object_set_flag(backing_object, OBJ_DEAD);
1576                 lwkt_gettoken(&vmobj_token);
1577                 TAILQ_REMOVE(&vm_object_list, backing_object, object_list);
1578                 vm_object_count--;
1579                 lwkt_reltoken(&vmobj_token);
1580                 vm_object_dead_wakeup(backing_object);
1581         }
1582
1583         /*
1584          * Our scan.   We have to retry if a negative error code is returned,
1585          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1586          * the scan had to be stopped because the parent does not completely
1587          * shadow the child.
1588          */
1589         info.object = object;
1590         info.backing_object = backing_object;
1591         info.limit = op;
1592         do {
1593                 info.error = 1;
1594                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1595                                         vm_object_backing_scan_callback,
1596                                         &info);
1597         } while (info.error < 0);
1598
1599         return(info.error);
1600 }
1601
1602 /*
1603  * The caller must hold the object.
1604  */
1605 static int
1606 vm_object_backing_scan_callback(vm_page_t p, void *data)
1607 {
1608         struct rb_vm_page_scan_info *info = data;
1609         vm_object_t backing_object;
1610         vm_object_t object;
1611         vm_pindex_t new_pindex;
1612         vm_pindex_t backing_offset_index;
1613         int op;
1614
1615         new_pindex = p->pindex - info->backing_offset_index;
1616         op = info->limit;
1617         object = info->object;
1618         backing_object = info->backing_object;
1619         backing_offset_index = info->backing_offset_index;
1620
1621         if (op & OBSC_TEST_ALL_SHADOWED) {
1622                 vm_page_t pp;
1623
1624                 /*
1625                  * Ignore pages outside the parent object's range
1626                  * and outside the parent object's mapping of the 
1627                  * backing object.
1628                  *
1629                  * note that we do not busy the backing object's
1630                  * page.
1631                  */
1632                 if (
1633                     p->pindex < backing_offset_index ||
1634                     new_pindex >= object->size
1635                 ) {
1636                         return(0);
1637                 }
1638
1639                 /*
1640                  * See if the parent has the page or if the parent's
1641                  * object pager has the page.  If the parent has the
1642                  * page but the page is not valid, the parent's
1643                  * object pager must have the page.
1644                  *
1645                  * If this fails, the parent does not completely shadow
1646                  * the object and we might as well give up now.
1647                  */
1648
1649                 pp = vm_page_lookup(object, new_pindex);
1650                 if ((pp == NULL || pp->valid == 0) &&
1651                     !vm_pager_has_page(object, new_pindex)
1652                 ) {
1653                         info->error = 0;        /* problemo */
1654                         return(-1);             /* stop the scan */
1655                 }
1656         }
1657
1658         /*
1659          * Check for busy page
1660          */
1661         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1662                 vm_page_t pp;
1663
1664                 if (vm_page_busy_try(p, TRUE)) {
1665                         if (op & OBSC_COLLAPSE_NOWAIT) {
1666                                 return(0);
1667                         } else {
1668                                 /*
1669                                  * If we slept, anything could have
1670                                  * happened.   Ask that the scan be restarted.
1671                                  *
1672                                  * Since the object is marked dead, the
1673                                  * backing offset should not have changed.  
1674                                  */
1675                                 vm_page_sleep_busy(p, TRUE, "vmocol");
1676                                 info->error = -1;
1677                                 return(-1);
1678                         }
1679                 }
1680                 if (op & OBSC_COLLAPSE_NOWAIT) {
1681                         if (p->valid == 0 /*|| p->hold_count*/ ||
1682                             p->wire_count) {
1683                                 vm_page_wakeup(p);
1684                                 return(0);
1685                         }
1686                 } else {
1687                         /* XXX what if p->valid == 0 , hold_count, etc? */
1688                 }
1689
1690                 KASSERT(
1691                     p->object == backing_object,
1692                     ("vm_object_qcollapse(): object mismatch")
1693                 );
1694
1695                 /*
1696                  * Destroy any associated swap
1697                  */
1698                 if (backing_object->type == OBJT_SWAP)
1699                         swap_pager_freespace(backing_object, p->pindex, 1);
1700
1701                 if (
1702                     p->pindex < backing_offset_index ||
1703                     new_pindex >= object->size
1704                 ) {
1705                         /*
1706                          * Page is out of the parent object's range, we 
1707                          * can simply destroy it. 
