Make all network interrupt service routines MPSAFE part 1/3.
[dragonfly.git] / sys / dev / netif / an / if_an.c
1 /*
2  * Copyright (c) 1997, 1998, 1999
3  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
33  * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.34 2005/11/28 17:13:38 dillon Exp $
34  */
35
36 /*
37  * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
38  *
39  * Written by Bill Paul <wpaul@ctr.columbia.edu>
40  * Electrical Engineering Department
41  * Columbia University, New York City
42  */
43
44 /*
45  * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
46  * This driver supports all three device types (PCI devices are supported
47  * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
48  * supported either using hard-coded IO port/IRQ settings or via Plug
49  * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
50  * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
51  *
52  * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
53  * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
54  * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
55  * a couple of important differences though:
56  *
57  * - Lucent ISA card looks to the host like a PCMCIA controller with
58  *   a PCMCIA WaveLAN card inserted. This means that even desktop
59  *   machines need to be configured with PCMCIA support in order to
60  *   use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
61  *   actually look like normal ISA and PCI devices to the host, so
62  *   no PCMCIA controller support is needed
63  *
64  * The latter point results in a small gotcha. The Aironet PCMCIA
65  * cards can be configured for one of two operating modes depending
66  * on how the Vpp1 and Vpp2 programming voltages are set when the
67  * card is activated. In order to put the card in proper PCMCIA
68  * operation (where the CIS table is visible and the interface is
69  * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
70  * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
71  * which leaves the card in ISA/PCI mode, which prevents it from
72  * being activated as an PCMCIA device.
73  *
74  * Note that some PCMCIA controller software packages for Windows NT
75  * fail to set the voltages as well.
76  *
77  * The Aironet devices can operate in both station mode and access point
78  * mode. Typically, when programmed for station mode, the card can be set
79  * to automatically perform encapsulation/decapsulation of Ethernet II
80  * and 802.3 frames within 802.11 frames so that the host doesn't have
81  * to do it itself. This driver doesn't program the card that way: the
82  * driver handles all of the encapsulation/decapsulation itself.
83  */
84
85 #include "opt_inet.h"
86
87 #ifdef INET
88 #define ANCACHE                 /* enable signal strength cache */
89 #endif
90
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/kernel.h>
96 #include <sys/proc.h>
97 #include <sys/ucred.h>
98 #include <sys/socket.h>
99 #ifdef ANCACHE
100 #include <sys/syslog.h>
101 #endif
102 #include <sys/sysctl.h>
103 #include <sys/thread2.h>
104
105 #include <sys/module.h>
106 #include <sys/sysctl.h>
107 #include <sys/bus.h>
108 #include <machine/bus.h>
109 #include <sys/rman.h>
110 #include <machine/resource.h>
111 #include <sys/malloc.h>
112
113 #include <net/if.h>
114 #include <net/ifq_var.h>
115 #include <net/if_arp.h>
116 #include <net/ethernet.h>
117 #include <net/if_dl.h>
118 #include <net/if_types.h>
119 #include <net/if_media.h>
120 #include <netproto/802_11/ieee80211.h>
121 #include <netproto/802_11/ieee80211_ioctl.h>
122
123 #ifdef INET
124 #include <netinet/in.h>
125 #include <netinet/in_systm.h>
126 #include <netinet/in_var.h>
127 #include <netinet/ip.h>
128 #endif
129
130 #include <net/bpf.h>
131
132 #include <machine/md_var.h>
133
134 #include "if_aironet_ieee.h"
135 #include "if_anreg.h"
136
137 /* These are global because we need them in sys/pci/if_an_p.c. */
138 static void an_reset            (struct an_softc *);
139 static int an_init_mpi350_desc  (struct an_softc *);
140 static int an_ioctl             (struct ifnet *, u_long, caddr_t,
141                                         struct ucred *);
142 static void an_init             (void *);
143 static int an_init_tx_ring      (struct an_softc *);
144 static void an_start            (struct ifnet *);
145 static void an_watchdog         (struct ifnet *);
146 static void an_rxeof            (struct an_softc *);
147 static void an_txeof            (struct an_softc *, int);
148
149 static void an_promisc          (struct an_softc *, int);
150 static int an_cmd               (struct an_softc *, int, int);
151 static int an_cmd_struct        (struct an_softc *, struct an_command *,
152                                         struct an_reply *);
153 static int an_read_record       (struct an_softc *, struct an_ltv_gen *);
154 static int an_write_record      (struct an_softc *, struct an_ltv_gen *);
155 static int an_read_data         (struct an_softc *, int,
156                                         int, caddr_t, int);
157 static int an_write_data        (struct an_softc *, int,
158                                         int, caddr_t, int);
159 static int an_seek              (struct an_softc *, int, int, int);
160 static int an_alloc_nicmem      (struct an_softc *, int, int *);
161 static int an_dma_malloc        (struct an_softc *, bus_size_t,
162                                         struct an_dma_alloc *, int);
163 static void an_dma_free         (struct an_softc *, 
164                                         struct an_dma_alloc *);
165 static void an_dma_malloc_cb    (void *, bus_dma_segment_t *, int, int);
166 static void an_stats_update     (void *);
167 static void an_setdef           (struct an_softc *, struct an_req *);
168 #ifdef ANCACHE
169 static void an_cache_store      (struct an_softc *, struct mbuf *,
170                                  uint8_t, uint8_t);
171 #endif
172
173 /* function definitions for use with the Cisco's Linux configuration
174    utilities
175 */
176
177 static int readrids             (struct ifnet*, struct aironet_ioctl*);
178 static int writerids            (struct ifnet*, struct aironet_ioctl*);
179 static int flashcard            (struct ifnet*, struct aironet_ioctl*);
180
181 static int cmdreset             (struct ifnet *);
182 static int setflashmode         (struct ifnet *);
183 static int flashgchar           (struct ifnet *,int,int);
184 static int flashpchar           (struct ifnet *,int,int);
185 static int flashputbuf          (struct ifnet *);
186 static int flashrestart         (struct ifnet *);
187 static int WaitBusy             (struct ifnet *, int);
188 static int unstickbusy          (struct ifnet *);
189
190 static void an_dump_record      (struct an_softc *,struct an_ltv_gen *,
191                                     char *);
192
193 static int an_media_change      (struct ifnet *);
194 static void an_media_status     (struct ifnet *, struct ifmediareq *);
195
196 static int      an_dump = 0;
197 static int      an_cache_mode = 0;
198
199 #define DBM 0
200 #define PERCENT 1
201 #define RAW 2
202
203 static char an_conf[256];
204 static char an_conf_cache[256];
205
206 DECLARE_DUMMY_MODULE(if_an);
207
208 /* sysctl vars */
209
210 SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211
212 static int
213 sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214 {
215         int     error, r, last;
216         char    *s = an_conf;
217
218         last = an_dump;
219
220         switch (an_dump) {
221         case 0:
222                 strcpy(an_conf, "off");
223                 break;
224         case 1:
225                 strcpy(an_conf, "type");
226                 break;
227         case 2:
228                 strcpy(an_conf, "dump");
229                 break;
230         default:
231                 snprintf(an_conf, 5, "%x", an_dump);
232                 break;
233         }
234
235         error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237         if (strncmp(an_conf,"off", 3) == 0) {
238                 an_dump = 0;
239         }
240         if (strncmp(an_conf,"dump", 4) == 0) {
241                 an_dump = 1;
242         }
243         if (strncmp(an_conf,"type", 4) == 0) {
244                 an_dump = 2;
245         }
246         if (*s == 'f') {
247                 r = 0;
248                 for (;;s++) {
249                         if ((*s >= '0') && (*s <= '9')) {
250                                 r = r * 16 + (*s - '0');
251                         } else if ((*s >= 'a') && (*s <= 'f')) {
252                                 r = r * 16 + (*s - 'a' + 10);
253                         } else {
254                                 break;
255                         }
256                 }
257                 an_dump = r;
258         }
259         if (an_dump != last)
260                 printf("Sysctl changed for Aironet driver\n");
261
262         return error;
263 }
264
265 SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266             0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268 static int
269 sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270 {
271         int     error, last;
272
273         last = an_cache_mode;
274
275         switch (an_cache_mode) {
276         case 1:
277                 strcpy(an_conf_cache, "per");
278                 break;
279         case 2:
280                 strcpy(an_conf_cache, "raw");
281                 break;
282         default:
283                 strcpy(an_conf_cache, "dbm");
284                 break;
285         }
286
287         error = sysctl_handle_string(oidp, an_conf_cache, 
288                         sizeof(an_conf_cache), req);
289
290         if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291                 an_cache_mode = 0;
292         }
293         if (strncmp(an_conf_cache,"per", 3) == 0) {
294                 an_cache_mode = 1;
295         }
296         if (strncmp(an_conf_cache,"raw", 3) == 0) {
297                 an_cache_mode = 2;
298         }
299
300         return error;
301 }
302
303 SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304             0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306 /*
307  * We probe for an Aironet 4500/4800 card by attempting to
308  * read the default SSID list. On reset, the first entry in
309  * the SSID list will contain the name "tsunami." If we don't
310  * find this, then there's no card present.
311  */
312 int
313 an_probe(dev)
314         device_t                dev;
315 {
316         struct an_softc *sc = device_get_softc(dev);
317         struct an_ltv_ssidlist_new ssid;
318         int     error;
319
320         bzero((char *)&ssid, sizeof(ssid));
321
322         error = an_alloc_port(dev, 0, AN_IOSIZ);
323         if (error)
324                 return (error);
325
326         /* can't do autoprobing */
327         if (rman_get_start(sc->port_res) == -1)
328                 return(ENXIO);
329
330         /*
331          * We need to fake up a softc structure long enough
332          * to be able to issue commands and call some of the
333          * other routines.
334          */
335         sc->an_bhandle = rman_get_bushandle(sc->port_res);
336         sc->an_btag = rman_get_bustag(sc->port_res);
337
338         ssid.an_len = sizeof(ssid);
339         ssid.an_type = AN_RID_SSIDLIST;
340
341         /* Make sure interrupts are disabled. */
342         sc->mpi350 = 0;
343         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
344         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
345
346         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
347                     device_get_unit(dev));
348         an_reset(sc);
349
350         if (an_cmd(sc, AN_CMD_READCFG, 0))
351                 return(ENXIO);
352
353         if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
354                 return(ENXIO);
355
356         /* See if the ssid matches what we expect ... but doesn't have to */
357         if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID))
358                 return(ENXIO);
359
360         return(0);
361 }
362
363 /*
364  * Allocate a port resource with the given resource id.
365  */
366 int
367 an_alloc_port(dev, rid, size)
368         device_t dev;
369         int rid;
370         int size;
371 {
372         struct an_softc *sc = device_get_softc(dev);
373         struct resource *res;
374
375         res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
376                                  0ul, ~0ul, size, RF_ACTIVE);
377         if (res) {
378                 sc->port_rid = rid;
379                 sc->port_res = res;
380                 return (0);
381         } else {
382                 return (ENOENT);
383         }
384 }
385
386 /*
387  * Allocate a memory resource with the given resource id.
388  */
389 int an_alloc_memory(device_t dev, int rid, int size)
390 {
391         struct an_softc *sc = device_get_softc(dev);
392         struct resource *res;
393
394         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
395                                  0ul, ~0ul, size, RF_ACTIVE);
396         if (res) {
397                 sc->mem_rid = rid;
398                 sc->mem_res = res;
399                 sc->mem_used = size;
400                 return (0);
401         } else {
402                 return (ENOENT);
403         }
404 }
405
406 /*
407  * Allocate a auxilary memory resource with the given resource id.
408  */
409 int an_alloc_aux_memory(device_t dev, int rid, int size)
410 {
411         struct an_softc *sc = device_get_softc(dev);
412         struct resource *res;
413
414         res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
415                                  0ul, ~0ul, size, RF_ACTIVE);
416         if (res) {
417                 sc->mem_aux_rid = rid;
418                 sc->mem_aux_res = res;
419                 sc->mem_aux_used = size;
420                 return (0);
421         } else {
422                 return (ENOENT);
423         }
424 }
425
426 /*
427  * Allocate an irq resource with the given resource id.
