Make all network interrupt service routines MPSAFE part 1/3.
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.50 2005/11/28 17:13:41 dillon Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_bge.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/queue.h>
85 #include <sys/thread2.h>
86
87 #include <net/if.h>
88 #include <net/ifq_var.h>
89 #include <net/if_arp.h>
90 #include <net/ethernet.h>
91 #include <net/if_dl.h>
92 #include <net/if_media.h>
93
94 #include <net/bpf.h>
95
96 #include <net/if_types.h>
97 #include <net/vlan/if_vlan_var.h>
98
99 #include <netinet/in_systm.h>
100 #include <netinet/in.h>
101 #include <netinet/ip.h>
102
103 #include <vm/vm.h>              /* for vtophys */
104 #include <vm/pmap.h>            /* for vtophys */
105 #include <machine/resource.h>
106 #include <sys/bus.h>
107 #include <sys/rman.h>
108
109 #include <dev/netif/mii_layer/mii.h>
110 #include <dev/netif/mii_layer/miivar.h>
111 #include <dev/netif/mii_layer/miidevs.h>
112 #include <dev/netif/mii_layer/brgphyreg.h>
113
114 #include <bus/pci/pcidevs.h>
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117
118 #include "if_bgereg.h"
119
120 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
121
122 /* "controller miibus0" required.  See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124
125 /*
126  * Various supported device vendors/types and their names. Note: the
127  * spec seems to indicate that the hardware still has Alteon's vendor
128  * ID burned into it, though it will always be overriden by the vendor
129  * ID in the EEPROM. Just to be safe, we cover all possibilities.
130  */
131 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
132
133 static struct bge_type bge_devs[] = {
134         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
135                 "Alteon BCM5700 Gigabit Ethernet" },
136         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
137                 "Alteon BCM5701 Gigabit Ethernet" },
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
139                 "Broadcom BCM5700 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
141                 "Broadcom BCM5701 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143                 "Broadcom BCM5702X Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145                 "Broadcom BCM5702 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
147                 "Broadcom BCM5703X Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
149                 "Broadcom BCM5703 Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
151                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
153                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
155                 "Broadcom BCM5705 Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
157                 "Broadcom BCM5705K Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
159                 "Broadcom BCM5705M Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
161                 "Broadcom BCM5705M Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5714C,
163                 "Broadcom BCM5714C Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
165                 "Broadcom BCM5721 Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
167                 "Broadcom BCM5750 Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
169                 "Broadcom BCM5750M Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
171                 "Broadcom BCM5751 Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
173                 "Broadcom BCM5751M Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
175                 "Broadcom BCM5782 Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
177                 "Broadcom BCM5788 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
179                 "Broadcom BCM5789 Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
181                 "Broadcom BCM5901 Fast Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
183                 "Broadcom BCM5901A2 Fast Ethernet" },
184         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
185                 "SysKonnect Gigabit Ethernet" },
186         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
187                 "Altima AC1000 Gigabit Ethernet" },
188         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
189                 "Altima AC1002 Gigabit Ethernet" },
190         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
191                 "Altima AC9100 Gigabit Ethernet" },
192         { 0, 0, NULL }
193 };
194
195 static int      bge_probe(device_t);
196 static int      bge_attach(device_t);
197 static int      bge_detach(device_t);
198 static void     bge_release_resources(struct bge_softc *);
199 static void     bge_txeof(struct bge_softc *);
200 static void     bge_rxeof(struct bge_softc *);
201
202 static void     bge_tick(void *);
203 static void     bge_tick_serialized(void *);
204 static void     bge_stats_update(struct bge_softc *);
205 static void     bge_stats_update_regs(struct bge_softc *);
206 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static void     bge_intr(void *);
209 static void     bge_start(struct ifnet *);
210 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
211 static void     bge_init(void *);
212 static void     bge_stop(struct bge_softc *);
213 static void     bge_watchdog(struct ifnet *);
214 static void     bge_shutdown(device_t);
215 static int      bge_ifmedia_upd(struct ifnet *);
216 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217
218 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
219 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
220
221 static void     bge_setmulti(struct bge_softc *);
222
223 static void     bge_handle_events(struct bge_softc *);
224 static int      bge_alloc_jumbo_mem(struct bge_softc *);
225 static void     bge_free_jumbo_mem(struct bge_softc *);
226 static struct bge_jslot
227                 *bge_jalloc(struct bge_softc *);
228 static void     bge_jfree(void *);
229 static void     bge_jref(void *);
230 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
231 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int      bge_init_rx_ring_std(struct bge_softc *);
233 static void     bge_free_rx_ring_std(struct bge_softc *);
234 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void     bge_free_tx_ring(struct bge_softc *);
237 static int      bge_init_tx_ring(struct bge_softc *);
238
239 static int      bge_chipinit(struct bge_softc *);
240 static int      bge_blockinit(struct bge_softc *);
241
242 #ifdef notdef
243 static uint8_t  bge_vpd_readbyte(struct bge_softc *, uint32_t);
244 static void     bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
245 static void     bge_vpd_read(struct bge_softc *);
246 #endif
247
248 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
249 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
250 #ifdef notdef
251 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
252 #endif
253 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
254
255 static int      bge_miibus_readreg(device_t, int, int);
256 static int      bge_miibus_writereg(device_t, int, int, int);
257 static void     bge_miibus_statchg(device_t);
258
259 static void     bge_reset(struct bge_softc *);
260
261 static device_method_t bge_methods[] = {
262         /* Device interface */
263         DEVMETHOD(device_probe,         bge_probe),
264         DEVMETHOD(device_attach,        bge_attach),
265         DEVMETHOD(device_detach,        bge_detach),
266         DEVMETHOD(device_shutdown,      bge_shutdown),
267
268         /* bus interface */
269         DEVMETHOD(bus_print_child,      bus_generic_print_child),
270         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
271
272         /* MII interface */
273         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
274         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
275         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
276
277         { 0, 0 }
278 };
279
280 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
281 static devclass_t bge_devclass;
282
283 DECLARE_DUMMY_MODULE(if_bge);
284 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
285 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
286
287 static uint32_t
288 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
289 {
290         device_t dev = sc->bge_dev;
291
292         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
293         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
294 }
295
296 static void
297 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
298 {
299         device_t dev = sc->bge_dev;
300
301         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
302         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
303 }
304
305 #ifdef notdef
306 static uint32_t
307 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
308 {
309         device_t dev = sc->bge_dev;
310
311         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
312         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
313 }
314 #endif
315
316 static void
317 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
318 {
319         device_t dev = sc->bge_dev;
320
321         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
322         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
323 }
324
325 #ifdef notdef
326 static uint8_t
327 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
328 {
329         device_t dev = sc->bge_dev;
330         uint32_t val;
331         int i;
332
333         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
334         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
335                 DELAY(10);
336                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
337                         break;
338         }
339
340         if (i == BGE_TIMEOUT) {
341                 device_printf(sc->bge_dev, "VPD read timed out\n");
342                 return(0);
343         }
344
345         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
346
347         return((val >> ((addr % 4) * 8)) & 0xFF);
348 }
349
350 static void
351 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
352 {
353         size_t i;
354         uint8_t *ptr;
355
356         ptr = (uint8_t *)res;
357         for (i = 0; i < sizeof(struct vpd_res); i++)
358                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
359
360         return;
361 }
362
363 static void
364 bge_vpd_read(struct bge_softc *sc)
365 {
366         int pos = 0, i;
367         struct vpd_res res;
368
369         if (sc->bge_vpd_prodname != NULL)
370                 free(sc->bge_vpd_prodname, M_DEVBUF);
371         if (sc->bge_vpd_readonly != NULL)
372                 free(sc->bge_vpd_readonly, M_DEVBUF);
373         sc->bge_vpd_prodname = NULL;
374         sc->bge_vpd_readonly = NULL;
375
376         bge_vpd_read_res(sc, &res, pos);
377
378         if (res.vr_id != VPD_RES_ID) {
379                 device_printf(sc->bge_dev,
380                               "bad VPD resource id: expected %x got %x\n",
381                               VPD_RES_ID, res.vr_id);
382                 return;
383         }
384
385         pos += sizeof(res);
386         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
387         for (i = 0; i < res.vr_len; i++)
388                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
389         sc->bge_vpd_prodname[i] = '\0';
390         pos += i;
391
392         bge_vpd_read_res(sc, &res, pos);
393
394         if (res.vr_id != VPD_RES_READ) {
395                 device_printf(sc->bge_dev,
396                               "bad VPD resource id: expected %x got %x\n",
397                               VPD_RES_READ, res.vr_id);
398                 return;
399         }
400
401         pos += sizeof(res);
402         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
403         for (i = 0; i < res.vr_len + 1; i++)
404                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
405 }
406 #endif
407
408 /*
409  * Read a byte of data stored in the EEPROM at address 'addr.' The
410  * BCM570x supports both the traditional bitbang interface and an
411  * auto access interface for reading the EEPROM. We use the auto
412  * access method.
413  */
414 static uint8_t
415 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
416 {
417         int i;
418         uint32_t byte = 0;
419
420         /*
421          * Enable use of auto EEPROM access so we can avoid
422          * having to use the bitbang method.