1708                          */
1709                         vm_page_protect(p, VM_PROT_NONE);
1710                         vm_page_free(p);
1711                         return(0);
1712                 }
1713
1714                 pp = vm_page_lookup(object, new_pindex);
1715                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1716                         /*
1717                          * page already exists in parent OR swap exists
1718                          * for this location in the parent.  Destroy 
1719                          * the original page from the backing object.
1720                          *
1721                          * Leave the parent's page alone
1722                          */
1723                         vm_page_protect(p, VM_PROT_NONE);
1724                         vm_page_free(p);
1725                         return(0);
1726                 }
1727
1728                 /*
1729                  * Page does not exist in parent, rename the
1730                  * page from the backing object to the main object. 
1731                  *
1732                  * If the page was mapped to a process, it can remain 
1733                  * mapped through the rename.
1734                  */
1735                 if ((p->queue - p->pc) == PQ_CACHE)
1736                         vm_page_deactivate(p);
1737
1738                 vm_page_rename(p, object, new_pindex);
1739                 vm_page_wakeup(p);
1740                 /* page automatically made dirty by rename */
1741         }
1742         return(0);
1743 }
1744
1745 /*
1746  * This version of collapse allows the operation to occur earlier and
1747  * when paging_in_progress is true for an object...  This is not a complete
1748  * operation, but should plug 99.9% of the rest of the leaks.
1749  *
1750  * The caller must hold the object and backing_object and both must be
1751  * chainlocked.
1752  *
1753  * (only called from vm_object_collapse)
1754  */
1755 static void
1756 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
1757 {
1758         if (backing_object->ref_count == 1) {
1759                 backing_object->ref_count += 2;
1760                 vm_object_backing_scan(object, backing_object,
1761                                        OBSC_COLLAPSE_NOWAIT);
1762                 backing_object->ref_count -= 2;
1763         }
1764 }
1765
1766 /*
1767  * Collapse an object with the object backing it.  Pages in the backing
1768  * object are moved into the parent, and the backing object is deallocated.
1769  * Any conflict is resolved in favor of the parent's existing pages.
1770  *
1771  * object must be held and chain-locked on call.
1772  *
1773  * The caller must have an extra ref on object to prevent a race from
1774  * destroying it during the collapse.
1775  */
1776 void
1777 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
1778 {
1779         struct vm_object_dealloc_list *dlist = NULL;
1780         vm_object_t backing_object;
1781
1782         /*
1783          * Only one thread is attempting a collapse at any given moment.
1784          * There are few restrictions for (object) that callers of this
1785          * function check so reentrancy is likely.
1786          */
1787         KKASSERT(object != NULL);
1788         vm_object_assert_held(object);
1789         KKASSERT(object->flags & OBJ_CHAINLOCK);
1790
1791         for (;;) {
1792                 vm_object_t bbobj;
1793                 int dodealloc;
1794
1795                 /*
1796                  * We have to hold the backing object, check races.
1797                  */
1798                 while ((backing_object = object->backing_object) != NULL) {
1799                         vm_object_hold(backing_object);
1800                         if (backing_object == object->backing_object)
1801                                 break;
1802                         vm_object_drop(backing_object);
1803                 }
1804
1805                 /*
1806                  * No backing object?  Nothing to collapse then.
1807                  */
1808                 if (backing_object == NULL)
1809                         break;
1810
1811                 /*
1812                  * You can't collapse with a non-default/non-swap object.
1813                  */
1814                 if (backing_object->type != OBJT_DEFAULT &&
1815                     backing_object->type != OBJT_SWAP) {
1816                         vm_object_drop(backing_object);
1817                         backing_object = NULL;
1818                         break;
1819                 }
1820
1821                 /*
1822                  * Chain-lock the backing object too because if we
1823                  * successfully merge its pages into the top object we
1824                  * will collapse backing_object->backing_object as the
1825                  * new backing_object.  Re-check that it is still our
1826                  * backing object.
1827                  */
1828                 vm_object_chain_acquire(backing_object);
1829                 if (backing_object != object->backing_object) {
1830                         vm_object_chain_release(backing_object);
1831                         vm_object_drop(backing_object);
1832                         continue;
1833                 }
1834
1835                 /*
1836                  * we check the backing object first, because it is most likely
1837                  * not collapsable.
1838                  */
1839                 if (backing_object->handle != NULL ||
1840                     (backing_object->type != OBJT_DEFAULT &&
1841                      backing_object->type != OBJT_SWAP) ||
1842                     (backing_object->flags & OBJ_DEAD) ||
1843                     object->handle != NULL ||
1844                     (object->type != OBJT_DEFAULT &&
1845                      object->type != OBJT_SWAP) ||
1846                     (object->flags & OBJ_DEAD)) {
1847                         break;
1848                 }
1849
1850                 /*
1851                  * If paging is in progress we can't do a normal collapse.
