Merge from vendor branch FILE:
[dragonfly.git] / sys / dev / disk / advansys / advlib.c
1 /*
2  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
3  *
4  * Copyright (c) 1996-1997, 1999-2000 Justin Gibbs.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification, immediately at the beginning of the file.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * $FreeBSD: src/sys/dev/advansys/advlib.c,v 1.15.2.1 2000/04/14 13:32:49 nyan Exp $
32  * $DragonFly: src/sys/dev/disk/advansys/advlib.c,v 1.7 2006/10/25 20:55:52 dillon Exp $
33  */
34 /*
35  * Ported from:
36  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
37  *     
38  * Copyright (c) 1995-1996 Advanced System Products, Inc.
39  * All Rights Reserved.
40  *   
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that redistributions of source
43  * code retain the above copyright notice and this comment without
44  * modification.
45  */
46
47 #include <sys/param.h>
48 #include <sys/kernel.h>
49 #include <sys/systm.h>
50 #include <sys/thread2.h>
51 #include <sys/bus.h> 
52 #include <sys/rman.h> 
53
54 #include <machine/clock.h>
55
56 #include <bus/cam/cam.h>
57 #include <bus/cam/cam_ccb.h>
58 #include <bus/cam/cam_sim.h>
59 #include <bus/cam/cam_xpt_sim.h>
60
61 #include <bus/cam/scsi/scsi_all.h>
62 #include <bus/cam/scsi/scsi_message.h>
63 #include <bus/cam/scsi/scsi_da.h>
64 #include <bus/cam/scsi/scsi_cd.h>
65
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <vm/pmap.h>
69
70 #include "advansys.h"
71 #include "advmcode.h"
72
73 struct adv_quirk_entry {
74         struct scsi_inquiry_pattern inq_pat;
75         u_int8_t quirks;
76 #define ADV_QUIRK_FIX_ASYN_XFER_ALWAYS  0x01
77 #define ADV_QUIRK_FIX_ASYN_XFER         0x02
78 };
79
80 static struct adv_quirk_entry adv_quirk_table[] =
81 {
82         {
83                 { T_CDROM, SIP_MEDIA_REMOVABLE, "HP", "*", "*" },
84                 ADV_QUIRK_FIX_ASYN_XFER_ALWAYS|ADV_QUIRK_FIX_ASYN_XFER
85         },
86         {
87                 { T_CDROM, SIP_MEDIA_REMOVABLE, "NEC", "CD-ROM DRIVE", "*" },
88                 0
89         },
90         {
91                 {
92                   T_SEQUENTIAL, SIP_MEDIA_REMOVABLE,
93                   "TANDBERG", " TDC 36", "*"
94                 },
95                 0
96         },
97         {
98                 { T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "WANGTEK", "*", "*" },
99                 0
100         },
101         {
102                 {
103                   T_PROCESSOR, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
104                   "*", "*", "*"
105                 },
106                 0
107         },
108         {
109                 {
110                   T_SCANNER, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
111                   "*", "*", "*"
112                 },
113                 0
114         },
115         {
116                 /* Default quirk entry */
117                 {
118                   T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
119                   /*vendor*/"*", /*product*/"*", /*revision*/"*"
120                 }, 
121                 ADV_QUIRK_FIX_ASYN_XFER,
122         }
123 };
124
125 /*
126  * Allowable periods in ns
127  */
128 static u_int8_t adv_sdtr_period_tbl[] =
129 {
130         25,
131         30,
132         35,
133         40,
134         50,
135         60,
136         70,
137         85
138 };
139
140 static u_int8_t adv_sdtr_period_tbl_ultra[] =
141 {
142         12,
143         19,
144         25,
145         32,
146         38,
147         44,
148         50,
149         57,
150         63,
151         69,
152         75,
153         82,
154         88, 
155         94,
156         100,
157         107
158 };
159
160 struct ext_msg {
161         u_int8_t msg_type;
162         u_int8_t msg_len;
163         u_int8_t msg_req;
164         union {
165                 struct {
166                         u_int8_t sdtr_xfer_period;
167                         u_int8_t sdtr_req_ack_offset;
168                 } sdtr;
169                 struct {
170                         u_int8_t wdtr_width;
171                 } wdtr;
172                 struct {
173                         u_int8_t mdp[4];
174                 } mdp;
175         } u_ext_msg;
176         u_int8_t res;
177 };
178
179 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
180 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
181 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
182 #define mdp_b3          u_ext_msg.mdp_b3
183 #define mdp_b2          u_ext_msg.mdp_b2
184 #define mdp_b1          u_ext_msg.mdp_b1
185 #define mdp_b0          u_ext_msg.mdp_b0
186
187 /*
188  * Some of the early PCI adapters have problems with
189  * async transfers.  Instead use an offset of 1.
190  */
191 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
192
193 /* LRAM routines */
194 static void      adv_read_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
195                                         u_int16_t *buffer, int count);
196 static void      adv_write_lram_16_multi(struct adv_softc *adv,
197                                          u_int16_t s_addr, u_int16_t *buffer,
198                                          int count);
199 static void      adv_mset_lram_16(struct adv_softc *adv, u_int16_t s_addr,
200                                   u_int16_t set_value, int count);
201 static u_int32_t adv_msum_lram_16(struct adv_softc *adv, u_int16_t s_addr,
202                                   int count);
203
204 static int       adv_write_and_verify_lram_16(struct adv_softc *adv,
205                                               u_int16_t addr, u_int16_t value);
206 static u_int32_t adv_read_lram_32(struct adv_softc *adv, u_int16_t addr);
207
208
209 static void      adv_write_lram_32(struct adv_softc *adv, u_int16_t addr,
210                                    u_int32_t value);
211 static void      adv_write_lram_32_multi(struct adv_softc *adv,
212                                          u_int16_t s_addr, u_int32_t *buffer,
213                                          int count);
214
215 /* EEPROM routines */
216 static u_int16_t adv_read_eeprom_16(struct adv_softc *adv, u_int8_t addr);
217 static u_int16_t adv_write_eeprom_16(struct adv_softc *adv, u_int8_t addr,
218                                      u_int16_t value);
219 static int       adv_write_eeprom_cmd_reg(struct adv_softc *adv,
220                                           u_int8_t cmd_reg);
221 static int       adv_set_eeprom_config_once(struct adv_softc *adv,
222                                             struct adv_eeprom_config *eeconfig);
223
224 /* Initialization */
225 static u_int32_t adv_load_microcode(struct adv_softc *adv, u_int16_t s_addr,
226                                     u_int16_t *mcode_buf, u_int16_t mcode_size);
227
228 static void      adv_reinit_lram(struct adv_softc *adv);
229 static void      adv_init_lram(struct adv_softc *adv);
230 static int       adv_init_microcode_var(struct adv_softc *adv);
231 static void      adv_init_qlink_var(struct adv_softc *adv);
232
233 /* Interrupts */
234 static void      adv_disable_interrupt(struct adv_softc *adv);
235 static void      adv_enable_interrupt(struct adv_softc *adv);
236 static void      adv_toggle_irq_act(struct adv_softc *adv);
237
238 /* Chip Control */
239 static int       adv_host_req_chip_halt(struct adv_softc *adv);
240 static void      adv_set_chip_ih(struct adv_softc *adv, u_int16_t ins_code);
241 #if UNUSED
242 static u_int8_t  adv_get_chip_scsi_ctrl(struct adv_softc *adv);
243 #endif
244
245 /* Queue handling and execution */
246 static __inline int
247                  adv_sgcount_to_qcount(int sgcount);
248
249 static __inline int
250 adv_sgcount_to_qcount(int sgcount)
251 {
252         int     n_sg_list_qs;
253
254         n_sg_list_qs = ((sgcount - 1) / ADV_SG_LIST_PER_Q);
255         if (((sgcount - 1) % ADV_SG_LIST_PER_Q) != 0)
256                 n_sg_list_qs++;
257         return (n_sg_list_qs + 1);
258 }
259
260 static void      adv_get_q_info(struct adv_softc *adv, u_int16_t s_addr,
261                                 u_int16_t *inbuf, int words);
262 static u_int     adv_get_num_free_queues(struct adv_softc *adv, u_int8_t n_qs);
263 static u_int8_t  adv_alloc_free_queues(struct adv_softc *adv,
264                                        u_int8_t free_q_head, u_int8_t n_free_q);
265 static u_int8_t  adv_alloc_free_queue(struct adv_softc *adv,
266                                       u_int8_t free_q_head);
267 static int       adv_send_scsi_queue(struct adv_softc *adv,
268                                      struct adv_scsi_q *scsiq,
269                                      u_int8_t n_q_required);
270 static void      adv_put_ready_sg_list_queue(struct adv_softc *adv,
271                                              struct adv_scsi_q *scsiq,
272                                              u_int q_no);
273 static void      adv_put_ready_queue(struct adv_softc *adv,
274                                      struct adv_scsi_q *scsiq, u_int q_no);
275 static void      adv_put_scsiq(struct adv_softc *adv, u_int16_t s_addr,
276                                u_int16_t *buffer, int words);
277
278 /* Messages */
279 static void      adv_handle_extmsg_in(struct adv_softc *adv,
280                                       u_int16_t halt_q_addr, u_int8_t q_cntl,
281                                       target_bit_vector target_id,
282                                       int tid);
283 static void      adv_msgout_sdtr(struct adv_softc *adv, u_int8_t sdtr_period,
284                                  u_int8_t sdtr_offset);
285 static void      adv_set_sdtr_reg_at_id(struct adv_softc *adv, int id,
286                                         u_int8_t sdtr_data);
287
288
289 /* Exported functions first */
290
291 void
292 advasync(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
293 {
294         struct adv_softc *adv;
295
296         adv = (struct adv_softc *)callback_arg;
297         switch (code) {
298         case AC_FOUND_DEVICE:
299         {
300                 struct ccb_getdev *cgd;
301                 target_bit_vector target_mask;
302                 int num_entries;
303                 caddr_t match;
304                 struct adv_quirk_entry *entry;
305                 struct adv_target_transinfo* tinfo;
306  
307                 cgd = (struct ccb_getdev *)arg;
308
309                 target_mask = ADV_TID_TO_TARGET_MASK(cgd->ccb_h.target_id);
310
311                 num_entries = sizeof(adv_quirk_table)/sizeof(*adv_quirk_table);
312                 match = cam_quirkmatch((caddr_t)&cgd->inq_data,
313                                        (caddr_t)adv_quirk_table,
314                                        num_entries, sizeof(*adv_quirk_table),
315                                        scsi_inquiry_match);
316         
317                 if (match == NULL)
318                         panic("advasync: device didn't match wildcard entry!!");
319
320                 entry = (struct adv_quirk_entry *)match;
321
322                 if (adv->bug_fix_control & ADV_BUG_FIX_ASYN_USE_SYN) {
323                         if ((entry->quirks & ADV_QUIRK_FIX_ASYN_XFER_ALWAYS)!=0)
324                                 adv->fix_asyn_xfer_always |= target_mask;
325                         else
326                                 adv->fix_asyn_xfer_always &= ~target_mask;
327                         /*
328                          * We start out life with all bits set and clear them
329                          * after we've determined that the fix isn't necessary.