428  */
429 int
430 an_alloc_irq(dev, rid, flags)
431         device_t dev;
432         int rid;
433         int flags;
434 {
435         struct an_softc *sc = device_get_softc(dev);
436         struct resource *res;
437
438         res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
439             (RF_ACTIVE | flags));
440         if (res) {
441                 sc->irq_rid = rid;
442                 sc->irq_res = res;
443                 return (0);
444         } else {
445                 return (ENOENT);
446         }
447 }
448
449 static void
450 an_dma_malloc_cb(arg, segs, nseg, error)
451         void *arg;
452         bus_dma_segment_t *segs;
453         int nseg;
454         int error;
455 {
456         bus_addr_t *paddr = (bus_addr_t*) arg;
457         *paddr = segs->ds_addr;
458 }
459
460 /*
461  * Alloc DMA memory and set the pointer to it
462  */
463 static int
464 an_dma_malloc(sc, size, dma, mapflags)
465         struct an_softc *sc;
466         bus_size_t size;
467         struct an_dma_alloc *dma;
468         int mapflags;
469 {
470         int r;
471
472         r = bus_dmamap_create(sc->an_dtag, 0, &dma->an_dma_map);
473         if (r != 0)
474                 goto fail_0;
475
476         r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
477                              BUS_DMA_WAITOK, &dma->an_dma_map);
478         if (r != 0)
479                 goto fail_1;
480
481         r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
482                             size,
483                             an_dma_malloc_cb,
484                             &dma->an_dma_paddr,
485                             mapflags);
486         if (r != 0)
487                 goto fail_2;
488
489         dma->an_dma_size = size;
490         return (0);
491
492 fail_2:
493         bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
494 fail_1:
495         bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
496 fail_0:
497         bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
498         dma->an_dma_map = NULL;
499         return (r);
500 }
501
502 static void
503 an_dma_free(sc, dma)
504         struct an_softc *sc;
505         struct an_dma_alloc *dma;
506 {
507         bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
508         bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
509         dma->an_dma_vaddr = NULL;
510         bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
511 }
512
513 /*
514  * Release all resources
515  */
516 void
517 an_release_resources(dev)
518         device_t dev;
519 {
520         struct an_softc *sc = device_get_softc(dev);
521         int i;
522
523         if (sc->port_res) {
524                 bus_release_resource(dev, SYS_RES_IOPORT,
525                                      sc->port_rid, sc->port_res);
526                 sc->port_res = 0;
527         }
528         if (sc->mem_res) {
529                 bus_release_resource(dev, SYS_RES_MEMORY,
530                                      sc->mem_rid, sc->mem_res);
531                 sc->mem_res = 0;
532         }
533         if (sc->mem_aux_res) {
534                 bus_release_resource(dev, SYS_RES_MEMORY,
535                                      sc->mem_aux_rid, sc->mem_aux_res);
536                 sc->mem_aux_res = 0;
537         }
538         if (sc->irq_res) {
539                 bus_release_resource(dev, SYS_RES_IRQ,
540                                      sc->irq_rid, sc->irq_res);
541                 sc->irq_res = 0;
542         }
543         if (sc->an_rid_buffer.an_dma_paddr) {
544                 an_dma_free(sc, &sc->an_rid_buffer);
545         }
546         for (i = 0; i < AN_MAX_RX_DESC; i++)
547                 if (sc->an_rx_buffer[i].an_dma_paddr) {
548                         an_dma_free(sc, &sc->an_rx_buffer[i]);
549                 }
550         for (i = 0; i < AN_MAX_TX_DESC; i++)
551                 if (sc->an_tx_buffer[i].an_dma_paddr) {
552                         an_dma_free(sc, &sc->an_tx_buffer[i]);
553                 }
554         if (sc->an_dtag) {
555                 bus_dma_tag_destroy(sc->an_dtag);
556         }
557
558 }
559
560 int
561 an_init_mpi350_desc(sc)
562         struct an_softc *sc;
563 {
564         struct an_command       cmd_struct;
565         struct an_reply         reply;
566         struct an_card_rid_desc an_rid_desc;
567         struct an_card_rx_desc  an_rx_desc;
568         struct an_card_tx_desc  an_tx_desc;
569         int                     i, desc;
570
571         if(!sc->an_rid_buffer.an_dma_paddr)
572                 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
573                                  &sc->an_rid_buffer, 0);
574         for (i = 0; i < AN_MAX_RX_DESC; i++)
575                 if(!sc->an_rx_buffer[i].an_dma_paddr)
576                         an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
577                                       &sc->an_rx_buffer[i], 0);
578         for (i = 0; i < AN_MAX_TX_DESC; i++)
579                 if(!sc->an_tx_buffer[i].an_dma_paddr)
580                         an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
581                                       &sc->an_tx_buffer[i], 0);
582
583         /*
584          * Allocate RX descriptor
585          */
586         bzero(&reply,sizeof(reply));
587         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
588         cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
589         cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
590         cmd_struct.an_parm2 = AN_MAX_RX_DESC;
591         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
592                 if_printf(&sc->arpcom.ac_if,
593                           "failed to allocate RX descriptor\n");
594                 return(EIO);
595         }
596
597         for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
598                 bzero(&an_rx_desc, sizeof(an_rx_desc));
599                 an_rx_desc.an_valid = 1;
600                 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
601                 an_rx_desc.an_done = 0;
602                 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
603
604                 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
605                         CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET 
606                                             + (desc * sizeof(an_rx_desc))
607                                             + (i * 4),
608                                             ((u_int32_t*)&an_rx_desc)[i]);
609         }
610
611         /*
612          * Allocate TX descriptor
613          */
614
615         bzero(&reply,sizeof(reply));
616         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
617         cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
618         cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
619         cmd_struct.an_parm2 = AN_MAX_TX_DESC;
620         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
621                 if_printf(&sc->arpcom.ac_if,
622                           "failed to allocate TX descriptor\n");
623                 return(EIO);
624         }
625
626         for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
627                 bzero(&an_tx_desc, sizeof(an_tx_desc));
628                 an_tx_desc.an_offset = 0;
629                 an_tx_desc.an_eoc = 0;
630                 an_tx_desc.an_valid = 0;
631                 an_tx_desc.an_len = 0;
632                 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
633
634                 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
635                         CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
636                                             + (desc * sizeof(an_tx_desc))
637                                             + (i * 4),
638                                             ((u_int32_t*)&an_tx_desc)[i]);
639         }
640
641         /*
642          * Allocate RID descriptor
643          */
644
645         bzero(&reply,sizeof(reply));
646         cmd_struct.an_cmd   = AN_CMD_ALLOC_DESC;
647         cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
648         cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
649         cmd_struct.an_parm2 = 1;
650         if (an_cmd_struct(sc, &cmd_struct, &reply)) {
651                 if_printf(&sc->arpcom.ac_if,
652                           "failed to allocate host descriptor\n");
653                 return(EIO);
654         }
655
656         bzero(&an_rid_desc, sizeof(an_rid_desc));
657         an_rid_desc.an_valid = 1;
658         an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
659         an_rid_desc.an_rid = 0;
660         an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
661
662         for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
663                 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
664                                     ((u_int32_t*)&an_rid_desc)[i]);
665
666         return(0);
667 }
668
669 int
670 an_attach(sc, dev, flags)
671         struct an_softc *sc;
672         device_t dev;
673         int flags;
674 {
675         struct ifnet            *ifp = &sc->arpcom.ac_if;
676         int                     error;
677
678         callout_init(&sc->an_stat_timer);
679         sc->an_associated = 0;
680         sc->an_monitor = 0;
681         sc->an_was_monitor = 0;
682         sc->an_flash_buffer = NULL;
683
684         ifp->if_softc = sc;
685         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
686
687         /* Reset the NIC. */
688         an_reset(sc);
689         if (sc->mpi350) {
690                 error = an_init_mpi350_desc(sc);
691                 if (error)
692                         return(error);
693         }
694
695         /* Load factory config */
696         if (an_cmd(sc, AN_CMD_READCFG, 0)) {
697                 device_printf(dev, "failed to load config data\n");
698                 return(EIO);
699         }
700
701         /* Read the current configuration */
702         sc->an_config.an_type = AN_RID_GENCONFIG;
703         sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
704         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
705                 device_printf(dev, "read record failed\n");
706                 return(EIO);
707         }
708
709         /* Read the card capabilities */
710         sc->an_caps.an_type = AN_RID_CAPABILITIES;
711         sc->an_caps.an_len = sizeof(struct an_ltv_caps);
712         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
713                 device_printf(dev, "read record failed\n");
714                 return(EIO);
715         }
716
717         /* Read ssid list */
718         sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
719         sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
720         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
721                 device_printf(dev, "read record failed\n");
722                 return(EIO);
723         }
724
725         /* Read AP list */
726         sc->an_aplist.an_type = AN_RID_APLIST;
727         sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
728         if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
729                 device_printf(dev, "read record failed\n");
730                 return(EIO);
731         }
732
733 #ifdef ANCACHE
734         /* Read the RSSI <-> dBm map */
735         sc->an_have_rssimap = 0;
736         if (sc->an_caps.an_softcaps & 8) {
737                 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
738                 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
739                 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
740                         device_printf(dev, "unable to get RSSI <-> dBM map\n");
741                 } else {
742                         device_printf(dev, "got RSSI <-> dBM map\n");
743                         sc->an_have_rssimap = 1;
744                 }
745         } else {
746                 device_printf(dev, "no RSSI <-> dBM map\n");
747         }
748 #endif
749
750         ifp->if_mtu = ETHERMTU;
751         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752         ifp->if_ioctl = an_ioctl;
753         ifp->if_start = an_start;
754         ifp->if_watchdog = an_watchdog;
755         ifp->if_init = an_init;
756         ifp->if_baudrate = 10000000;
757         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
758         ifq_set_ready(&ifp->if_snd);
759
760         bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
761         bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
762             sizeof(AN_DEFAULT_NODENAME) - 1);
763
764         bzero(sc->an_ssidlist.an_entry[0].an_ssid,
765               sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
766         bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
767               sizeof(AN_DEFAULT_NETNAME) - 1);
768         sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
769
770         sc->an_config.an_opmode =
771             AN_OPMODE_INFRASTRUCTURE_STATION;
772
773         sc->an_tx_rate = 0;
774         bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
775
776         ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
777 #define ADD(m, c)       ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
778         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
779             IFM_IEEE80211_ADHOC, 0), 0);
780         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
781         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
782             IFM_IEEE80211_ADHOC, 0), 0);
783         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
784         if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
785                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
786                     IFM_IEEE80211_ADHOC, 0), 0);
787                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
788         }
789         if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
790                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
791                     IFM_IEEE80211_ADHOC, 0), 0);
792                 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
793         }
794         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
795             IFM_IEEE80211_ADHOC, 0), 0);
796         ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
797 #undef  ADD
798         ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
799             0, 0));
800
801         /*
802          * Call MI attach routine.
803          */
804         ether_ifattach(ifp, sc->an_caps.an_oemaddr, NULL);
805
806         return(0);
807 }
808
809 int
810 an_detach(device_t dev)
811 {
812         struct an_softc *sc = device_get_softc(dev);
813         struct ifnet *ifp = &sc->arpcom.ac_if;
814
815         lwkt_serialize_enter(ifp->if_serializer);
816         an_stop(sc);
817         ifmedia_removeall(&sc->an_ifmedia);
818         ether_ifdetach(ifp);
819         bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
820         an_release_resources(dev);
821         lwkt_serialize_exit(ifp->if_serializer);
822         return 0;
823 }
824
825 static void
826 an_rxeof(sc)
827         struct an_softc *sc;
828 {
829         struct ifnet   *ifp;
830         struct ether_header *eh;
831         struct ieee80211_frame *ih;
832         struct an_rxframe rx_frame;
833         struct an_rxframe_802_3 rx_frame_802_3;
834         struct mbuf    *m;
835         int             len, id, error = 0, i, count = 0;
836         int             ieee80211_header_len;
837         u_char          *bpf_buf;
838         u_short         fc1;
839         struct an_card_rx_desc an_rx_desc;
840         u_int8_t        *buf;
841
842         ifp = &sc->arpcom.ac_if;
843
844         if (!sc->mpi350) {
845                 id = CSR_READ_2(sc, AN_RX_FID);
846
847                 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
848                         /* read raw 802.11 packet */
849                         bpf_buf = sc->buf_802_11;
850
851                         /* read header */
852                         if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
853                                          sizeof(rx_frame))) {
854                                 ifp->if_ierrors++;
855                                 return;
856                         }
857
858                         /*
859                          * skip beacon by default since this increases the
860                          * system load a lot
861                          */
862
863                         if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
864                             (rx_frame.an_frame_ctl & 
865                              IEEE80211_FC0_SUBTYPE_BEACON)) {
866                                 return;
867                         }
868
869                         if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
870                                 len = rx_frame.an_rx_payload_len
871                                         + sizeof(rx_frame);
872                                 /* Check for insane frame length */
873                                 if (len > sizeof(sc->buf_802_11)) {
874                                         if_printf(ifp,
875                                                   "oversized packet received "
876                                                   "(%d, %d)\n", len, MCLBYTES);
877                                         ifp->if_ierrors++;
878                                         return;
879                                 }
880
881                                 bcopy((char *)&rx_frame,
882                                       bpf_buf, sizeof(rx_frame));
883
884                                 error = an_read_data(sc, id, sizeof(rx_frame),
885                                             (caddr_t)bpf_buf+sizeof(rx_frame),
886                                             rx_frame.an_rx_payload_len);
887                         } else {
888                                 fc1=rx_frame.an_frame_ctl >> 8;
889                                 ieee80211_header_len = 
890                                         sizeof(struct ieee80211_frame);
891                                 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
892                                     (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
893                                         ieee80211_header_len += ETHER_ADDR_LEN;
894                                 }
895
896                                 len = rx_frame.an_rx_payload_len
897                                         + ieee80211_header_len;
898                                 /* Check for insane frame length */
899                                 if (len > sizeof(sc->buf_802_11)) {
900                                         if_printf(ifp,
901                                                   "oversized packet received "
902                                                   "(%d, %d)\n", len, MCLBYTES);
903                                         ifp->if_ierrors++;
904                                         return;
905                                 }
906
907                                 ih = (struct ieee80211_frame *)bpf_buf;
908
909                                 bcopy((char *)&rx_frame.an_frame_ctl,
910                                       (char *)ih, ieee80211_header_len);
911
912                                 error = an_read_data(sc, id, sizeof(rx_frame) +
913                                             rx_frame.an_gaplen,
914                                             (caddr_t)ih +ieee80211_header_len,
915                                             rx_frame.an_rx_payload_len);
916                         }
917                         BPF_TAP(ifp, bpf_buf, len);
918                 } else {
919                         m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
920                         if (m == NULL) {
921                                 ifp->if_ierrors++;
922                                 return;
923                         }
924                         m->m_pkthdr.rcvif = ifp;
925                         /* Read Ethernet encapsulated packet */
926
927 #ifdef ANCACHE
928                         /* Read NIC frame header */
929                         if (an_read_data(sc, id, 0, (caddr_t)&rx_frame, 
930                                          sizeof(rx_frame))) {
931                                 ifp->if_ierrors++;
932                                 return;
933                         }
934 #endif
935                         /* Read in the 802_3 frame header */
936                         if (an_read_data(sc, id, 0x34, 
937                                          (caddr_t)&rx_frame_802_3,
938                                          sizeof(rx_frame_802_3))) {
939                                 ifp->if_ierrors++;
940                                 return;
941                         }
942                         if (rx_frame_802_3.an_rx_802_3_status != 0) {