1852                  */
1853                 if (
1854                     object->paging_in_progress != 0 ||
1855                     backing_object->paging_in_progress != 0
1856                 ) {
1857                         vm_object_qcollapse(object, backing_object);
1858                         break;
1859                 }
1860
1861                 /*
1862                  * We know that we can either collapse the backing object (if
1863                  * the parent is the only reference to it) or (perhaps) have
1864                  * the parent bypass the object if the parent happens to shadow
1865                  * all the resident pages in the entire backing object.
1866                  *
1867                  * This is ignoring pager-backed pages such as swap pages.
1868                  * vm_object_backing_scan fails the shadowing test in this
1869                  * case.
1870                  */
1871                 if (backing_object->ref_count == 1) {
1872                         /*
1873                          * If there is exactly one reference to the backing
1874                          * object, we can collapse it into the parent.  
1875                          */
1876                         KKASSERT(object->backing_object == backing_object);
1877                         vm_object_backing_scan(object, backing_object,
1878                                                OBSC_COLLAPSE_WAIT);
1879
1880                         /*
1881                          * Move the pager from backing_object to object.
1882                          */
1883                         if (backing_object->type == OBJT_SWAP) {
1884                                 vm_object_pip_add(backing_object, 1);
1885
1886                                 /*
1887                                  * scrap the paging_offset junk and do a 
1888                                  * discrete copy.  This also removes major 
1889                                  * assumptions about how the swap-pager 
1890                                  * works from where it doesn't belong.  The
1891                                  * new swapper is able to optimize the
1892                                  * destroy-source case.
1893                                  */
1894                                 vm_object_pip_add(object, 1);
1895                                 swap_pager_copy(backing_object, object,
1896                                     OFF_TO_IDX(object->backing_object_offset),
1897                                     TRUE);
1898                                 vm_object_pip_wakeup(object);
1899                                 vm_object_pip_wakeup(backing_object);
1900                         }
1901
1902                         /*
1903                          * Object now shadows whatever backing_object did.
1904                          * Remove object from backing_object's shadow_list.
1905                          */
1906                         LIST_REMOVE(object, shadow_list);
1907                         KKASSERT(object->backing_object == backing_object);
1908                         backing_object->shadow_count--;
1909                         backing_object->generation++;
1910
1911                         /*
1912                          * backing_object->backing_object moves from within
1913                          * backing_object to within object.
1914                          */
1915                         while ((bbobj = backing_object->backing_object) != NULL) {
1916                                 vm_object_hold(bbobj);
1917                                 if (bbobj == backing_object->backing_object)
1918                                         break;
1919                                 vm_object_drop(bbobj);
1920                         }
1921                         if (bbobj) {
1922                                 LIST_REMOVE(backing_object, shadow_list);
1923                                 bbobj->shadow_count--;
1924                                 bbobj->generation++;
1925                                 backing_object->backing_object = NULL;
1926                         }
1927                         object->backing_object = bbobj;
1928                         if (bbobj) {
1929                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
1930                                                  object, shadow_list);
1931                                 bbobj->shadow_count++;
1932                                 bbobj->generation++;
1933                         }
1934
1935                         object->backing_object_offset +=
1936                                 backing_object->backing_object_offset;
1937
1938                         vm_object_drop(bbobj);
1939
1940                         /*
1941                          * Discard the old backing_object.  Nothing should be
1942                          * able to ref it, other than a vm_map_split(),
1943                          * and vm_map_split() will stall on our chain lock.
1944                          * And we control the parent so it shouldn't be
1945                          * possible for it to go away either.
1946                          *
1947                          * Since the backing object has no pages, no pager
1948                          * left, and no object references within it, all
1949                          * that is necessary is to dispose of it.
1950                          */
1951                         KASSERT(backing_object->ref_count == 1,
1952                                 ("backing_object %p was somehow "
1953                                  "re-referenced during collapse!",
1954                                  backing_object));
1955                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
1956                                 ("backing_object %p somehow has left "
1957                                  "over pages during collapse!",
1958                                  backing_object));
1959
1960                         /*
1961                          * The object can be destroyed.
1962                          *
1963                          * XXX just fall through and dodealloc instead
1964                          *     of forcing destruction?