330                          * It may well be that we've already cleared a target
331                          * before the full inquiry session completes, so don't
332                          * gratuitously set a target bit even if it has this
333                          * quirk.  But, if the quirk exonerates a device, clear
334                          * the bit now.
335                          */
336                         if ((entry->quirks & ADV_QUIRK_FIX_ASYN_XFER) == 0)
337                                 adv->fix_asyn_xfer &= ~target_mask;
338                 }
339                 /*
340                  * Reset our sync settings now that we've determined
341                  * what quirks are in effect for the device.
342                  */
343                 tinfo = &adv->tinfo[cgd->ccb_h.target_id];
344                 adv_set_syncrate(adv, cgd->ccb_h.path,
345                                  cgd->ccb_h.target_id,
346                                  tinfo->current.period,
347                                  tinfo->current.offset,
348                                  ADV_TRANS_CUR);
349                 break;
350         }
351         case AC_LOST_DEVICE:
352         {
353                 u_int target_mask;
354
355                 if (adv->bug_fix_control & ADV_BUG_FIX_ASYN_USE_SYN) {
356                         target_mask = 0x01 << xpt_path_target_id(path);
357                         adv->fix_asyn_xfer |= target_mask;
358                 }
359
360                 /*
361                  * Revert to async transfers
362                  * for the next device.
363                  */
364                 adv_set_syncrate(adv, /*path*/NULL,
365                                  xpt_path_target_id(path),
366                                  /*period*/0,
367                                  /*offset*/0,
368                                  ADV_TRANS_GOAL|ADV_TRANS_CUR);
369         }
370         default:
371                 break;
372         }
373 }
374
375 void
376 adv_set_bank(struct adv_softc *adv, u_int8_t bank)
377 {
378         u_int8_t control;
379
380         /*
381          * Start out with the bank reset to 0
382          */
383         control = ADV_INB(adv, ADV_CHIP_CTRL)
384                   &  (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST
385                         | ADV_CC_DIAG | ADV_CC_SCSI_RESET
386                         | ADV_CC_CHIP_RESET | ADV_CC_BANK_ONE));
387         if (bank == 1) {
388                 control |= ADV_CC_BANK_ONE;
389         } else if (bank == 2) {
390                 control |= ADV_CC_DIAG | ADV_CC_BANK_ONE;
391         }
392         ADV_OUTB(adv, ADV_CHIP_CTRL, control);
393 }
394
395 u_int8_t
396 adv_read_lram_8(struct adv_softc *adv, u_int16_t addr)
397 {
398         u_int8_t   byte_data;
399         u_int16_t  word_data;
400
401         /*
402          * LRAM is accessed on 16bit boundaries.
403          */
404         ADV_OUTW(adv, ADV_LRAM_ADDR, addr & 0xFFFE);
405         word_data = ADV_INW(adv, ADV_LRAM_DATA);
406         if (addr & 1) {
407 #if BYTE_ORDER == BIG_ENDIAN
408                 byte_data = (u_int8_t)(word_data & 0xFF);
409 #else
410                 byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
411 #endif
412         } else {
413 #if BYTE_ORDER == BIG_ENDIAN
414                 byte_data = (u_int8_t)((word_data >> 8) & 0xFF);
415 #else           
416                 byte_data = (u_int8_t)(word_data & 0xFF);
417 #endif
418         }
419         return (byte_data);
420 }
421
422 void
423 adv_write_lram_8(struct adv_softc *adv, u_int16_t addr, u_int8_t value)
424 {
425         u_int16_t word_data;
426
427         word_data = adv_read_lram_16(adv, addr & 0xFFFE);
428         if (addr & 1) {
429                 word_data &= 0x00FF;
430                 word_data |= (((u_int8_t)value << 8) & 0xFF00);
431         } else {
432                 word_data &= 0xFF00;
433                 word_data |= ((u_int8_t)value & 0x00FF);
434         }
435         adv_write_lram_16(adv, addr & 0xFFFE, word_data);
436 }
437
438
439 u_int16_t
440 adv_read_lram_16(struct adv_softc *adv, u_int16_t addr)
441 {
442         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
443         return (ADV_INW(adv, ADV_LRAM_DATA));
444 }
445
446 void
447 adv_write_lram_16(struct adv_softc *adv, u_int16_t addr, u_int16_t value)
448 {
449         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
450         ADV_OUTW(adv, ADV_LRAM_DATA, value);
451 }
452
453 /*
454  * Determine if there is a board at "iobase" by looking
455  * for the AdvanSys signatures.  Return 1 if a board is
456  * found, 0 otherwise.
457  */
458 int                         
459 adv_find_signature(bus_space_tag_t tag, bus_space_handle_t bsh)
460 {                            
461         u_int16_t signature;
462
463         if (bus_space_read_1(tag, bsh, ADV_SIGNATURE_BYTE) == ADV_1000_ID1B) {
464                 signature = bus_space_read_2(tag, bsh, ADV_SIGNATURE_WORD);
465                 if ((signature == ADV_1000_ID0W)
466                  || (signature == ADV_1000_ID0W_FIX))
467                         return (1);
468         }
469         return (0);
470 }
471
472 void
473 adv_lib_init(struct adv_softc *adv)
474 {
475         if ((adv->type & ADV_ULTRA) != 0) {
476                 adv->sdtr_period_tbl = adv_sdtr_period_tbl_ultra;
477                 adv->sdtr_period_tbl_size = sizeof(adv_sdtr_period_tbl_ultra);
478         } else {
479                 adv->sdtr_period_tbl = adv_sdtr_period_tbl;
480                 adv->sdtr_period_tbl_size = sizeof(adv_sdtr_period_tbl);                
481         }
482 }
483
484 u_int16_t
485 adv_get_eeprom_config(struct adv_softc *adv, struct
486                       adv_eeprom_config  *eeprom_config)
487 {
488         u_int16_t       sum;
489         u_int16_t       *wbuf;
490         u_int8_t        cfg_beg;
491         u_int8_t        cfg_end;
492         u_int8_t        s_addr;
493
494         wbuf = (u_int16_t *)eeprom_config;
495         sum = 0;
496
497         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
498                 *wbuf = adv_read_eeprom_16(adv, s_addr);
499                 sum += *wbuf;
500         }
501
502         if (adv->type & ADV_VL) {
503                 cfg_beg = ADV_EEPROM_CFG_BEG_VL;
504                 cfg_end = ADV_EEPROM_MAX_ADDR_VL;
505         } else {
506                 cfg_beg = ADV_EEPROM_CFG_BEG;
507                 cfg_end = ADV_EEPROM_MAX_ADDR;
508         }
509
510         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
511                 *wbuf = adv_read_eeprom_16(adv, s_addr);
512                 sum += *wbuf;
513 #if ADV_DEBUG_EEPROM
514                 printf("Addr 0x%x: 0x%04x\n", s_addr, *wbuf);
515 #endif
516         }
517         *wbuf = adv_read_eeprom_16(adv, s_addr);
518         return (sum);
519 }
520
521 int
522 adv_set_eeprom_config(struct adv_softc *adv,
523                       struct adv_eeprom_config *eeprom_config)
524 {
525         int     retry;
526
527         retry = 0;
528         while (1) {
529                 if (adv_set_eeprom_config_once(adv, eeprom_config) == 0) {
530                         break;
531                 }
532                 if (++retry > ADV_EEPROM_MAX_RETRY) {
533                         break;
534                 }
535         }
536         return (retry > ADV_EEPROM_MAX_RETRY);
537 }
538
539 int
540 adv_reset_chip(struct adv_softc *adv, int reset_bus)
541 {
542         adv_stop_chip(adv);
543         ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT
544                                      | (reset_bus ? ADV_CC_SCSI_RESET : 0));
545         DELAY(60);
546
547         adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
548         adv_set_chip_ih(adv, ADV_INS_HALT);
549
550         if (reset_bus)
551                 ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_CHIP_RESET | ADV_CC_HALT);
552
553         ADV_OUTB(adv, ADV_CHIP_CTRL, ADV_CC_HALT);
554         if (reset_bus)
555                 DELAY(200 * 1000);
556
557         ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_CLR_SCSI_RESET_INT);
558         ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
559         return (adv_is_chip_halted(adv));
560 }
561
562 int
563 adv_test_external_lram(struct adv_softc* adv)
564 {
565         u_int16_t       q_addr;
566         u_int16_t       saved_value;
567         int             success;
568
569         success = 0;
570
571         q_addr = ADV_QNO_TO_QADDR(241);
572         saved_value = adv_read_lram_16(adv, q_addr);
573         if (adv_write_and_verify_lram_16(adv, q_addr, 0x55AA) == 0) {
574                 success = 1;
575                 adv_write_lram_16(adv, q_addr, saved_value);
576         }
577         return (success);
578 }
579
580
581 int
582 adv_init_lram_and_mcode(struct adv_softc *adv)
583 {
584         u_int32_t       retval;
585
586         adv_disable_interrupt(adv);
587
588         adv_init_lram(adv);
589
590         retval = adv_load_microcode(adv, 0, (u_int16_t *)adv_mcode,
591                                     adv_mcode_size);
592         if (retval != adv_mcode_chksum) {
593                 printf("adv%d: Microcode download failed checksum!\n",
594                        adv->unit);
595                 return (1);
596         }
597         
598         if (adv_init_microcode_var(adv) != 0)
599                 return (1);
600
601         adv_enable_interrupt(adv);
602         return (0);
603 }
604
605 u_int8_t
606 adv_get_chip_irq(struct adv_softc *adv)
607 {