943                                 ifp->if_ierrors++;
944                                 return;
945                         }
946                         /* Check for insane frame length */
947                         len = rx_frame_802_3.an_rx_802_3_payload_len;
948                         if (len > sizeof(sc->buf_802_11)) {
949                                 if_printf(ifp,
950                                     "oversized packet received (%d, %d)\n",
951                                     len, MCLBYTES);
952                                 ifp->if_ierrors++;
953                                 return;
954                         }
955                         m->m_pkthdr.len = m->m_len =
956                                 rx_frame_802_3.an_rx_802_3_payload_len + 12;
957
958                         eh = mtod(m, struct ether_header *);
959
960                         bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
961                               (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
962                         bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
963                               (char *)&eh->ether_shost, ETHER_ADDR_LEN);
964
965                         /* in mbuf header type is just before payload */
966                         error = an_read_data(sc, id, 0x44, 
967                                     (caddr_t)&(eh->ether_type),
968                                     rx_frame_802_3.an_rx_802_3_payload_len);
969
970                         if (error) {
971                                 m_freem(m);
972                                 ifp->if_ierrors++;
973                                 return;
974                         }
975                         ifp->if_ipackets++;
976
977 #ifdef ANCACHE
978                         an_cache_store(sc, m,
979                                 rx_frame.an_rx_signal_strength,
980                                 rx_frame.an_rsvd0);
981 #endif
982                         ifp->if_input(ifp, m);
983                 }
984
985         } else { /* MPI-350 */
986                 for (count = 0; count < AN_MAX_RX_DESC; count++){
987                         for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
988                                 ((u_int32_t*)&an_rx_desc)[i] 
989                                         = CSR_MEM_AUX_READ_4(sc, 
990                                                 AN_RX_DESC_OFFSET 
991                                                 + (count * sizeof(an_rx_desc))
992                                                 + (i * 4));
993
994                         if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
995                                 buf = sc->an_rx_buffer[count].an_dma_vaddr;
996
997                                 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
998                                 if (m == NULL) {
999                                         ifp->if_ierrors++;
1000                                         return;
1001                                 }
1002                                 m->m_pkthdr.rcvif = ifp;
1003                                 /* Read Ethernet encapsulated packet */
1004
1005                                 /* 
1006                                  * No ANCACHE support since we just get back
1007                                  * an Ethernet packet no 802.11 info
1008                                  */
1009 #if 0
1010 #ifdef ANCACHE
1011                                 /* Read NIC frame header */
1012                                 bcopy(buf, (caddr_t)&rx_frame, 
1013                                       sizeof(rx_frame));
1014 #endif
1015 #endif
1016                                 /* Check for insane frame length */
1017                                 len = an_rx_desc.an_len + 12;
1018                                 if (len > MCLBYTES) {
1019                                         if_printf(ifp,
1020                                                   "oversized packet received "
1021                                                   "(%d, %d)\n", len, MCLBYTES);
1022                                         ifp->if_ierrors++;
1023                                         return;
1024                                 }
1025
1026                                 m->m_pkthdr.len = m->m_len =
1027                                         an_rx_desc.an_len + 12;
1028                                 
1029                                 eh = mtod(m, struct ether_header *);
1030                                 
1031                                 bcopy(buf, (char *)eh,
1032                                       m->m_pkthdr.len);
1033                                 
1034                                 ifp->if_ipackets++;
1035                                 
1036 #if 0
1037 #ifdef ANCACHE
1038                                 an_cache_store(sc, m, 
1039                                         rx_frame.an_rx_signal_strength,
1040                                         rx_frame.an_rsvd0);
1041 #endif
1042 #endif
1043                                 ifp->if_input(ifp, m);
1044                         
1045                                 an_rx_desc.an_valid = 1;
1046                                 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1047                                 an_rx_desc.an_done = 0;
1048                                 an_rx_desc.an_phys = 
1049                                         sc->an_rx_buffer[count].an_dma_paddr;
1050                         
1051                                 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1052                                         CSR_MEM_AUX_WRITE_4(sc, 
1053                                                 AN_RX_DESC_OFFSET 
1054                                                 + (count * sizeof(an_rx_desc))
1055                                                 + (i * 4),
1056                                                 ((u_int32_t*)&an_rx_desc)[i]);
1057                                 
1058                         } else {
1059                                 if_printf(ifp, "Didn't get valid RX packet "
1060                                           "%x %x %d\n",
1061                                           an_rx_desc.an_done,
1062                                           an_rx_desc.an_valid,
1063                                           an_rx_desc.an_len);
1064                         }
1065                 }
1066         }
1067 }
1068
1069 static void
1070 an_txeof(sc, status)
1071         struct an_softc         *sc;
1072         int                     status;
1073 {
1074         struct ifnet            *ifp;
1075         int                     id, i;
1076
1077         ifp = &sc->arpcom.ac_if;
1078
1079         ifp->if_timer = 0;
1080         ifp->if_flags &= ~IFF_OACTIVE;
1081
1082         if (!sc->mpi350) {
1083                 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1084
1085                 if (status & AN_EV_TX_EXC) {
1086                         ifp->if_oerrors++;
1087                 } else
1088                         ifp->if_opackets++;
1089
1090                 for (i = 0; i < AN_TX_RING_CNT; i++) {
1091                         if (id == sc->an_rdata.an_tx_ring[i]) {
1092                                 sc->an_rdata.an_tx_ring[i] = 0;
1093                                 break;
1094                         }
1095                 }
1096
1097                 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1098         } else { /* MPI 350 */
1099                 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1100                 if (!sc->an_rdata.an_tx_empty){
1101                         if (status & AN_EV_TX_EXC) {
1102                                 ifp->if_oerrors++;
1103                         } else
1104                                 ifp->if_opackets++;
1105                         AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1106                         if (sc->an_rdata.an_tx_prod ==
1107                             sc->an_rdata.an_tx_cons)
1108                                 sc->an_rdata.an_tx_empty = 1;
1109                 }
1110         }
1111 }
1112
1113 /*
1114  * We abuse the stats updater to check the current NIC status. This
1115  * is important because we don't want to allow transmissions until
1116  * the NIC has synchronized to the current cell (either as the master
1117  * in an ad-hoc group, or as a station connected to an access point).
1118  */
1119 static void
1120 an_stats_update(xsc)
1121         void                    *xsc;
1122 {
1123         struct an_softc         *sc;
1124         struct ifnet            *ifp;
1125
1126         sc = xsc;
1127         ifp = &sc->arpcom.ac_if;
1128
1129         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1130
1131         sc->an_status.an_type = AN_RID_STATUS;
1132         sc->an_status.an_len = sizeof(struct an_ltv_status);
1133         an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1134
1135         if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1136                 sc->an_associated = 1;
1137         else
1138                 sc->an_associated = 0;
1139
1140         /* Don't do this while we're not transmitting */
1141         if ((ifp->if_flags & IFF_OACTIVE) == 0) {
1142                 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1143                 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1144                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1145         }
1146
1147         callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
1148
1149         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1150 }
1151
1152 void
1153 an_intr(xsc)
1154         void                    *xsc;
1155 {
1156         struct an_softc         *sc;
1157         struct ifnet            *ifp;
1158         u_int16_t               status;
1159
1160         sc = (struct an_softc*)xsc;
1161
1162         ifp = &sc->arpcom.ac_if;
1163
1164         /* Disable interrupts. */
1165         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1166
1167         status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1168         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
1169
1170         if (status & AN_EV_MIC)
1171                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
1172
1173         if (status & AN_EV_LINKSTAT) {
1174                 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350)) 
1175                     == AN_LINKSTAT_ASSOCIATED)
1176                         sc->an_associated = 1;
1177                 else
1178                         sc->an_associated = 0;
1179                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1180         }
1181
1182         if (status & AN_EV_RX) {
1183                 an_rxeof(sc);
1184                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1185         }
1186
1187         if (sc->mpi350 && status & AN_EV_TX_CPY) {
1188                 an_txeof(sc, status);
1189                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
1190         }
1191
1192         if (status & AN_EV_TX) {
1193                 an_txeof(sc, status);
1194                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1195         }
1196
1197         if (status & AN_EV_TX_EXC) {
1198                 an_txeof(sc, status);
1199                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1200         }
1201
1202         if (status & AN_EV_ALLOC)
1203                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1204
1205         /* Re-enable interrupts. */
1206         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
1207
1208         if ((ifp->if_flags & IFF_UP) && !ifq_is_empty(&ifp->if_snd))
1209                 an_start(ifp);
1210
1211         return;
1212 }
1213
1214 static int
1215 an_cmd_struct(sc, cmd, reply)
1216         struct an_softc         *sc;
1217         struct an_command       *cmd;
1218         struct an_reply         *reply;
1219 {
1220         int                     i;
1221
1222         for (i = 0; i != AN_TIMEOUT; i++) {
1223                 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1224                         DELAY(1000);
1225                 } else
1226                         break;
1227         }
1228         if( i == AN_TIMEOUT) {
1229                 printf("BUSY\n");
1230                 return(ETIMEDOUT);
1231         }
1232
1233         CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1234         CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1235         CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1236         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1237
1238         for (i = 0; i < AN_TIMEOUT; i++) {
1239                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1240                         break;
1241                 DELAY(1000);
1242         }
1243
1244         reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1245         reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1246         reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1247         reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1248
1249         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1250                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1251
1252         /* Ack the command */
1253         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1254
1255         if (i == AN_TIMEOUT)
1256                 return(ETIMEDOUT);
1257
1258         return(0);
1259 }
1260
1261 static int
1262 an_cmd(sc, cmd, val)
1263         struct an_softc         *sc;
1264         int                     cmd;
1265         int                     val;
1266 {
1267         int                     i, s = 0;
1268
1269         CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1270         CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1271         CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1272         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1273
1274         for (i = 0; i < AN_TIMEOUT; i++) {
1275                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1276                         break;
1277                 else {
1278                         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1279                                 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1280                 }
1281         }
1282
1283         for (i = 0; i < AN_TIMEOUT; i++) {
1284                 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1285                 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1286                 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1287                 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1288                 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1289                         break;
1290         }
1291
1292         /* Ack the command */
1293         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1294
1295         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1296                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1297
1298         if (i == AN_TIMEOUT)
1299                 return(ETIMEDOUT);
1300
1301         return(0);
1302 }
1303
1304 /*
1305  * This reset sequence may look a little strange, but this is the
1306  * most reliable method I've found to really kick the NIC in the
1307  * head and force it to reboot correctly.
1308  */
1309 static void
1310 an_reset(sc)
1311         struct an_softc         *sc;
1312 {
1313         an_cmd(sc, AN_CMD_ENABLE, 0);
1314         an_cmd(sc, AN_CMD_FW_RESTART, 0);
1315         an_cmd(sc, AN_CMD_NOOP2, 0);
1316
1317         if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1318                 if_printf(&sc->arpcom.ac_if, "reset failed\n");
1319
1320         an_cmd(sc, AN_CMD_DISABLE, 0);
1321
1322         return;
1323 }
1324
1325 /*
1326  * Read an LTV record from the NIC.
1327  */
1328 static int
1329 an_read_record(sc, ltv)
1330         struct an_softc         *sc;
1331         struct an_ltv_gen       *ltv;
1332 {
1333         struct an_ltv_gen       *an_ltv;
1334         struct an_card_rid_desc an_rid_desc;
1335         struct an_command       cmd;
1336         struct an_reply         reply;
1337         u_int16_t               *ptr;
1338         u_int8_t                *ptr2;
1339         int                     i, len;
1340
1341         if (ltv->an_len < 4 || ltv->an_type == 0)
1342                 return(EINVAL);
1343
1344         if (!sc->mpi350){
1345                 /* Tell the NIC to enter record read mode. */
1346                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1347                         if_printf(&sc->arpcom.ac_if, "RID access failed\n");
1348                         return(EIO);
1349                 }
1350
1351                 /* Seek to the record. */
1352                 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1353                         if_printf(&sc->arpcom.ac_if, "seek to record failed\n");
1354                         return(EIO);
1355                 }
1356
1357                 /*
1358                  * Read the length and record type and make sure they
1359                  * match what we expect (this verifies that we have enough
1360                  * room to hold all of the returned data).
1361                  * Length includes type but not length.
1362                  */
1363                 len = CSR_READ_2(sc, AN_DATA1);
1364                 if (len > (ltv->an_len - 2)) {
1365                         if_printf(&sc->arpcom.ac_if,
1366                                   "record length mismatch -- expected %d, "
1367                                   "got %d for Rid %x\n",
1368                                   ltv->an_len - 2, len, ltv->an_type);
1369                         len = ltv->an_len - 2;
1370                 } else {
1371                         ltv->an_len = len + 2;
1372                 }
1373
1374                 /* Now read the data. */
1375                 len -= 2;       /* skip the type */
1376                 ptr = &ltv->an_val;
1377                 for (i = len; i > 1; i -= 2)
1378                         *ptr++ = CSR_READ_2(sc, AN_DATA1);
1379                 if (i) {
1380                         ptr2 = (u_int8_t *)ptr;
1381                         *ptr2 = CSR_READ_1(sc, AN_DATA1);
1382                 }
1383         } else { /* MPI-350 */
1384                 if (sc->an_rid_buffer.an_dma_vaddr == NULL)
1385                         return(EIO);
1386                 an_rid_desc.an_valid = 1;
1387                 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1388                 an_rid_desc.an_rid = 0;
1389                 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1390                 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1391
1392                 bzero(&cmd, sizeof(cmd));
1393                 bzero(&reply, sizeof(reply));
1394                 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1395                 cmd.an_parm0 = ltv->an_type;
1396
1397                 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1398                         CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
1399                                             ((u_int32_t*)&an_rid_desc)[i]);
1400
1401                 if (an_cmd_struct(sc, &cmd, &reply)
1402                     || reply.an_status & AN_CMD_QUAL_MASK) {
1403                         if_printf(&sc->arpcom.ac_if,
1404                                   "failed to read RID %x %x %x %x %x, %d\n", 
1405                                   ltv->an_type,
1406                                   reply.an_status,
1407                                   reply.an_resp0,
1408                                   reply.an_resp1,
1409                                   reply.an_resp2,
1410                                   i);
1411                         return(EIO);
1412                 }
1413
1414                 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1415                 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1416                         an_rid_desc.an_len = an_ltv->an_len;
1417                 }
1418
1419                 len = an_rid_desc.an_len;
1420                 if (len > (ltv->an_len - 2)) {
1421                         if_printf(&sc->arpcom.ac_if,
1422                                   "record length mismatch -- expected %d, "
1423                                   "got %d for Rid %x\n",
1424                                   ltv->an_len - 2, len, ltv->an_type);
1425                         len = ltv->an_len - 2;
1426                 } else {
1427                         ltv->an_len = len + 2;
1428                 }
1429                 bcopy(&an_ltv->an_type, &ltv->an_val, len);
1430         }
1431
1432         if (an_dump)
1433                 an_dump_record(sc, ltv, "Read");
1434
1435         return(0);
1436 }
1437
1438 /*
1439  * Same as read, except we inject data instead of reading it.