1965                          */
1966                         --backing_object->ref_count;
1967                         if ((backing_object->flags & OBJ_DEAD) == 0)
1968                                 vm_object_terminate(backing_object);
1969                         object_collapses++;
1970                         dodealloc = 0;
1971                 } else {
1972                         /*
1973                          * If we do not entirely shadow the backing object,
1974                          * there is nothing we can do so we give up.
1975                          */
1976                         if (vm_object_backing_scan(object, backing_object,
1977                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
1978                                 break;
1979                         }
1980
1981                         /*
1982                          * bbobj is backing_object->backing_object.  Since
1983                          * object completely shadows backing_object we can
1984                          * bypass it and become backed by bbobj instead.
1985                          */
1986                         while ((bbobj = backing_object->backing_object) != NULL) {
1987                                 vm_object_hold(bbobj);
1988                                 if (bbobj == backing_object->backing_object)
1989                                         break;
1990                                 vm_object_drop(bbobj);
1991                         }
1992
1993                         /*
1994                          * Make object shadow bbobj instead of backing_object.
1995                          * Remove object from backing_object's shadow list.
1996                          *
1997                          * Deallocating backing_object will not remove
1998                          * it, since its reference count is at least 2.
1999                          */
2000                         KKASSERT(object->backing_object == backing_object);
2001                         LIST_REMOVE(object, shadow_list);
2002                         backing_object->shadow_count--;
2003                         backing_object->generation++;
2004
2005                         /*
2006                          * Add a ref to bbobj, bbobj now shadows object.
2007                          *
2008                          * NOTE: backing_object->backing_object still points
2009                          *       to bbobj.  That relationship remains intact
2010                          *       because backing_object has > 1 ref, so
2011                          *       someone else is pointing to it (hence why
2012                          *       we can't collapse it into object and can
2013                          *       only handle the all-shadowed bypass case).
2014                          */
2015                         if (bbobj) {
2016                                 vm_object_chain_wait(bbobj);
2017                                 vm_object_reference_locked(bbobj);
2018                                 LIST_INSERT_HEAD(&bbobj->shadow_head,
2019                                                  object, shadow_list);
2020                                 bbobj->shadow_count++;
2021                                 bbobj->generation++;
2022                                 object->backing_object_offset +=
2023                                         backing_object->backing_object_offset;
2024                                 object->backing_object = bbobj;
2025                                 vm_object_drop(bbobj);
2026                         } else {
2027                                 object->backing_object = NULL;
2028                         }
2029
2030                         /*
2031                          * Drop the reference count on backing_object.  To
2032                          * handle ref_count races properly we can't assume
2033                          * that the ref_count is still at least 2 so we
2034                          * have to actually call vm_object_deallocate()
2035                          * (after clearing the chainlock).
2036                          */
2037                         object_bypasses++;
2038                         dodealloc = 1;
2039                 }
2040
2041                 /*
2042                  * Ok, we want to loop on the new object->bbobj association,
2043                  * possibly collapsing it further.  However if dodealloc is
2044                  * non-zero we have to deallocate the backing_object which
2045                  * itself can potentially undergo a collapse, creating a
2046                  * recursion depth issue with the LWKT token subsystem.
2047                  *
2048                  * In the case where we must deallocate the backing_object
2049                  * it is possible now that the backing_object has a single
2050                  * shadow count on some other object (not represented here
2051                  * as yet), since it no longer shadows us.  Thus when we
2052                  * call vm_object_deallocate() it may attempt to collapse
2053                  * itself into its remaining parent.
2054                  */
2055                 if (dodealloc) {
2056                         struct vm_object_dealloc_list *dtmp;
2057
2058                         vm_object_chain_release(backing_object);
2059                         vm_object_unlock(backing_object);
2060                         /* backing_object remains held */
2061
2062                         /*
2063                          * Auto-deallocation list for caller convenience.
2064                          */
2065                         if (dlistp == NULL)
2066                                 dlistp = &dlist;
2067
2068                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2069                         dtmp->object = backing_object;
2070                         dtmp->next = *dlistp;
2071                         *dlistp = dtmp;
2072                 } else {
2073                         vm_object_chain_release(backing_object);
2074                         vm_object_drop(backing_object);
2075                 }
2076                 /* backing_object = NULL; not needed */
2077                 /* loop */
2078         }
2079
2080         /*
2081          * Clean up any left over backing_object
2082          */
2083         if (backing_object) {
2084                 vm_object_chain_release(backing_object);
2085                 vm_object_drop(backing_object);
2086         }
2087
2088         /*
2089          * Clean up any auto-deallocation list.  This is a convenience
2090          * for top-level callers so they don't have to pass &dlist.