608         u_int16_t       cfg_lsw;
609         u_int8_t        chip_irq;
610
611         cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
612
613         if ((adv->type & ADV_VL) != 0) {
614                 chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x07));
615                 if ((chip_irq == 0) ||
616                     (chip_irq == 4) ||
617                     (chip_irq == 7)) {
618                         return (0);
619                 }
620                 return (chip_irq + (ADV_MIN_IRQ_NO - 1));
621         }
622         chip_irq = (u_int8_t)(((cfg_lsw >> 2) & 0x03));
623         if (chip_irq == 3)
624                 chip_irq += 2;
625         return (chip_irq + ADV_MIN_IRQ_NO);
626 }
627
628 u_int8_t
629 adv_set_chip_irq(struct adv_softc *adv, u_int8_t irq_no)
630 {
631         u_int16_t       cfg_lsw;
632
633         if ((adv->type & ADV_VL) != 0) {
634                 if (irq_no != 0) {
635                         if ((irq_no < ADV_MIN_IRQ_NO)
636                          || (irq_no > ADV_MAX_IRQ_NO)) {
637                                 irq_no = 0;
638                         } else {
639                                 irq_no -= ADV_MIN_IRQ_NO - 1;
640                         }
641                 }
642                 cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE3;
643                 cfg_lsw |= 0x0010;
644                 ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
645                 adv_toggle_irq_act(adv);
646
647                 cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFE0;
648                 cfg_lsw |= (irq_no & 0x07) << 2;
649                 ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
650                 adv_toggle_irq_act(adv);
651         } else if ((adv->type & ADV_ISA) != 0) {
652                 if (irq_no == 15)
653                         irq_no -= 2;
654                 irq_no -= ADV_MIN_IRQ_NO;
655                 cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW) & 0xFFF3;
656                 cfg_lsw |= (irq_no & 0x03) << 2;
657                 ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
658         }
659         return (adv_get_chip_irq(adv));
660 }
661
662 void
663 adv_set_chip_scsiid(struct adv_softc *adv, int new_id)
664 {
665         u_int16_t cfg_lsw;
666
667         cfg_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
668         if (ADV_CONFIG_SCSIID(cfg_lsw) == new_id)
669                 return;
670         cfg_lsw &= ~ADV_CFG_LSW_SCSIID;
671         cfg_lsw |= (new_id & ADV_MAX_TID) << ADV_CFG_LSW_SCSIID_SHIFT;
672         ADV_OUTW(adv, ADV_CONFIG_LSW, cfg_lsw);
673 }
674
675 int
676 adv_execute_scsi_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
677                        u_int32_t datalen)
678 {
679         struct          adv_target_transinfo* tinfo;
680         u_int32_t       *p_data_addr;
681         u_int32_t       *p_data_bcount;
682         int             disable_syn_offset_one_fix;
683         int             retval;
684         u_int           n_q_required;
685         u_int32_t       addr;
686         u_int8_t        sg_entry_cnt;
687         u_int8_t        target_ix;
688         u_int8_t        sg_entry_cnt_minus_one;
689         u_int8_t        tid_no;
690
691         scsiq->q1.q_no = 0;
692         retval = 1;  /* Default to error case */
693         target_ix = scsiq->q2.target_ix;
694         tid_no = ADV_TIX_TO_TID(target_ix);
695         tinfo = &adv->tinfo[tid_no];
696
697         if (scsiq->cdbptr[0] == REQUEST_SENSE) {
698                 /* Renegotiate if appropriate. */
699                 adv_set_syncrate(adv, /*struct cam_path */NULL,
700                                  tid_no, /*period*/0, /*offset*/0,
701                                  ADV_TRANS_CUR);
702                 if (tinfo->current.period != tinfo->goal.period) {
703                         adv_msgout_sdtr(adv, tinfo->goal.period,
704                                         tinfo->goal.offset);
705                         scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
706                 }
707         }
708
709         if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
710                 sg_entry_cnt = scsiq->sg_head->entry_cnt;
711                 sg_entry_cnt_minus_one = sg_entry_cnt - 1;
712
713 #ifdef DIAGNOSTIC
714                 if (sg_entry_cnt <= 1) 
715                         panic("adv_execute_scsi_queue: Queue "
716                               "with QC_SG_HEAD set but %d segs.", sg_entry_cnt);
717
718                 if (sg_entry_cnt > ADV_MAX_SG_LIST)
719                         panic("adv_execute_scsi_queue: "
720                               "Queue with too many segs.");
721
722                 if ((adv->type & (ADV_ISA | ADV_VL | ADV_EISA)) != 0) {
723                         int i;
724
725                         for (i = 0; i < sg_entry_cnt_minus_one; i++) {
726                                 addr = scsiq->sg_head->sg_list[i].addr +
727                                        scsiq->sg_head->sg_list[i].bytes;
728
729                                 if ((addr & 0x0003) != 0)
730                                         panic("adv_execute_scsi_queue: SG "
731                                               "with odd address or byte count");
732                         }
733                 }
734 #endif
735                 p_data_addr =
736                     &scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].addr;
737                 p_data_bcount =
738                     &scsiq->sg_head->sg_list[sg_entry_cnt_minus_one].bytes;
739
740                 n_q_required = adv_sgcount_to_qcount(sg_entry_cnt);
741                 scsiq->sg_head->queue_cnt = n_q_required - 1;
742         } else {
743                 p_data_addr = &scsiq->q1.data_addr;
744                 p_data_bcount = &scsiq->q1.data_cnt;
745                 n_q_required = 1;
746         }
747
748         disable_syn_offset_one_fix = FALSE;
749
750         if ((adv->fix_asyn_xfer & scsiq->q1.target_id) != 0
751          && (adv->fix_asyn_xfer_always & scsiq->q1.target_id) == 0) {
752
753                 if (datalen != 0) {
754                         if (datalen < 512) {
755                                 disable_syn_offset_one_fix = TRUE;
756                         } else {
757                                 if (scsiq->cdbptr[0] == INQUIRY
758                                  || scsiq->cdbptr[0] == REQUEST_SENSE
759                                  || scsiq->cdbptr[0] == READ_CAPACITY
760                                  || scsiq->cdbptr[0] == MODE_SELECT_6 
761                                  || scsiq->cdbptr[0] == MODE_SENSE_6
762                                  || scsiq->cdbptr[0] == MODE_SENSE_10 
763                                  || scsiq->cdbptr[0] == MODE_SELECT_10 
764                                  || scsiq->cdbptr[0] == READ_TOC) {
765                                         disable_syn_offset_one_fix = TRUE;
766                                 }
767                         }
768                 }
769         }
770
771         if (disable_syn_offset_one_fix) {
772                 scsiq->q2.tag_code &=
773                     ~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
774                 scsiq->q2.tag_code |= (ADV_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX
775                                      | ADV_TAG_FLAG_DISABLE_DISCONNECT);
776         }
777
778         if ((adv->bug_fix_control & ADV_BUG_FIX_IF_NOT_DWB) != 0
779          && (scsiq->cdbptr[0] == READ_10 || scsiq->cdbptr[0] == READ_6)) {
780                 u_int8_t extra_bytes;
781
782                 addr = *p_data_addr + *p_data_bcount;
783                 extra_bytes = addr & 0x0003;
784                 if (extra_bytes != 0
785                  && ((scsiq->q1.cntl & QC_SG_HEAD) != 0
786                   || (scsiq->q1.data_cnt & 0x01FF) == 0)) {
787                         scsiq->q2.tag_code |= ADV_TAG_FLAG_EXTRA_BYTES;
788                         scsiq->q1.extra_bytes = extra_bytes;
789                         *p_data_bcount -= extra_bytes;
790                 }
791         }
792
793         if ((adv_get_num_free_queues(adv, n_q_required) >= n_q_required)
794          || ((scsiq->q1.cntl & QC_URGENT) != 0))
795                 retval = adv_send_scsi_queue(adv, scsiq, n_q_required);
796         
797         return (retval);
798 }
799
800
801 u_int8_t
802 adv_copy_lram_doneq(struct adv_softc *adv, u_int16_t q_addr,
803                     struct adv_q_done_info *scsiq, u_int32_t max_dma_count)
804 {
805         u_int16_t val;
806         u_int8_t  sg_queue_cnt;
807
808         adv_get_q_info(adv, q_addr + ADV_SCSIQ_DONE_INFO_BEG,
809                        (u_int16_t *)scsiq,
810                        (sizeof(scsiq->d2) + sizeof(scsiq->d3)) / 2);
811
812 #if BYTE_ORDER == BIG_ENDIAN
813         adv_adj_endian_qdone_info(scsiq);
814 #endif
815
816         val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS);
817         scsiq->q_status = val & 0xFF;
818         scsiq->q_no = (val >> 8) & 0XFF;
819
820         val = adv_read_lram_16(adv, q_addr + ADV_SCSIQ_B_CNTL);
821         scsiq->cntl = val & 0xFF;
822         sg_queue_cnt = (val >> 8) & 0xFF;
823
824         val = adv_read_lram_16(adv,q_addr + ADV_SCSIQ_B_SENSE_LEN);
825         scsiq->sense_len = val & 0xFF;
826         scsiq->extra_bytes = (val >> 8) & 0xFF;
827
828         /*
829          * Due to a bug in accessing LRAM on the 940UA, the residual
830          * is split into separate high and low 16bit quantities.