1440  */
1441 static int
1442 an_write_record(sc, ltv)
1443         struct an_softc         *sc;
1444         struct an_ltv_gen       *ltv;
1445 {
1446         struct an_card_rid_desc an_rid_desc;
1447         struct an_command       cmd;
1448         struct an_reply         reply;
1449         char                    *buf;
1450         u_int16_t               *ptr;
1451         u_int8_t                *ptr2;
1452         int                     i, len;
1453
1454         if (an_dump)
1455                 an_dump_record(sc, ltv, "Write");
1456
1457         if (!sc->mpi350){
1458                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1459                         return(EIO);
1460
1461                 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1462                         return(EIO);
1463
1464                 /*
1465                  * Length includes type but not length.
1466                  */
1467                 len = ltv->an_len - 2;
1468                 CSR_WRITE_2(sc, AN_DATA1, len);
1469
1470                 len -= 2;       /* skip the type */
1471                 ptr = &ltv->an_val;
1472                 for (i = len; i > 1; i -= 2)
1473                         CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1474                 if (i) {
1475                         ptr2 = (u_int8_t *)ptr;
1476                         CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1477                 }
1478
1479                 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1480                         return(EIO);
1481         } else { 
1482                 /* MPI-350 */
1483
1484                 for (i = 0; i != AN_TIMEOUT; i++) {
1485                         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) 
1486                             & AN_CMD_BUSY) {
1487                                 DELAY(10);
1488                         } else
1489                                 break;
1490                 }
1491                 if (i == AN_TIMEOUT) {
1492                         printf("BUSY\n");
1493                 }
1494
1495                 an_rid_desc.an_valid = 1;
1496                 an_rid_desc.an_len = ltv->an_len - 2;
1497                 an_rid_desc.an_rid = ltv->an_type;
1498                 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1499
1500                 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1501                       an_rid_desc.an_len);
1502
1503                 bzero(&cmd,sizeof(cmd));
1504                 bzero(&reply,sizeof(reply));
1505                 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1506                 cmd.an_parm0 = ltv->an_type;
1507
1508                 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1509                         CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4, 
1510                                             ((u_int32_t*)&an_rid_desc)[i]);
1511
1512                 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1513                         if_printf(&sc->arpcom.ac_if,
1514                             "failed to write RID 1 %x %x %x %x %x, %d\n", 
1515                             ltv->an_type, 
1516                             reply.an_status,
1517                             reply.an_resp0,
1518                             reply.an_resp1,
1519                             reply.an_resp2,
1520                             i);
1521                         return(EIO);
1522                 }
1523
1524                 ptr = (u_int16_t *)buf;
1525
1526                 if (reply.an_status & AN_CMD_QUAL_MASK) {
1527                         if_printf(&sc->arpcom.ac_if,
1528                             "failed to write RID 2 %x %x %x %x %x, %d\n", 
1529                             ltv->an_type, 
1530                             reply.an_status,
1531                             reply.an_resp0,
1532                             reply.an_resp1,
1533                             reply.an_resp2,
1534                             i);
1535                         return(EIO);
1536                 }
1537         }
1538
1539         return(0);
1540 }
1541
1542 static void
1543 an_dump_record(sc, ltv, string)
1544         struct an_softc         *sc;
1545         struct an_ltv_gen       *ltv;
1546         char                    *string;
1547 {
1548         u_int8_t                *ptr2;
1549         int                     len;
1550         int                     i;
1551         int                     count = 0;
1552         char                    buf[17], temp;
1553
1554         len = ltv->an_len - 4;
1555         if_printf(&sc->arpcom.ac_if, "RID %4x, Length %4d, Mode %s\n",
1556                   ltv->an_type, ltv->an_len - 4, string);
1557
1558         if (an_dump == 1 || (an_dump == ltv->an_type)) {
1559                 if_printf(&sc->arpcom.ac_if, "\t");
1560                 bzero(buf,sizeof(buf));
1561
1562                 ptr2 = (u_int8_t *)&ltv->an_val;
1563                 for (i = len; i > 0; i--) {
1564                         printf("%02x ", *ptr2);
1565
1566                         temp = *ptr2++;
1567                         if (temp >= ' ' && temp <= '~')
1568                                 buf[count] = temp;
1569                         else if (temp >= 'A' && temp <= 'Z')
1570                                 buf[count] = temp;
1571                         else
1572                                 buf[count] = '.';
1573                         if (++count == 16) {
1574                                 count = 0;
1575                                 printf("%s\n",buf);
1576                                 if_printf(&sc->arpcom.ac_if, "\t");
1577                                 bzero(buf,sizeof(buf));
1578                         }
1579                 }
1580                 for (; count != 16; count++) {
1581                         printf("   ");
1582                 }
1583                 printf(" %s\n",buf);
1584         }
1585 }
1586
1587 static int
1588 an_seek(sc, id, off, chan)
1589         struct an_softc         *sc;
1590         int                     id, off, chan;
1591 {
1592         int                     i;
1593         int                     selreg, offreg;
1594
1595         switch (chan) {
1596         case AN_BAP0:
1597                 selreg = AN_SEL0;
1598                 offreg = AN_OFF0;
1599                 break;
1600         case AN_BAP1:
1601                 selreg = AN_SEL1;
1602                 offreg = AN_OFF1;
1603                 break;
1604         default:
1605                 if_printf(&sc->arpcom.ac_if, "invalid data path: %x\n", chan);
1606                 return(EIO);
1607         }
1608
1609         CSR_WRITE_2(sc, selreg, id);
1610         CSR_WRITE_2(sc, offreg, off);
1611
1612         for (i = 0; i < AN_TIMEOUT; i++) {
1613                 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1614                         break;
1615         }
1616
1617         if (i == AN_TIMEOUT)
1618                 return(ETIMEDOUT);
1619
1620         return(0);
1621 }
1622
1623 static int
1624 an_read_data(sc, id, off, buf, len)
1625         struct an_softc         *sc;
1626         int                     id, off;
1627         caddr_t                 buf;
1628         int                     len;
1629 {
1630         int                     i;
1631         u_int16_t               *ptr;
1632         u_int8_t                *ptr2;
1633
1634         if (off != -1) {
1635                 if (an_seek(sc, id, off, AN_BAP1))
1636                         return(EIO);
1637         }
1638
1639         ptr = (u_int16_t *)buf;
1640         for (i = len; i > 1; i -= 2)
1641                 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1642         if (i) {
1643                 ptr2 = (u_int8_t *)ptr;
1644                 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1645         }
1646
1647         return(0);
1648 }
1649
1650 static int
1651 an_write_data(sc, id, off, buf, len)
1652         struct an_softc         *sc;
1653         int                     id, off;
1654         caddr_t                 buf;
1655         int                     len;
1656 {
1657         int                     i;
1658         u_int16_t               *ptr;
1659         u_int8_t                *ptr2;
1660
1661         if (off != -1) {
1662                 if (an_seek(sc, id, off, AN_BAP0))
1663                         return(EIO);
1664         }
1665
1666         ptr = (u_int16_t *)buf;
1667         for (i = len; i > 1; i -= 2)
1668                 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1669         if (i) {
1670                 ptr2 = (u_int8_t *)ptr;
1671                 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1672         }
1673
1674         return(0);
1675 }
1676
1677 /*
1678  * Allocate a region of memory inside the NIC and zero
1679  * it out.
1680  */
1681 static int
1682 an_alloc_nicmem(sc, len, id)
1683         struct an_softc         *sc;
1684         int                     len;
1685         int                     *id;
1686 {
1687         int                     i;
1688
1689         if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1690                 if_printf(&sc->arpcom.ac_if,
1691                           "failed to allocate %d bytes on NIC\n", len);
1692                 return(ENOMEM);
1693         }
1694
1695         for (i = 0; i < AN_TIMEOUT; i++) {
1696                 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1697                         break;
1698         }
1699
1700         if (i == AN_TIMEOUT)
1701                 return(ETIMEDOUT);
1702
1703         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1704         *id = CSR_READ_2(sc, AN_ALLOC_FID);
1705
1706         if (an_seek(sc, *id, 0, AN_BAP0))
1707                 return(EIO);
1708
1709         for (i = 0; i < len / 2; i++)
1710                 CSR_WRITE_2(sc, AN_DATA0, 0);
1711
1712         return(0);
1713 }
1714
1715 static void
1716 an_setdef(sc, areq)
1717         struct an_softc         *sc;
1718         struct an_req           *areq;
1719 {
1720         struct ifnet            *ifp;
1721         struct an_ltv_genconfig *cfg;
1722         struct an_ltv_ssidlist_new *ssid;
1723         struct an_ltv_aplist    *ap;
1724         struct an_ltv_gen       *sp;
1725
1726         ifp = &sc->arpcom.ac_if;
1727
1728         switch (areq->an_type) {
1729         case AN_RID_GENCONFIG:
1730                 cfg = (struct an_ltv_genconfig *)areq;
1731
1732                 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1733                     ETHER_ADDR_LEN);
1734                 bcopy((char *)&cfg->an_macaddr, IF_LLADDR(ifp), ETHER_ADDR_LEN);
1735
1736                 bcopy((char *)cfg, (char *)&sc->an_config,
1737                         sizeof(struct an_ltv_genconfig));
1738                 break;
1739         case AN_RID_SSIDLIST:
1740                 ssid = (struct an_ltv_ssidlist_new *)areq;
1741                 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1742                       sizeof(struct an_ltv_ssidlist_new));
1743                 break;
1744         case AN_RID_APLIST:
1745                 ap = (struct an_ltv_aplist *)areq;
1746                 bcopy((char *)ap, (char *)&sc->an_aplist,
1747                         sizeof(struct an_ltv_aplist));
1748                 break;
1749         case AN_RID_TX_SPEED:
1750                 sp = (struct an_ltv_gen *)areq;
1751                 sc->an_tx_rate = sp->an_val;
1752
1753                 /* Read the current configuration */
1754                 sc->an_config.an_type = AN_RID_GENCONFIG;
1755                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1756                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1757                 cfg = &sc->an_config;
1758
1759                 /* clear other rates and set the only one we want */
1760                 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1761                 cfg->an_rates[0] = sc->an_tx_rate;
1762
1763                 /* Save the new rate */
1764                 sc->an_config.an_type = AN_RID_GENCONFIG;
1765                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1766                 break;
1767         case AN_RID_WEP_TEMP:
1768                 /* Cache the temp keys */
1769                 bcopy(areq, 
1770                     &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex], 
1771                     sizeof(struct an_ltv_key));
1772         case AN_RID_WEP_PERM:
1773         case AN_RID_LEAPUSERNAME:
1774         case AN_RID_LEAPPASSWORD:
1775                 an_init(sc);
1776
1777                 /* Disable the MAC. */
1778                 an_cmd(sc, AN_CMD_DISABLE, 0);
1779
1780                 /* Write the key */
1781                 an_write_record(sc, (struct an_ltv_gen *)areq);
1782
1783                 /* Turn the MAC back on. */
1784                 an_cmd(sc, AN_CMD_ENABLE, 0);
1785
1786                 break;
1787         case AN_RID_MONITOR_MODE:
1788                 cfg = (struct an_ltv_genconfig *)areq;
1789                 bpfdetach(ifp);
1790                 if (ng_ether_detach_p != NULL)
1791                         (*ng_ether_detach_p) (ifp);
1792                 sc->an_monitor = cfg->an_len;
1793
1794                 if (sc->an_monitor & AN_MONITOR) {
1795                         if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1796                                 bpfattach(ifp, DLT_AIRONET_HEADER,
1797                                         sizeof(struct ether_header));
1798                         } else {
1799                                 bpfattach(ifp, DLT_IEEE802_11,
1800                                         sizeof(struct ether_header));
1801                         }
1802                 } else {
1803                         bpfattach(ifp, DLT_EN10MB,
1804                                   sizeof(struct ether_header));
1805                         if (ng_ether_attach_p != NULL)
1806                                 (*ng_ether_attach_p) (ifp);
1807                 }
1808                 break;
1809         default:
1810                 if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1811                 return;
1812         }
1813
1814
1815         /* Reinitialize the card. */
1816         if (ifp->if_flags)
1817                 an_init(sc);
1818
1819         return;
1820 }
1821
1822 /*
1823  * Derived from Linux driver to enable promiscious mode.