423          */
424         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
425
426         /* Reset the EEPROM, load the clock period. */
427         CSR_WRITE_4(sc, BGE_EE_ADDR,
428             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
429         DELAY(20);
430
431         /* Issue the read EEPROM command. */
432         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
433
434         /* Wait for completion */
435         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
436                 DELAY(10);
437                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
438                         break;
439         }
440
441         if (i == BGE_TIMEOUT) {
442                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
443                 return(0);
444         }
445
446         /* Get result. */
447         byte = CSR_READ_4(sc, BGE_EE_DATA);
448
449         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
450
451         return(0);
452 }
453
454 /*
455  * Read a sequence of bytes from the EEPROM.
456  */
457 static int
458 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
459 {
460         size_t i;
461         int err;
462         uint8_t byte;
463
464         for (byte = 0, err = 0, i = 0; i < len; i++) {
465                 err = bge_eeprom_getbyte(sc, off + i, &byte);
466                 if (err)
467                         break;
468                 *(dest + i) = byte;
469         }
470
471         return(err ? 1 : 0);
472 }
473
474 static int
475 bge_miibus_readreg(device_t dev, int phy, int reg)
476 {
477         struct bge_softc *sc;
478         struct ifnet *ifp;
479         uint32_t val, autopoll;
480         int i;
481
482         sc = device_get_softc(dev);
483         ifp = &sc->arpcom.ac_if;
484
485         /*
486          * Broadcom's own driver always assumes the internal
487          * PHY is at GMII address 1. On some chips, the PHY responds
488          * to accesses at all addresses, which could cause us to
489          * bogusly attach the PHY 32 times at probe type. Always
490          * restricting the lookup to address 1 is simpler than
491          * trying to figure out which chips revisions should be
492          * special-cased.
493          */
494         if (phy != 1)
495                 return(0);
496
497         /* Reading with autopolling on may trigger PCI errors */
498         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
499         if (autopoll & BGE_MIMODE_AUTOPOLL) {
500                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
501                 DELAY(40);
502         }
503
504         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
505             BGE_MIPHY(phy)|BGE_MIREG(reg));
506
507         for (i = 0; i < BGE_TIMEOUT; i++) {
508                 val = CSR_READ_4(sc, BGE_MI_COMM);
509                 if (!(val & BGE_MICOMM_BUSY))
510                         break;
511         }
512
513         if (i == BGE_TIMEOUT) {
514                 if_printf(ifp, "PHY read timed out\n");
515                 val = 0;
516                 goto done;
517         }
518
519         val = CSR_READ_4(sc, BGE_MI_COMM);
520
521 done:
522         if (autopoll & BGE_MIMODE_AUTOPOLL) {
523                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
524                 DELAY(40);
525         }
526
527         if (val & BGE_MICOMM_READFAIL)
528                 return(0);
529
530         return(val & 0xFFFF);
531 }
532
533 static int
534 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
535 {
536         struct bge_softc *sc;
537         uint32_t autopoll;
538         int i;
539
540         sc = device_get_softc(dev);
541
542         /* Reading with autopolling on may trigger PCI errors */
543         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
544         if (autopoll & BGE_MIMODE_AUTOPOLL) {
545                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
546                 DELAY(40);
547         }
548
549         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
550             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
551
552         for (i = 0; i < BGE_TIMEOUT; i++) {
553                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
554                         break;
555         }
556
557         if (autopoll & BGE_MIMODE_AUTOPOLL) {
558                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
559                 DELAY(40);
560         }
561
562         if (i == BGE_TIMEOUT) {
563                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
564                 return(0);
565         }
566
567         return(0);
568 }
569
570 static void
571 bge_miibus_statchg(device_t dev)
572 {
573         struct bge_softc *sc;
574         struct mii_data *mii;
575
576         sc = device_get_softc(dev);
577         mii = device_get_softc(sc->bge_miibus);
578
579         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
580         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
581                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
582         } else {
583                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
584         }
585
586         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
587                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
588         } else {
589                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
590         }
591 }
592
593 /*
594  * Handle events that have triggered interrupts.
595  */
596 static void
597 bge_handle_events(struct bge_softc *sc)
598 {
599 }
600
601 /*
602  * Memory management for jumbo frames.
603  */
604 static int
605 bge_alloc_jumbo_mem(struct bge_softc *sc)
606 {
607         struct bge_jslot *entry;
608         caddr_t ptr;
609         int i;
610
611         /* Grab a big chunk o' storage. */
612         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
613                 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
614
615         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
616                 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
617                 return(ENOBUFS);
618         }
619
620         SLIST_INIT(&sc->bge_jfree_listhead);
621
622         /*
623          * Now divide it up into 9K pieces and save the addresses
624          * in an array. Note that we play an evil trick here by using
625          * the first few bytes in the buffer to hold the the address
626          * of the softc structure for this interface. This is because
627          * bge_jfree() needs it, but it is called by the mbuf management
628          * code which will not pass it to us explicitly.
629          */
630         ptr = sc->bge_cdata.bge_jumbo_buf;
631         for (i = 0; i < BGE_JSLOTS; i++) {
632                 entry = &sc->bge_cdata.bge_jslots[i];
633                 entry->bge_sc = sc;
634                 entry->bge_buf = ptr;
635                 entry->bge_inuse = 0;
636                 entry->bge_slot = i;
637                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
638                 ptr += BGE_JLEN;
639         }
640
641         return(0);
642 }
643
644 static void
645 bge_free_jumbo_mem(struct bge_softc *sc)
646 {
647         if (sc->bge_cdata.bge_jumbo_buf)
648                 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
649 }
650
651 /*
652  * Allocate a jumbo buffer.
653  */
654 static struct bge_jslot *
655 bge_jalloc(struct bge_softc *sc)
656 {
657         struct bge_jslot *entry;
658
659         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
660
661         if (entry == NULL) {
662                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
663                 return(NULL);
664         }
665
666         SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
667         entry->bge_inuse = 1;
668         return(entry);
669 }
670
671 /*
672  * Adjust usage count on a jumbo buffer.
673  */
674 static void
675 bge_jref(void *arg)
676 {
677         struct bge_jslot *entry = (struct bge_jslot *)arg;
678         struct bge_softc *sc = entry->bge_sc;
679
680         if (sc == NULL)
681                 panic("bge_jref: can't find softc pointer!");
682
683         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
684                 panic("bge_jref: asked to reference buffer "
685                     "that we don't manage!");
686         else if (entry->bge_inuse == 0)
687                 panic("bge_jref: buffer already free!");
688         else
689                 entry->bge_inuse++;
690 }
691
692 /*
693  * Release a jumbo buffer.
694  */
695 static void
696 bge_jfree(void *arg)
697 {
698         struct bge_jslot *entry = (struct bge_jslot *)arg;
699         struct bge_softc *sc = entry->bge_sc;
700
701         if (sc == NULL)
702                 panic("bge_jfree: can't find softc pointer!");
703
704         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry)
705                 panic("bge_jfree: asked to free buffer that we don't manage!");
706         else if (entry->bge_inuse == 0)
707                 panic("bge_jfree: buffer already free!");
708         else if (--entry->bge_inuse == 0)
709                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
710 }
711
712
713 /*
714  * Intialize a standard receive ring descriptor.
715  */
716 static int
717 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
718 {
719         struct mbuf *m_new = NULL;
720         struct bge_rx_bd *r;
721
722         if (m == NULL) {
723                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
724                 if (m_new == NULL)
725                         return (ENOBUFS);
726                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
727         } else {
728                 m_new = m;
729                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
730                 m_new->m_data = m_new->m_ext.ext_buf;
731         }
732
733         if (!sc->bge_rx_alignment_bug)
734                 m_adj(m_new, ETHER_ALIGN);
735         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
736         r = &sc->bge_rdata->bge_rx_std_ring[i];
737         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
738         r->bge_flags = BGE_RXBDFLAG_END;
739         r->bge_len = m_new->m_len;
740         r->bge_idx = i;
741
742         return(0);
743 }
744
745 /*
746  * Initialize a jumbo receive ring descriptor. This allocates
747  * a jumbo buffer from the pool managed internally by the driver.
748  */
749 static int
750 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
751 {
752         struct mbuf *m_new = NULL;
753         struct bge_rx_bd *r;
754
755         if (m == NULL) {
756                 struct bge_jslot *buf;
757
758                 /* Allocate the mbuf. */
759                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
760                 if (m_new == NULL)
761                         return(ENOBUFS);
762
763                 /* Allocate the jumbo buffer */
764                 buf = bge_jalloc(sc);
765                 if (buf == NULL) {
766                         m_freem(m_new);
767                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
768                             "-- packet dropped!\n");
769                         return(ENOBUFS);
770                 }
771
772                 /* Attach the buffer to the mbuf. */
773                 m_new->m_ext.ext_arg = buf;
774                 m_new->m_ext.ext_buf = buf->bge_buf;
775                 m_new->m_ext.ext_free = bge_jfree;
776                 m_new->m_ext.ext_ref = bge_jref;
777                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
778
779                 m_new->m_data = m_new->m_ext.ext_buf;
780                 m_new->m_flags |= M_EXT;
781                 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
782         } else {
783                 m_new = m;
784                 m_new->m_data = m_new->m_ext.ext_buf;
785                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
786         }
787
788         if (!sc->bge_rx_alignment_bug)
789                 m_adj(m_new, ETHER_ALIGN);
790         /* Set up the descriptor. */
791         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
792         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
793         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
794         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
795         r->bge_len = m_new->m_len;
796         r->bge_idx = i;
797
798         return(0);
799 }
800
801 /*
802  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
803  * that's 1MB or memory, which is a lot. For now, we fill only the first
804  * 256 ring entries and hope that our CPU is fast enough to keep up with
805  * the NIC.