831          */
832         scsiq->remain_bytes =
833             adv_read_lram_16(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT);
834         scsiq->remain_bytes |=
835             adv_read_lram_16(adv, q_addr + ADV_SCSIQ_W_ALT_DC1) << 16;
836
837         /*
838          * XXX Is this just a safeguard or will the counter really
839          * have bogus upper bits?
840          */
841         scsiq->remain_bytes &= max_dma_count;
842
843         return (sg_queue_cnt);
844 }
845
846 int
847 adv_start_chip(struct adv_softc *adv)
848 {
849         ADV_OUTB(adv, ADV_CHIP_CTRL, 0);
850         if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0)
851                 return (0);
852         return (1);
853 }
854
855 int
856 adv_stop_execution(struct adv_softc *adv)
857 {
858         int count;
859
860         count = 0;
861         if (adv_read_lram_8(adv, ADV_STOP_CODE_B) == 0) {
862                 adv_write_lram_8(adv, ADV_STOP_CODE_B,
863                                  ADV_STOP_REQ_RISC_STOP);
864                 do {
865                         if (adv_read_lram_8(adv, ADV_STOP_CODE_B) &
866                                 ADV_STOP_ACK_RISC_STOP) {
867                                 return (1);
868                         }
869                         DELAY(1000);
870                 } while (count++ < 20);
871         }
872         return (0);
873 }
874
875 int
876 adv_is_chip_halted(struct adv_softc *adv)
877 {
878         if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) != 0) {
879                 if ((ADV_INB(adv, ADV_CHIP_CTRL) & ADV_CC_HALT) != 0) {
880                         return (1);
881                 }
882         }
883         return (0);
884 }
885
886 /*
887  * XXX The numeric constants and the loops in this routine
888  * need to be documented.
889  */
890 void
891 adv_ack_interrupt(struct adv_softc *adv)
892 {
893         u_int8_t        host_flag;
894         u_int8_t        risc_flag;
895         int             loop;
896
897         loop = 0;
898         do {
899                 risc_flag = adv_read_lram_8(adv, ADVV_RISC_FLAG_B);
900                 if (loop++ > 0x7FFF) {
901                         break;
902                 }
903         } while ((risc_flag & ADV_RISC_FLAG_GEN_INT) != 0);
904
905         host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
906         adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
907                          host_flag | ADV_HOST_FLAG_ACK_INT);
908
909         ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
910         loop = 0;
911         while (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_INT_PENDING) {
912                 ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_INT_ACK);
913                 if (loop++ > 3) {
914                         break;
915                 }
916         }
917
918         adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
919 }
920
921 /*
922  * Handle all conditions that may halt the chip waiting
923  * for us to intervene.
924  */
925 void
926 adv_isr_chip_halted(struct adv_softc *adv)
927 {
928         u_int16_t         int_halt_code;
929         u_int16_t         halt_q_addr;
930         target_bit_vector target_mask;
931         target_bit_vector scsi_busy;
932         u_int8_t          halt_qp;
933         u_int8_t          target_ix;
934         u_int8_t          q_cntl;
935         u_int8_t          tid_no;
936
937         int_halt_code = adv_read_lram_16(adv, ADVV_HALTCODE_W);
938         halt_qp = adv_read_lram_8(adv, ADVV_CURCDB_B);
939         halt_q_addr = ADV_QNO_TO_QADDR(halt_qp);
940         target_ix = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TARGET_IX);
941         q_cntl = adv_read_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL);
942         tid_no = ADV_TIX_TO_TID(target_ix);
943         target_mask = ADV_TID_TO_TARGET_MASK(tid_no);
944         if (int_halt_code == ADV_HALT_DISABLE_ASYN_USE_SYN_FIX) {
945                 /*
946                  * Temporarily disable the async fix by removing
947                  * this target from the list of affected targets,
948                  * setting our async rate, and then putting us
949                  * back into the mask.
950                  */
951                 adv->fix_asyn_xfer &= ~target_mask;
952                 adv_set_syncrate(adv, /*struct cam_path */NULL,
953                                  tid_no, /*period*/0, /*offset*/0,
954                                  ADV_TRANS_ACTIVE);
955                 adv->fix_asyn_xfer |= target_mask;
956         } else if (int_halt_code == ADV_HALT_ENABLE_ASYN_USE_SYN_FIX) {
957                 adv_set_syncrate(adv, /*struct cam_path */NULL,
958                                  tid_no, /*period*/0, /*offset*/0,
959                                  ADV_TRANS_ACTIVE);
960         } else if (int_halt_code == ADV_HALT_EXTMSG_IN) {
961                 adv_handle_extmsg_in(adv, halt_q_addr, q_cntl,
962                                      target_mask, tid_no);
963         } else if (int_halt_code == ADV_HALT_CHK_CONDITION) {
964                 struct    adv_target_transinfo* tinfo;
965                 union     ccb *ccb;
966                 u_int32_t cinfo_index;
967                 u_int8_t  tag_code;
968                 u_int8_t  q_status;
969
970                 tinfo = &adv->tinfo[tid_no];
971                 q_cntl |= QC_REQ_SENSE;
972
973                 /* Renegotiate if appropriate. */
974                 adv_set_syncrate(adv, /*struct cam_path */NULL,
975                                  tid_no, /*period*/0, /*offset*/0,
976                                  ADV_TRANS_CUR);
977                 if (tinfo->current.period != tinfo->goal.period) {
978                         adv_msgout_sdtr(adv, tinfo->goal.period,
979                                         tinfo->goal.offset);
980                         q_cntl |= QC_MSG_OUT;
981                 }
982                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
983
984                 /* Don't tag request sense commands */
985                 tag_code = adv_read_lram_8(adv,
986                                            halt_q_addr + ADV_SCSIQ_B_TAG_CODE);
987                 tag_code &=
988                     ~(MSG_SIMPLE_Q_TAG|MSG_HEAD_OF_Q_TAG|MSG_ORDERED_Q_TAG);
989
990                 if ((adv->fix_asyn_xfer & target_mask) != 0
991                  && (adv->fix_asyn_xfer_always & target_mask) == 0) {
992                         tag_code |= (ADV_TAG_FLAG_DISABLE_DISCONNECT
993                                  | ADV_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
994                 }
995                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_TAG_CODE,
996                                  tag_code);
997                 q_status = adv_read_lram_8(adv,
998                                            halt_q_addr + ADV_SCSIQ_B_STATUS);
999                 q_status |= (QS_READY | QS_BUSY);
1000                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_STATUS,
1001                                  q_status);
1002                 /*
1003                  * Freeze the devq until we can handle the sense condition.
1004                  */
1005                 cinfo_index =
1006                     adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
1007                 ccb = adv->ccb_infos[cinfo_index].ccb;
1008                 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1009                 ccb->ccb_h.status |= CAM_DEV_QFRZN;
1010                 adv_abort_ccb(adv, tid_no, ADV_TIX_TO_LUN(target_ix),
1011                               /*ccb*/NULL, CAM_REQUEUE_REQ,
1012                               /*queued_only*/TRUE);
1013                 scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
1014                 scsi_busy &= ~target_mask;
1015                 adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);
1016                 /*
1017                  * Ensure we have enough time to actually
1018                  * retrieve the sense.
1019                  */
1020                 callout_reset(&ccb->ccb_h.timeout_ch, 5 * hz, adv_timeout, ccb);
1021         } else if (int_halt_code == ADV_HALT_SDTR_REJECTED) {
1022                 struct  ext_msg out_msg;
1023
1024                 adv_read_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1025                                        (u_int16_t *) &out_msg,
1026                                        sizeof(out_msg)/2);
1027
1028                 if ((out_msg.msg_type == MSG_EXTENDED)
1029                  && (out_msg.msg_len == MSG_EXT_SDTR_LEN)
1030                  && (out_msg.msg_req == MSG_EXT_SDTR)) {
1031
1032                         /* Revert to Async */
1033                         adv_set_syncrate(adv, /*struct cam_path */NULL,
1034                                          tid_no, /*period*/0, /*offset*/0,
1035                                          ADV_TRANS_GOAL|ADV_TRANS_ACTIVE);
1036                 }
1037                 q_cntl &= ~QC_MSG_OUT;
1038                 adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
1039         } else if (int_halt_code == ADV_HALT_SS_QUEUE_FULL) {
1040                 u_int8_t scsi_status;
1041                 union ccb *ccb;
1042                 u_int32_t cinfo_index;
1043                 
1044                 scsi_status = adv_read_lram_8(adv, halt_q_addr
1045                                               + ADV_SCSIQ_SCSI_STATUS);
1046                 cinfo_index =
1047                     adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
1048                 ccb = adv->ccb_infos[cinfo_index].ccb;
1049                 xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
1050                 ccb->ccb_h.status |= CAM_DEV_QFRZN|CAM_SCSI_STATUS_ERROR;
1051                 ccb->csio.scsi_status = SCSI_STATUS_QUEUE_FULL; 
1052                 adv_abort_ccb(adv, tid_no, ADV_TIX_TO_LUN(target_ix),
1053                               /*ccb*/NULL, CAM_REQUEUE_REQ,
1054                               /*queued_only*/TRUE);
1055                 scsi_busy = adv_read_lram_8(adv, ADVV_SCSIBUSY_B);
1056                 scsi_busy &= ~target_mask;
1057                 adv_write_lram_8(adv, ADVV_SCSIBUSY_B, scsi_busy);              
1058         } else {
1059                 printf("Unhandled Halt Code %x\n", int_halt_code);
1060         }
1061         adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
1062 }
1063
1064 void
1065 adv_sdtr_to_period_offset(struct adv_softc *adv,
1066                           u_int8_t sync_data, u_int8_t *period,
1067                           u_int8_t *offset, int tid)
1068 {
1069         if (adv->fix_asyn_xfer & ADV_TID_TO_TARGET_MASK(tid)
1070          && (sync_data == ASYN_SDTR_DATA_FIX_PCI_REV_AB)) {
1071                 *period = *offset = 0;
1072         } else {
1073                 *period = adv->sdtr_period_tbl[((sync_data >> 4) & 0xF)];
1074                 *offset = sync_data & 0xF;
1075         }
1076 }
1077
1078 void
1079 adv_set_syncrate(struct adv_softc *adv, struct cam_path *path,
1080                  u_int tid, u_int period, u_int offset, u_int type)
1081 {
1082         struct adv_target_transinfo* tinfo;
1083         u_int old_period;
1084         u_int old_offset;
1085         u_int8_t sdtr_data;
1086
1087         tinfo = &adv->tinfo[tid];
1088
1089         /* Filter our input */
1090         sdtr_data = adv_period_offset_to_sdtr(adv, &period,
1091                                               &offset, tid);
1092
1093         old_period = tinfo->current.period;
1094         old_offset = tinfo->current.offset;
1095
1096         if ((type & ADV_TRANS_CUR) != 0
1097          && ((old_period != period || old_offset != offset)
1098           || period == 0 || offset == 0) /*Changes in asyn fix settings*/) {
1099                 int halted;
1100
1101                 crit_enter();
1102                 halted = adv_is_chip_halted(adv);
1103                 if (halted == 0)
1104                         /* Must halt the chip first */
1105                         adv_host_req_chip_halt(adv);
1106
1107                 /* Update current hardware settings */
1108                 adv_set_sdtr_reg_at_id(adv, tid, sdtr_data);
1109
1110                 /*
1111                  * If a target can run in sync mode, we don't need
1112                  * to check it for sync problems.