1824  */
1825
1826 static void
1827 an_promisc(sc, promisc)
1828         struct an_softc         *sc;
1829         int                     promisc;
1830 {
1831         if (sc->an_was_monitor)
1832                 an_reset(sc);
1833         if (sc->mpi350)
1834                 an_init_mpi350_desc(sc);        
1835         if (sc->an_monitor || sc->an_was_monitor)
1836                 an_init(sc);
1837
1838         sc->an_was_monitor = sc->an_monitor;
1839         an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1840
1841         return;
1842 }
1843
1844 static int
1845 an_ioctl(ifp, command, data, cr)
1846         struct ifnet            *ifp;
1847         u_long                  command;
1848         caddr_t                 data;
1849         struct ucred            *cr;
1850 {
1851         int                     error = 0;
1852         int                     len;
1853         int                     i, max;
1854         struct an_softc         *sc;
1855         struct ifreq            *ifr;
1856         struct ieee80211req     *ireq;
1857         u_int8_t                tmpstr[IEEE80211_NWID_LEN*2];
1858         u_int8_t                *tmpptr;
1859         struct an_ltv_genconfig *config;
1860         struct an_ltv_key       *key;
1861         struct an_ltv_status    *status;
1862         struct an_ltv_ssidlist_new *ssids;
1863         int                     mode;
1864         struct aironet_ioctl    l_ioctl;
1865
1866         sc = ifp->if_softc;
1867         ifr = (struct ifreq *)data;
1868         ireq = (struct ieee80211req *)data;
1869
1870         config = (struct an_ltv_genconfig *)&sc->areq;
1871         key = (struct an_ltv_key *)&sc->areq;
1872         status = (struct an_ltv_status *)&sc->areq;
1873         ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
1874
1875         switch (command) {
1876         case SIOCSIFFLAGS:
1877                 if (ifp->if_flags & IFF_UP) {
1878                         if (ifp->if_flags & IFF_RUNNING &&
1879                             ifp->if_flags & IFF_PROMISC &&
1880                             !(sc->an_if_flags & IFF_PROMISC)) {
1881                                 an_promisc(sc, 1);
1882                         } else if (ifp->if_flags & IFF_RUNNING &&
1883                             !(ifp->if_flags & IFF_PROMISC) &&
1884                             sc->an_if_flags & IFF_PROMISC) {
1885                                 an_promisc(sc, 0);
1886                         } else
1887                                 an_init(sc);
1888                 } else {
1889                         if (ifp->if_flags & IFF_RUNNING)
1890                                 an_stop(sc);
1891                 }
1892                 sc->an_if_flags = ifp->if_flags;
1893                 error = 0;
1894                 break;
1895         case SIOCSIFMEDIA:
1896         case SIOCGIFMEDIA:
1897                 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1898                 break;
1899         case SIOCADDMULTI:
1900         case SIOCDELMULTI:
1901                 /* The Aironet has no multicast filter. */
1902                 error = 0;
1903                 break;
1904         case SIOCGAIRONET:
1905                 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1906                 if (error != 0)
1907                         break;
1908 #ifdef ANCACHE
1909                 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1910                         error = suser_cred(cr, NULL_CRED_OKAY);
1911                         if (error)
1912                                 break;
1913                         sc->an_sigitems = sc->an_nextitem = 0;
1914                         break;
1915                 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1916                         char *pt = (char *)&sc->areq.an_val;
1917                         bcopy((char *)&sc->an_sigitems, (char *)pt,
1918                             sizeof(int));
1919                         pt += sizeof(int);
1920                         sc->areq.an_len = sizeof(int) / 2;
1921                         bcopy((char *)&sc->an_sigcache, (char *)pt,
1922                             sizeof(struct an_sigcache) * sc->an_sigitems);
1923                         sc->areq.an_len += ((sizeof(struct an_sigcache) *
1924                             sc->an_sigitems) / 2) + 1;
1925                 } else
1926 #endif
1927                 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1928                         error = EINVAL;
1929                         break;
1930                 }
1931                 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1932                 break;
1933         case SIOCSAIRONET:
1934                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1935                         break;
1936                 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1937                 if (error != 0)
1938                         break;
1939                 an_setdef(sc, &sc->areq);
1940                 break;
1941         case SIOCGPRIVATE_0:              /* used by Cisco client utility */
1942                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1943                         break;
1944                 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1945                 mode = l_ioctl.command;
1946
1947                 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1948                         error = readrids(ifp, &l_ioctl);
1949                 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1950                         error = writerids(ifp, &l_ioctl);
1951                 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1952                         error = flashcard(ifp, &l_ioctl);
1953                 } else {
1954                         error =-1;
1955                 }
1956
1957                 /* copy out the updated command info */
1958                 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1959
1960                 break;
1961         case SIOCGPRIVATE_1:              /* used by Cisco client utility */
1962                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1963                         break;
1964                 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1965                 l_ioctl.command = 0;
1966                 error = AIROMAGIC;
1967                 copyout(&error, l_ioctl.data, sizeof(error));
1968                 error = 0;
1969                 break;
1970         case SIOCG80211:
1971                 sc->areq.an_len = sizeof(sc->areq);
1972                 /* was that a good idea DJA we are doing a short-cut */
1973                 switch (ireq->i_type) {
1974                 case IEEE80211_IOC_SSID:
1975                         if (ireq->i_val == -1) {
1976                                 sc->areq.an_type = AN_RID_STATUS;
1977                                 if (an_read_record(sc,
1978                                     (struct an_ltv_gen *)&sc->areq)) {
1979                                         error = EINVAL;
1980                                         break;
1981                                 }
1982                                 len = status->an_ssidlen;
1983                                 tmpptr = status->an_ssid;
1984                         } else if (ireq->i_val >= 0) {
1985                                 sc->areq.an_type = AN_RID_SSIDLIST;
1986                                 if (an_read_record(sc,
1987                                     (struct an_ltv_gen *)&sc->areq)) {
1988                                         error = EINVAL;
1989                                         break;
1990                                 }
1991                                 max = (sc->areq.an_len - 4)
1992                                     / sizeof(struct an_ltv_ssid_entry);
1993                                 if ( max > MAX_SSIDS ) {
1994                                         printf("To many SSIDs only using "
1995                                             "%d of %d\n",
1996                                             MAX_SSIDS, max);
1997                                         max = MAX_SSIDS;
1998                                 }
1999                                 if (ireq->i_val > max) {
2000                                         error = EINVAL;
2001                                         break;
2002                                 } else {
2003                                         len = ssids->an_entry[ireq->i_val].an_len;
2004                                         tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
2005                                 }
2006                         } else {
2007                                 error = EINVAL;
2008                                 break;
2009                         }
2010                         if (len > IEEE80211_NWID_LEN) {
2011                                 error = EINVAL;
2012                                 break;
2013                         }
2014                         ireq->i_len = len;
2015                         bzero(tmpstr, IEEE80211_NWID_LEN);
2016                         bcopy(tmpptr, tmpstr, len);
2017                         error = copyout(tmpstr, ireq->i_data,
2018                             IEEE80211_NWID_LEN);
2019                         break;
2020                 case IEEE80211_IOC_NUMSSIDS:
2021                         sc->areq.an_len = sizeof(sc->areq);
2022                         sc->areq.an_type = AN_RID_SSIDLIST;
2023                         if (an_read_record(sc,
2024                             (struct an_ltv_gen *)&sc->areq)) {
2025                                 error = EINVAL;
2026                                 break;
2027                         }
2028                         max = (sc->areq.an_len - 4)
2029                             / sizeof(struct an_ltv_ssid_entry);
2030                         if (max > MAX_SSIDS) {
2031                                 printf("To many SSIDs only using "
2032                                     "%d of %d\n",
2033                                     MAX_SSIDS, max);
2034                                 max = MAX_SSIDS;
2035                         }
2036                         ireq->i_val = max;
2037                         break;
2038                 case IEEE80211_IOC_WEP:
2039                         sc->areq.an_type = AN_RID_ACTUALCFG;
2040                         if (an_read_record(sc,
2041                             (struct an_ltv_gen *)&sc->areq)) {
2042                                 error = EINVAL;
2043                                 break;
2044                         }
2045                         if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2046                                 if (config->an_authtype &
2047                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2048                                         ireq->i_val = IEEE80211_WEP_MIXED;
2049                                 else
2050                                         ireq->i_val = IEEE80211_WEP_ON;
2051                         } else {
2052                                 ireq->i_val = IEEE80211_WEP_OFF;
2053                         }
2054                         break;
2055                 case IEEE80211_IOC_WEPKEY:
2056                         /*
2057                          * XXX: I'm not entierly convinced this is
2058                          * correct, but it's what is implemented in
2059                          * ancontrol so it will have to do until we get
2060                          * access to actual Cisco code.
2061                          */
2062                         if (ireq->i_val < 0 || ireq->i_val > 8) {
2063                                 error = EINVAL;
2064                                 break;
2065                         }
2066                         len = 0;
2067                         if (ireq->i_val < 5) {
2068                                 sc->areq.an_type = AN_RID_WEP_TEMP;
2069                                 for (i = 0; i < 5; i++) {
2070                                         if (an_read_record(sc,
2071                                             (struct an_ltv_gen *)&sc->areq)) {
2072                                                 error = EINVAL;
2073                                                 break;
2074                                         }
2075                                         if (key->kindex == 0xffff)
2076                                                 break;
2077                                         if (key->kindex == ireq->i_val)
2078                                                 len = key->klen;
2079                                         /* Required to get next entry */
2080                                         sc->areq.an_type = AN_RID_WEP_PERM;
2081                                 }
2082                                 if (error != 0)
2083                                         break;
2084                         }
2085                         /* We aren't allowed to read the value of the
2086                          * key from the card so we just output zeros
2087                          * like we would if we could read the card, but
2088                          * denied the user access.
2089                          */
2090                         bzero(tmpstr, len);
2091                         ireq->i_len = len;
2092                         error = copyout(tmpstr, ireq->i_data, len);
2093                         break;
2094                 case IEEE80211_IOC_NUMWEPKEYS:
2095                         ireq->i_val = 9; /* include home key */
2096                         break;
2097                 case IEEE80211_IOC_WEPTXKEY:
2098                         /*
2099                          * For some strange reason, you have to read all
2100                          * keys before you can read the txkey.
2101                          */
2102                         sc->areq.an_type = AN_RID_WEP_TEMP;
2103                         for (i = 0; i < 5; i++) {
2104                                 if (an_read_record(sc,
2105                                     (struct an_ltv_gen *) &sc->areq)) {
2106                                         error = EINVAL;
2107                                         break;
2108                                 }
2109                                 if (key->kindex == 0xffff)
2110                                         break;
2111                                 /* Required to get next entry */
2112                                 sc->areq.an_type = AN_RID_WEP_PERM;
2113                         }
2114                         if (error != 0)
2115                                 break;
2116
2117                         sc->areq.an_type = AN_RID_WEP_PERM;
2118                         key->kindex = 0xffff;
2119                         if (an_read_record(sc,
2120                             (struct an_ltv_gen *)&sc->areq)) {
2121                                 error = EINVAL;
2122                                 break;
2123                         }
2124                         ireq->i_val = key->mac[0];
2125                         /*
2126                          * Check for home mode.  Map home mode into
2127                          * 5th key since that is how it is stored on
2128                          * the card
2129                          */
2130                         sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2131                         sc->areq.an_type = AN_RID_GENCONFIG;
2132                         if (an_read_record(sc,
2133                             (struct an_ltv_gen *)&sc->areq)) {
2134                                 error = EINVAL;
2135                                 break;
2136                         }
2137                         if (config->an_home_product & AN_HOME_NETWORK)
2138                                 ireq->i_val = 4;
2139                         break;
2140                 case IEEE80211_IOC_AUTHMODE:
2141                         sc->areq.an_type = AN_RID_ACTUALCFG;
2142                         if (an_read_record(sc,
2143                             (struct an_ltv_gen *)&sc->areq)) {
2144                                 error = EINVAL;
2145                                 break;
2146                         }
2147                         if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2148                             AN_AUTHTYPE_NONE) {
2149                             ireq->i_val = IEEE80211_AUTH_NONE;
2150                         } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2151                             AN_AUTHTYPE_OPEN) {
2152                             ireq->i_val = IEEE80211_AUTH_OPEN;
2153                         } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2154                             AN_AUTHTYPE_SHAREDKEY) {
2155                             ireq->i_val = IEEE80211_AUTH_SHARED;
2156                         } else
2157                                 error = EINVAL;
2158                         break;
2159                 case IEEE80211_IOC_STATIONNAME:
2160                         sc->areq.an_type = AN_RID_ACTUALCFG;
2161                         if (an_read_record(sc,
2162                             (struct an_ltv_gen *)&sc->areq)) {
2163                                 error = EINVAL;
2164                                 break;
2165                         }
2166                         ireq->i_len = sizeof(config->an_nodename);
2167                         tmpptr = config->an_nodename;
2168                         bzero(tmpstr, IEEE80211_NWID_LEN);
2169                         bcopy(tmpptr, tmpstr, ireq->i_len);
2170                         error = copyout(tmpstr, ireq->i_data,
2171                             IEEE80211_NWID_LEN);
2172                         break;
2173                 case IEEE80211_IOC_CHANNEL:
2174                         sc->areq.an_type = AN_RID_STATUS;
2175                         if (an_read_record(sc,
2176                             (struct an_ltv_gen *)&sc->areq)) {
2177                                 error = EINVAL;
2178                                 break;
2179                         }
2180                         ireq->i_val = status->an_cur_channel;
2181                         break;
2182                 case IEEE80211_IOC_POWERSAVE:
2183                         sc->areq.an_type = AN_RID_ACTUALCFG;
2184                         if (an_read_record(sc,
2185                             (struct an_ltv_gen *)&sc->areq)) {
2186                                 error = EINVAL;
2187                                 break;
2188                         }
2189                         if (config->an_psave_mode == AN_PSAVE_NONE) {
2190                                 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2191                         } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2192                                 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2193                         } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2194                                 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2195                         } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2196                                 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2197                         } else
2198                                 error = EINVAL;
2199                         break;
2200                 case IEEE80211_IOC_POWERSAVESLEEP:
2201                         sc->areq.an_type = AN_RID_ACTUALCFG;
2202                         if (an_read_record(sc,
2203                             (struct an_ltv_gen *)&sc->areq)) {
2204                                 error = EINVAL;
2205                                 break;
2206                         }
2207                         ireq->i_val = config->an_listen_interval;
2208                         break;
2209                 }
2210                 break;
2211         case SIOCS80211:
2212                 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
2213                         break;
2214                 sc->areq.an_len = sizeof(sc->areq);
2215                 /*
2216                  * We need a config structure for everything but the WEP
2217                  * key management and SSIDs so we get it now so avoid
2218                  * duplicating this code every time.