2091          * Do not clean up any caller-passed dlistp, the caller will
2092          * do that.
2093          */
2094         if (dlist)
2095                 vm_object_deallocate_list(&dlist);
2096
2097 }
2098
2099 /*
2100  * vm_object_collapse() may collect additional objects in need of
2101  * deallocation.  This routine deallocates these objects.  The
2102  * deallocation itself can trigger additional collapses (which the
2103  * deallocate function takes care of).  This procedure is used to
2104  * reduce procedural recursion since these vm_object shadow chains
2105  * can become quite long.
2106  */
2107 void
2108 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2109 {
2110         struct vm_object_dealloc_list *dlist;
2111
2112         while ((dlist = *dlistp) != NULL) {
2113                 *dlistp = dlist->next;
2114                 vm_object_lock(dlist->object);
2115                 vm_object_deallocate_locked(dlist->object);
2116                 vm_object_drop(dlist->object);
2117                 kfree(dlist, M_TEMP);
2118         }
2119 }
2120
2121 /*
2122  * Removes all physical pages in the specified object range from the
2123  * object's list of pages.
2124  *
2125  * No requirements.
2126  */
2127 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2128
2129 void
2130 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2131                       boolean_t clean_only)
2132 {
2133         struct rb_vm_page_scan_info info;
2134         int all;
2135
2136         /*
2137          * Degenerate cases and assertions
2138          */
2139         vm_object_hold(object);
2140         if (object == NULL ||
2141             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2142                 vm_object_drop(object);
2143                 return;
2144         }
2145         KASSERT(object->type != OBJT_PHYS, 
2146                 ("attempt to remove pages from a physical object"));
2147
2148         /*
2149          * Indicate that paging is occuring on the object
2150          */
2151         vm_object_pip_add(object, 1);
2152
2153         /*
2154          * Figure out the actual removal range and whether we are removing
2155          * the entire contents of the object or not.  If removing the entire
2156          * contents, be sure to get all pages, even those that might be 
2157          * beyond the end of the object.
2158          */
2159         info.start_pindex = start;
2160         if (end == 0)
2161                 info.end_pindex = (vm_pindex_t)-1;
2162         else
2163                 info.end_pindex = end - 1;
2164         info.limit = clean_only;
2165         all = (start == 0 && info.end_pindex >= object->size - 1);
2166
2167         /*
2168          * Loop until we are sure we have gotten them all.
2169          */
2170         do {
2171                 info.error = 0;
2172                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2173                                         vm_object_page_remove_callback, &info);
2174         } while (info.error);
2175
2176         /*
2177          * Remove any related swap if throwing away pages, or for
2178          * non-swap objects (the swap is a clean copy in that case).
2179          */
2180         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2181                 if (all)
2182                         swap_pager_freespace_all(object);
2183                 else
2184                         swap_pager_freespace(object, info.start_pindex,
2185                              info.end_pindex - info.start_pindex + 1);
2186         }
2187
2188         /*
2189          * Cleanup
2190          */
2191         vm_object_pip_wakeup(object);
2192         vm_object_drop(object);
2193 }
2194
2195 /*
2196  * The caller must hold the object
2197  */
2198 static int
2199 vm_object_page_remove_callback(vm_page_t p, void *data)
2200 {
2201         struct rb_vm_page_scan_info *info = data;
2202
2203         if (vm_page_busy_try(p, TRUE)) {
2204                 vm_page_sleep_busy(p, TRUE, "vmopar");
2205                 info->error = 1;
2206                 return(0);
2207         }
2208
2209         /*
2210          * Wired pages cannot be destroyed, but they can be invalidated
2211          * and we do so if clean_only (limit) is not set.
2212          *
2213          * WARNING!  The page may be wired due to being part of a buffer
2214          *           cache buffer, and the buffer might be marked B_CACHE.
2215          *           This is fine as part of a truncation but VFSs must be
2216          *           sure to fix the buffer up when re-extending the file.
2217          */
2218         if (p->wire_count != 0) {
2219                 vm_page_protect(p, VM_PROT_NONE);
2220                 if (info->limit == 0)
2221                         p->valid = 0;
2222                 vm_page_wakeup(p);
2223                 return(0);
2224         }
2225
2226         /*
2227          * limit is our clean_only flag.  If set and the page is dirty, do
2228          * not free it.  If set and the page is being held by someone, do
2229          * not free it.