1113                  */
1114                 if (offset != 0)
1115                         adv->fix_asyn_xfer &= ~ADV_TID_TO_TARGET_MASK(tid);
1116
1117                 if (halted == 0)
1118                         /* Start the chip again */
1119                         adv_start_chip(adv);
1120
1121                 crit_exit();
1122                 tinfo->current.period = period;
1123                 tinfo->current.offset = offset;
1124
1125                 if (path != NULL) {
1126                         /*
1127                          * Tell the SCSI layer about the
1128                          * new transfer parameters.
1129                          */
1130                         struct  ccb_trans_settings neg;
1131
1132                         neg.sync_period = period;
1133                         neg.sync_offset = offset;
1134                         neg.valid = CCB_TRANS_SYNC_RATE_VALID
1135                                   | CCB_TRANS_SYNC_OFFSET_VALID;
1136                         xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
1137                         xpt_async(AC_TRANSFER_NEG, path, &neg);
1138                 }
1139         }
1140
1141         if ((type & ADV_TRANS_GOAL) != 0) {
1142                 tinfo->goal.period = period;
1143                 tinfo->goal.offset = offset;
1144         }
1145
1146         if ((type & ADV_TRANS_USER) != 0) {
1147                 tinfo->user.period = period;
1148                 tinfo->user.offset = offset;
1149         }
1150 }
1151
1152 u_int8_t
1153 adv_period_offset_to_sdtr(struct adv_softc *adv, u_int *period,
1154                           u_int *offset, int tid)
1155 {
1156         u_int i;
1157         u_int dummy_offset;
1158         u_int dummy_period;
1159
1160         if (offset == NULL) {
1161                 dummy_offset = 0;
1162                 offset = &dummy_offset;
1163         }
1164
1165         if (period == NULL) {
1166                 dummy_period = 0;
1167                 period = &dummy_period;
1168         }
1169
1170         *offset = MIN(ADV_SYN_MAX_OFFSET, *offset);
1171         if (*period != 0 && *offset != 0) {
1172                 for (i = 0; i < adv->sdtr_period_tbl_size; i++) {
1173                         if (*period <= adv->sdtr_period_tbl[i]) {
1174                                 /*       
1175                                  * When responding to a target that requests
1176                                  * sync, the requested  rate may fall between
1177                                  * two rates that we can output, but still be
1178                                  * a rate that we can receive.  Because of this,
1179                                  * we want to respond to the target with
1180                                  * the same rate that it sent to us even
1181                                  * if the period we use to send data to it
1182                                  * is lower.  Only lower the response period
1183                                  * if we must.
1184                                  */        
1185                                 if (i == 0 /* Our maximum rate */)
1186                                         *period = adv->sdtr_period_tbl[0];
1187                                 return ((i << 4) | *offset);
1188                         }
1189                 }
1190         }
1191         
1192         /* Must go async */
1193         *period = 0;
1194         *offset = 0;
1195         if (adv->fix_asyn_xfer & ADV_TID_TO_TARGET_MASK(tid))
1196                 return (ASYN_SDTR_DATA_FIX_PCI_REV_AB);
1197         return (0);
1198 }
1199
1200 /* Internal Routines */
1201
1202 static void
1203 adv_read_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
1204                        u_int16_t *buffer, int count)
1205 {
1206         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1207         ADV_INSW(adv, ADV_LRAM_DATA, buffer, count);
1208 }
1209
1210 static void
1211 adv_write_lram_16_multi(struct adv_softc *adv, u_int16_t s_addr,
1212                         u_int16_t *buffer, int count)
1213 {
1214         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1215         ADV_OUTSW(adv, ADV_LRAM_DATA, buffer, count);
1216 }
1217
1218 static void
1219 adv_mset_lram_16(struct adv_softc *adv, u_int16_t s_addr,
1220                  u_int16_t set_value, int count)
1221 {
1222         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1223         bus_space_set_multi_2(adv->tag, adv->bsh, ADV_LRAM_DATA,
1224                               set_value, count);
1225 }
1226
1227 static u_int32_t
1228 adv_msum_lram_16(struct adv_softc *adv, u_int16_t s_addr, int count)
1229 {
1230         u_int32_t       sum;
1231         int             i;
1232
1233         sum = 0;
1234         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1235         for (i = 0; i < count; i++)
1236                 sum += ADV_INW(adv, ADV_LRAM_DATA);
1237         return (sum);
1238 }
1239
1240 static int
1241 adv_write_and_verify_lram_16(struct adv_softc *adv, u_int16_t addr,
1242                              u_int16_t value)
1243 {
1244         int     retval;
1245
1246         retval = 0;
1247         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1248         ADV_OUTW(adv, ADV_LRAM_DATA, value);
1249         DELAY(10000);
1250         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1251         if (value != ADV_INW(adv, ADV_LRAM_DATA))
1252                 retval = 1;
1253         return (retval);
1254 }
1255
1256 static u_int32_t
1257 adv_read_lram_32(struct adv_softc *adv, u_int16_t addr)
1258 {
1259         u_int16_t           val_low, val_high;
1260
1261         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1262
1263 #if BYTE_ORDER == BIG_ENDIAN
1264         val_high = ADV_INW(adv, ADV_LRAM_DATA);
1265         val_low = ADV_INW(adv, ADV_LRAM_DATA);
1266 #else
1267         val_low = ADV_INW(adv, ADV_LRAM_DATA);
1268         val_high = ADV_INW(adv, ADV_LRAM_DATA);
1269 #endif
1270
1271         return (((u_int32_t)val_high << 16) | (u_int32_t)val_low);
1272 }
1273
1274 static void
1275 adv_write_lram_32(struct adv_softc *adv, u_int16_t addr, u_int32_t value)
1276 {
1277         ADV_OUTW(adv, ADV_LRAM_ADDR, addr);
1278
1279 #if BYTE_ORDER == BIG_ENDIAN
1280         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
1281         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
1282 #else
1283         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)(value & 0xFFFF));
1284         ADV_OUTW(adv, ADV_LRAM_DATA, (u_int16_t)((value >> 16) & 0xFFFF));
1285 #endif
1286 }
1287
1288 static void
1289 adv_write_lram_32_multi(struct adv_softc *adv, u_int16_t s_addr,
1290                         u_int32_t *buffer, int count)
1291 {
1292         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1293         ADV_OUTSW(adv, ADV_LRAM_DATA, (u_int16_t *)buffer, count * 2);
1294 }
1295
1296 static u_int16_t
1297 adv_read_eeprom_16(struct adv_softc *adv, u_int8_t addr)
1298 {
1299         u_int16_t read_wval;
1300         u_int8_t  cmd_reg;
1301
1302         adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
1303         DELAY(1000);
1304         cmd_reg = addr | ADV_EEPROM_CMD_READ;
1305         adv_write_eeprom_cmd_reg(adv, cmd_reg);
1306         DELAY(1000);
1307         read_wval = ADV_INW(adv, ADV_EEPROM_DATA);
1308         DELAY(1000);
1309         return (read_wval);
1310 }
1311
1312 static u_int16_t
1313 adv_write_eeprom_16(struct adv_softc *adv, u_int8_t addr, u_int16_t value)
1314 {
1315         u_int16_t       read_value;
1316
1317         read_value = adv_read_eeprom_16(adv, addr);
1318         if (read_value != value) {
1319                 adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_ENABLE);
1320                 DELAY(1000);
1321                 
1322                 ADV_OUTW(adv, ADV_EEPROM_DATA, value);
1323                 DELAY(1000);
1324
1325                 adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE | addr);
1326                 DELAY(20 * 1000);
1327
1328                 adv_write_eeprom_cmd_reg(adv, ADV_EEPROM_CMD_WRITE_DISABLE);
1329                 DELAY(1000);
1330                 read_value = adv_read_eeprom_16(adv, addr);
1331         }
1332         return (read_value);
1333 }
1334
1335 static int
1336 adv_write_eeprom_cmd_reg(struct adv_softc *adv, u_int8_t cmd_reg)
1337 {
1338         u_int8_t read_back;
1339         int      retry;
1340
1341         retry = 0;
1342         while (1) {
1343                 ADV_OUTB(adv, ADV_EEPROM_CMD, cmd_reg);
1344                 DELAY(1000);
1345                 read_back = ADV_INB(adv, ADV_EEPROM_CMD);
1346                 if (read_back == cmd_reg) {
1347                         return (1);
1348                 }
1349                 if (retry++ > ADV_EEPROM_MAX_RETRY) {
1350                         return (0);
1351                 }
1352         }
1353 }
1354
1355 static int
1356 adv_set_eeprom_config_once(struct adv_softc *adv,
1357                            struct adv_eeprom_config *eeprom_config)
1358 {
1359         int             n_error;
1360         u_int16_t       *wbuf;
1361         u_int16_t       sum;
1362         u_int8_t        s_addr;
1363         u_int8_t        cfg_beg;
1364         u_int8_t        cfg_end;
1365
1366         wbuf = (u_int16_t *)eeprom_config;
1367         n_error = 0;
1368         sum = 0;
1369         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