2219                  */
2220                 if (ireq->i_type != IEEE80211_IOC_SSID &&
2221                     ireq->i_type != IEEE80211_IOC_WEPKEY &&
2222                     ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2223                         sc->areq.an_type = AN_RID_GENCONFIG;
2224                         if (an_read_record(sc,
2225                             (struct an_ltv_gen *)&sc->areq)) {
2226                                 error = EINVAL;
2227                                 break;
2228                         }
2229                 }
2230                 switch (ireq->i_type) {
2231                 case IEEE80211_IOC_SSID:
2232                         sc->areq.an_len = sizeof(sc->areq);
2233                         sc->areq.an_type = AN_RID_SSIDLIST;
2234                         if (an_read_record(sc,
2235                             (struct an_ltv_gen *)&sc->areq)) {
2236                                 error = EINVAL;
2237                                 break;
2238                         }
2239                         if (ireq->i_len > IEEE80211_NWID_LEN) {
2240                                 error = EINVAL;
2241                                 break;
2242                         }
2243                         max = (sc->areq.an_len - 4)
2244                             / sizeof(struct an_ltv_ssid_entry);
2245                         if (max > MAX_SSIDS) {
2246                                 printf("To many SSIDs only using "
2247                                     "%d of %d\n",
2248                                     MAX_SSIDS, max);
2249                                 max = MAX_SSIDS;
2250                         }
2251                         if (ireq->i_val > max) {
2252                                 error = EINVAL;
2253                                 break;
2254                         } else {
2255                                 error = copyin(ireq->i_data,
2256                                     ssids->an_entry[ireq->i_val].an_ssid, 
2257                                     ireq->i_len);
2258                                 ssids->an_entry[ireq->i_val].an_len 
2259                                     = ireq->i_len;
2260                                 break;
2261                         }
2262                         break;
2263                 case IEEE80211_IOC_WEP:
2264                         switch (ireq->i_val) {
2265                         case IEEE80211_WEP_OFF:
2266                                 config->an_authtype &=
2267                                     ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2268                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2269                                 break;
2270                         case IEEE80211_WEP_ON:
2271                                 config->an_authtype |=
2272                                     AN_AUTHTYPE_PRIVACY_IN_USE;
2273                                 config->an_authtype &=
2274                                     ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2275                                 break;
2276                         case IEEE80211_WEP_MIXED:
2277                                 config->an_authtype |=
2278                                     AN_AUTHTYPE_PRIVACY_IN_USE |
2279                                     AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2280                                 break;
2281                         default:
2282                                 error = EINVAL;
2283                                 break;
2284                         }
2285                         break;
2286                 case IEEE80211_IOC_WEPKEY:
2287                         if (ireq->i_val < 0 || ireq->i_val > 8 ||
2288                             ireq->i_len > 13) {
2289                                 error = EINVAL;
2290                                 break;
2291                         }
2292                         error = copyin(ireq->i_data, tmpstr, 13);
2293                         if (error != 0)
2294                                 break;
2295                         /*
2296                          * Map the 9th key into the home mode
2297                          * since that is how it is stored on
2298                          * the card
2299                          */
2300                         bzero(&sc->areq, sizeof(struct an_ltv_key));
2301                         sc->areq.an_len = sizeof(struct an_ltv_key);
2302                         key->mac[0] = 1;        /* The others are 0. */
2303                         if (ireq->i_val < 4) {
2304                                 sc->areq.an_type = AN_RID_WEP_TEMP;
2305                                 key->kindex = ireq->i_val;
2306                         } else {
2307                                 sc->areq.an_type = AN_RID_WEP_PERM;
2308                                 key->kindex = ireq->i_val - 4;
2309                         }
2310                         key->klen = ireq->i_len;
2311                         bcopy(tmpstr, key->key, key->klen);
2312                         break;
2313                 case IEEE80211_IOC_WEPTXKEY:
2314                         if (ireq->i_val < 0 || ireq->i_val > 4) {
2315                                 error = EINVAL;
2316                                 break;
2317                         }
2318
2319                         /*
2320                          * Map the 5th key into the home mode
2321                          * since that is how it is stored on
2322                          * the card
2323                          */
2324                         sc->areq.an_len  = sizeof(struct an_ltv_genconfig);
2325                         sc->areq.an_type = AN_RID_ACTUALCFG;
2326                         if (an_read_record(sc,
2327                             (struct an_ltv_gen *)&sc->areq)) {
2328                                 error = EINVAL;
2329                                 break;
2330                         }
2331                         if (ireq->i_val ==  4) {
2332                                 config->an_home_product |= AN_HOME_NETWORK;
2333                                 ireq->i_val = 0;
2334                         } else {
2335                                 config->an_home_product &= ~AN_HOME_NETWORK;
2336                         }
2337
2338                         sc->an_config.an_home_product
2339                                 = config->an_home_product;
2340
2341                         /* update configuration */
2342                         an_init(sc);
2343
2344                         bzero(&sc->areq, sizeof(struct an_ltv_key));
2345                         sc->areq.an_len = sizeof(struct an_ltv_key);
2346                         sc->areq.an_type = AN_RID_WEP_PERM;
2347                         key->kindex = 0xffff;
2348                         key->mac[0] = ireq->i_val;
2349                         break;
2350                 case IEEE80211_IOC_AUTHMODE:
2351                         switch (ireq->i_val) {
2352                         case IEEE80211_AUTH_NONE:
2353                                 config->an_authtype = AN_AUTHTYPE_NONE |
2354                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2355                                 break;
2356                         case IEEE80211_AUTH_OPEN:
2357                                 config->an_authtype = AN_AUTHTYPE_OPEN |
2358                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2359                                 break;
2360                         case IEEE80211_AUTH_SHARED:
2361                                 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2362                                     (config->an_authtype & ~AN_AUTHTYPE_MASK);
2363                                 break;
2364                         default:
2365                                 error = EINVAL;
2366                         }
2367                         break;
2368                 case IEEE80211_IOC_STATIONNAME:
2369                         if (ireq->i_len > 16) {
2370                                 error = EINVAL;
2371                                 break;
2372                         }
2373                         bzero(config->an_nodename, 16);
2374                         error = copyin(ireq->i_data,
2375                             config->an_nodename, ireq->i_len);
2376                         break;
2377                 case IEEE80211_IOC_CHANNEL:
2378                         /*
2379                          * The actual range is 1-14, but if you set it
2380                          * to 0 you get the default so we let that work
2381                          * too.
2382                          */
2383                         if (ireq->i_val < 0 || ireq->i_val >14) {
2384                                 error = EINVAL;
2385                                 break;
2386                         }
2387                         config->an_ds_channel = ireq->i_val;
2388                         break;
2389                 case IEEE80211_IOC_POWERSAVE:
2390                         switch (ireq->i_val) {
2391                         case IEEE80211_POWERSAVE_OFF:
2392                                 config->an_psave_mode = AN_PSAVE_NONE;
2393                                 break;
2394                         case IEEE80211_POWERSAVE_CAM:
2395                                 config->an_psave_mode = AN_PSAVE_CAM;
2396                                 break;
2397                         case IEEE80211_POWERSAVE_PSP:
2398                                 config->an_psave_mode = AN_PSAVE_PSP;
2399                                 break;
2400                         case IEEE80211_POWERSAVE_PSP_CAM:
2401                                 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2402                                 break;
2403                         default:
2404                                 error = EINVAL;
2405                                 break;
2406                         }
2407                         break;
2408                 case IEEE80211_IOC_POWERSAVESLEEP:
2409                         config->an_listen_interval = ireq->i_val;
2410                         break;
2411                 }
2412
2413                 if (!error)
2414                         an_setdef(sc, &sc->areq);
2415                 break;
2416         default:
2417                 error = ether_ioctl(ifp, command, data);
2418                 break;
2419         }
2420
2421         return(error != 0);
2422 }
2423
2424 static int
2425 an_init_tx_ring(sc)
2426         struct an_softc         *sc;
2427 {
2428         int                     i;
2429         int                     id;
2430
2431         if (!sc->mpi350) {
2432                 for (i = 0; i < AN_TX_RING_CNT; i++) {
2433                         if (an_alloc_nicmem(sc, 1518 +
2434                             0x44, &id))
2435                                 return(ENOMEM);
2436                         sc->an_rdata.an_tx_fids[i] = id;
2437                         sc->an_rdata.an_tx_ring[i] = 0;
2438                 }
2439         }
2440
2441         sc->an_rdata.an_tx_prod = 0;
2442         sc->an_rdata.an_tx_cons = 0;
2443         sc->an_rdata.an_tx_empty = 1;
2444
2445         return(0);
2446 }
2447
2448 static void
2449 an_init(xsc)
2450         void                    *xsc;
2451 {
2452         struct an_softc         *sc = xsc;
2453         struct ifnet            *ifp = &sc->arpcom.ac_if;
2454
2455         if (ifp->if_flags & IFF_RUNNING)
2456                 an_stop(sc);
2457
2458         sc->an_associated = 0;
2459
2460         /* Allocate the TX buffers */
2461         if (an_init_tx_ring(sc)) {
2462                 an_reset(sc);
2463                 if (sc->mpi350)
2464                         an_init_mpi350_desc(sc);        
2465                 if (an_init_tx_ring(sc)) {
2466                         if_printf(ifp, "tx buffer allocation failed\n");
2467                         return;
2468                 }
2469         }
2470
2471         /* Set our MAC address. */
2472         bcopy((char *)&sc->arpcom.ac_enaddr,
2473             (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2474
2475         if (ifp->if_flags & IFF_BROADCAST)
2476                 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2477         else
2478                 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2479
2480         if (ifp->if_flags & IFF_MULTICAST)
2481                 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2482
2483         if (ifp->if_flags & IFF_PROMISC) {
2484                 if (sc->an_monitor & AN_MONITOR) {
2485                         if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2486                                 sc->an_config.an_rxmode |=
2487                                     AN_RXMODE_80211_MONITOR_ANYBSS |
2488                                     AN_RXMODE_NO_8023_HEADER;
2489                         } else {
2490                                 sc->an_config.an_rxmode |=
2491                                     AN_RXMODE_80211_MONITOR_CURBSS |
2492                                     AN_RXMODE_NO_8023_HEADER;
2493                         }
2494                 }
2495         }
2496
2497         if (sc->an_have_rssimap)
2498                 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2499
2500         /* Set the ssid list */
2501         sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2502         sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
2503         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2504                 if_printf(ifp, "failed to set ssid list\n");
2505                 return;
2506         }
2507
2508         /* Set the AP list */
2509         sc->an_aplist.an_type = AN_RID_APLIST;
2510         sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2511         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2512                 if_printf(ifp, "failed to set AP list\n");
2513                 return;
2514         }
2515
2516         /* Set the configuration in the NIC */
2517         sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2518         sc->an_config.an_type = AN_RID_GENCONFIG;
2519         if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2520                 if_printf(ifp, "failed to set configuration\n");
2521                 return;
2522         }
2523
2524         /* Enable the MAC */
2525         if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2526                 if_printf(ifp, "failed to enable MAC\n");
2527                 return;
2528         }
2529
2530         if (ifp->if_flags & IFF_PROMISC)
2531                 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2532
2533         /* enable interrupts */
2534         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2535
2536         ifp->if_flags |= IFF_RUNNING;
2537         ifp->if_flags &= ~IFF_OACTIVE;
2538
2539         callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
2540 }
2541
2542 static void
2543 an_start(ifp)
2544         struct ifnet            *ifp;
2545 {
2546         struct an_softc         *sc;
2547         struct mbuf             *m0 = NULL;
2548         struct an_txframe_802_3 tx_frame_802_3;
2549         struct ether_header     *eh;
2550         int                     id, idx, i;
2551         unsigned char           txcontrol;
2552         struct an_card_tx_desc an_tx_desc;
2553         u_int8_t                *buf;
2554
2555         sc = ifp->if_softc;
2556
2557         if (ifp->if_flags & IFF_OACTIVE)
2558                 return;
2559
2560         if (!sc->an_associated)
2561                 return;
2562
2563         /* We can't send in monitor mode so toss any attempts. */
2564         if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2565                 ifq_purge(&ifp->if_snd);
2566                 return;
2567         }
2568
2569         idx = sc->an_rdata.an_tx_prod;
2570
2571         if (!sc->mpi350) {
2572                 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2573
2574                 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2575                         m0 = ifq_dequeue(&ifp->if_snd, NULL);
2576                         if (m0 == NULL)
2577                                 break;
2578
2579                         id = sc->an_rdata.an_tx_fids[idx];
2580                         eh = mtod(m0, struct ether_header *);
2581
2582                         bcopy((char *)&eh->ether_dhost,
2583                               (char *)&tx_frame_802_3.an_tx_dst_addr, 
2584                               ETHER_ADDR_LEN);
2585                         bcopy((char *)&eh->ether_shost,
2586                               (char *)&tx_frame_802_3.an_tx_src_addr, 
2587                               ETHER_ADDR_LEN);
2588
2589                         /* minus src/dest mac & type */
2590                         tx_frame_802_3.an_tx_802_3_payload_len =
2591                                 m0->m_pkthdr.len - 12;  
2592
2593                         m_copydata(m0, sizeof(struct ether_header) - 2 ,
2594                                    tx_frame_802_3.an_tx_802_3_payload_len,
2595                                    (caddr_t)&sc->an_txbuf);
2596
2597                         txcontrol = AN_TXCTL_8023;
2598                         /* write the txcontrol only */
2599                         an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2600                                       sizeof(txcontrol));
2601
2602                         /* 802_3 header */
2603                         an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2604                                       sizeof(struct an_txframe_802_3));
2605
2606                         /* in mbuf header type is just before payload */
2607                         an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2608                                       tx_frame_802_3.an_tx_802_3_payload_len);
2609
2610                         BPF_MTAP(ifp, m0);
2611
2612                         m_freem(m0);
2613                         m0 = NULL;
2614
2615                         sc->an_rdata.an_tx_ring[idx] = id;
2616                         if (an_cmd(sc, AN_CMD_TX, id))
2617                                 if_printf(ifp, "xmit failed\n");
2618
2619                         AN_INC(idx, AN_TX_RING_CNT);
2620
2621                         /*
2622                          * Set a timeout in case the chip goes out to lunch.
2623                          */
2624                         ifp->if_timer = 5;
2625                 }
2626         } else { /* MPI-350 */
2627                 /* Disable interrupts. */
2628                 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2629
2630                 while (sc->an_rdata.an_tx_empty ||
2631                     idx != sc->an_rdata.an_tx_cons) {
2632                         m0 = ifq_dequeue(&ifp->if_snd, NULL);
2633                         if (m0 == NULL) {
2634                                 break;
2635                         }
2636                         buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2637
2638                         eh = mtod(m0, struct ether_header *);
2639
2640                         /* DJA optimize this to limit bcopy */
2641                         bcopy((char *)&eh->ether_dhost,
2642                               (char *)&tx_frame_802_3.an_tx_dst_addr, 
2643                               ETHER_ADDR_LEN);
2644                         bcopy((char *)&eh->ether_shost,
2645                               (char *)&tx_frame_802_3.an_tx_src_addr, 
2646                               ETHER_ADDR_LEN);
2647
2648                         /* minus src/dest mac & type */
2649                         tx_frame_802_3.an_tx_802_3_payload_len =
2650                                 m0->m_pkthdr.len - 12; 
2651
2652                         m_copydata(m0, sizeof(struct ether_header) - 2 ,
2653                                    tx_frame_802_3.an_tx_802_3_payload_len,
2654                                    (caddr_t)&sc->an_txbuf);
2655
2656                         txcontrol = AN_TXCTL_8023;
2657                         /* write the txcontrol only */
2658                         bcopy((caddr_t)&txcontrol, &buf[0x08],
2659                               sizeof(txcontrol));
2660
2661                         /* 802_3 header */
2662                         bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2663                               sizeof(struct an_txframe_802_3));
2664
2665                         /* in mbuf header type is just before payload */
2666                         bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2667                               tx_frame_802_3.an_tx_802_3_payload_len);
2668
2669
2670                         bzero(&an_tx_desc, sizeof(an_tx_desc));
2671                         an_tx_desc.an_offset = 0;
2672                         an_tx_desc.an_eoc = 1;
2673                         an_tx_desc.an_valid = 1;
2674                         an_tx_desc.an_len =  0x44 +
2675                                 tx_frame_802_3.an_tx_802_3_payload_len;
2676                         an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2677                         for (i = 0; i < sizeof(an_tx_desc) / 4 ; i++) {
2678                                 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
2679                                     /* zero for now */ 
2680                                     + (0 * sizeof(an_tx_desc))
2681                                     + (i * 4),
2682                                     ((u_int32_t*)&an_tx_desc)[i]);
2683                         }
2684
2685                         BPF_MTAP(ifp, m0);
2686
2687                         m_freem(m0);
2688                         m0 = NULL;
2689
2690                         AN_INC(idx, AN_MAX_TX_DESC);
2691                         sc->an_rdata.an_tx_empty = 0;
2692
2693                         CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2694
2695                         /*
2696                          * Set a timeout in case the chip goes out to lunch.