806  */
807 static int
808 bge_init_rx_ring_std(struct bge_softc *sc)
809 {
810         int i;
811
812         for (i = 0; i < BGE_SSLOTS; i++) {
813                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
814                         return(ENOBUFS);
815         };
816
817         sc->bge_std = i - 1;
818         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
819
820         return(0);
821 }
822
823 static void
824 bge_free_rx_ring_std(struct bge_softc *sc)
825 {
826         int i;
827
828         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
829                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
830                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
831                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
832                 }
833                 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
834                     sizeof(struct bge_rx_bd));
835         }
836 }
837
838 static int
839 bge_init_rx_ring_jumbo(struct bge_softc *sc)
840 {
841         int i;
842         struct bge_rcb *rcb;
843
844         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
845                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
846                         return(ENOBUFS);
847         };
848
849         sc->bge_jumbo = i - 1;
850
851         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
852         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
853         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
854
855         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
856
857         return(0);
858 }
859
860 static void
861 bge_free_rx_ring_jumbo(struct bge_softc *sc)
862 {
863         int i;
864
865         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
866                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
867                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
868                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
869                 }
870                 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
871                     sizeof(struct bge_rx_bd));
872         }
873 }
874
875 static void
876 bge_free_tx_ring(struct bge_softc *sc)
877 {
878         int i;
879
880         if (sc->bge_rdata->bge_tx_ring == NULL)
881                 return;
882
883         for (i = 0; i < BGE_TX_RING_CNT; i++) {
884                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
885                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
886                         sc->bge_cdata.bge_tx_chain[i] = NULL;
887                 }
888                 bzero(&sc->bge_rdata->bge_tx_ring[i],
889                     sizeof(struct bge_tx_bd));
890         }
891 }
892
893 static int
894 bge_init_tx_ring(struct bge_softc *sc)
895 {
896         sc->bge_txcnt = 0;
897         sc->bge_tx_saved_considx = 0;
898
899         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
900         /* 5700 b2 errata */
901         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
902                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
903
904         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
905         /* 5700 b2 errata */
906         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
907                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
908
909         return(0);
910 }
911
912 static void
913 bge_setmulti(struct bge_softc *sc)
914 {
915         struct ifnet *ifp;
916         struct ifmultiaddr *ifma;
917         uint32_t hashes[4] = { 0, 0, 0, 0 };
918         int h, i;
919
920         ifp = &sc->arpcom.ac_if;
921
922         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
923                 for (i = 0; i < 4; i++)
924                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
925                 return;
926         }
927
928         /* First, zot all the existing filters. */
929         for (i = 0; i < 4; i++)
930                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
931
932         /* Now program new ones. */
933         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
934                 if (ifma->ifma_addr->sa_family != AF_LINK)
935                         continue;
936                 h = ether_crc32_le(
937                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
938                     ETHER_ADDR_LEN) & 0x7f;
939                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
940         }
941
942         for (i = 0; i < 4; i++)
943                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
944 }
945
946 /*
947  * Do endian, PCI and DMA initialization. Also check the on-board ROM
948  * self-test results.
949  */
950 static int
951 bge_chipinit(struct bge_softc *sc)
952 {
953         int i;
954         uint32_t dma_rw_ctl;
955
956         /* Set endianness before we access any non-PCI registers. */
957 #if BYTE_ORDER == BIG_ENDIAN
958         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
959             BGE_BIGENDIAN_INIT, 4);
960 #else
961         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
962             BGE_LITTLEENDIAN_INIT, 4);
963 #endif
964
965         /*
966          * Check the 'ROM failed' bit on the RX CPU to see if
967          * self-tests passed.
968          */
969         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
970                 if_printf(&sc->arpcom.ac_if,
971                           "RX CPU self-diagnostics failed!\n");
972                 return(ENODEV);
973         }
974
975         /* Clear the MAC control register */
976         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
977
978         /*
979          * Clear the MAC statistics block in the NIC's
980          * internal memory.
981          */
982         for (i = BGE_STATS_BLOCK;
983             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
984                 BGE_MEMWIN_WRITE(sc, i, 0);
985
986         for (i = BGE_STATUS_BLOCK;
987             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
988                 BGE_MEMWIN_WRITE(sc, i, 0);
989
990         /* Set up the PCI DMA control register. */
991         if (sc->bge_pcie) {
992                 /* PCI Express */
993                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
994                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
995                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
996         } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
997                    BGE_PCISTATE_PCI_BUSMODE) {
998                 /* Conventional PCI bus */
999                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1000                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1001                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1002                     (0x0F);
1003         } else {
1004                 /* PCI-X bus */
1005                 /*
1006                  * The 5704 uses a different encoding of read/write
1007                  * watermarks.
1008                  */
1009                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1010                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1011                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1012                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1013                 else
1014                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1015                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1016                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1017                             (0x0F);
1018
1019                 /*
1020                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1021                  * for hardware bugs.
1022                  */
1023                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1024                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1025                         uint32_t tmp;
1026
1027                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1028                         if (tmp == 0x6 || tmp == 0x7)
1029                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1030                 }
1031         }
1032
1033         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1034             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1035             sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1036             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1037                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1038         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1039
1040         /*
1041          * Set up general mode register.
1042          */
1043         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1044             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1045             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1046             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1047
1048         /*
1049          * Disable memory write invalidate.  Apparently it is not supported
1050          * properly by these devices.
1051          */
1052         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1053
1054         /* Set the timer prescaler (always 66Mhz) */
1055         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1056
1057         return(0);
1058 }
1059
1060 static int
1061 bge_blockinit(struct bge_softc *sc)
1062 {
1063         struct bge_rcb *rcb;
1064         volatile struct bge_rcb *vrcb;
1065         int i;
1066
1067         /*
1068          * Initialize the memory window pointer register so that
1069          * we can access the first 32K of internal NIC RAM. This will
1070          * allow us to set up the TX send ring RCBs and the RX return
1071          * ring RCBs, plus other things which live in NIC memory.
1072          */
1073         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1074
1075         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1076
1077         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1078             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1079                 /* Configure mbuf memory pool */
1080                 if (sc->bge_extram) {
1081                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1082                             BGE_EXT_SSRAM);
1083                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1084                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1085                         else
1086                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1087                 } else {
1088                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1089                             BGE_BUFFPOOL_1);
1090                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1091                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1092                         else
1093                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1094                 }
1095
1096                 /* Configure DMA resource pool */
1097                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1098                     BGE_DMA_DESCRIPTORS);
1099                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1100         }
1101
1102         /* Configure mbuf pool watermarks */
1103         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1104             sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1105                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1106                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1107         } else {
1108                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1109                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1110         }
1111         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1112
1113         /* Configure DMA resource watermarks */
1114         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1115         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1116
1117         /* Enable buffer manager */
1118         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1119             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1120                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1121                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1122
1123                 /* Poll for buffer manager start indication */
1124                 for (i = 0; i < BGE_TIMEOUT; i++) {
1125                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1126                                 break;
1127                         DELAY(10);
1128                 }
1129
1130                 if (i == BGE_TIMEOUT) {
1131                         if_printf(&sc->arpcom.ac_if,
1132                                   "buffer manager failed to start\n");
1133                         return(ENXIO);
1134                 }
1135         }
1136
1137         /* Enable flow-through queues */
1138         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1139         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1140
1141         /* Wait until queue initialization is complete */
1142         for (i = 0; i < BGE_TIMEOUT; i++) {
1143                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1144                         break;
1145                 DELAY(10);
1146         }
1147
1148         if (i == BGE_TIMEOUT) {
1149                 if_printf(&sc->arpcom.ac_if,
1150                           "flow-through queue init failed\n");
1151                 return(ENXIO);
1152         }
1153
1154         /* Initialize the standard RX ring control block */
1155         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1156         BGE_HOSTADDR(rcb->bge_hostaddr,
1157             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1158         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1159             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1160                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1161         else
1162                 rcb->bge_maxlen_flags =
1163                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1164         if (sc->bge_extram)
1165                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1166         else
1167                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1168         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1169         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1170         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1171         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1172
1173         /*
1174          * Initialize the jumbo RX ring control block
1175          * We set the 'ring disabled' bit in the flags
1176          * field until we're actually ready to start
1177          * using this ring (i.e. once we set the MTU
1178          * high enough to require it).
1179          */
1180         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1181             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1182                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1183                 BGE_HOSTADDR(rcb->bge_hostaddr,
1184                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1185                 rcb->bge_maxlen_flags =
1186                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1187                     BGE_RCB_FLAG_RING_DISABLED);
1188                 if (sc->bge_extram)
1189                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1190                 else
1191                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1192                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1193                     rcb->bge_hostaddr.bge_addr_hi);
1194                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1195                     rcb->bge_hostaddr.bge_addr_lo);
1196                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1197                     rcb->bge_maxlen_flags);
1198                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1199
1200                 /* Set up dummy disabled mini ring RCB */
1201                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1202                 rcb->bge_maxlen_flags =
1203                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1204                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1205                     rcb->bge_maxlen_flags);
1206         }
1207
1208         /*
1209          * Set the BD ring replentish thresholds. The recommended
1210          * values are 1/8th the number of descriptors allocated to
1211          * each ring.