1370                 sum += *wbuf;
1371                 if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
1372                         n_error++;
1373                 }
1374         }
1375         if (adv->type & ADV_VL) {
1376                 cfg_beg = ADV_EEPROM_CFG_BEG_VL;
1377                 cfg_end = ADV_EEPROM_MAX_ADDR_VL;
1378         } else {
1379                 cfg_beg = ADV_EEPROM_CFG_BEG;
1380                 cfg_end = ADV_EEPROM_MAX_ADDR;
1381         }
1382
1383         for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
1384                 sum += *wbuf;
1385                 if (*wbuf != adv_write_eeprom_16(adv, s_addr, *wbuf)) {
1386                         n_error++;
1387                 }
1388         }
1389         *wbuf = sum;
1390         if (sum != adv_write_eeprom_16(adv, s_addr, sum)) {
1391                 n_error++;
1392         }
1393         wbuf = (u_int16_t *)eeprom_config;
1394         for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
1395                 if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
1396                         n_error++;
1397                 }
1398         }
1399         for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) {
1400                 if (*wbuf != adv_read_eeprom_16(adv, s_addr)) {
1401                         n_error++;
1402                 }
1403         }
1404         return (n_error);
1405 }
1406
1407 static u_int32_t
1408 adv_load_microcode(struct adv_softc *adv, u_int16_t s_addr,
1409                    u_int16_t *mcode_buf, u_int16_t mcode_size)
1410 {
1411         u_int32_t chksum;
1412         u_int16_t mcode_lram_size;
1413         u_int16_t mcode_chksum;
1414
1415         mcode_lram_size = mcode_size >> 1;
1416         /* XXX Why zero the memory just before you write the whole thing?? */
1417         adv_mset_lram_16(adv, s_addr, 0, mcode_lram_size);
1418         adv_write_lram_16_multi(adv, s_addr, mcode_buf, mcode_lram_size);
1419
1420         chksum = adv_msum_lram_16(adv, s_addr, mcode_lram_size);
1421         mcode_chksum = (u_int16_t)adv_msum_lram_16(adv, ADV_CODE_SEC_BEG,
1422                                                    ((mcode_size - s_addr
1423                                                      - ADV_CODE_SEC_BEG) >> 1));
1424         adv_write_lram_16(adv, ADVV_MCODE_CHKSUM_W, mcode_chksum);
1425         adv_write_lram_16(adv, ADVV_MCODE_SIZE_W, mcode_size);
1426         return (chksum);
1427 }
1428
1429 static void
1430 adv_reinit_lram(struct adv_softc *adv) {
1431         adv_init_lram(adv);
1432         adv_init_qlink_var(adv);
1433 }
1434
1435 static void
1436 adv_init_lram(struct adv_softc *adv)
1437 {
1438         u_int8_t  i;
1439         u_int16_t s_addr;
1440
1441         adv_mset_lram_16(adv, ADV_QADR_BEG, 0,
1442                          (((adv->max_openings + 2 + 1) * 64) >> 1));
1443         
1444         i = ADV_MIN_ACTIVE_QNO;
1445         s_addr = ADV_QADR_BEG + ADV_QBLK_SIZE;
1446
1447         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
1448         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings);
1449         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
1450         i++;
1451         s_addr += ADV_QBLK_SIZE;
1452         for (; i < adv->max_openings; i++, s_addr += ADV_QBLK_SIZE) {
1453                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i + 1);
1454                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i - 1);
1455                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
1456         }
1457
1458         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, ADV_QLINK_END);
1459         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, adv->max_openings - 1);
1460         adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, adv->max_openings);
1461         i++;
1462         s_addr += ADV_QBLK_SIZE;
1463
1464         for (; i <= adv->max_openings + 3; i++, s_addr += ADV_QBLK_SIZE) {
1465                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_FWD, i);
1466                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_BWD, i);
1467                 adv_write_lram_8(adv, s_addr + ADV_SCSIQ_B_QNO, i);
1468         }
1469 }
1470
1471 static int
1472 adv_init_microcode_var(struct adv_softc *adv)
1473 {
1474         int      i;
1475
1476         for (i = 0; i <= ADV_MAX_TID; i++) {
1477                 
1478                 /* Start out async all around */
1479                 adv_set_syncrate(adv, /*path*/NULL,
1480                                  i, 0, 0,
1481                                  ADV_TRANS_GOAL|ADV_TRANS_CUR);
1482         }
1483
1484         adv_init_qlink_var(adv);
1485
1486         adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
1487         adv_write_lram_8(adv, ADVV_HOSTSCSI_ID_B, 0x01 << adv->scsi_id);
1488
1489         adv_write_lram_32(adv, ADVV_OVERRUN_PADDR_D, adv->overrun_physbase);
1490
1491         adv_write_lram_32(adv, ADVV_OVERRUN_BSIZE_D, ADV_OVERRUN_BSIZE);
1492
1493         ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
1494         if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
1495                 printf("adv%d: Unable to set program counter. Aborting.\n",
1496                        adv->unit);
1497                 return (1);
1498         }
1499         return (0);
1500 }
1501
1502 static void
1503 adv_init_qlink_var(struct adv_softc *adv)
1504 {
1505         int       i;
1506         u_int16_t lram_addr;
1507
1508         adv_write_lram_8(adv, ADVV_NEXTRDY_B, 1);
1509         adv_write_lram_8(adv, ADVV_DONENEXT_B, adv->max_openings);
1510
1511         adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, 1);
1512         adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, adv->max_openings);
1513
1514         adv_write_lram_8(adv, ADVV_BUSY_QHEAD_B,
1515                          (u_int8_t)((int) adv->max_openings + 1));
1516         adv_write_lram_8(adv, ADVV_DISC1_QHEAD_B,
1517                          (u_int8_t)((int) adv->max_openings + 2));
1518
1519         adv_write_lram_8(adv, ADVV_TOTAL_READY_Q_B, adv->max_openings);
1520
1521         adv_write_lram_16(adv, ADVV_ASCDVC_ERR_CODE_W, 0);
1522         adv_write_lram_16(adv, ADVV_HALTCODE_W, 0);
1523         adv_write_lram_8(adv, ADVV_STOP_CODE_B, 0);
1524         adv_write_lram_8(adv, ADVV_SCSIBUSY_B, 0);
1525         adv_write_lram_8(adv, ADVV_WTM_FLAG_B, 0);
1526         adv_write_lram_8(adv, ADVV_Q_DONE_IN_PROGRESS_B, 0);
1527
1528         lram_addr = ADV_QADR_BEG;
1529         for (i = 0; i < 32; i++, lram_addr += 2)
1530                 adv_write_lram_16(adv, lram_addr, 0);
1531 }
1532
1533 static void
1534 adv_disable_interrupt(struct adv_softc *adv)
1535 {
1536         u_int16_t cfg;
1537
1538         cfg = ADV_INW(adv, ADV_CONFIG_LSW);
1539         ADV_OUTW(adv, ADV_CONFIG_LSW, cfg & ~ADV_CFG_LSW_HOST_INT_ON);
1540 }
1541
1542 static void
1543 adv_enable_interrupt(struct adv_softc *adv)
1544 {
1545         u_int16_t cfg;
1546
1547         cfg = ADV_INW(adv, ADV_CONFIG_LSW);
1548         ADV_OUTW(adv, ADV_CONFIG_LSW, cfg | ADV_CFG_LSW_HOST_INT_ON);
1549 }
1550
1551 static void
1552 adv_toggle_irq_act(struct adv_softc *adv)
1553 {
1554         ADV_OUTW(adv, ADV_CHIP_STATUS, ADV_CIW_IRQ_ACT);
1555         ADV_OUTW(adv, ADV_CHIP_STATUS, 0);
1556 }
1557
1558 void
1559 adv_start_execution(struct adv_softc *adv)
1560 {
1561         if (adv_read_lram_8(adv, ADV_STOP_CODE_B) != 0) {
1562                 adv_write_lram_8(adv, ADV_STOP_CODE_B, 0);
1563         }
1564 }
1565
1566 int
1567 adv_stop_chip(struct adv_softc *adv)
1568 {
1569         u_int8_t cc_val;
1570
1571         cc_val = ADV_INB(adv, ADV_CHIP_CTRL)
1572                  & (~(ADV_CC_SINGLE_STEP | ADV_CC_TEST | ADV_CC_DIAG));
1573         ADV_OUTB(adv, ADV_CHIP_CTRL, cc_val | ADV_CC_HALT);
1574         adv_set_chip_ih(adv, ADV_INS_HALT);
1575         adv_set_chip_ih(adv, ADV_INS_RFLAG_WTM);
1576         if ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_HALTED) == 0) {
1577                 return (0);
1578         }
1579         return (1);
1580 }
1581
1582 static int
1583 adv_host_req_chip_halt(struct adv_softc *adv)
1584 {       
1585         int      count;
1586         u_int8_t saved_stop_code;
1587
1588         if (adv_is_chip_halted(adv))
1589                 return (1);
1590
1591         count = 0;
1592         saved_stop_code = adv_read_lram_8(adv, ADVV_STOP_CODE_B);
1593         adv_write_lram_8(adv, ADVV_STOP_CODE_B,
1594                          ADV_STOP_HOST_REQ_RISC_HALT | ADV_STOP_REQ_RISC_STOP);
1595         while (adv_is_chip_halted(adv) == 0
1596             && count++ < 2000)
1597                 ;
1598
1599         adv_write_lram_8(adv, ADVV_STOP_CODE_B, saved_stop_code);
1600         return (count < 2000); 
1601 }
1602
1603 static void
1604 adv_set_chip_ih(struct adv_softc *adv, u_int16_t ins_code)
1605 {
1606         adv_set_bank(adv, 1);
1607         ADV_OUTW(adv, ADV_REG_IH, ins_code);
1608         adv_set_bank(adv, 0);
1609 }
1610
1611 #if UNUSED
1612 static u_int8_t
1613 adv_get_chip_scsi_ctrl(struct adv_softc *adv)
1614 {
1615         u_int8_t scsi_ctrl;
1616
1617         adv_set_bank(adv, 1);
1618         scsi_ctrl = ADV_INB(adv, ADV_REG_SC);
1619         adv_set_bank(adv, 0);
1620         return (scsi_ctrl);
1621 }
1622 #endif
1623
1624 /*
1625  * XXX Looks like more padding issues in this routine as well.