2697                          */
2698                         ifp->if_timer = 5;
2699                 }
2700
2701                 /* Re-enable interrupts. */
2702                 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2703         }
2704
2705         if (m0 != NULL)
2706                 ifp->if_flags |= IFF_OACTIVE;
2707
2708         sc->an_rdata.an_tx_prod = idx;
2709 }
2710
2711 void
2712 an_stop(sc)
2713         struct an_softc         *sc;
2714 {
2715         struct ifnet            *ifp;
2716         int                     i;
2717
2718         ifp = &sc->arpcom.ac_if;
2719
2720         an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2721         CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2722         an_cmd(sc, AN_CMD_DISABLE, 0);
2723
2724         for (i = 0; i < AN_TX_RING_CNT; i++)
2725                 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2726
2727         callout_stop(&sc->an_stat_timer);
2728
2729         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2730
2731         if (sc->an_flash_buffer) {
2732                 free(sc->an_flash_buffer, M_DEVBUF);
2733                 sc->an_flash_buffer = NULL;
2734         }
2735 }
2736
2737 static void
2738 an_watchdog(ifp)
2739         struct ifnet            *ifp;
2740 {
2741         struct an_softc         *sc;
2742
2743         sc = ifp->if_softc;
2744
2745         an_reset(sc);
2746         if (sc->mpi350)
2747                 an_init_mpi350_desc(sc);        
2748         an_init(sc);
2749
2750         ifp->if_oerrors++;
2751
2752         if_printf(ifp, "device timeout\n");
2753 }
2754
2755 void
2756 an_shutdown(dev)
2757         device_t                dev;
2758 {
2759         struct an_softc         *sc;
2760
2761         sc = device_get_softc(dev);
2762         an_stop(sc);
2763
2764         return;
2765 }
2766
2767 void
2768 an_resume(dev)
2769         device_t                dev;
2770 {
2771         struct an_softc         *sc;
2772         struct ifnet            *ifp;
2773         int                     i;
2774
2775         sc = device_get_softc(dev);
2776         ifp = &sc->arpcom.ac_if;
2777
2778         an_reset(sc);
2779         if (sc->mpi350)
2780                 an_init_mpi350_desc(sc);        
2781         an_init(sc);
2782
2783         /* Recovery temporary keys */
2784         for (i = 0; i < 4; i++) {
2785                 sc->areq.an_type = AN_RID_WEP_TEMP;
2786                 sc->areq.an_len = sizeof(struct an_ltv_key);            
2787                 bcopy(&sc->an_temp_keys[i],
2788                     &sc->areq, sizeof(struct an_ltv_key));
2789                 an_setdef(sc, &sc->areq);
2790         }
2791
2792         if (ifp->if_flags & IFF_UP)
2793                 an_start(ifp);
2794
2795         return;
2796 }
2797
2798 #ifdef ANCACHE
2799 /* Aironet signal strength cache code.
2800  * store signal/noise/quality on per MAC src basis in
2801  * a small fixed cache.  The cache wraps if > MAX slots
2802  * used.  The cache may be zeroed out to start over.
2803  * Two simple filters exist to reduce computation:
2804  * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2805  * to ignore some packets.  It defaults to ip only.
2806  * it could be used to focus on broadcast, non-IP 802.11 beacons.
2807  * 2. multicast/broadcast only.  This may be used to
2808  * ignore unicast packets and only cache signal strength
2809  * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2810  * beacons and not unicast traffic.
2811  *
2812  * The cache stores (MAC src(index), IP src (major clue), signal,
2813  *      quality, noise)
2814  *
2815  * No apologies for storing IP src here.  It's easy and saves much
2816  * trouble elsewhere.  The cache is assumed to be INET dependent,
2817  * although it need not be.
2818  *
2819  * Note: the Aironet only has a single byte of signal strength value
2820  * in the rx frame header, and it's not scaled to anything sensible.
2821  * This is kind of lame, but it's all we've got.
2822  */
2823
2824 #ifdef documentation
2825
2826 int an_sigitems;                                /* number of cached entries */
2827 struct an_sigcache an_sigcache[MAXANCACHE];  /*  array of cache entries */
2828 int an_nextitem;                                /*  index/# of entries */
2829
2830
2831 #endif
2832
2833 /* control variables for cache filtering.  Basic idea is
2834  * to reduce cost (e.g., to only Mobile-IP agent beacons
2835  * which are broadcast or multicast).  Still you might
2836  * want to measure signal strength anth unicast ping packets
2837  * on a pt. to pt. ant. setup.
2838  */
2839 /* set true if you want to limit cache items to broadcast/mcast
2840  * only packets (not unicast).  Useful for mobile-ip beacons which
2841  * are broadcast/multicast at network layer.  Default is all packets
2842  * so ping/unicast anll work say anth pt. to pt. antennae setup.
2843  */
2844 static int an_cache_mcastonly = 0;
2845 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2846         &an_cache_mcastonly, 0, "");
2847
2848 /* set true if you want to limit cache items to IP packets only
2849 */
2850 static int an_cache_iponly = 1;
2851 SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2852         &an_cache_iponly, 0, "");
2853
2854 /*
2855  * an_cache_store, per rx packet store signal
2856  * strength in MAC (src) indexed cache.
2857  */
2858 static void
2859 an_cache_store (sc, m, rx_rssi, rx_quality)
2860         struct an_softc *sc;
2861         struct mbuf *m;
2862         u_int8_t rx_rssi;
2863         u_int8_t rx_quality;
2864 {
2865         struct ether_header *eh = mtod(m, struct ether_header *);
2866         struct ip *ip = NULL;
2867         int i;
2868         static int cache_slot = 0;      /* use this cache entry */
2869         static int wrapindex = 0;       /* next "free" cache entry */
2870
2871         /* filters:
2872          * 1. ip only
2873          * 2. configurable filter to throw out unicast packets,
2874          * keep multicast only.
2875          */
2876
2877         if ((ntohs(eh->ether_type) == ETHERTYPE_IP))
2878                 ip = (struct ip *)(mtod(m, uint8_t *) + ETHER_HDR_LEN);
2879         else if (an_cache_iponly)
2880                 return;
2881
2882         /* filter for broadcast/multicast only
2883          */
2884         if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2885                 return;
2886         }
2887
2888 #ifdef SIGDEBUG
2889         if_printf(&sc->arpcom.ac_if, "q value %x (MSB=0x%x, LSB=0x%x)\n",
2890                   rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2891 #endif
2892
2893         /* do a linear search for a matching MAC address
2894          * in the cache table
2895          * . MAC address is 6 bytes,
2896          * . var w_nextitem holds total number of entries already cached
2897          */
2898         for (i = 0; i < sc->an_nextitem; i++) {
2899                 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc,  6 )) {
2900                         /* Match!,
2901                          * so we already have this entry,
2902                          * update the data
2903                          */
2904                         break;
2905                 }
2906         }
2907
2908         /* did we find a matching mac address?
2909          * if yes, then overwrite a previously existing cache entry
2910          */
2911         if (i < sc->an_nextitem )   {
2912                 cache_slot = i;
2913         }
2914         /* else, have a new address entry,so
2915          * add this new entry,
2916          * if table full, then we need to replace LRU entry
2917          */
2918         else    {
2919
2920                 /* check for space in cache table
2921                  * note: an_nextitem also holds number of entries
2922                  * added in the cache table
2923                  */
2924                 if ( sc->an_nextitem < MAXANCACHE ) {
2925                         cache_slot = sc->an_nextitem;
2926                         sc->an_nextitem++;
2927                         sc->an_sigitems = sc->an_nextitem;
2928                 }
2929                 /* no space found, so simply wrap anth wrap index
2930                  * and "zap" the next entry
2931                  */
2932                 else {
2933                         if (wrapindex == MAXANCACHE) {
2934                                 wrapindex = 0;
2935                         }
2936                         cache_slot = wrapindex++;
2937                 }
2938         }
2939
2940         /* invariant: cache_slot now points at some slot
2941          * in cache.
2942          */
2943         if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2944                 log(LOG_ERR, "an_cache_store, bad index: %d of "
2945                     "[0..%d], gross cache error\n",
2946                     cache_slot, MAXANCACHE);
2947                 return;
2948         }
2949
2950         /*  store items in cache
2951          *  .ip source address
2952          *  .mac src
2953          *  .signal, etc.
2954          */
2955         if (ip != NULL) {
2956                 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2957         }
2958         bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc,  6);
2959
2960
2961         switch (an_cache_mode) {
2962         case DBM:
2963                 if (sc->an_have_rssimap) {
2964                         sc->an_sigcache[cache_slot].signal = 
2965                                 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
2966                         sc->an_sigcache[cache_slot].quality = 
2967                                 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
2968                 } else {
2969                         sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
2970                         sc->an_sigcache[cache_slot].quality = rx_quality - 100;
2971                 }
2972                 break;
2973         case PERCENT:
2974                 if (sc->an_have_rssimap) {
2975                         sc->an_sigcache[cache_slot].signal = 
2976                                 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
2977                         sc->an_sigcache[cache_slot].quality = 
2978                                 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
2979                 } else {
2980                         if (rx_rssi > 100)
2981                                 rx_rssi = 100;
2982                         if (rx_quality > 100)
2983                                 rx_quality = 100;
2984                         sc->an_sigcache[cache_slot].signal = rx_rssi;
2985                         sc->an_sigcache[cache_slot].quality = rx_quality;
2986                 }
2987                 break;
2988         case RAW:
2989                 sc->an_sigcache[cache_slot].signal = rx_rssi;
2990                 sc->an_sigcache[cache_slot].quality = rx_quality;
2991                 break;
2992         }
2993
2994         sc->an_sigcache[cache_slot].noise = 0;
2995
2996         return;
2997 }
2998 #endif
2999
3000 static int
3001 an_media_change(ifp)
3002         struct ifnet            *ifp;
3003 {
3004         struct an_softc *sc = ifp->if_softc;
3005         struct an_ltv_genconfig *cfg;
3006         int otype = sc->an_config.an_opmode;
3007         int orate = sc->an_tx_rate;
3008
3009         switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
3010         case IFM_IEEE80211_DS1:
3011                 sc->an_tx_rate = AN_RATE_1MBPS;
3012                 break;
3013         case IFM_IEEE80211_DS2:
3014                 sc->an_tx_rate = AN_RATE_2MBPS;
3015                 break;
3016         case IFM_IEEE80211_DS5:
3017                 sc->an_tx_rate = AN_RATE_5_5MBPS;
3018                 break;
3019         case IFM_IEEE80211_DS11:
3020                 sc->an_tx_rate = AN_RATE_11MBPS;
3021                 break;
3022         case IFM_AUTO:
3023                 sc->an_tx_rate = 0;
3024                 break;
3025         }
3026
3027         if (orate != sc->an_tx_rate) {
3028                 /* Read the current configuration */
3029                 sc->an_config.an_type = AN_RID_GENCONFIG;
3030                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3031                 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3032                 cfg = &sc->an_config;
3033
3034                 /* clear other rates and set the only one we want */
3035                 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3036                 cfg->an_rates[0] = sc->an_tx_rate;
3037
3038                 /* Save the new rate */
3039                 sc->an_config.an_type = AN_RID_GENCONFIG;
3040                 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3041         }
3042
3043         if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3044                 sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
3045         else
3046                 sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
3047
3048         if (otype != sc->an_config.an_opmode ||
3049             orate != sc->an_tx_rate)
3050                 an_init(sc);
3051
3052         return(0);
3053 }
3054
3055 static void
3056 an_media_status(ifp, imr)
3057         struct ifnet            *ifp;
3058         struct ifmediareq       *imr;
3059 {
3060         struct an_ltv_status    status;
3061         struct an_softc         *sc = ifp->if_softc;
3062
3063         status.an_len = sizeof(status);
3064         status.an_type = AN_RID_STATUS;
3065         if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3066                 /* If the status read fails, just lie. */
3067                 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3068                 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3069         }
3070
3071         if (sc->an_tx_rate == 0) {
3072                 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3073                 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3074                         imr->ifm_active |= IFM_IEEE80211_ADHOC;
3075                 switch (status.an_current_tx_rate) {
3076                 case AN_RATE_1MBPS:
3077                         imr->ifm_active |= IFM_IEEE80211_DS1;
3078                         break;
3079                 case AN_RATE_2MBPS:
3080                         imr->ifm_active |= IFM_IEEE80211_DS2;
3081                         break;
3082                 case AN_RATE_5_5MBPS:
3083                         imr->ifm_active |= IFM_IEEE80211_DS5;
3084                         break;
3085                 case AN_RATE_11MBPS:
3086                         imr->ifm_active |= IFM_IEEE80211_DS11;
3087                         break;
3088                 }
3089         } else {
3090                 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3091         }
3092
3093         imr->ifm_status = IFM_AVALID;
3094         if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3095                 imr->ifm_status |= IFM_ACTIVE;
3096 }
3097
3098 /********************** Cisco utility support routines *************/
3099
3100 /*
3101  * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3102  * Linux driver
3103  */
3104
3105 static int
3106 readrids(ifp, l_ioctl)
3107         struct ifnet   *ifp;
3108         struct aironet_ioctl *l_ioctl;
3109 {
3110         unsigned short  rid;
3111         struct an_softc *sc;
3112
3113         switch (l_ioctl->command) {
3114         case AIROGCAP:
3115                 rid = AN_RID_CAPABILITIES;
3116                 break;
3117         case AIROGCFG:
3118                 rid = AN_RID_GENCONFIG;
3119                 break;
3120         case AIROGSLIST:
3121                 rid = AN_RID_SSIDLIST;
3122                 break;
3123         case AIROGVLIST:
3124                 rid = AN_RID_APLIST;
3125                 break;
3126         case AIROGDRVNAM:
3127                 rid = AN_RID_DRVNAME;
3128                 break;
3129         case AIROGEHTENC:
3130                 rid = AN_RID_ENCAPPROTO;
3131                 break;
3132         case AIROGWEPKTMP:
3133                 rid = AN_RID_WEP_TEMP;
3134                 break;
3135         case AIROGWEPKNV:
3136                 rid = AN_RID_WEP_PERM;
3137                 break;
3138         case AIROGSTAT:
3139                 rid = AN_RID_STATUS;
3140                 break;
3141         case AIROGSTATSD32:
3142                 rid = AN_RID_32BITS_DELTA;
3143                 break;
3144         case AIROGSTATSC32:
3145                 rid = AN_RID_32BITS_CUM;
3146                 break;
3147         default:
3148                 rid = 999;
3149                 break;
3150         }
3151
3152         if (rid == 999) /* Is bad command */
3153                 return -EINVAL;
3154
3155         sc = ifp->if_softc;
3156         sc->areq.an_len  = AN_MAX_DATALEN;
3157         sc->areq.an_type = rid;
3158
3159         an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3160
3161         l_ioctl->len = sc->areq.an_len - 4;     /* just data */
3162
3163         /* the data contains the length at first */
3164         if (copyout(&(sc->areq.an_len), l_ioctl->data,
3165                     sizeof(sc->areq.an_len))) {
3166                 return -EFAULT;
3167         }
3168         /* Just copy the data back */
3169         if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3170                     l_ioctl->len)) {
3171                 return -EFAULT;
3172         }
3173         return 0;
3174 }
3175
3176 static int
3177 writerids(ifp, l_ioctl)
3178         struct ifnet   *ifp;
3179         struct aironet_ioctl *l_ioctl;
3180 {
3181         struct an_softc *sc;
3182         int             rid, command;
3183
3184         sc = ifp->if_softc;
3185         rid = 0;
3186         command = l_ioctl->command;
3187
3188         switch (command) {
3189         case AIROPSIDS:
3190                 rid = AN_RID_SSIDLIST;
3191                 break;
3192         case AIROPCAP:
3193                 rid = AN_RID_CAPABILITIES;
3194                 break;
3195         case AIROPAPLIST:
3196                 rid = AN_RID_APLIST;
3197                 break;
3198         case AIROPCFG:
3199                 rid = AN_RID_GENCONFIG;
3200                 break;
3201         case AIROPMACON:
3202                 an_cmd(sc, AN_CMD_ENABLE, 0);
3203                 return 0;
3204                 break;
3205         case AIROPMACOFF:
3206                 an_cmd(sc, AN_CMD_DISABLE, 0);
3207                 return 0;
3208                 break;
3209         case AIROPSTCLR:
3210                 /*
3211                  * This command merely clears the counts does not actually
3212                  * store any data only reads rid. But as it changes the cards
3213                  * state, I put it in the writerid routines.