1212          */
1213         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1214         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1215
1216         /*
1217          * Disable all unused send rings by setting the 'ring disabled'
1218          * bit in the flags field of all the TX send ring control blocks.
1219          * These are located in NIC memory.
1220          */
1221         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1222             BGE_SEND_RING_RCB);
1223         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1224                 vrcb->bge_maxlen_flags =
1225                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1226                 vrcb->bge_nicaddr = 0;
1227                 vrcb++;
1228         }
1229
1230         /* Configure TX RCB 0 (we use only the first ring) */
1231         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1232             BGE_SEND_RING_RCB);
1233         vrcb->bge_hostaddr.bge_addr_hi = 0;
1234         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1235         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1236         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1237             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1238                 vrcb->bge_maxlen_flags =
1239                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1240
1241         /* Disable all unused RX return rings */
1242         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1243             BGE_RX_RETURN_RING_RCB);
1244         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1245                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1246                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1247                 vrcb->bge_maxlen_flags =
1248                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1249                     BGE_RCB_FLAG_RING_DISABLED);
1250                 vrcb->bge_nicaddr = 0;
1251                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1252                     (i * (sizeof(uint64_t))), 0);
1253                 vrcb++;
1254         }
1255
1256         /* Initialize RX ring indexes */
1257         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1258         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1259         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1260
1261         /*
1262          * Set up RX return ring 0
1263          * Note that the NIC address for RX return rings is 0x00000000.
1264          * The return rings live entirely within the host, so the
1265          * nicaddr field in the RCB isn't used.
1266          */
1267         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1268             BGE_RX_RETURN_RING_RCB);
1269         vrcb->bge_hostaddr.bge_addr_hi = 0;
1270         BGE_HOSTADDR(vrcb->bge_hostaddr,
1271             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1272         vrcb->bge_nicaddr = 0x00000000;
1273         vrcb->bge_maxlen_flags =
1274             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1275
1276         /* Set random backoff seed for TX */
1277         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1278             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1279             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1280             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1281             BGE_TX_BACKOFF_SEED_MASK);
1282
1283         /* Set inter-packet gap */
1284         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1285
1286         /*
1287          * Specify which ring to use for packets that don't match
1288          * any RX rules.
1289          */
1290         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1291
1292         /*
1293          * Configure number of RX lists. One interrupt distribution
1294          * list, sixteen active lists, one bad frames class.
1295          */
1296         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1297
1298         /* Inialize RX list placement stats mask. */
1299         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1300         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1301
1302         /* Disable host coalescing until we get it set up */
1303         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1304
1305         /* Poll to make sure it's shut down. */
1306         for (i = 0; i < BGE_TIMEOUT; i++) {
1307                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1308                         break;
1309                 DELAY(10);
1310         }
1311
1312         if (i == BGE_TIMEOUT) {
1313                 if_printf(&sc->arpcom.ac_if,
1314                           "host coalescing engine failed to idle\n");
1315                 return(ENXIO);
1316         }
1317
1318         /* Set up host coalescing defaults */
1319         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1320         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1321         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1322         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1323         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1324             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1325                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1326                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1327         }
1328         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1329         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1330
1331         /* Set up address of statistics block */
1332         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1333             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1334                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1335                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1336                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1337
1338                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1339                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1340                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1341         }
1342
1343         /* Set up address of status block */
1344         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1345         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1346             vtophys(&sc->bge_rdata->bge_status_block));
1347
1348         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1349         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1350
1351         /* Turn on host coalescing state machine */
1352         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1353
1354         /* Turn on RX BD completion state machine and enable attentions */
1355         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1356             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1357
1358         /* Turn on RX list placement state machine */
1359         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1360
1361         /* Turn on RX list selector state machine. */
1362         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1363             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1364                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1365
1366         /* Turn on DMA, clear stats */
1367         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1368             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1369             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1370             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1371             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1372
1373         /* Set misc. local control, enable interrupts on attentions */
1374         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1375
1376 #ifdef notdef
1377         /* Assert GPIO pins for PHY reset */
1378         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1379             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1380         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1381             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1382 #endif
1383
1384         /* Turn on DMA completion state machine */
1385         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1386             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1387                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1388
1389         /* Turn on write DMA state machine */
1390         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1391             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1392         
1393         /* Turn on read DMA state machine */
1394         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1395             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1396
1397         /* Turn on RX data completion state machine */
1398         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1399
1400         /* Turn on RX BD initiator state machine */
1401         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1402
1403         /* Turn on RX data and RX BD initiator state machine */
1404         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1405
1406         /* Turn on Mbuf cluster free state machine */
1407         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1408             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1409                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1410
1411         /* Turn on send BD completion state machine */
1412         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1413
1414         /* Turn on send data completion state machine */
1415         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1416
1417         /* Turn on send data initiator state machine */
1418         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1419
1420         /* Turn on send BD initiator state machine */
1421         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1422
1423         /* Turn on send BD selector state machine */
1424         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1425
1426         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1427         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1428             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1429
1430         /* ack/clear link change events */
1431         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1432             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1433             BGE_MACSTAT_LINK_CHANGED);
1434
1435         /* Enable PHY auto polling (for MII/GMII only) */
1436         if (sc->bge_tbi) {
1437                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1438         } else {
1439                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1440                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1441                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1442                             BGE_EVTENB_MI_INTERRUPT);
1443         }
1444
1445         /* Enable link state change attentions. */
1446         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1447
1448         return(0);
1449 }
1450
1451 /*
1452  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1453  * against our list and return its name if we find a match. Note
1454  * that since the Broadcom controller contains VPD support, we
1455  * can get the device name string from the controller itself instead
1456  * of the compiled-in string. This is a little slow, but it guarantees
1457  * we'll always announce the right product name.
1458  */
1459 static int
1460 bge_probe(device_t dev)
1461 {
1462         struct bge_softc *sc;
1463         struct bge_type *t;
1464         char *descbuf;
1465         uint16_t product, vendor;
1466
1467         product = pci_get_device(dev);
1468         vendor = pci_get_vendor(dev);
1469
1470         for (t = bge_devs; t->bge_name != NULL; t++) {
1471                 if (vendor == t->bge_vid && product == t->bge_did)
1472                         break;
1473         }
1474
1475         if (t->bge_name == NULL)
1476                 return(ENXIO);
1477
1478         sc = device_get_softc(dev);
1479 #ifdef notdef
1480         sc->bge_dev = dev;
1481
1482         bge_vpd_read(sc);
1483         device_set_desc(dev, sc->bge_vpd_prodname);
1484 #endif
1485         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1486         snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1487             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1488         device_set_desc_copy(dev, descbuf);
1489         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1490                 sc->bge_no_3_led = 1;
1491         free(descbuf, M_TEMP);
1492         return(0);
1493 }
1494
1495 static int
1496 bge_attach(device_t dev)
1497 {
1498         struct ifnet *ifp;
1499         struct bge_softc *sc;
1500         uint32_t hwcfg = 0;
1501         uint32_t mac_addr = 0;
1502         int error = 0, rid;
1503         uint8_t ether_addr[ETHER_ADDR_LEN];
1504
1505         sc = device_get_softc(dev);
1506         sc->bge_dev = dev;
1507         callout_init(&sc->bge_stat_timer);
1508
1509         /*
1510          * Map control/status registers.
1511          */
1512         pci_enable_busmaster(dev);
1513
1514         rid = BGE_PCI_BAR0;
1515         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1516             RF_ACTIVE);
1517
1518         if (sc->bge_res == NULL) {
1519                 device_printf(dev, "couldn't map memory\n");
1520                 error = ENXIO;
1521                 return(error);
1522         }
1523
1524         sc->bge_btag = rman_get_bustag(sc->bge_res);
1525         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1526         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1527
1528         /* Allocate interrupt */
1529         rid = 0;
1530
1531         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1532             RF_SHAREABLE | RF_ACTIVE);
1533
1534         if (sc->bge_irq == NULL) {
1535                 device_printf(dev, "couldn't map interrupt\n");
1536                 error = ENXIO;
1537                 goto fail;
1538         }
1539
1540         /* Save ASIC rev. */
1541         sc->bge_chipid =
1542             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1543             BGE_PCIMISCCTL_ASICREV;
1544         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1545         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1546
1547         /*
1548          * Treat the 5714 like the 5750 until we have more info
1549          * on this chip.
1550          */
1551         if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1552                 sc->bge_asicrev = BGE_ASICREV_BCM5750;
1553
1554         /*
1555          * XXX: Broadcom Linux driver.  Not in specs or eratta.
1556          * PCI-Express?
1557          */
1558         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1559                 uint32_t v;
1560
1561                 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1562                 if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1563                         v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1564                         if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1565                                 sc->bge_pcie = 1;
1566                 }
1567         }
1568
1569         ifp = &sc->arpcom.ac_if;
1570         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1571
1572         /* Try to reset the chip. */
1573         bge_reset(sc);
1574
1575         if (bge_chipinit(sc)) {
1576                 device_printf(dev, "chip initialization failed\n");
1577                 error = ENXIO;
1578                 goto fail;
1579         }
1580
1581         /*
1582          * Get station address from the EEPROM.