1626  *     There has to be a way to turn this into an insw.
1627  */
1628 static void
1629 adv_get_q_info(struct adv_softc *adv, u_int16_t s_addr,
1630                u_int16_t *inbuf, int words)
1631 {
1632         int     i;
1633
1634         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1635         for (i = 0; i < words; i++, inbuf++) {
1636                 if (i == 5) {
1637                         continue;
1638                 }
1639                 *inbuf = ADV_INW(adv, ADV_LRAM_DATA);
1640         }
1641 }
1642
1643 static u_int
1644 adv_get_num_free_queues(struct adv_softc *adv, u_int8_t n_qs)
1645 {
1646         u_int     cur_used_qs;
1647         u_int     cur_free_qs;
1648
1649         cur_used_qs = adv->cur_active + ADV_MIN_FREE_Q;
1650
1651         if ((cur_used_qs + n_qs) <= adv->max_openings) {
1652                 cur_free_qs = adv->max_openings - cur_used_qs;
1653                 return (cur_free_qs);
1654         }
1655         adv->openings_needed = n_qs;
1656         return (0);
1657 }
1658
1659 static u_int8_t
1660 adv_alloc_free_queues(struct adv_softc *adv, u_int8_t free_q_head,
1661                       u_int8_t n_free_q)
1662 {
1663         int i;
1664
1665         for (i = 0; i < n_free_q; i++) {
1666                 free_q_head = adv_alloc_free_queue(adv, free_q_head);
1667                 if (free_q_head == ADV_QLINK_END)
1668                         break;
1669         }
1670         return (free_q_head);
1671 }
1672
1673 static u_int8_t
1674 adv_alloc_free_queue(struct adv_softc *adv, u_int8_t free_q_head)
1675 {
1676         u_int16_t       q_addr;
1677         u_int8_t        next_qp;
1678         u_int8_t        q_status;
1679
1680         next_qp = ADV_QLINK_END;
1681         q_addr = ADV_QNO_TO_QADDR(free_q_head);
1682         q_status = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS);
1683         
1684         if ((q_status & QS_READY) == 0)
1685                 next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
1686
1687         return (next_qp);
1688 }
1689
1690 static int
1691 adv_send_scsi_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
1692                     u_int8_t n_q_required)
1693 {
1694         u_int8_t        free_q_head;
1695         u_int8_t        next_qp;
1696         u_int8_t        tid_no;
1697         u_int8_t        target_ix;
1698         int             retval;
1699
1700         retval = 1;
1701         target_ix = scsiq->q2.target_ix;
1702         tid_no = ADV_TIX_TO_TID(target_ix);
1703         free_q_head = adv_read_lram_16(adv, ADVV_FREE_Q_HEAD_W) & 0xFF;
1704         if ((next_qp = adv_alloc_free_queues(adv, free_q_head, n_q_required))
1705             != ADV_QLINK_END) {
1706                 scsiq->q1.q_no = free_q_head;
1707
1708                 /*
1709                  * Now that we know our Q number, point our sense
1710                  * buffer pointer to a bus dma mapped area where
1711                  * we can dma the data to.
1712                  */
1713                 scsiq->q1.sense_addr = adv->sense_physbase
1714                     + ((free_q_head - 1) * sizeof(struct scsi_sense_data));
1715                 adv_put_ready_sg_list_queue(adv, scsiq, free_q_head);
1716                 adv_write_lram_16(adv, ADVV_FREE_Q_HEAD_W, next_qp);
1717                 adv->cur_active += n_q_required;
1718                 retval = 0;
1719         }
1720         return (retval);
1721 }
1722
1723
1724 static void
1725 adv_put_ready_sg_list_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
1726                             u_int q_no)
1727 {
1728         u_int8_t        sg_list_dwords;
1729         u_int8_t        sg_index, i;
1730         u_int8_t        sg_entry_cnt;
1731         u_int8_t        next_qp;
1732         u_int16_t       q_addr;
1733         struct          adv_sg_head *sg_head;
1734         struct          adv_sg_list_q scsi_sg_q;
1735
1736         sg_head = scsiq->sg_head;
1737
1738         if (sg_head) {
1739                 sg_entry_cnt = sg_head->entry_cnt - 1;
1740 #ifdef DIAGNOSTIC
1741                 if (sg_entry_cnt == 0)
1742                         panic("adv_put_ready_sg_list_queue: ScsiQ with "
1743                               "a SG list but only one element");
1744                 if ((scsiq->q1.cntl & QC_SG_HEAD) == 0)
1745                         panic("adv_put_ready_sg_list_queue: ScsiQ with "
1746                               "a SG list but QC_SG_HEAD not set");
1747 #endif                  
1748                 q_addr = ADV_QNO_TO_QADDR(q_no);
1749                 sg_index = 1;
1750                 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
1751                 scsi_sg_q.sg_head_qp = q_no;
1752                 scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
1753                 for (i = 0; i < sg_head->queue_cnt; i++) {
1754                         u_int8_t segs_this_q;
1755
1756                         if (sg_entry_cnt > ADV_SG_LIST_PER_Q)
1757                                 segs_this_q = ADV_SG_LIST_PER_Q;
1758                         else {
1759                                 /* This will be the last segment then */
1760                                 segs_this_q = sg_entry_cnt;
1761                                 scsi_sg_q.cntl |= QCSG_SG_XFER_END;
1762                         }
1763                         scsi_sg_q.seq_no = i + 1;
1764                         sg_list_dwords = segs_this_q << 1;
1765                         if (i == 0) {
1766                                 scsi_sg_q.sg_list_cnt = segs_this_q;
1767                                 scsi_sg_q.sg_cur_list_cnt = segs_this_q;
1768                         } else {
1769                                 scsi_sg_q.sg_list_cnt = segs_this_q - 1;
1770                                 scsi_sg_q.sg_cur_list_cnt = segs_this_q - 1;
1771                         }
1772                         next_qp = adv_read_lram_8(adv, q_addr + ADV_SCSIQ_B_FWD);
1773                         scsi_sg_q.q_no = next_qp;
1774                         q_addr = ADV_QNO_TO_QADDR(next_qp);
1775
1776                         adv_write_lram_16_multi(adv,
1777                                                 q_addr + ADV_SCSIQ_SGHD_CPY_BEG,
1778                                                 (u_int16_t *)&scsi_sg_q,
1779                                                 sizeof(scsi_sg_q) >> 1);
1780                         adv_write_lram_32_multi(adv, q_addr + ADV_SGQ_LIST_BEG,
1781                                                 (u_int32_t *)&sg_head->sg_list[sg_index],
1782                                                 sg_list_dwords);
1783                         sg_entry_cnt -= segs_this_q;
1784                         sg_index += ADV_SG_LIST_PER_Q;
1785                 }
1786         }
1787         adv_put_ready_queue(adv, scsiq, q_no);
1788 }
1789
1790 static void
1791 adv_put_ready_queue(struct adv_softc *adv, struct adv_scsi_q *scsiq,
1792                     u_int q_no)
1793 {
1794         struct          adv_target_transinfo* tinfo;
1795         u_int           q_addr;
1796         u_int           tid_no;
1797
1798         tid_no = ADV_TIX_TO_TID(scsiq->q2.target_ix);
1799         tinfo = &adv->tinfo[tid_no];
1800         if ((tinfo->current.period != tinfo->goal.period)
1801          || (tinfo->current.offset != tinfo->goal.offset)) {
1802
1803                 adv_msgout_sdtr(adv, tinfo->goal.period, tinfo->goal.offset);
1804                 scsiq->q1.cntl |= QC_MSG_OUT;
1805         }
1806         q_addr = ADV_QNO_TO_QADDR(q_no);
1807
1808         scsiq->q1.status = QS_FREE;
1809
1810         adv_write_lram_16_multi(adv, q_addr + ADV_SCSIQ_CDB_BEG,
1811                                 (u_int16_t *)scsiq->cdbptr,
1812                                 scsiq->q2.cdb_len >> 1);
1813
1814 #if BYTE_ORDER == BIG_ENDIAN
1815         adv_adj_scsiq_endian(scsiq);
1816 #endif
1817
1818         adv_put_scsiq(adv, q_addr + ADV_SCSIQ_CPY_BEG,
1819                       (u_int16_t *) &scsiq->q1.cntl,
1820                       ((sizeof(scsiq->q1) + sizeof(scsiq->q2)) / 2) - 1);
1821
1822 #if CC_WRITE_IO_COUNT
1823         adv_write_lram_16(adv, q_addr + ADV_SCSIQ_W_REQ_COUNT,
1824                           adv->req_count);
1825 #endif
1826
1827 #if CC_CLEAR_DMA_REMAIN
1828
1829         adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_ADDR, 0);
1830         adv_write_lram_32(adv, q_addr + ADV_SCSIQ_DW_REMAIN_XFER_CNT, 0);
1831 #endif
1832
1833         adv_write_lram_16(adv, q_addr + ADV_SCSIQ_B_STATUS,
1834                           (scsiq->q1.q_no << 8) | QS_READY);
1835 }
1836
1837 static void
1838 adv_put_scsiq(struct adv_softc *adv, u_int16_t s_addr,
1839               u_int16_t *buffer, int words)
1840 {
1841         int     i;
1842
1843         /*
1844          * XXX This routine makes *gross* assumptions
1845          * about padding in the data structures.