2230          */
2231         if (info->limit && p->valid) {
2232                 vm_page_test_dirty(p);
2233                 if (p->valid & p->dirty) {
2234                         vm_page_wakeup(p);
2235                         return(0);
2236                 }
2237 #if 0
2238                 if (p->hold_count) {
2239                         vm_page_wakeup(p);
2240                         return(0);
2241                 }
2242 #endif
2243         }
2244
2245         /*
2246          * Destroy the page
2247          */
2248         vm_page_protect(p, VM_PROT_NONE);
2249         vm_page_free(p);
2250         return(0);
2251 }
2252
2253 /*
2254  * Coalesces two objects backing up adjoining regions of memory into a
2255  * single object.
2256  *
2257  * returns TRUE if objects were combined.
2258  *
2259  * NOTE: Only works at the moment if the second object is NULL -
2260  *       if it's not, which object do we lock first?
2261  *
2262  * Parameters:
2263  *      prev_object     First object to coalesce
2264  *      prev_offset     Offset into prev_object
2265  *      next_object     Second object into coalesce
2266  *      next_offset     Offset into next_object
2267  *
2268  *      prev_size       Size of reference to prev_object
2269  *      next_size       Size of reference to next_object
2270  *
2271  * The caller does not need to hold (prev_object) but must have a stable
2272  * pointer to it (typically by holding the vm_map locked).
2273  */
2274 boolean_t
2275 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2276                    vm_size_t prev_size, vm_size_t next_size)
2277 {
2278         vm_pindex_t next_pindex;
2279
2280         if (prev_object == NULL)
2281                 return (TRUE);
2282
2283         vm_object_hold(prev_object);
2284
2285         if (prev_object->type != OBJT_DEFAULT &&
2286             prev_object->type != OBJT_SWAP) {
2287                 vm_object_drop(prev_object);
2288                 return (FALSE);
2289         }
2290
2291         /*
2292          * Try to collapse the object first
2293          */
2294         vm_object_chain_acquire(prev_object);
2295         vm_object_collapse(prev_object, NULL);
2296
2297         /*
2298          * Can't coalesce if: . more than one reference . paged out . shadows
2299          * another object . has a copy elsewhere (any of which mean that the
2300          * pages not mapped to prev_entry may be in use anyway)
2301          */
2302
2303         if (prev_object->backing_object != NULL) {
2304                 vm_object_chain_release(prev_object);
2305                 vm_object_drop(prev_object);
2306                 return (FALSE);
2307         }
2308
2309         prev_size >>= PAGE_SHIFT;
2310         next_size >>= PAGE_SHIFT;
2311         next_pindex = prev_pindex + prev_size;
2312
2313         if ((prev_object->ref_count > 1) &&
2314             (prev_object->size != next_pindex)) {
2315                 vm_object_chain_release(prev_object);
2316                 vm_object_drop(prev_object);
2317                 return (FALSE);
2318         }
2319
2320         /*
2321          * Remove any pages that may still be in the object from a previous
2322          * deallocation.
2323          */
2324         if (next_pindex < prev_object->size) {
2325                 vm_object_page_remove(prev_object,
2326                                       next_pindex,
2327                                       next_pindex + next_size, FALSE);
2328                 if (prev_object->type == OBJT_SWAP)
2329                         swap_pager_freespace(prev_object,
2330                                              next_pindex, next_size);
2331         }
2332
2333         /*
2334          * Extend the object if necessary.
2335          */
2336         if (next_pindex + next_size > prev_object->size)
2337                 prev_object->size = next_pindex + next_size;
2338
2339         vm_object_chain_release(prev_object);
2340         vm_object_drop(prev_object);
2341         return (TRUE);
2342 }
2343
2344 /*
2345  * Make the object writable and flag is being possibly dirty.
2346  *
2347  * The caller must hold the object. XXX called from vm_page_dirty(),
2348  * There is currently no requirement to hold the object.
2349  */
2350 void
2351 vm_object_set_writeable_dirty(vm_object_t object)
2352 {
2353         struct vnode *vp;
2354
2355         /*vm_object_assert_held(object);*/
2356         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2357         if (object->type == OBJT_VNODE &&
2358             (vp = (struct vnode *)object->handle) != NULL) {
2359                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2360                         vsetflags(vp, VOBJDIRTY);
2361                 }
2362         }
2363 }
2364
2365 #include "opt_ddb.h"
2366 #ifdef DDB
2367 #include <sys/kernel.h>
2368
2369 #include <sys/cons.h>
2370
2371 #include <ddb/ddb.h>
2372
2373 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2374                                        vm_map_entry_t entry);
2375 static int      vm_object_in_map (vm_object_t object);
2376
2377 /*
2378  * The caller must hold the object.