1583          */
1584         mac_addr = bge_readmem_ind(sc, 0x0c14);
1585         if ((mac_addr >> 16) == 0x484b) {
1586                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1587                 ether_addr[1] = (uint8_t)mac_addr;
1588                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1589                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1590                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1591                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1592                 ether_addr[5] = (uint8_t)mac_addr;
1593         } else if (bge_read_eeprom(sc, ether_addr,
1594             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1595                 device_printf(dev, "failed to read station address\n");
1596                 error = ENXIO;
1597                 goto fail;
1598         }
1599
1600         /* Allocate the general information block and ring buffers. */
1601         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1602             M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1603
1604         if (sc->bge_rdata == NULL) {
1605                 error = ENXIO;
1606                 device_printf(dev, "no memory for list buffers!\n");
1607                 goto fail;
1608         }
1609
1610         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1611
1612         /*
1613          * Try to allocate memory for jumbo buffers.
1614          * The 5705/5750 does not appear to support jumbo frames.
1615          */
1616         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1617             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1618                 if (bge_alloc_jumbo_mem(sc)) {
1619                         device_printf(dev, "jumbo buffer allocation failed\n");
1620                         error = ENXIO;
1621                         goto fail;
1622                 }
1623         }
1624
1625         /* Set default tuneable values. */
1626         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1627         sc->bge_rx_coal_ticks = 150;
1628         sc->bge_tx_coal_ticks = 150;
1629         sc->bge_rx_max_coal_bds = 64;
1630         sc->bge_tx_max_coal_bds = 128;
1631
1632         /* 5705/5750 limits RX return ring to 512 entries. */
1633         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1634             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1635                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1636         else
1637                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1638
1639         /* Set up ifnet structure */
1640         ifp->if_softc = sc;
1641         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1642         ifp->if_ioctl = bge_ioctl;
1643         ifp->if_start = bge_start;
1644         ifp->if_watchdog = bge_watchdog;
1645         ifp->if_init = bge_init;
1646         ifp->if_mtu = ETHERMTU;
1647         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1648         ifq_set_ready(&ifp->if_snd);
1649         ifp->if_hwassist = BGE_CSUM_FEATURES;
1650         ifp->if_capabilities = IFCAP_HWCSUM;
1651         ifp->if_capenable = ifp->if_capabilities;
1652
1653         /*
1654          * Figure out what sort of media we have by checking the
1655          * hardware config word in the first 32k of NIC internal memory,
1656          * or fall back to examining the EEPROM if necessary.
1657          * Note: on some BCM5700 cards, this value appears to be unset.
1658          * If that's the case, we have to rely on identifying the NIC
1659          * by its PCI subsystem ID, as we do below for the SysKonnect
1660          * SK-9D41.
1661          */
1662         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1663                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1664         else {
1665                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1666                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1667                 hwcfg = ntohl(hwcfg);
1668         }
1669
1670         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1671                 sc->bge_tbi = 1;
1672
1673         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1674         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1675                 sc->bge_tbi = 1;
1676
1677         if (sc->bge_tbi) {
1678                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1679                     bge_ifmedia_upd, bge_ifmedia_sts);
1680                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1681                 ifmedia_add(&sc->bge_ifmedia,
1682                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1683                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1684                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1685                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1686         } else {
1687                 /*
1688                  * Do transceiver setup.
1689                  */
1690                 if (mii_phy_probe(dev, &sc->bge_miibus,
1691                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1692                         device_printf(dev, "MII without any PHY!\n");
1693                         error = ENXIO;
1694                         goto fail;
1695                 }
1696         }
1697
1698         /*
1699          * When using the BCM5701 in PCI-X mode, data corruption has
1700          * been observed in the first few bytes of some received packets.
1701          * Aligning the packet buffer in memory eliminates the corruption.
1702          * Unfortunately, this misaligns the packet payloads.  On platforms
1703          * which do not support unaligned accesses, we will realign the
1704          * payloads by copying the received packets.
1705          */
1706         switch (sc->bge_chipid) {
1707         case BGE_CHIPID_BCM5701_A0:
1708         case BGE_CHIPID_BCM5701_B0:
1709         case BGE_CHIPID_BCM5701_B2:
1710         case BGE_CHIPID_BCM5701_B5:
1711                 /* If in PCI-X mode, work around the alignment bug. */
1712                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1713                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1714                     BGE_PCISTATE_PCI_BUSSPEED)
1715                         sc->bge_rx_alignment_bug = 1;
1716                 break;
1717         }
1718
1719         /*
1720          * Call MI attach routine.
1721          */
1722         ether_ifattach(ifp, ether_addr, NULL);
1723
1724         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1725                                bge_intr, sc, &sc->bge_intrhand, 
1726                                ifp->if_serializer);
1727         if (error) {
1728                 ether_ifdetach(ifp);
1729                 device_printf(dev, "couldn't set up irq\n");
1730                 goto fail;
1731         }
1732
1733         return(0);
1734
1735 fail:
1736         bge_detach(dev);
1737
1738         return(error);
1739 }
1740
1741 static int
1742 bge_detach(device_t dev)
1743 {
1744         struct bge_softc *sc = device_get_softc(dev);
1745         struct ifnet *ifp = &sc->arpcom.ac_if;
1746
1747         lwkt_serialize_enter(ifp->if_serializer);
1748
1749         if (device_is_attached(dev)) {
1750                 ether_ifdetach(ifp);
1751                 bge_stop(sc);
1752                 bge_reset(sc);
1753         }
1754
1755         if (sc->bge_tbi)
1756                 ifmedia_removeall(&sc->bge_ifmedia);
1757         if (sc->bge_miibus);
1758                 device_delete_child(dev, sc->bge_miibus);
1759         bus_generic_detach(dev);
1760
1761         bge_release_resources(sc);
1762
1763         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1764             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1765                 bge_free_jumbo_mem(sc);
1766
1767         lwkt_serialize_exit(ifp->if_serializer);
1768
1769         return(0);
1770 }
1771
1772 static void
1773 bge_release_resources(struct bge_softc *sc)
1774 {
1775         device_t dev;
1776
1777         dev = sc->bge_dev;
1778
1779         if (sc->bge_vpd_prodname != NULL)
1780                 free(sc->bge_vpd_prodname, M_DEVBUF);
1781
1782         if (sc->bge_vpd_readonly != NULL)
1783                 free(sc->bge_vpd_readonly, M_DEVBUF);
1784
1785         if (sc->bge_intrhand != NULL)
1786                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1787
1788         if (sc->bge_irq != NULL)
1789                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1790
1791         if (sc->bge_res != NULL)
1792                 bus_release_resource(dev, SYS_RES_MEMORY,
1793                     BGE_PCI_BAR0, sc->bge_res);
1794
1795         if (sc->bge_rdata != NULL)
1796                 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1797                            M_DEVBUF);
1798
1799         return;
1800 }
1801
1802 static void
1803 bge_reset(struct bge_softc *sc)
1804 {
1805         device_t dev;
1806         uint32_t cachesize, command, pcistate, reset;
1807         int i, val = 0;
1808
1809         dev = sc->bge_dev;
1810
1811         /* Save some important PCI state. */
1812         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1813         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1814         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1815
1816         pci_write_config(dev, BGE_PCI_MISC_CTL,
1817             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1818             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1819
1820         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1821
1822         /* XXX: Broadcom Linux driver. */
1823         if (sc->bge_pcie) {
1824                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
1825                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
1826                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1827                         /* Prevent PCIE link training during global reset */
1828                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1829                         reset |= (1<<29);
1830                 }
1831         }
1832
1833         /* Issue global reset */
1834         bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1835
1836         DELAY(1000);
1837
1838         /* XXX: Broadcom Linux driver. */
1839         if (sc->bge_pcie) {
1840                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1841                         uint32_t v;
1842
1843                         DELAY(500000); /* wait for link training to complete */
1844                         v = pci_read_config(dev, 0xc4, 4);
1845                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
1846                 }
1847                 /* Set PCIE max payload size and clear error status. */
1848                 pci_write_config(dev, 0xd8, 0xf5000, 4);
1849         }
1850
1851         /* Reset some of the PCI state that got zapped by reset */
1852         pci_write_config(dev, BGE_PCI_MISC_CTL,
1853             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1854             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1855         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1856         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1857         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1858
1859         /* Enable memory arbiter. */
1860         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1861                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1862
1863         /*
1864          * Prevent PXE restart: write a magic number to the
1865          * general communications memory at 0xB50.
1866          */
1867         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1868         /*
1869          * Poll the value location we just wrote until
1870          * we see the 1's complement of the magic number.
1871          * This indicates that the firmware initialization
1872          * is complete.
1873          */
1874         for (i = 0; i < BGE_TIMEOUT; i++) {
1875                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1876                 if (val == ~BGE_MAGIC_NUMBER)
1877                         break;
1878                 DELAY(10);
1879         }
1880         
1881         if (i == BGE_TIMEOUT) {
1882                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1883                 return;
1884         }
1885
1886         /*
1887          * XXX Wait for the value of the PCISTATE register to
1888          * return to its original pre-reset state. This is a
1889          * fairly good indicator of reset completion. If we don't
1890          * wait for the reset to fully complete, trying to read
1891          * from the device's non-PCI registers may yield garbage
1892          * results.