3214                  */
3215
3216                 rid = AN_RID_32BITS_DELTACLR;
3217                 sc = ifp->if_softc;
3218                 sc->areq.an_len = AN_MAX_DATALEN;
3219                 sc->areq.an_type = rid;
3220
3221                 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3222                 l_ioctl->len = sc->areq.an_len - 4;     /* just data */
3223
3224                 /* the data contains the length at first */
3225                 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3226                             sizeof(sc->areq.an_len))) {
3227                         return -EFAULT;
3228                 }
3229                 /* Just copy the data */
3230                 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3231                             l_ioctl->len)) {
3232                         return -EFAULT;
3233                 }
3234                 return 0;
3235                 break;
3236         case AIROPWEPKEY:
3237                 rid = AN_RID_WEP_TEMP;
3238                 break;
3239         case AIROPWEPKEYNV:
3240                 rid = AN_RID_WEP_PERM;
3241                 break;
3242         case AIROPLEAPUSR:
3243                 rid = AN_RID_LEAPUSERNAME;
3244                 break;
3245         case AIROPLEAPPWD:
3246                 rid = AN_RID_LEAPPASSWORD;
3247                 break;
3248         default:
3249                 return -EOPNOTSUPP;
3250         }
3251
3252         if (rid) {
3253                 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3254                         return -EINVAL;
3255                 sc->areq.an_len = l_ioctl->len + 4;     /* add type & length */
3256                 sc->areq.an_type = rid;
3257
3258                 /* Just copy the data back */
3259                 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3260                        l_ioctl->len);
3261
3262                 an_cmd(sc, AN_CMD_DISABLE, 0);
3263                 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3264                 an_cmd(sc, AN_CMD_ENABLE, 0);
3265                 return 0;
3266         }
3267         return -EOPNOTSUPP;
3268 }
3269
3270 /*
3271  * General Flash utilities derived from Cisco driver additions to Ben Reed's
3272  * Linux driver
3273  */
3274
3275 #define FLASH_DELAY(x)  tsleep(ifp, 0, "flash", ((x) / hz) + 1);
3276 #define FLASH_COMMAND   0x7e7e
3277 #define FLASH_SIZE      32 * 1024
3278
3279 static int
3280 unstickbusy(ifp)
3281         struct ifnet   *ifp;
3282 {
3283         struct an_softc *sc = ifp->if_softc;
3284
3285         if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3286                 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 
3287                             AN_EV_CLR_STUCK_BUSY);
3288                 return 1;
3289         }
3290         return 0;
3291 }
3292
3293 /*
3294  * Wait for busy completion from card wait for delay uSec's Return true for
3295  * success meaning command reg is clear
3296  */
3297
3298 static int
3299 WaitBusy(ifp, uSec)
3300         struct ifnet   *ifp;
3301         int             uSec;
3302 {
3303         int             statword = 0xffff;
3304         int             delay = 0;
3305         struct an_softc *sc = ifp->if_softc;
3306
3307         while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3308                 FLASH_DELAY(10);
3309                 delay += 10;
3310                 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3311
3312                 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3313                         unstickbusy(ifp);
3314                 }
3315         }
3316
3317         return 0 == (AN_CMD_BUSY & statword);
3318 }
3319
3320 /*
3321  * STEP 1) Disable MAC and do soft reset on card.
3322  */
3323
3324 static int
3325 cmdreset(ifp)
3326         struct ifnet   *ifp;
3327 {
3328         int             status;
3329         struct an_softc *sc = ifp->if_softc;
3330
3331         an_stop(sc);
3332
3333         an_cmd(sc, AN_CMD_DISABLE, 0);
3334
3335         if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3336                 if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3337                 return -EBUSY;
3338         }
3339         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3340
3341         FLASH_DELAY(1000);      /* WAS 600 12/7/00 */
3342
3343
3344         if (!(status = WaitBusy(ifp, 100))) {
3345                 if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3346                 return -EBUSY;
3347         }
3348         return 0;
3349 }
3350
3351 /*
3352  * STEP 2) Put the card in legendary flash mode
3353  */
3354
3355 static int
3356 setflashmode(ifp)
3357         struct ifnet   *ifp;
3358 {
3359         int             status;
3360         struct an_softc *sc = ifp->if_softc;
3361
3362         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3363         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3364         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3365         CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3366
3367         /*
3368          * mdelay(500); // 500ms delay
3369          */
3370
3371         FLASH_DELAY(500);
3372
3373         if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3374                 printf("Waitbusy hang after setflash mode\n");
3375                 return -EIO;
3376         }
3377         return 0;
3378 }
3379
3380 /*
3381  * Get a character from the card matching matchbyte Step 3)
3382  */
3383
3384 static int
3385 flashgchar(ifp, matchbyte, dwelltime)
3386         struct ifnet   *ifp;
3387         int             matchbyte;
3388         int             dwelltime;
3389 {
3390         int             rchar;
3391         unsigned char   rbyte = 0;
3392         int             success = -1;
3393         struct an_softc *sc = ifp->if_softc;
3394
3395
3396         do {
3397                 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3398
3399                 if (dwelltime && !(0x8000 & rchar)) {
3400                         dwelltime -= 10;
3401                         FLASH_DELAY(10);
3402                         continue;
3403                 }
3404                 rbyte = 0xff & rchar;
3405
3406                 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3407                         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3408                         success = 1;
3409                         break;
3410                 }
3411                 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3412                         break;
3413                 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3414
3415         } while (dwelltime > 0);
3416         return success;
3417 }
3418
3419 /*
3420  * Put character to SWS0 wait for dwelltime x 50us for  echo .
3421  */
3422
3423 static int
3424 flashpchar(ifp, byte, dwelltime)
3425         struct ifnet   *ifp;
3426         int             byte;
3427         int             dwelltime;
3428 {
3429         int             echo;
3430         int             pollbusy, waittime;
3431         struct an_softc *sc = ifp->if_softc;
3432
3433         byte |= 0x8000;
3434
3435         if (dwelltime == 0)
3436                 dwelltime = 200;
3437
3438         waittime = dwelltime;
3439
3440         /*
3441          * Wait for busy bit d15 to go false indicating buffer empty
3442          */
3443         do {
3444                 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3445
3446                 if (pollbusy & 0x8000) {
3447                         FLASH_DELAY(50);
3448                         waittime -= 50;
3449                         continue;
3450                 } else
3451                         break;
3452         }
3453         while (waittime >= 0);
3454
3455         /* timeout for busy clear wait */
3456
3457         if (waittime <= 0) {
3458                 if_printf(ifp, "flash putchar busywait timeout!\n");
3459                 return -1;
3460         }
3461         /*
3462          * Port is clear now write byte and wait for it to echo back
3463          */
3464         do {
3465                 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3466                 FLASH_DELAY(50);
3467                 dwelltime -= 50;
3468                 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3469         } while (dwelltime >= 0 && echo != byte);
3470
3471
3472         CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3473
3474         return echo == byte;
3475 }
3476
3477 /*
3478  * Transfer 32k of firmware data from user buffer to our buffer and send to
3479  * the card
3480  */
3481
3482 static int
3483 flashputbuf(ifp)
3484         struct ifnet   *ifp;
3485 {
3486         unsigned short *bufp;
3487         int             nwords;
3488         struct an_softc *sc = ifp->if_softc;
3489
3490         /* Write stuff */
3491
3492         bufp = sc->an_flash_buffer;
3493
3494         if (!sc->mpi350) {
3495                 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3496                 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3497
3498                 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3499                         CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3500                 }
3501         } else {
3502                 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3503                         CSR_MEM_AUX_WRITE_4(sc, 0x8000, 
3504                                 ((u_int32_t *)bufp)[nwords] & 0xffff);
3505                 }
3506         }
3507
3508         CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3509
3510         return 0;
3511 }
3512
3513 /*
3514  * After flashing restart the card.
3515  */
3516
3517 static int
3518 flashrestart(ifp)
3519         struct ifnet   *ifp;
3520 {
3521         int             status = 0;
3522         struct an_softc *sc = ifp->if_softc;
3523
3524         FLASH_DELAY(1024);              /* Added 12/7/00 */
3525
3526         an_init(sc);
3527
3528         FLASH_DELAY(1024);              /* Added 12/7/00 */
3529         return status;
3530 }
3531
3532 /*
3533  * Entry point for flash ioclt.
3534  */
3535
3536 static int
3537 flashcard(ifp, l_ioctl)
3538         struct ifnet   *ifp;
3539         struct aironet_ioctl *l_ioctl;
3540 {
3541         int             z = 0, status;
3542         struct an_softc *sc;
3543
3544         sc = ifp->if_softc;
3545         if (sc->mpi350) {
3546                 if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3547                 return(-1);
3548         }
3549         status = l_ioctl->command;
3550
3551         switch (l_ioctl->command) {
3552         case AIROFLSHRST:
3553                 return cmdreset(ifp);
3554                 break;
3555         case AIROFLSHSTFL:
3556                 if (sc->an_flash_buffer) {
3557                         free(sc->an_flash_buffer, M_DEVBUF);
3558                         sc->an_flash_buffer = NULL;
3559                 }
3560                 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3561                 if (sc->an_flash_buffer)
3562                         return setflashmode(ifp);
3563                 else
3564                         return ENOBUFS;
3565                 break;
3566         case AIROFLSHGCHR:      /* Get char from aux */
3567                 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3568                 z = *(int *)&sc->areq;
3569                 if ((status = flashgchar(ifp, z, 8000)) == 1)
3570                         return 0;
3571                 else
3572                         return -1;
3573                 break;
3574         case AIROFLSHPCHR:      /* Send char to card. */
3575                 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3576                 z = *(int *)&sc->areq;
3577                 if ((status = flashpchar(ifp, z, 8000)) == -1)
3578                         return -EIO;
3579                 else
3580                         return 0;
3581                 break;
3582         case AIROFLPUTBUF:      /* Send 32k to card */
3583                 if (l_ioctl->len > FLASH_SIZE) {
3584                         if_printf(ifp, "Buffer to big, %x %x\n",
3585                                   l_ioctl->len, FLASH_SIZE);
3586                         return -EINVAL;
3587                 }
3588                 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3589
3590                 if ((status = flashputbuf(ifp)) != 0)
3591                         return -EIO;
3592                 else
3593                         return 0;
3594                 break;
3595         case AIRORESTART:
3596                 if ((status = flashrestart(ifp)) != 0) {
3597                         if_printf(ifp, "FLASHRESTART returned %d\n", status);
3598                         return -EIO;
3599                 } else
3600                         return 0;
3601
3602                 break;
3603         default:
3604                 return -EINVAL;
3605         }
3606
3607         return -EINVAL;
3608 }