1846          * Either the data structures should have explicit
1847          * padding members added, or they should have padding
1848          * turned off via compiler attributes depending on
1849          * which yields better overall performance.  My hunch
1850          * would be that turning off padding would be the
1851          * faster approach as an outsw is much faster than
1852          * this crude loop and accessing un-aligned data
1853          * members isn't *that* expensive.  The other choice
1854          * would be to modify the ASC script so that the
1855          * the adv_scsiq_1 structure can be re-arranged so
1856          * padding isn't required.
1857          */
1858         ADV_OUTW(adv, ADV_LRAM_ADDR, s_addr);
1859         for (i = 0; i < words; i++, buffer++) {
1860                 if (i == 2 || i == 10) {
1861                         continue;
1862                 }
1863                 ADV_OUTW(adv, ADV_LRAM_DATA, *buffer);
1864         }
1865 }
1866
1867 static void
1868 adv_handle_extmsg_in(struct adv_softc *adv, u_int16_t halt_q_addr,
1869                      u_int8_t q_cntl, target_bit_vector target_mask,
1870                      int tid_no)
1871 {
1872         struct  ext_msg ext_msg;
1873
1874         adv_read_lram_16_multi(adv, ADVV_MSGIN_BEG, (u_int16_t *) &ext_msg,
1875                                sizeof(ext_msg) >> 1);
1876         if ((ext_msg.msg_type == MSG_EXTENDED)
1877          && (ext_msg.msg_req == MSG_EXT_SDTR)
1878          && (ext_msg.msg_len == MSG_EXT_SDTR_LEN)) {
1879                 union     ccb *ccb;
1880                 struct    adv_target_transinfo* tinfo;
1881                 u_int32_t cinfo_index;
1882                 u_int    period;
1883                 u_int    offset;
1884                 int      sdtr_accept;
1885                 u_int8_t orig_offset;
1886
1887                 cinfo_index =
1888                     adv_read_lram_32(adv, halt_q_addr + ADV_SCSIQ_D_CINFO_IDX);
1889                 ccb = adv->ccb_infos[cinfo_index].ccb;
1890                 tinfo = &adv->tinfo[tid_no];
1891                 sdtr_accept = TRUE;
1892
1893                 orig_offset = ext_msg.req_ack_offset;
1894                 if (ext_msg.xfer_period < tinfo->goal.period) {
1895                         sdtr_accept = FALSE;
1896                         ext_msg.xfer_period = tinfo->goal.period;
1897                 }
1898
1899                 /* Perform range checking */
1900                 period = ext_msg.xfer_period;
1901                 offset = ext_msg.req_ack_offset;
1902                 adv_period_offset_to_sdtr(adv, &period,  &offset, tid_no);
1903                 ext_msg.xfer_period = period;
1904                 ext_msg.req_ack_offset = offset;
1905                 
1906                 /* Record our current sync settings */
1907                 adv_set_syncrate(adv, ccb->ccb_h.path,
1908                                  tid_no, ext_msg.xfer_period,
1909                                  ext_msg.req_ack_offset,
1910                                  ADV_TRANS_GOAL|ADV_TRANS_ACTIVE);
1911
1912                 /* Offset too high or large period forced async */
1913                 if (orig_offset != ext_msg.req_ack_offset)
1914                         sdtr_accept = FALSE;
1915
1916                 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
1917                         /* Valid response to our requested negotiation */
1918                         q_cntl &= ~QC_MSG_OUT;
1919                 } else {
1920                         /* Must Respond */
1921                         q_cntl |= QC_MSG_OUT;
1922                         adv_msgout_sdtr(adv, ext_msg.xfer_period,
1923                                         ext_msg.req_ack_offset);
1924                 }
1925
1926         } else if (ext_msg.msg_type == MSG_EXTENDED
1927                 && ext_msg.msg_req == MSG_EXT_WDTR
1928                 && ext_msg.msg_len == MSG_EXT_WDTR_LEN) {
1929
1930                 ext_msg.wdtr_width = 0;
1931                 adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1932                                         (u_int16_t *)&ext_msg,
1933                                         sizeof(ext_msg) >> 1);
1934                 q_cntl |= QC_MSG_OUT;
1935         } else {
1936
1937                 ext_msg.msg_type = MSG_MESSAGE_REJECT;
1938                 adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1939                                         (u_int16_t *)&ext_msg,
1940                                         sizeof(ext_msg) >> 1);
1941                 q_cntl |= QC_MSG_OUT;
1942         }
1943         adv_write_lram_8(adv, halt_q_addr + ADV_SCSIQ_B_CNTL, q_cntl);
1944 }
1945
1946 static void
1947 adv_msgout_sdtr(struct adv_softc *adv, u_int8_t sdtr_period,
1948                 u_int8_t sdtr_offset)
1949 {
1950         struct   ext_msg sdtr_buf;
1951
1952         sdtr_buf.msg_type = MSG_EXTENDED;
1953         sdtr_buf.msg_len = MSG_EXT_SDTR_LEN;
1954         sdtr_buf.msg_req = MSG_EXT_SDTR;
1955         sdtr_buf.xfer_period = sdtr_period;
1956         sdtr_offset &= ADV_SYN_MAX_OFFSET;
1957         sdtr_buf.req_ack_offset = sdtr_offset;
1958         adv_write_lram_16_multi(adv, ADVV_MSGOUT_BEG,
1959                                 (u_int16_t *) &sdtr_buf,
1960                                 sizeof(sdtr_buf) / 2);
1961 }
1962
1963 int
1964 adv_abort_ccb(struct adv_softc *adv, int target, int lun, union ccb *ccb,
1965               u_int32_t status, int queued_only)
1966 {
1967         u_int16_t q_addr;
1968         u_int8_t  q_no;
1969         struct adv_q_done_info scsiq_buf;
1970         struct adv_q_done_info *scsiq;
1971         u_int8_t  target_ix;
1972         int       count;
1973
1974         scsiq = &scsiq_buf;
1975         target_ix = ADV_TIDLUN_TO_IX(target, lun);
1976         count = 0;
1977         for (q_no = ADV_MIN_ACTIVE_QNO; q_no <= adv->max_openings; q_no++) {
1978                 struct adv_ccb_info *ccb_info;
1979                 q_addr = ADV_QNO_TO_QADDR(q_no);
1980
1981                 adv_copy_lram_doneq(adv, q_addr, scsiq, adv->max_dma_count);
1982                 ccb_info = &adv->ccb_infos[scsiq->d2.ccb_index];
1983                 if (((scsiq->q_status & QS_READY) != 0)
1984                  && ((scsiq->q_status & QS_ABORTED) == 0)
1985                  && ((scsiq->cntl & QCSG_SG_XFER_LIST) == 0)
1986                  && (scsiq->d2.target_ix == target_ix)
1987                  && (queued_only == 0
1988                   || !(scsiq->q_status & (QS_DISC1|QS_DISC2|QS_BUSY|QS_DONE)))
1989                  && (ccb == NULL || (ccb == ccb_info->ccb))) {
1990                         union ccb *aborted_ccb;
1991                         struct adv_ccb_info *cinfo;
1992
1993                         scsiq->q_status |= QS_ABORTED;
1994                         adv_write_lram_8(adv, q_addr + ADV_SCSIQ_B_STATUS,
1995                                          scsiq->q_status);
1996                         aborted_ccb = ccb_info->ccb;
1997                         /* Don't clobber earlier error codes */
1998                         if ((aborted_ccb->ccb_h.status & CAM_STATUS_MASK)
1999                           == CAM_REQ_INPROG)
2000                                 aborted_ccb->ccb_h.status |= status;
2001                         cinfo = (struct adv_ccb_info *)
2002                             aborted_ccb->ccb_h.ccb_cinfo_ptr;
2003                         cinfo->state |= ACCB_ABORT_QUEUED;
2004                         count++;
2005                 }
2006         }
2007         return (count);
2008 }
2009
2010 int
2011 adv_reset_bus(struct adv_softc *adv, int initiate_bus_reset)
2012 {
2013         int count; 
2014         int i;
2015         union ccb *ccb;
2016
2017         i = 200;
2018         while ((ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_SCSI_RESET_ACTIVE) != 0
2019             && i--)
2020                 DELAY(1000);
2021         adv_reset_chip(adv, initiate_bus_reset);
2022         adv_reinit_lram(adv);
2023         for (i = 0; i <= ADV_MAX_TID; i++)
2024                 adv_set_syncrate(adv, NULL, i, /*period*/0,
2025                                  /*offset*/0, ADV_TRANS_CUR);
2026         ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
2027
2028         /* Tell the XPT layer that a bus reset occured */
2029         if (adv->path != NULL)
2030                 xpt_async(AC_BUS_RESET, adv->path, NULL);
2031
2032         count = 0;
2033         while ((ccb = (union ccb *)LIST_FIRST(&adv->pending_ccbs)) != NULL) {
2034                 if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
2035                         ccb->ccb_h.status |= CAM_SCSI_BUS_RESET;
2036                 adv_done(adv, ccb, QD_ABORTED_BY_HOST, 0, 0, 0);
2037                 count++;
2038         }
2039
2040         adv_start_chip(adv);
2041         return (count);
2042 }
2043
2044 static void
2045 adv_set_sdtr_reg_at_id(struct adv_softc *adv, int tid, u_int8_t sdtr_data)
2046 {
2047         int orig_id;
2048
2049         adv_set_bank(adv, 1);
2050         orig_id = ffs(ADV_INB(adv, ADV_HOST_SCSIID)) - 1;
2051         ADV_OUTB(adv, ADV_HOST_SCSIID, tid);
2052         if (ADV_INB(adv, ADV_HOST_SCSIID) == (0x01 << tid)) {
2053                 adv_set_bank(adv, 0);
2054                 ADV_OUTB(adv, ADV_SYN_OFFSET, sdtr_data);
2055         }
2056         adv_set_bank(adv, 1);
2057         ADV_OUTB(adv, ADV_HOST_SCSIID, orig_id);
2058         adv_set_bank(adv, 0);
2059 }