1893          */
1894         for (i = 0; i < BGE_TIMEOUT; i++) {
1895                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1896                         break;
1897                 DELAY(10);
1898         }
1899
1900         /* Fix up byte swapping */
1901         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1902             BGE_MODECTL_BYTESWAP_DATA);
1903
1904         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1905
1906         /*
1907          * The 5704 in TBI mode apparently needs some special
1908          * adjustment to insure the SERDES drive level is set
1909          * to 1.2V.
1910          */
1911         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1912                 uint32_t serdescfg;
1913
1914                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1915                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
1916                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1917         }
1918
1919         /* XXX: Broadcom Linux driver. */
1920         if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1921                 uint32_t v;
1922
1923                 v = CSR_READ_4(sc, 0x7c00);
1924                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1925         }
1926
1927         DELAY(10000);
1928 }
1929
1930 /*
1931  * Frame reception handling. This is called if there's a frame
1932  * on the receive return list.
1933  *
1934  * Note: we have to be able to handle two possibilities here:
1935  * 1) the frame is from the jumbo recieve ring
1936  * 2) the frame is from the standard receive ring
1937  */
1938
1939 static void
1940 bge_rxeof(struct bge_softc *sc)
1941 {
1942         struct ifnet *ifp;
1943         int stdcnt = 0, jumbocnt = 0;
1944
1945         ifp = &sc->arpcom.ac_if;
1946
1947         while(sc->bge_rx_saved_considx !=
1948             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1949                 struct bge_rx_bd        *cur_rx;
1950                 uint32_t                rxidx;
1951                 struct mbuf             *m = NULL;
1952                 uint16_t                vlan_tag = 0;
1953                 int                     have_tag = 0;
1954
1955                 cur_rx =
1956             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1957
1958                 rxidx = cur_rx->bge_idx;
1959                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1960
1961                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1962                         have_tag = 1;
1963                         vlan_tag = cur_rx->bge_vlan_tag;
1964                 }
1965
1966                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1967                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1968                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1969                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1970                         jumbocnt++;
1971                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1972                                 ifp->if_ierrors++;
1973                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1974                                 continue;
1975                         }
1976                         if (bge_newbuf_jumbo(sc,
1977                             sc->bge_jumbo, NULL) == ENOBUFS) {
1978                                 ifp->if_ierrors++;
1979                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1980                                 continue;
1981                         }
1982                 } else {
1983                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1984                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1985                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1986                         stdcnt++;
1987                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1988                                 ifp->if_ierrors++;
1989                                 bge_newbuf_std(sc, sc->bge_std, m);
1990                                 continue;
1991                         }
1992                         if (bge_newbuf_std(sc, sc->bge_std,
1993                             NULL) == ENOBUFS) {
1994                                 ifp->if_ierrors++;
1995                                 bge_newbuf_std(sc, sc->bge_std, m);
1996                                 continue;
1997                         }
1998                 }
1999
2000                 ifp->if_ipackets++;
2001 #ifndef __i386__
2002                 /*
2003                  * The i386 allows unaligned accesses, but for other
2004                  * platforms we must make sure the payload is aligned.
2005                  */
2006                 if (sc->bge_rx_alignment_bug) {
2007                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2008                             cur_rx->bge_len);
2009                         m->m_data += ETHER_ALIGN;
2010                 }
2011 #endif
2012                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2013                 m->m_pkthdr.rcvif = ifp;
2014
2015 #if 0 /* currently broken for some packets, possibly related to TCP options */
2016                 if (ifp->if_hwassist) {
2017                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2018                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2019                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2020                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2021                                 m->m_pkthdr.csum_data =
2022                                     cur_rx->bge_tcp_udp_csum;
2023                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2024                         }
2025                 }
2026 #endif
2027
2028                 /*
2029                  * If we received a packet with a vlan tag, pass it
2030                  * to vlan_input() instead of ether_input().
2031                  */
2032                 if (have_tag) {
2033                         VLAN_INPUT_TAG(m, vlan_tag);
2034                         have_tag = vlan_tag = 0;
2035                 } else {
2036                         ifp->if_input(ifp, m);
2037                 }
2038         }
2039
2040         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2041         if (stdcnt)
2042                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2043         if (jumbocnt)
2044                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2045 }
2046
2047 static void
2048 bge_txeof(struct bge_softc *sc)
2049 {
2050         struct bge_tx_bd *cur_tx = NULL;
2051         struct ifnet *ifp;
2052
2053         ifp = &sc->arpcom.ac_if;
2054
2055         /*
2056          * Go through our tx ring and free mbufs for those
2057          * frames that have been sent.
2058          */
2059         while (sc->bge_tx_saved_considx !=
2060             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2061                 uint32_t                idx = 0;
2062
2063                 idx = sc->bge_tx_saved_considx;
2064                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2065                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2066                         ifp->if_opackets++;
2067                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2068                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2069                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2070                 }
2071                 sc->bge_txcnt--;
2072                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2073                 ifp->if_timer = 0;
2074         }
2075
2076         if (cur_tx != NULL)
2077                 ifp->if_flags &= ~IFF_OACTIVE;
2078 }
2079
2080 static void
2081 bge_intr(void *xsc)
2082 {
2083         struct bge_softc *sc = xsc;
2084         struct ifnet *ifp = &sc->arpcom.ac_if;
2085         uint32_t status, statusword, mimode;
2086
2087         /* XXX */
2088         statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2089
2090 #ifdef notdef
2091         /* Avoid this for now -- checking this register is expensive. */
2092         /* Make sure this is really our interrupt. */
2093         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2094                 return;
2095 #endif
2096         /* Ack interrupt and stop others from occuring. */
2097         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2098
2099         /*
2100          * Process link state changes.
2101          * Grrr. The link status word in the status block does
2102          * not work correctly on the BCM5700 rev AX and BX chips,
2103          * according to all available information. Hence, we have
2104          * to enable MII interrupts in order to properly obtain
2105          * async link changes. Unfortunately, this also means that
2106          * we have to read the MAC status register to detect link
2107          * changes, thereby adding an additional register access to
2108          * the interrupt handler.
2109          */
2110
2111         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2112                 status = CSR_READ_4(sc, BGE_MAC_STS);
2113                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2114                         sc->bge_link = 0;
2115                         callout_stop(&sc->bge_stat_timer);
2116                         bge_tick_serialized(sc);
2117                         /* Clear the interrupt */
2118                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2119                             BGE_EVTENB_MI_INTERRUPT);
2120                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2121                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2122                             BRGPHY_INTRS);
2123                 }
2124         } else {
2125                 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2126                         /*
2127                          * Sometimes PCS encoding errors are detected in
2128                          * TBI mode (on fiber NICs), and for some reason
2129                          * the chip will signal them as link changes.
2130                          * If we get a link change event, but the 'PCS
2131                          * encoding error' bit in the MAC status register
2132                          * is set, don't bother doing a link check.
2133                          * This avoids spurious "gigabit link up" messages
2134                          * that sometimes appear on fiber NICs during
2135                          * periods of heavy traffic. (There should be no
2136                          * effect on copper NICs.)
2137                          *
2138                          * If we do have a copper NIC (bge_tbi == 0) then
2139                          * check that the AUTOPOLL bit is set before
2140                          * processing the event as a real link change.
2141                          * Turning AUTOPOLL on and off in the MII read/write
2142                          * functions will often trigger a link status
2143                          * interrupt for no reason.