2379  */
2380 static int
2381 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2382 {
2383         vm_map_t tmpm;
2384         vm_map_entry_t tmpe;
2385         vm_object_t obj, nobj;
2386         int entcount;
2387
2388         if (map == 0)
2389                 return 0;
2390         if (entry == 0) {
2391                 tmpe = map->header.next;
2392                 entcount = map->nentries;
2393                 while (entcount-- && (tmpe != &map->header)) {
2394                         if( _vm_object_in_map(map, object, tmpe)) {
2395                                 return 1;
2396                         }
2397                         tmpe = tmpe->next;
2398                 }
2399                 return (0);
2400         }
2401         switch(entry->maptype) {
2402         case VM_MAPTYPE_SUBMAP:
2403                 tmpm = entry->object.sub_map;
2404                 tmpe = tmpm->header.next;
2405                 entcount = tmpm->nentries;
2406                 while (entcount-- && tmpe != &tmpm->header) {
2407                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2408                                 return 1;
2409                         }
2410                         tmpe = tmpe->next;
2411                 }
2412                 break;
2413         case VM_MAPTYPE_NORMAL:
2414         case VM_MAPTYPE_VPAGETABLE:
2415                 obj = entry->object.vm_object;
2416                 while (obj) {
2417                         if (obj == object) {
2418                                 if (obj != entry->object.vm_object)
2419                                         vm_object_drop(obj);
2420                                 return 1;
2421                         }
2422                         while ((nobj = obj->backing_object) != NULL) {
2423                                 vm_object_hold(nobj);
2424                                 if (nobj == obj->backing_object)
2425                                         break;
2426                                 vm_object_drop(nobj);
2427                         }
2428                         if (obj != entry->object.vm_object) {
2429                                 if (nobj)
2430                                         vm_object_lock_swap();
2431                                 vm_object_drop(obj);
2432                         }
2433                         obj = nobj;
2434                 }
2435                 break;
2436         default:
2437                 break;
2438         }
2439         return 0;
2440 }
2441
2442 static int vm_object_in_map_callback(struct proc *p, void *data);
2443
2444 struct vm_object_in_map_info {
2445         vm_object_t object;
2446         int rv;
2447 };
2448
2449 /*
2450  * Debugging only
2451  */
2452 static int
2453 vm_object_in_map(vm_object_t object)
2454 {
2455         struct vm_object_in_map_info info;
2456
2457         info.rv = 0;
2458         info.object = object;
2459
2460         allproc_scan(vm_object_in_map_callback, &info);
2461         if (info.rv)
2462                 return 1;
2463         if( _vm_object_in_map(&kernel_map, object, 0))
2464                 return 1;
2465         if( _vm_object_in_map(&pager_map, object, 0))
2466                 return 1;
2467         if( _vm_object_in_map(&buffer_map, object, 0))
2468                 return 1;
2469         return 0;
2470 }
2471
2472 /*
2473  * Debugging only
2474  */
2475 static int
2476 vm_object_in_map_callback(struct proc *p, void *data)
2477 {
2478         struct vm_object_in_map_info *info = data;
2479
2480         if (p->p_vmspace) {
2481                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2482                         info->rv = 1;
2483                         return -1;
2484                 }
2485         }
2486         return (0);
2487 }
2488
2489 DB_SHOW_COMMAND(vmochk, vm_object_check)
2490 {
2491         vm_object_t object;
2492
2493         /*
2494          * make sure that internal objs are in a map somewhere
2495          * and none have zero ref counts.
2496          */
2497         for (object = TAILQ_FIRST(&vm_object_list);
2498                         object != NULL;
2499                         object = TAILQ_NEXT(object, object_list)) {
2500                 if (object->type == OBJT_MARKER)
2501                         continue;
2502                 if (object->handle == NULL &&
2503                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2504                         if (object->ref_count == 0) {
2505                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2506                                         (long)object->size);
2507                         }
2508                         if (!vm_object_in_map(object)) {
2509                                 db_printf(
2510                         "vmochk: internal obj is not in a map: "
2511                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2512                                     object->ref_count, (u_long)object->size, 
2513                                     (u_long)object->size,
2514                                     (void *)object->backing_object);
2515                         }
2516                 }
2517         }
2518 }
2519
2520 /*
2521  * Debugging only
2522  */
2523 DB_SHOW_COMMAND(object, vm_object_print_static)
2524 {
2525         /* XXX convert args. */
2526         vm_object_t object = (vm_object_t)addr;
2527         boolean_t full = have_addr;
2528
2529         vm_page_t p;
2530
2531         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2532 #define count   was_count
2533
2534         int count;
2535
2536         if (object == NULL)
2537                 return;
2538
2539         db_iprintf(
2540             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2541             object, (int)object->type, (u_long)object->size,
2542             object->resident_page_count, object->ref_count, object->flags);
2543         /*
2544          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2545          */
2546         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2547             object->shadow_count, 
2548             object->backing_object ? object->backing_object->ref_count : 0,
2549             object->backing_object, (long)object->backing_object_offset);
2550
2551         if (!full)
2552                 return;
2553
2554         db_indent += 2;
2555         count = 0;
2556         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
2557                 if (count == 0)
2558                         db_iprintf("memory:=");
2559                 else if (count == 6) {
2560                         db_printf("\n");
2561                         db_iprintf(" ...");
2562                         count = 0;
2563                 } else
2564                         db_printf(",");
2565                 count++;
2566
2567                 db_printf("(off=0x%lx,page=0x%lx)",
2568                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
2569         }
2570         if (count != 0)
2571                 db_printf("\n");
2572         db_indent -= 2;
2573 }
2574
2575 /* XXX. */
2576 #undef count
2577
2578 /*
2579  * XXX need this non-static entry for calling from vm_map_print.
2580  *
2581  * Debugging only
2582  */
2583 void
2584 vm_object_print(/* db_expr_t */ long addr,
2585                 boolean_t have_addr,
2586                 /* db_expr_t */ long count,
2587                 char *modif)
2588 {
2589         vm_object_print_static(addr, have_addr, count, modif);
2590 }
2591
2592 /*
2593  * Debugging only
2594  */
2595 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2596 {
2597         vm_object_t object;
2598         int nl = 0;
2599         int c;
2600         for (object = TAILQ_FIRST(&vm_object_list);
2601                         object != NULL;
2602                         object = TAILQ_NEXT(object, object_list)) {
2603                 vm_pindex_t idx, fidx;
2604                 vm_pindex_t osize;
2605                 vm_paddr_t pa = -1, padiff;
2606                 int rcount;
2607                 vm_page_t m;
2608
2609                 if (object->type == OBJT_MARKER)
2610                         continue;
2611                 db_printf("new object: %p\n", (void *)object);
2612                 if ( nl > 18) {
2613                         c = cngetc();
2614                         if (c != ' ')
2615                                 return;
2616                         nl = 0;
2617                 }
2618                 nl++;
2619                 rcount = 0;
2620                 fidx = 0;
2621                 osize = object->size;
2622                 if (osize > 128)
2623                         osize = 128;
2624                 for (idx = 0; idx < osize; idx++) {
2625                         m = vm_page_lookup(object, idx);
2626                         if (m == NULL) {
2627                                 if (rcount) {
2628                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2629                                                 (long)fidx, rcount, (long)pa);
2630                                         if ( nl > 18) {
2631                                                 c = cngetc();
2632                                                 if (c != ' ')
2633                                                         return;
2634                                                 nl = 0;
2635                                         }
2636                                         nl++;
2637                                         rcount = 0;
2638                                 }
2639                                 continue;
2640                         }
2641
2642                                 
2643                         if (rcount &&
2644                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2645                                 ++rcount;
2646                                 continue;
2647                         }
2648                         if (rcount) {
2649                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
2650                                 padiff >>= PAGE_SHIFT;
2651                                 padiff &= PQ_L2_MASK;
2652                                 if (padiff == 0) {
2653                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
2654                                         ++rcount;
2655                                         continue;
2656                                 }
2657                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
2658                                         (long)fidx, rcount, (long)pa);
2659                                 db_printf("pd(%ld)\n", (long)padiff);
2660                                 if ( nl > 18) {
2661                                         c = cngetc();
2662                                         if (c != ' ')
2663                                                 return;
2664                                         nl = 0;
2665                                 }
2666                                 nl++;
2667                         }
2668                         fidx = idx;
2669                         pa = VM_PAGE_TO_PHYS(m);
2670                         rcount = 1;
2671                 }
2672                 if (rcount) {
2673                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2674                                 (long)fidx, rcount, (long)pa);
2675                         if ( nl > 18) {
2676                                 c = cngetc();
2677                                 if (c != ' ')
2678                                         return;
2679                                 nl = 0;
2680                         }
2681                         nl++;
2682                 }
2683         }
2684 }
2685 #endif /* DDB */