2144                          */
2145                         status = CSR_READ_4(sc, BGE_MAC_STS);
2146                         mimode = CSR_READ_4(sc, BGE_MI_MODE);
2147                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2148                                         BGE_MACSTAT_MI_COMPLETE)) &&
2149                             (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2150                                 sc->bge_link = 0;
2151                                 callout_stop(&sc->bge_stat_timer);
2152                                 bge_tick_serialized(sc);
2153                         }
2154                         sc->bge_link = 0;
2155                         callout_stop(&sc->bge_stat_timer);
2156                         bge_tick_serialized(sc);
2157                         /* Clear the interrupt */
2158                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2159                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2160                             BGE_MACSTAT_LINK_CHANGED);
2161
2162                         /* Force flush the status block cached by PCI bridge */
2163                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2164                 }
2165         }
2166
2167         if (ifp->if_flags & IFF_RUNNING) {
2168                 /* Check RX return ring producer/consumer */
2169                 bge_rxeof(sc);
2170
2171                 /* Check TX ring producer/consumer */
2172                 bge_txeof(sc);
2173         }
2174
2175         bge_handle_events(sc);
2176
2177         /* Re-enable interrupts. */
2178         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2179
2180         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2181                 (*ifp->if_start)(ifp);
2182 }
2183
2184 static void
2185 bge_tick(void *xsc)
2186 {
2187         struct bge_softc *sc = xsc;
2188         struct ifnet *ifp = &sc->arpcom.ac_if;
2189
2190         lwkt_serialize_enter(ifp->if_serializer);
2191         bge_tick_serialized(xsc);
2192         lwkt_serialize_exit(ifp->if_serializer);
2193 }
2194
2195 static void
2196 bge_tick_serialized(void *xsc)
2197 {
2198         struct bge_softc *sc = xsc;
2199         struct ifnet *ifp = &sc->arpcom.ac_if;
2200         struct mii_data *mii = NULL;
2201         struct ifmedia *ifm = NULL;
2202
2203         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2204             sc->bge_asicrev == BGE_ASICREV_BCM5750)
2205                 bge_stats_update_regs(sc);
2206         else
2207                 bge_stats_update(sc);
2208
2209         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2210
2211         if (sc->bge_link) {
2212                 return;
2213         }
2214
2215         if (sc->bge_tbi) {
2216                 ifm = &sc->bge_ifmedia;
2217                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2218                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2219                         sc->bge_link++;
2220                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2221                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2222                                            BGE_MACMODE_TBI_SEND_CFGS);
2223                         }
2224                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2225                         if_printf(ifp, "gigabit link up\n");
2226                         if (!ifq_is_empty(&ifp->if_snd))
2227                                 (*ifp->if_start)(ifp);
2228                 }
2229                 return;
2230         }
2231
2232         mii = device_get_softc(sc->bge_miibus);
2233         mii_tick(mii);
2234  
2235         if (!sc->bge_link) {
2236                 mii_pollstat(mii);
2237                 if (mii->mii_media_status & IFM_ACTIVE &&
2238                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2239                         sc->bge_link++;
2240                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2241                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2242                                 if_printf(ifp, "gigabit link up\n");
2243                         if (!ifq_is_empty(&ifp->if_snd))
2244                                 (*ifp->if_start)(ifp);
2245                 }
2246         }
2247 }
2248
2249 static void
2250 bge_stats_update_regs(struct bge_softc *sc)
2251 {
2252         struct ifnet *ifp = &sc->arpcom.ac_if;
2253         struct bge_mac_stats_regs stats;
2254         uint32_t *s;
2255         int i;
2256
2257         s = (uint32_t *)&stats;
2258         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2259                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2260                 s++;
2261         }
2262
2263         ifp->if_collisions +=
2264            (stats.dot3StatsSingleCollisionFrames +
2265            stats.dot3StatsMultipleCollisionFrames +
2266            stats.dot3StatsExcessiveCollisions +
2267            stats.dot3StatsLateCollisions) -
2268            ifp->if_collisions;
2269 }
2270
2271 static void
2272 bge_stats_update(struct bge_softc *sc)
2273 {
2274         struct ifnet *ifp = &sc->arpcom.ac_if;
2275         struct bge_stats *stats;
2276
2277         stats = (struct bge_stats *)(sc->bge_vhandle +
2278             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2279
2280         ifp->if_collisions +=
2281            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2282            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2283            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2284            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2285            ifp->if_collisions;
2286
2287 #ifdef notdef
2288         ifp->if_collisions +=
2289            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2290            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2291            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2292            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2293            ifp->if_collisions;
2294 #endif
2295 }
2296
2297 /*
2298  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2299  * pointers to descriptors.
2300  */
2301 static int
2302 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2303 {
2304         struct bge_tx_bd *f = NULL;
2305         struct mbuf *m;
2306         uint32_t frag, cur, cnt = 0;
2307         uint16_t csum_flags = 0;
2308         struct ifvlan *ifv = NULL;
2309
2310         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2311             m_head->m_pkthdr.rcvif != NULL &&
2312             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2313                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2314
2315         m = m_head;
2316         cur = frag = *txidx;
2317
2318         if (m_head->m_pkthdr.csum_flags) {
2319                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2320                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2321                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2322                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2323                 if (m_head->m_flags & M_LASTFRAG)
2324                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2325                 else if (m_head->m_flags & M_FRAG)
2326                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2327         }
2328         /*
2329          * Start packing the mbufs in this chain into
2330          * the fragment pointers. Stop when we run out
2331          * of fragments or hit the end of the mbuf chain.
2332          */
2333         for (m = m_head; m != NULL; m = m->m_next) {
2334                 if (m->m_len != 0) {
2335                         f = &sc->bge_rdata->bge_tx_ring[frag];
2336                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2337                                 break;
2338                         BGE_HOSTADDR(f->bge_addr,
2339                             vtophys(mtod(m, vm_offset_t)));
2340                         f->bge_len = m->m_len;
2341                         f->bge_flags = csum_flags;
2342                         if (ifv != NULL) {
2343                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2344                                 f->bge_vlan_tag = ifv->ifv_tag;
2345                         } else {
2346                                 f->bge_vlan_tag = 0;
2347                         }
2348                         /*
2349                          * Sanity check: avoid coming within 16 descriptors
2350                          * of the end of the ring.
2351                          */
2352                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2353                                 return(ENOBUFS);
2354                         cur = frag;
2355                         BGE_INC(frag, BGE_TX_RING_CNT);
2356                         cnt++;
2357                 }
2358         }
2359
2360         if (m != NULL)
2361                 return(ENOBUFS);
2362
2363         if (frag == sc->bge_tx_saved_considx)
2364                 return(ENOBUFS);
2365
2366         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2367         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2368         sc->bge_txcnt += cnt;
2369
2370         *txidx = frag;
2371
2372         return(0);
2373 }
2374
2375 /*
2376  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2377  * to the mbuf data regions directly in the transmit descriptors.
2378  */
2379 static void
2380 bge_start(struct ifnet *ifp)
2381 {
2382         struct bge_softc *sc;
2383         struct mbuf *m_head = NULL;
2384         uint32_t prodidx = 0;
2385         int need_trans;
2386
2387         sc = ifp->if_softc;
2388
2389         if (!sc->bge_link)
2390                 return;
2391
2392         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2393
2394         need_trans = 0;
2395         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2396                 m_head = ifq_poll(&ifp->if_snd);
2397                 if (m_head == NULL)
2398                         break;
2399
2400                 /*
2401                  * XXX
2402                  * safety overkill.  If this is a fragmented packet chain
2403                  * with delayed TCP/UDP checksums, then only encapsulate
2404                  * it if we have enough descriptors to handle the entire
2405                  * chain at once.
2406                  * (paranoia -- may not actually be needed)
2407                  */
2408                 if (m_head->m_flags & M_FIRSTFRAG &&
2409                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2410                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2411                             m_head->m_pkthdr.csum_data + 16) {
2412                                 ifp->if_flags |= IFF_OACTIVE;
2413                                 break;
2414                         }
2415                 }
2416
2417                 /*
2418                  * Pack the data into the transmit ring. If we
2419                  * don't have room, set the OACTIVE flag and wait
2420                  * for the NIC to drain the ring.
2421                  */
2422                 if (bge_encap(sc, m_head, &prodidx)) {
2423                         ifp->if_flags |= IFF_OACTIVE;
2424                         break;
2425                 }
2426                 ifq_dequeue(&ifp->if_snd, m_head);
2427                 need_trans = 1;
2428
2429                 BPF_MTAP(ifp, m_head);
2430         }
2431
2432         if (!need_trans)
2433                 return;
2434
2435         /* Transmit */
2436         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2437         /* 5700 b2 errata */
2438         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2439                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2440
2441         /*
2442          * Set a timeout in case the chip goes out to lunch.
2443          */
2444         ifp->if_timer = 5;
2445 }
2446
2447 static void
2448 bge_init(void *xsc)
2449 {
2450         struct bge_softc *sc = xsc;
2451         struct ifnet *ifp = &sc->arpcom.ac_if;
2452         uint16_t *m;
2453
2454         if (ifp->if_flags & IFF_RUNNING) {
2455                 return;
2456         }
2457
2458         /* Cancel pending I/O and flush buffers. */
2459         bge_stop(sc);
2460         bge_reset(sc);
2461         bge_chipinit(sc);
2462
2463         /*
2464          * Init the various state machines, ring
2465          * control blocks and firmware.
2466          */
2467         if (bge_blockinit(sc)) {
2468                 if_printf(ifp, "initialization failure\n");
2469                 return;
2470         }
2471
2472         /* Specify MTU. */
2473         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2474             ETHER_HDR_LEN + ETHER_CRC_LEN);
2475
2476         /* Load our MAC address. */
2477         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2478         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2479         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2480
2481         /* Enable or disable promiscuous mode as needed. */
2482         if (ifp->if_flags & IFF_PROMISC) {
2483                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2484         } else {
2485                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2486         }
2487
2488         /* Program multicast filter. */
2489         bge_setmulti(sc);
2490
2491         /* Init RX ring. */
2492         bge_init_rx_ring_std(sc);
2493
2494         /*
2495          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2496          * memory to insure that the chip has in fact read the first
2497          * entry of the ring.
2498          */
2499         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2500                 uint32_t                v, i;
2501                 for (i = 0; i < 10; i++) {
2502                         DELAY(20);
2503                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2504                         if (v == (MCLBYTES - ETHER_ALIGN))
2505                                 break;
2506                 }
2507                 if (i == 10)
2508                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2509         }
2510
2511         /* Init jumbo RX ring. */
2512         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2513                 bge_init_rx_ring_jumbo(sc);
2514
2515         /* Init our RX return ring index */
2516         sc->bge_rx_saved_considx = 0;
2517
2518         /* Init TX ring. */
2519         bge_init_tx_ring(sc);
2520
2521         /* Turn on transmitter */
2522         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2523
2524         /* Turn on receiver */
2525         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2526
2527         /* Tell firmware we're alive. */
2528         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2529
2530         /* Enable host interrupts. */
2531         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2532         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2533         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2534
2535         bge_ifmedia_upd(ifp);
2536
2537         ifp->if_flags |= IFF_RUNNING;
2538         ifp->if_flags &= ~IFF_OACTIVE;
2539
2540         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2541 }
2542
2543 /*
2544  * Set media options.
2545  */
2546 static int
2547 bge_ifmedia_upd(struct ifnet *ifp)
2548 {
2549         struct bge_softc *sc = ifp->if_softc;
2550         struct ifmedia *ifm = &sc->bge_ifmedia;
2551         struct mii_data *mii;
2552
2553         /* If this is a 1000baseX NIC, enable the TBI port. */
2554         if (sc->bge_tbi) {
2555                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2556                         return(EINVAL);
2557                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2558                 case IFM_AUTO:
2559 #ifndef BGE_FAKE_AUTONEG
2560                         /*
2561                          * The BCM5704 ASIC appears to have a special
2562                          * mechanism for programming the autoneg
2563                          * advertisement registers in TBI mode.
2564                          */
2565                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2566                                 uint32_t sgdig;
2567
2568                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2569                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2570                                 sgdig |= BGE_SGDIGCFG_AUTO |
2571                                          BGE_SGDIGCFG_PAUSE_CAP |
2572                                          BGE_SGDIGCFG_ASYM_PAUSE;
2573                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2574                                             sgdig | BGE_SGDIGCFG_SEND);
2575                                 DELAY(5);
2576                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2577                         }
2578 #endif  /* !BEG_FAKE_AUTONEG */
2579                         break;
2580                 case IFM_1000_SX:
2581                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2582                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2583                                     BGE_MACMODE_HALF_DUPLEX);
2584                         } else {
2585                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2586                                     BGE_MACMODE_HALF_DUPLEX);
2587                         }
2588                         break;
2589                 default:
2590                         return(EINVAL);
2591                 }
2592                 return(0);
2593         }
2594
2595         mii = device_get_softc(sc->bge_miibus);
2596         sc->bge_link = 0;
2597         if (mii->mii_instance) {
2598                 struct mii_softc *miisc;
2599                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2600                     miisc = LIST_NEXT(miisc, mii_list))
2601                         mii_phy_reset(miisc);
2602         }
2603         mii_mediachg(mii);
2604
2605         return(0);
2606 }
2607
2608 /*
2609  * Report current media status.
2610  */
2611 static void
2612 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2613 {
2614         struct bge_softc *sc = ifp->if_softc;
2615         struct mii_data *mii;
2616
2617         if (sc->bge_tbi) {
2618                 ifmr->ifm_status = IFM_AVALID;
2619                 ifmr->ifm_active = IFM_ETHER;
2620                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2621                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2622                         ifmr->ifm_status |= IFM_ACTIVE;
2623                 ifmr->ifm_active |= IFM_1000_SX;
2624                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2625                         ifmr->ifm_active |= IFM_HDX;    
2626                 else
2627                         ifmr->ifm_active |= IFM_FDX;
2628                 return;
2629         }
2630
2631         mii = device_get_softc(sc->bge_miibus);
2632         mii_pollstat(mii);
2633         ifmr->ifm_active = mii->mii_media_active;
2634         ifmr->ifm_status = mii->mii_media_status;
2635 }
2636
2637 static int
2638 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2639 {
2640         struct bge_softc *sc = ifp->if_softc;
2641         struct ifreq *ifr = (struct ifreq *) data;
2642         int mask, error = 0;
2643         struct mii_data *mii;
2644
2645         switch(command) {
2646         case SIOCSIFMTU:
2647                 /* Disallow jumbo frames on 5705/5750. */
2648                 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2649                       sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2650                      ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2651                         error = EINVAL;
2652                 else {
2653                         ifp->if_mtu = ifr->ifr_mtu;
2654                         ifp->if_flags &= ~IFF_RUNNING;
2655                         bge_init(sc);
2656                 }
2657                 break;
2658         case SIOCSIFFLAGS:
2659                 if (ifp->if_flags & IFF_UP) {
2660                         /*
2661                          * If only the state of the PROMISC flag changed,
2662                          * then just use the 'set promisc mode' command
2663                          * instead of reinitializing the entire NIC. Doing
2664                          * a full re-init means reloading the firmware and
2665                          * waiting for it to start up, which may take a
2666                          * second or two.
2667                          */
2668                         if (ifp->if_flags & IFF_RUNNING &&
2669                             ifp->if_flags & IFF_PROMISC &&
2670                             !(sc->bge_if_flags & IFF_PROMISC)) {
2671                                 BGE_SETBIT(sc, BGE_RX_MODE,
2672                                     BGE_RXMODE_RX_PROMISC);
2673                         } else if (ifp->if_flags & IFF_RUNNING &&
2674                             !(ifp->if_flags & IFF_PROMISC) &&
2675                             sc->bge_if_flags & IFF_PROMISC) {
2676                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2677                                     BGE_RXMODE_RX_PROMISC);
2678                         } else
2679                                 bge_init(sc);
2680                 } else {
2681                         if (ifp->if_flags & IFF_RUNNING) {
2682                                 bge_stop(sc);
2683                         }
2684                 }
2685                 sc->bge_if_flags = ifp->if_flags;
2686                 error = 0;
2687                 break;
2688         case SIOCADDMULTI:
2689         case SIOCDELMULTI:
2690                 if (ifp->if_flags & IFF_RUNNING) {
2691                         bge_setmulti(sc);
2692                         error = 0;
2693                 }
2694                 break;
2695         case SIOCSIFMEDIA:
2696         case SIOCGIFMEDIA:
2697                 if (sc->bge_tbi) {
2698                         error = ifmedia_ioctl(ifp, ifr,
2699                             &sc->bge_ifmedia, command);
2700                 } else {
2701                         mii = device_get_softc(sc->bge_miibus);
2702                         error = ifmedia_ioctl(ifp, ifr,
2703                             &mii->mii_media, command);
2704                 }
2705                 break;
2706         case SIOCSIFCAP:
2707                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2708                 if (mask & IFCAP_HWCSUM) {
2709                         if (IFCAP_HWCSUM & ifp->if_capenable)
2710                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2711                         else
2712                                 ifp->if_capenable |= IFCAP_HWCSUM;
2713                 }
2714                 error = 0;
2715                 break;
2716         default:
2717                 error = ether_ioctl(ifp, command, data);
2718                 break;
2719         }
2720         return(error);
2721 }
2722
2723 static void
2724 bge_watchdog(struct ifnet *ifp)
2725 {
2726         struct bge_softc *sc = ifp->if_softc;
2727
2728         if_printf(ifp, "watchdog timeout -- resetting\n");
2729
2730         ifp->if_flags &= ~IFF_RUNNING;
2731         bge_init(sc);
2732
2733         ifp->if_oerrors++;
2734
2735         if (!ifq_is_empty(&ifp->if_snd))
2736                 ifp->if_start(ifp);
2737 }
2738
2739 /*
2740  * Stop the adapter and free any mbufs allocated to the
2741  * RX and TX lists.
2742  */
2743 static void
2744 bge_stop(struct bge_softc *sc)
2745 {
2746         struct ifnet *ifp = &sc->arpcom.ac_if;
2747         struct ifmedia_entry *ifm;
2748         struct mii_data *mii = NULL;
2749         int mtmp, itmp;
2750
2751         if (!sc->bge_tbi)
2752                 mii = device_get_softc(sc->bge_miibus);
2753
2754         callout_stop(&sc->bge_stat_timer);
2755
2756         /*
2757          * Disable all of the receiver blocks
2758          */
2759         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2760         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2761         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2762         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2763             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2764                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2765         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2766         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2767         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2768
2769         /*
2770          * Disable all of the transmit blocks
2771          */
2772         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2773         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2774         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2775         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2776         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2777         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2778             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2779                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2780         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2781
2782         /*
2783          * Shut down all of the memory managers and related
2784          * state machines.
2785          */
2786         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2787         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2788         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2789             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2790                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2791         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2792         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2793         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2794             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2795                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2796                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2797         }
2798
2799         /* Disable host interrupts. */
2800         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2801         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2802
2803         /*
2804          * Tell firmware we're shutting down.
2805          */
2806         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2807
2808         /* Free the RX lists. */
2809         bge_free_rx_ring_std(sc);
2810
2811         /* Free jumbo RX list. */
2812         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2813             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2814                 bge_free_rx_ring_jumbo(sc);
2815
2816         /* Free TX buffers. */
2817         bge_free_tx_ring(sc);
2818
2819         /*
2820          * Isolate/power down the PHY, but leave the media selection
2821          * unchanged so that things will be put back to normal when
2822          * we bring the interface back up.
2823          */
2824         if (!sc->bge_tbi) {
2825                 itmp = ifp->if_flags;
2826                 ifp->if_flags |= IFF_UP;
2827                 ifm = mii->mii_media.ifm_cur;
2828                 mtmp = ifm->ifm_media;
2829                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2830                 mii_mediachg(mii);
2831                 ifm->ifm_media = mtmp;
2832                 ifp->if_flags = itmp;
2833         }
2834
2835         sc->bge_link = 0;
2836
2837         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2838
2839         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2840 }
2841
2842 /*
2843  * Stop all chip I/O so that the kernel's probe routines don't
2844  * get confused by errant DMAs when rebooting.
2845  */
2846 static void
2847 bge_shutdown(device_t dev)
2848 {
2849         struct bge_softc *sc = device_get_softc(dev);
2850
2851         bge_stop(sc); 
2852         bge_reset(sc);
2853 }